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THE DISTRIBUTIVITY NUMBERS OF P(ω)/FIN
AND ITS SQUARE

SAHARON SHELAH AND OTMAR SPINAS

Abstract. We show that in a model obtained by forcing with a countable
support iteration of Mathias forcing of length ω2, the distributivity number
of P(ω)/fin is ω2, whereas the distributivity number of r.o.(P(ω)/fin)2 is ω1.
This answers a problem of Balcar, Pelant and Simon, and others.

Introduction

A complete Boolean algebra (B,≤) is called κ-distributive, where κ is a cardinal,
if and only if for every family 〈uαi : i ∈ Iα, α < κ〉 of members of B∏

α<κ

∑
i∈Iα

uαi =
∑

f∈
∏
α<κ Iα

∏
α<κ

uαf(α)

holds. It is well-known (see [J, p.152]) that every partially ordered set (P,≤) which
is separative can be densely embedded in a unique complete Boolean algebra, which
is usually denoted with r.o.(P ). The distributivity number of (P,≤) is defined as
the least κ such that r.o.(P ) is not κ-distributive. It is well-known (see [J, p.158])
that the following four statements are equivalent:

(1) r.o.(P ) is κ-distributive.
(2) The intersection of κ open dense sets in P is dense.
(3) Every family of κ maximal antichains of P has a refinement.
(4) Forcing with P does not add a new subset of κ.

The distributivity number of the Boolean algebra P(ω)/fin is denoted with h.
This cardinal was introduced in [BPS], where it has been shown that ω1 ≤ h ≤ 2ω

and the axioms of ZFC do not decide where exactly h sits in this interval.
For λ a cardinal let h(λ) be the distributivity number of (P(ω)/fin)λ, where by

(P(ω)/fin)λ we mean the full λ-product of P(ω)/fin in the forcing sense. That is, p ∈
(P(ω)/fin)λ if and only if p : λ→ P(ω)/fin \{0}. The ordering is coordinatewise.

Trivially, h(λ) ≥ h(γ) holds whenever λ < γ. In fact, if 〈Dα : α < h(λ)〉 is a
family of dense open subsets of (P(ω)/fin)λ whose intersection is not dense, then,
letting D′α = {p ∈ (P(ω)/fin)γ : p�λ ∈ Dα}, clearly the D′α are dense open in
(P(ω)/fin)γ and their intersection is not dense.

Since h ≤ 2ω, this implies that under CH the sequence 〈h(λ) : λ ∈ Card〉 is
constant with value ℵ1. In [BPS, 4.14(2)] we read: “We do not know of any further
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2024 SAHARON SHELAH AND OTMAR SPINAS

properties of this sequence.” The most elementary question which arises, and which
was explicitly asked by several people, is whether consistently this sequence is not
constant. In this paper we give a positive answer by proving the consistency of
h(2) < h with ZFC. In a sequel paper (see [ShSp]), for every n < ω we will construct
a model for h(n + 1) < h(n). In all these models the continuum will be ℵ2, and
hence the above sequence will be two-valued. The question of whether more values
are possible is tied up with the well-known problem of how to make the continuum
bigger than ℵ2, not using finite-support forcing iterations.

The natural forcing to increase h is Mathias forcing. We will show that in
a model obtained by forcing with a countable support iteration of length ω2 of
Mathias forcing over a model for CH, h(2) remains ω1.

There exists an equivalent game-theoretic definition of h(λ), which we will use
in the sequel. For any ordinal α and any partial ordering P let us consider the
following game G(P, α) of length α: Player I and II alternately choose elements
pIβ, p

II
β ∈ P , β < α, such that for β < β′ < α: pIβ ≥ pIIβ ≥ pIβ′ ≥ pIIβ′ . In the end,

player II wins if and only if the sequence of moves has no lower bound (this might
happen if at some step β < α, player I does not have a legal move).

We claim that h(λ) is the minimal cardinal κ such that player II has a winning
strategy in the game G((P(ω)/fin)λ, κ). For one direction, suppose we are given
dense open sets 〈Dα : α < κ〉 in (P(ω)/fin)λ such that D =

⋂
{Dα : α < κ} is not

dense. By the homogeneity of (P(ω)/fin)λ we may assume that D is empty. In fact,
if D contains no extension of p, choose 〈fα : α < λ〉 such that fα : p(α)→ ω is one-
to-one and onto. Replace Dα by D′α = {〈fα[q(α)] : α < λ〉 : q ∈ Dα and q ≤ p}.
Then the D′α are open dense and their intersection is empty. Now define a strategy
for II in G((P(ω)/fin)λ, κ) as follows: In his αth move let II play pIIα ∈ Dα such
that pIIα ≤ pIα. This is clearly a winning strategy.

Conversely, let σ be a winning strategy for II in G((P(ω)/fin)λ, κ). We shall make
use of (3) above. We define maximal antichains 〈Aα : α < γ ≤ κ〉 in (P(ω)/fin)λ

such that if α < β < γ, then Aβ refines Aα, and for every pβ ∈ Aβ , if pα ∈ Aα is
the unique member with pα ≥ pβ, then 〈pα : α ≤ β〉 are responses by σ in an initial
segment of a play consistent with σ. Suppose 〈Aα : α < δ〉 has been constructed
and δ < κ is a limit. If this sequence has no refinement, we are done, otherwise let
B be one. Now it is easy to construct Aδ as desired, namely consisting of responses
by σ to plays of length δ + 1 with the last coordinate an extension of a member
of B. If δ is a successor, construct Aδ similarly, where now B = Aδ−1. It is clear
that this construction stops at some γ ≤ κ, since otherwise, we could find a play
consistent with σ in which II loses.

1. Mathias forcing and Ramsey ultrafilters

Conditions of Mathias forcing are pairs (u, a) ∈ [ω]<ω× [ω]ω such that max(u) <
min(a). The ordering is defined as follows: (u, a) ≤ (v, b) if and only if v ⊆ u ⊆ v∪b
and a ⊆ b. Mathias forcing will be denoted by Q in this paper. Given p ∈ Q we
will write p = (up, ap).

If D is a filter on ω containing no finite sets, then Q(D) denotes Mathias forcing
relativized to D; that is, (u, a) ∈ Q(D) iff (u, a) ∈ Q and a ∈ D, and the order is
as for Q. Note that any two conditions in Q(D) with the same first coordinate are
compatible. Therefore, Q(D) is σ-centered; that is, a countable union of centered
subsets. It is well-known that Mathias forcing can be decomposed as Q = Q′ ∗Q′′

∼
,
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THE DISTRIBUTIVITY NUMBERS OF P(ω)/FIN AND ITS SQUARE 2025

such that Q′ is P(ω)/fin and Q′′
∼

= Q(G′
∼

), where G′
∼

is a name for the generic filter

added by P(ω)/fin. In fact, since Q′ is σ-closed and hence does not add reals,
the map sending (u, a) to (a, (u, a)) is a dense embedding of Q in Q′ ∗ Q′′

∼
. The

generic filter for Q′′
∼

, which determines the Mathias real, will be denoted by G′′
∼

.

Here and in the sequel we do not distinguish between a member of P(ω)/fin and
its representatives in P(ω). The above notation will be used throughout the
paper.

The Rudin-Keisler order ≤RK for ultrafilters on ω is defined by: D ≤RK U iff
there exists a function f : ω → ω such that D = {X ⊆ ω : f−1[X ] ∈ U}. In this
case D is called a projection of U and it is denoted by f∗(U). If D ≤RK U and
U ≤RK D, we call U and D RK-equivalent. By a result of M. E. Rudin (see [R]
or [J, Ex. 38.2., p.480]), in this case there exists a bijection f : ω → ω such that
D = f∗(U). Then we say that D and U are RK-equivalent by f .

A nonprincipal ultrafilter D on ω is called a Ramsey ultrafilter iff for every
n, k < ω and every partition F : [ω]n → k there exists H ∈ D homogeneous for F ;
that is, F �[H ]n is constant. An equivalent definition is as follows (see [J, p.478]):
D as above is Ramsey iff for every partition of ω into pieces not in the filter, there
exists a filter set which meets each piece at most once. Clearly such a filter is a
p-point; that is, for every countable subset of the filter there exists a filter set which
is almost contained in every member of it.

We shall use yet another equivalent definition of Ramsey ultrafilter. Let D be
a nonprincipal ultrafilter. A function f ∈ ωω is called unbounded modulo D if
{n : f(n) > k} ∈ D for every k < ω; moreover f is called one-to-one modulo D if
its restriction to some member of D is one-to-one. Then D is a Ramsey ultrafilter
iff every function unbounded modulo D is one-to-one modulo D (see [J, Ex. 38.1.,
p.479]).

In the following lemma, a forcing P is called ωω-bounding iff every function in
ωω in the extension V P is bounded by some function in V . Moreover, an ultrafilter
D in V is said to generate an ultrafilter in V P iff the collection of subsets of ω
which belong to V P and contain an element of D is an ultrafilter in V P .

Lemma 1.1. Suppose D1, D2 are Ramsey ultrafilters which are not RK-equivalent.
Let P be a proper, ωω-bounding forcing such that for every filter G ⊆ P which is
P -generic over V , D1 and D2 generate ultrafilters in V [G]. Then in V [G], D1 and
D2 generate Ramsey ultrafilters which are not RK-equivalent.

Proof. First, we show that D1, D2 are Ramsey ultrafilters in V [G]. Here and in the
sequel, we denote the ultrafilters generated by D1, D2 in V [G] by D1, D2 as well.
By properness, every X ∈ [V ]ω ∩ V [G] is covered by a countable set in V . Hence
D1, D2 generate p-points in V [G]. In V [G], let 〈an : n < ω〉 be a partition of ω such
that an 6∈ D1, for all n < ω. As D1 is a p-point, there exists X ∈ D1 ∩ V such that
|X ∩ an| < ω, for all n < ω. Let f ∈ ωω be defined by f(n+ 1) > f(n) is minimal
such that every ak with ak ∩ f(n) 6= ∅ satisfies ak ∩ (X \ f(n+ 1)) = ∅. As P is ωω-
bounding, we may find a strictly increasing g ∈ ωω ∩ V such that for every n < ω,
[g(n), g(n+ 1))∩ range(f) has at least one element. D1 contains exactly one of the
three sets

⋃
{[g(3n+ i), g(3n+ i+ 1)) : n < ω}, where i ∈ {0, 1, 2}. We denote this

set by Y . Since D1 is Ramsey in V , there exists Z ∈ D1 ∩ V such that Z ⊆ X ∩ Y
and |[g(n), g(n+ 1)) ∩ Z| ≤ 1, for all n < ω. We have to verify that |Z ∩ an| ≤ 1,
for every n. Let k, l ∈ Z ∩ an. Then k, l ∈ X ∩ an. By construction of f , there
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2026 SAHARON SHELAH AND OTMAR SPINAS

is n1 such that X ∩ an ⊆ [f(n1), f(n1 + 2)). By construction of g and since f is
increasing, there is n2 such that f(n1), f(n1 + 1), f(n1 + 2) ∈ [g(n2), g(n2 + 3)). By
construction of Z, there is n3 ∈ {n2, n2+1, n2+2} such that k, l ∈ [g(n3), g(n3+1)).
Since |[g(n3), g(n3 + 1)) ∩ Z| ≤ 1, we have that k = l.

Second, we show that D1, D2 do not become RK-equivalent in V [G]. Otherwise,
in V [G] we had a bijection f : ω → ω such that f∗(D1) = D2. Let f1 ∈ ωω be
defined such that f1(n+ 1) > f1(n) is minimal with

f1(n+ 1) ≥ max[{f(k) : k < f1(n)} ∪ {f−1(k) : k < f1(n)}] .

As P is ωω-bounding, we may find a strictly increasing g ∈ ωω∩V such that for
every n < ω, [g(n), g(n + 1)) ∩ range(f1) has at least two elements. Each of D1

and D2 contains one of the three sets

Ci =
⋃
{[g(3n+ i), g(3n+ i+ 1)) : n < ω} ,

where i ∈ {0, 1, 2}. Suppose Ci ∈ D1 and Cj ∈ D2. By Ramseyness in V ,
there exist X ∈ D1∩V , Y ∈ D2∩V such that X ⊆ Ci, Y ⊆ Cj and |X ∩ [g(3n+ i),
g(3n+ i+ 1))| ≤ 1, |Y ∩ [g(3n+ j), g(3n+ j+ 1))| ≤ 1, for all n < ω. Let xn be the
unique element of X∩ [g(3n+ i), g(3n+ i+1)) in the case that this set is not empty,
and let yn be the unique element of Y ∩ [g(3n+ i− 1), g(3n+ i + 1)) if this set is
not empty. Note that by construction, f(xn) ∈ [g(3n+ i− 1), g(3n+ i+ 1)). Hence
{xn : f(xn) = yn} ∈ D1, since otherwise, f would map a set in D1 to a set disjoint
to a member of D2. Consequently, {yn : f(xn) = yn} ∈ D2. Choose X1 ∈ D1 ∩ V
and Y1 ∈ D2 ∩ V such that X1 ⊆ {xn : f(xn) = yn} and Y1 ⊆ {yn : f(xn) = yn}.
Define

f ′ = {(x, y) : ∃n(x ∈ [g(3n+ i), g(3n+ i+ 1))

∩X1 ∧ y ∈ [g(3n+ i− 1), g(3n+ i+ 2)) ∩ Y1)}.

Then f ′ ∈ V and f ′ is a map with dom(f ′) = f−1[f [X1]∩Y1] ∈ D1 and f ′(x) = f(x)
for all x ∈ dom(f ′). Therefore, f ′ witnesses in V that D1, D2 are RK-equivalent, a
contradiction.

In the sequel we shall have the following situation: Given are two models of
ZFC, V0 ⊆ V1, and in V1 we have D which is an ultrafilter on ([ω]ω)V0 . That is,
D ⊆ ([ω]ω)V0 is a filter and for every a ∈ ([ω]ω)V0 , either a ∈ D or ω \ a ∈ D.
Then we call D Ramsey if every function in V0 which is unbounded modulo D
is one-to-one modulo D. We will say that some real r ∈ ([ω]ω)V1 induces D if
D = {a ∈ ([ω]ω)V0 : r ⊆∗ a}.

An easy genericity argument together with the σ-closedness of P(ω)/fin shows
that 
P(ω)/fin G′

∼
is a Ramsey ultrafilter.

In [M], Mathias has shown that r ∈ [ω]ω is Mathias generic over V if and only
if r is an almost intersection of a P(ω)/fin-generic filter G′, that is, r ⊆∗ a for all
a ∈ G′. It follows that every infinite subset of a Mathias generic real is Mathias
generic as well. This will be used in the proof of the following well-known fact.

Lemma 1.2. Let (N,∈) be a countable model of ZF− (in particular, N must be
able to prove the above mentioned result of Mathias). If p ∈ Q ∩ N there exists
q ∈ Q such that q ≤ p, up = uq, and for every a ∈ [ω]ω with uq ⊆ a ⊆ uq ∪ aq, a is
Mathias generic over N . In particular, q is (N,Q)-generic below p.
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Proof. Since N is countable, in V we may find b ∈ [ω]ω which is Mathias generic
over N and contains p in its induced generic filter; that is, up ⊆ b ⊆ up ∪ ap. Let
q = (up, b \ up). Then every a as in the lemma is an infinite subset of b, and hence
Mathias generic over N .

2. Outline of the proof

Let V be a model of CH and let 〈Pα, Qβ
∼

: α ≤ ω2, β < ω2〉 be a countable support

iteration of Mathias forcing, that is ∀α < ω2, 
Pα “Qα
∼

is Mathias forcing”. This

notation will be kept throughout the paper.
The following theorem is folklore. In the proof, a set C ⊆ ω2 will be called

ω1-club if C is unbounded in ω2 and closed under increasing sequences of length
ω1.

Theorem 2.1. If G is Pω2-generic over V , where V |= CH, then V [G] |= h = ω2.

Proof. In V [G] let 〈Dν : ν < ω1〉 be a family of open dense subsets of P(ω)/fin
\{0}. By a standard Löwenheim-Skolem argument, for every α belonging to some
ω1-club C ⊆ ω2, for every ν < ω1 it is true that Dν∩V [Gα] belongs to V [Gα] and is
open dense in (P(ω)/fin)V [Gα] \ {0}. Now for a given A ∈ (P(ω)/fin)V [G] \ {0}, by
properness and genericity there exists α ∈ C such that A ∈ G(α)′, whereG(α) is the
Qα
∼

[Gα]-generic filter determined by G and G(α)′ is its first component according

to the decomposition of Mathias forcing defined in §1. As α ∈ C, G(α)′ clearly
meets every Dν , ν < ω1. But now rα, the Qα

∼
-generic real (determined by G(α)′′)

is below each member of G(α)′, hence below A and in
⋂
ν<ω1

Dν . This proves that⋂
ν<ω1

Dν is dense.

The rest of this paper proves:

Theorem 2.2. In the notation of Theorem 2.1, V [G] |= h(2) = ω1.

The proof consists of the following two propositions. By S2
1 we will denote the

ordinals in ω2 of cofinality ω1. We will tacitly use the well-known results from
[B, §5], where it has been shown that for α < ω2 we can define a quotient forcing
Pω2/Gα

∼
, also denoted by Pαω2 , where Gα

∼
is a Pα-name for the Pα-generic filter.

Proposition 2.3. There exists an ω1-club C ⊆ S2
1 such that for every α ∈ C the

following holds: If r
∼

is a Pω2/Gα
∼

-name such that 
Pω2/Gα∼
“r
∼

induces a Ramsey

ultrafilter on ([ω]ω)
V [Gα
∼

]
”1, then there exists a Pω2/Gα

∼
-name r1

∼
such that 
Pω2/Gα∼

“r1

∼
∈ V [Gα+1

∼
] and r1

∼
and r

∼
generate the same ultrafilters on ([ω]ω)

V [Gα
∼

]
”.

Proposition 2.4. Suppose that V |= CH and r
∼

is a Q-name such that 
Q “r
∼

induces a Ramsey ultrafilter D on ([ω]ω)V ”. Then 
Q “D
∼
∼

and G′
∼

are RK-equivalent

by some function f ∈ (ωω) ∩ V ”.

1Added in proof: In addition we have to assume that the filter induced by r
∼

is forced to be a

P -filter in V [G
∼ω2

], i.e. every countable subset of the filter in V [G
∼ω2

] has an almost intersection

in the filter.
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2028 SAHARON SHELAH AND OTMAR SPINAS

It is easy to see that Theorem 2.2 follows from Propositions 2.3 and 2.4; fix C
as in Proposition 2.3. In V [G] define a winning strategy for player II in the game
G((P(ω)/fin)2, ω1) as follows:

Play in such a way that whenever 〈(pIν , pIIν ) : ν < ω1〉
is a play, there exists α ∈ C such that 〈pIIν (0) : ν <
ω1〉 and 〈pIIν (1) : ν < ω1〉 generate Ramsey ultrafilters
on ([ω]ω)V [Gα] which are not RK-equivalent by any f ∈
(ωω)V [Gα].

First we show that such a strategy exists in V [G]. Then we show that it is
winning. We work in V [G]. For x ∈ V [G], let o(x) = min{α < ω2 : x ∈ V [Gα]}.
Let Γ : ω1 → (ω1)2 be a bijection such that Γ(α) = (β, δ) implies β ≤ α. For each
α < ω2, V [Gα] |= CH. Hence we can choose gα : ω1 → V [Gα] which enumerates
all triples (a, π, f) ∈ V [Gα] such that a ∈ [ω]ω, π : [ω]n → k for some n, k < ω,
and f ∈ ωω. In his αth move, II plays (pIIα (0), pIIα (1)) ≤ (pIα(0), pIα(1)) such that,
if Γ(α) = (β, δ), ξ ∈ C is minimal with ξ ≥ sup{o((pIν(0), pIν(1))) : ν < β}, and
(a, π, f) = gξ(δ), then for i ∈ {0, 1} we have

(1) pIIα (i) ⊆ a or pIIα (i) ∩ a = ∅,
(2) pIIα (i) is homogeneous for π,
(3) f [pIIα (0)] ∩ pIIα (1) = ∅.

Since C is ω1-club, it is easy to verify that this strategy is as desired.
Suppose that 〈pν : ν < ω1〉 are moves of player II that are consistent with this

strategy. Suppose this play is won by I. Hence there exists (r0, r1) ∈ ([ω]ω)2 ∩V [G]
with (r0, r1) ≤ pν , for all ν < ω1. So we get α ∈ C, and Ramsey ultrafilters Gi
on ([ω]ω)V [Gα], for i < 2, such that Gi is generated by 〈pν(i) : ν < ω1〉, and G0 is
not RK-equivalent to G1 by any f ∈ ωω ∩ V [Gα]. Then Gi is generated by ri. By
Proposition 2.3 we obtain that ri belongs to V [Gα+1], and hence by Proposition
2.4, G0 and G1 are both RK-equivalent to G(α)′ by some f ∈ ωω ∩ V [Gα]. By
construction, this is impossible. By the game-theoretic characterization of h(2)
(see Introduction), this implies V [G] |= h(2) = ω1.

3. Iteration of Mathias forcing

Throughout this section 〈Pα, Qβ
∼

: α ≤ γ, β < γ〉 denotes a countable support

iteration of Mathias forcing of length γ. By [Shb, p.96ff.], we may assume that
elements of Pγ are hereditarily countable. We shall always assume this in the
sequel. For p ∈ Pγ , the collection of β ∈ γ such that in the transitive closure
of p there exists a Pβ-name for a condition in Qβ

∼
, is denoted by cl(p). By our

assumption, cl(p) is a countable subset of γ. Note that if 〈rα : α < γ〉 is a sequence
of Pγ-generic Mathias reals, then only 〈rα : α ∈ cl(p)〉 are needed in order to
evaluate p. Letting a∗ = cl(p), we can define Pa∗ as the countable support iteration
of Mathias forcing with domain a∗. So Pa∗ is isomorphic to Pδ, where δ = o.t.(a∗).
The question arises whether we can view p as a condition in Pa∗ . It should be clear
that this is not obvious.

In this section we prove that Pγ has a dense subset P ′γ which can be equipped with
an order ≤′, such that forcing with (Pγ ,≤) is equivalent to forcing with (P ′γ ,≤′),
and the definition of (P ′γ ,≤′) is absolute for Π1

1-correct models of ZF− (up to
some trivial restrictions). This will be used in the following sections to show that
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potential counterexamples to Propositions 2.3 and 2.4 must be added by an iteration
of countable length (see Lemma 4.2). In particular, it will be obvious that if p ∈ P ′γ ,
then p ∈ P ′a∗ , where a∗ = cl(p).

We shall present these results for Mathias forcing only, although they can be
generalized to include many more forcing notions. They are true for the class of
Suslin proper forcings in the sense of [JSh2]. But this is not the optimal level of
generalization, since our results are also true for all standard tree forcings such as
Sacks, Laver, Miller forcing. But these are not Suslin proper in the sense of [JSh2]
since their incompatibility relation is not analytic. In [Sh630] the first author gives
a framework which includes all of these forcings.

Lemma 3.1. Let 〈Pα, Q̇β : α ≤ γ, β < γ〉 be a countable support iteration of
Mathias forcing. Let (N,∈) be a countable model of ZF−. Let a∗ ⊆ γ be closed
such that a∗ ∈ N and a∗ ⊆ N (so a∗ is countable in V ). Let 〈Pa∗∩α, Q̇α : α ∈ a∗〉
be a countable support iteration with domain a∗ of Mathias forcing.

If N |= p ∈ Pa∗ , there exists q ∈ Pγ with cl(q) = a∗ such that q is (N,Pa∗ , p)-
generic; that is, if 〈rα : α < γ〉 is a sequence of Pγ-generic Mathias reals over V
with q belonging to its induced generic filter, then 〈rα : α ∈ a∗〉 is (Pa∗)N -generic
over N , with p belonging to its induced filter.

Proof. The proof follows closely Shelah’s proof ([Shb, p.90]) of preservation of
properness by countable support iterations. By induction on j ≤ max a∗, j ∈ a∗,
we prove the following:

(∗) For every i < j, i ∈ a∗, for every p a Pi-name for an element of
(Pa∗∩j)N ∩N , and for every q ∈ Pi, if q is (N,Pa∗∩i, p�a∗ ∩ i)-generic
with cl(q) = a∗ ∩ i, then there exists r ∈ Pj with cl(r) = a∗ ∩ j such
that r is (N,Pa∗∩j, p)-generic, and r�i = q.

Case 1. j = min a∗. Then Pa∗∩j = {∅}. We let r = ∅.

Case 2. a∗ ∩ j = (a∗ ∩ β) ∪ {β} for some β < j. By induction hypothesis we
may assume β = i. Choose 〈rα : α < i〉 Pi-generic over V such that q be-
longs to the induced generic filter. Then 〈rα : α ∈ a∗ ∩ i〉 is (Pa∗∩i)N -generic
over N with p[rα : α < i]�a∗ ∩ i belonging to the induced filter. Hence x :=
(p[rα : α < i](i))[rα : α ∈ a∗ ∩ i] is well-defined and N [rα : α ∈ a∗ ∩ i] |= “x is
a Mathias condition”. By Lemma 1.2, choose a Mathias condition y ≤ x which is
(N [rα : α ∈ a∗ ∩ i], Qi

∼
[rα : α ∈ a∗ ∩ i])-generic. In V we may choose a Pi-name q(i)

for y such that q forces the above to hold for q(i). Then r = q∧〈q(i)〉 is as desired.

Case 3.
⋃
a∗ ∩ j = j. Let 〈in : n < ω〉 be increasing and cofinal in a∗ ∩ j with

i0 = i. Let 〈Dn : n ∈ ω〉 list all subsets of (Pa∗∩j)N which belong to N and are
dense in the sense of N . We define sequences 〈qn : n < ω〉 and 〈pn : n < ω〉 such
that q0 = q, p0 = p, and for all n < ω the following hold:

(1) pn+1 is a Pin -name for an element of (Pa∗∩j)N .
(2) qn ∈ Pin and qn is (N,Pa∗∩in , pn�a∗ ∩ in)-generic.
(3) qn+1�in = qn.
(4) qn 
Pin “pn+1 ∈ Dn ∩N and pn+1 ≤ pn”.

Suppose that we have already gotten qn and pn. Choose 〈rα : α < in〉 Pin -generic
over V with qn belonging to its induced generic filter. Let s = pn[rα : α < in].
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Hence s ∈ (Pa∗∩j)N ∩N by (4) in case n > 0, and by assumption on p0 otherwise.
In N we can define

D′n = {t0 ∈ Pa∗∩in : ∃t1(t0∧t1 ∈ Dn and t0∧t1 ≤ s)}.
Then N thinks that D′n is dense below s�in in Pa∗∩in . By (2), s�in belongs to the
(Pa∗∩in)N -generic filter induced by 〈rα : α ∈ a∗∩in〉. By genericity this filter meets
D′n ∩N , and hence there is t ∈ Dn ∩N with t ≤ s and t�in belonging to the filter.
In V we find a Pin -name pn+1 for t such that qn forces the above properties of t to
hold for pn+1.

By induction hypothesis, (∗) is true for i = in, j = in+1. Therefore there exists
qn+1 ∈ Pin+1 , such that (3) holds and (2) holds for n+ 1 instead of n.

This finishes the construction. Now let r =
⋃
n<ω qn. Then r is as desired, as is

easily seen.
Since a∗ is closed, the three cases are exhaustive.

We start defining (P ′γ ,≤′). For α an ordinal, define P ′α as follows:

p ∈ P ′α iff p is a function, dom(p) ∈ [α]≤ω, and for all i ∈
dom(p) there exists upi ∈ [i]≤ω such that p(i) is the code
of a Borel function with domain the set of all functions
r : upi → ωω and target the set of Mathias conditions. For
i 6∈ dom(p), we let upi = ∅.

For any well-ordered set a∗, we can similarly define P ′a∗ . If p ∈ P ′α, we let
cl(p) =

⋃
{upi : i ∈ dom(p)}∪ dom(p).

Remark 3.2. We can view P ′γ as a subset of Pγ . Given p ∈ P ′γ and i ∈ dom(p), and
〈rj : j < i〉 Pi-generic over V , by absoluteness we have that p(i)〈rj : j < upi 〉 is
a Mathias condition in the extension. By the existential completeness of forcing,
there exists a Pi-name τi such that 
Pi p(i)〈rj : j ∈ upi 〉 = τi. Now we can identify
p with 〈τi : i < γ〉 ∈ Pγ . In the sequel we shall tacitly make use of this
identification.

We want to define a partial order ≤′ on P ′γ such that forcing with (P ′γ ,≤′) will
be equivalent to forcing with (Pγ ,≤). First, for p ∈ P ′α we define by induction on
α ≤ γ when some family of reals 〈rj : j ∈ u〉 with cl(p) ⊆ u satisfies p:

α = 0: The only member of P0 is ∅, and we stipulate that every sequence of
reals satisfies ∅;

α = β + 1: 〈rj : j ∈ u〉 satisfies p if 〈rj : j ∈ u〉 satisfies p�β and the filter of
Mathias conditions induced by rβ contains p(β)〈rj : j ∈ upβ〉;

α =
⋃
α: 〈rj : j ∈ u〉 satisfies p if 〈rj : j ∈ u〉 satisfies p�β for all α < β.

Now let p, q ∈ P ′γ . We define

p ≤′ q iff dom(q) ⊆ dom(p), uqi ⊆ upi for all i ∈ dom(p),
and for every family of reals 〈rj : j ∈ u〉 such that cl(p) ⊆
u and 〈rj : j ∈ u〉 satisfies p; for every i ∈ dom(q) we have

p(i)〈rj : j ∈ upi 〉 ≤ q(i)〈rj : j ∈ uqi 〉,
where ≤ denotes the Mathias order.

Being a Borel code is a Π1
1 property (see [J, p. 538]). Therefore, by the definitions

and absoluteness of Π1
1 statements we obtain that the definition of (P ′γ ,≤′) is very

much absolute.
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Fact 3.3. Let (N,∈) be a countable transitive model of ZF− with γ ∈ N . Then
N |= p ∈ P ′γ iff p ∈ P ′γ ∩ N and N |= cl(p) is countable. Moreover, for every
p, q ∈ (P ′γ)N we have that N |= p ≤′ q iff p ≤′ q.

Later we will use variants of this fact without proof. In particular, we will have
that γ is countable in N . Then “N |= cl(p) is countable” follows, and we do not
have to assume that N is transitive.

We want to prove equivalence of the forcings (Pγ ,≤) and (P ′γ ,≤′). We start with
the following easy observation:

Lemma 3.4. If p, q ∈ P ′γ, then p ≤′ q implies p ≤ q.
Proof. By induction on α ≤ γ we prove that this is true for P ′α.

α = 0: clear.
α = β + 1: p ≤′ q clearly implies p�β ≤′ q�β. By induction hypothesis we conclude

p�β ≤ q�β. Let Gβ be Pβ-generic over V with p�β ∈ Gβ . Let 〈rj :
j < β〉 be the sequence of Mathias reals determined by Gβ . It is clear
that 〈rj : j < β〉 satisfies p�β. By assumption we have p(β)〈rj : j ∈
upβ〉 ≤ q(β)〈rj : j ∈ uqβ〉. By our identification (see Remark 3.2) we
have p(β)〈rj : j ∈ upβ〉 = p(β)[Gβ ] and q(β)〈rj : j ∈ uqβ〉 = q(β)[Gβ ].
Consequently, p�β 
Pβ p(β) ≤ q(β), and hence p ≤ q.

α =
⋃
α: clear by induction hypothesis and definition of the partial orders.

The next lemma shows that P ′γ is a dense subset of Pγ . In the proof we
will use the following coding of Mathias conditions by reals x ∈ ωω with the
property ∀i, j(0 < i < j ⇒ x(i) < x(j)): such x codes the Mathias condition
(ranx�[1, x(0)), ranx�[x(0),∞)). Hence we may assume that a Pi-name for a Math-
ias condition is a sequence 〈fn : n < ω〉 such that fn : An → ω, where An is a
countable antichain of Pi.

For p ∈ Pγ and a sequence of reals r̄ = 〈rj : j ∈ u〉 with cl(p) ⊆ u, we define by
induction on i ≤ γ, i ∈ dom(p),

(a) r̄ evaluates p(i);
(b) p(i)[r̄], if r̄ evaluates p.

Case 1. i = 0. r̄ evaluates p(i), p(i)[r̄] = p(i).

Case 2. i > 0. Then p(i) = 〈fn : n < ω〉, where fn : An → ω and An ⊆ Pi is a
countable antichain. We define that r̄ evaluates γ if:

(1) for every n < ω, every q ∈ An, and every β ∈ dom(q), r̄ evaluates
q(β);

(2) for every n < ω there exists a unique q ∈ An such that for all β ∈
dom(q), q(β)[r̄] belongs to the filter on Q induced by rβ ;

(3) the real x defined by x(n) = fn(q), where q ∈ An is the unique member
as in (2), codes a Mathias condition (i.e. ∀i, j(0 < i < j < ω ⇒ x(i) <
x(j))).

If (1)–(3) hold, p(i)[r̄] is defined as the Mathias condition coded by x.
The set of sequences r̄ = 〈rj : j ∈ cl(p(i))〉 which evaluate p(i) is a Borel set with

code p(i); it is not difficult, though tedious, to show that it has a ∆1
1(p(i))-definition

(see [JSp], where the details are worked out). First, r̄ evaluates p(i) iff there exists
a sequence of reals which are the evaluations by r̄ of all the names that belong to
the transitive closure of p(i), such that p(i) can be evaluated from these using r̄.
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Since p(i) is hereditarily countable, there is only one existential real quantifier, and
the others are number quantifiers. Second, if such a sequence of reals exists, then
it is unique, hence we can turn this statement into a universal statement. Now by
Suslin’s theorem (see [J, p.502]) we are done.

By a similar argument, the map sending r̄, which evaluates p(i), to p(i)[r̄] has a
Borel definition.

Lemma 3.5. For every p ∈ Pγ there exists p′ ∈ P ′γ such that p′ ≤ p.

Proof. For each i ∈ dom(p) let uip = cl(p(i)). Then uip is countable. We define
p′(i) : {r̄ : r̄ : upi → ωω} → Q (Q is Mathias forcing) by cases as follows: If r̄
evaluates p(i), we let p′(i)(r̄) = p(i)[r̄], otherwise we let p(i)(r̄) be the maximum
element of Q. By the remarks above, p′(i) is a total Borel function as desired. Now
let p′ = 〈p′(i) : i ∈ dom(p)〉. Then clearly p′ ∈ P ′γ . By induction on i ∈ dom(p′)
it is easy to prove that if r̄ = 〈rj : j < i〉 is Pi-generic over V and contains p′�i in
its generic filter, then r̄ evaluates p(i) and p′(i)(r̄) = p(i)[r̄]; hence p′�i 
Pi p′(i) =
p(i).

In order to conclude that forcings (Pγ ,≤) and (P ′γ ,≤′) are equivalent, it is enough
to prove the following:

Lemma 3.6. For all p, q ∈ P ′γ with p ≤ q there exists r ∈ P ′γ with r ≤′ p and
r ≤′ q.

Corollary 3.7. Forcings (Pγ ,≤) and (P ′γ ,≤′) are equivalent.

Proof of 3.7. By Lemma 3.5 it is enough to show that (P ′γ ,≤) and (P ′γ ,≤′) are
equivalent. Let D be dense open in (P ′γ ,≤), and let p ∈ P ′γ . Let q ∈ D, q ≤ p. By
Lemma 3.6 there is r ∈ P ′γ with r ≤′ p and r ≤′ q. By 3.4 we have r ≤ q, and hence
r ∈ D. Therefore D is dense in (P ′γ ,≤′). Conversely, if D is dense in (P ′γ ,≤′), then
D is dense in (P ′γ ,≤) by Lemma 3.4.

From Lemma 3.6 it follows that for all p, q ∈ P ′γ , p, q are incompatible with
respect to ≤ iff they are incompatible with respect to ≤′. Therefore every (P ′γ ,≤)-
name is a (P ′γ ,≤′)-name and vice versa.

It follows that if G is a (P ′γ ,≤)-generic filter, then G is also (P ′γ ,≤′)-generic, and
if G′ is (P ′γ ,≤′)-generic, then G = {p ∈ P ′γ : ∃q ∈ G′(q ≤ p)} is (P ′γ ,≤′)-generic,
and then V [G] = V [G′].

The following will be crucial for proving Lemma 3.6:

Lemma 3.8. Let a∗ be a countable closed set of ordinals, and let p ∈ P ′a∗ . Let
(N,∈) be a countable elementary substructure of (H(χ),∈) for some large enough
regular χ, such that p, a∗ ∈ N . There exists q ∈ P ′a∗ , q ≤′ p, such that for every
sequence of reals r̄ = 〈rl : l ∈ a∗〉 which satisfies q, r̄ is (Pa∗ ,≤)-generic over N .

Proof. By induction on j ∈ a∗ we prove the following:
(∗) For every i < j, i ∈ a∗, for every Pa∗∩i-name p for a member of

N ∩ Pa∗∩j , and for every q ∈ P ′a∗∩i, if every sequence of reals r̄ =
〈rl : l ∈ a∗ ∩ i〉 which satisfies q is Pa∗∩i-generic over N , and q 
Pa∗∩i
p�i ∈ Ga∗∩i, then there exists r ∈ P ′a∗∩j such that r�a∗ ∩ i = q,
every 〈rl : l ∈ a∗ ∩ i〉 which satisfies r is Pa∗∩j-generic over N , and
r 
Pa∗∩j p ∈ Ga∗∩j .
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Case 1. j = min a∗. Let r = ∅.

Case 2. a∗ ∩ j = (a∗ ∩ β) ∪ {β} for some β < j. By induction hypothesis we may
assume β = i. Let r̄ = 〈rl : l ∈ a∗ ∩ i〉 satisfy q. By assumption, r̄ is Pa∗∩i-generic
over N and p[r̄]�a∗ ∩ i belongs to the generic filter induced by r̄. By absoluteness,
x := (p[r̄](i))[r̄] is a Mathias condition in V , say x = (ux, ax). Using N [r̄] as a
code, we may effectively construct u ∈ [ω]ω which is Mathias-generic over N [r̄] with
x belonging to the generic filter induced by u. Let y = (ux, ax∩u). Then every real
ri which satisfies y is Mathias-generic over N [r̄] (see Lemma 1.2). Moreover, the
function sending r̄ to y is Borel. Denote it by r(i). Then we may let r = q∧〈r(i)〉.

Case 3. a∗∩j is unbounded in N ∩j. We choose 〈in : n < ω〉 increasing and cofinal
in N ∩ j with i0 = i. Let 〈Dn : n < ω〉 list all dense subsets of Pa∗∩j in N . We
define two sequences 〈qn : n < ω〉 and 〈pn : n < ω〉 such that q0 = q, p = p0, and
for all n < ω the following hold:

(1) pn+1 is a Pin -name for a member of Pa∗∩j ∩N ;
(2) qn ∈ P ′a∗∩in , and for every r̄ = 〈rl : l ∈ a∗ ∩ in〉 which satisfies qn, r̄ is

Pa∗∩in -generic over N , and qn 
Pa∗∩in pn�a∗ ∩ in ∈ Ga∗∩in ;
(3) qn+1�in = qn;
(4) qn 
Pa∗∩in pn+1 ∈ Dn ∩N and pn+1 ≤ pn.

The construction is analogous to the proof of Lemma 3.1.
Now let r =

⋃
n<ω qn, and let r̄ = 〈rl : l ∈ a∗∩j〉 satisfy r. We have to show that

r̄ is Pa∗∩j-generic over N . Let G ⊆ Pa∗∩j be the filter induced by r̄. Then r ∈ G.
We have to show that Dn∩G 6= ∅ for all n < ω. Let n < ω. We claim that pn+1 :=
pn+1[r̄�in] ∈ G ∩ Dn. By (2) and (3), r̄�in is Pa∗∩in -generic over N , and hence
pn+1 ∈ Dn by (4). To prove pn+1 ∈ G it is enough to show that pn+1�im ∈ Ga∗∩im
for all n < m < ω. For this, by induction on m show (using (4)) that pm ≤ pn+1.
This suffices, since by (2), pm�a∗ ∩ im ∈ Ga∗∩im . This finishes the proof of (∗).

Applying (∗) for i = min(a∗) and j = max(a∗), we get q ∈ P ′a∗ such that every
r̄ = 〈rl : l ∈ a∗〉 which satisfies q is (Pa∗ ,≤)-generic over N and contains p in
its induced filter. We have to show that q ≤′ p. By contradiction, suppose that
r̄ = 〈rl : l ∈ a∗〉 satisfies q and there is i ∈ dom(q) such that q(i)〈rl : l ∈ a∗ ∩ i〉
6≤ p(i)〈rl : l ∈ upi 〉. We can choose r′i which satisfies q(i)〈rl : l ∈ a∗ ∩ i〉, but
not p(i)〈rl : l ∈ upi 〉. Choose 〈r′l : l ∈ a∗ \ (i + 1)〉 arbitrary such that r̄′ :=
〈rl : l ∈ a∗ ∩ i〉∧〈r′l : l ∈ a∗ \ i〉 satisfies q. By the above, r̄′ is Pa∗ -generic over N ,
containing p in its generic filter. But this is impossible by the choice of r′i.

We are now able to give the proof of Lemma 3.6.

Proof of 3.6. Let p, q ∈ P ′γ with Pγ |= p ≤ q. Let a∗ = cl(p). Hence we have
p, q ∈ P ′a∗ ⊆ Pa∗ . We need the following claim:

Claim. Pa∗ |= p ≤ q.

Proof of Claim. Otherwise, let i∈dom(p) be minimal s.t. ¬(p�i 
Pa∗∩i p(i)≤q(i)).
Choose r ∈ Pa∗∩i such that Pa∗∩i |= r ≤ p�i and r 
Pa∗∩i p(i) 6≤ q(i).

Let (N,∈) be a countable elementary substructure of (H(χ),∈), χ large enough
and regular, containing everything relevant. By Lemma 3.1 there exists q1 ∈ Pi
which is (N,Pa∗∩i, r)-generic. Let r̄ = 〈rj : j < i〉 be Pi-generic over V with
q1 belonging to the induced filter. Then 〈rj : j ∈ a∗ ∩ i〉 is Pa∗∩i-generic over
N , with r belonging to the induced filter. We conclude that on the one hand,
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V [rj : j < i] |= p(i)[rj : j < i] ≤ q(i)[rj : j < i], but on the other hand,

N [rj : j ∈ a∗ ∩ i] |= p(i)[rj : j ∈ a∗ ∩ i] 6≤ q(i)[rj : j ∈ a∗ ∩ i].
But p(i)[rj : j < i] = p(i)[rj : j ∈ a∗ ∩ i], and similarly for q(i). Since the Mathias
order is absolute, we have a contradiction.

Let (N,∈) be as in the proof of the Claim. By Lemma 3.8, there exists r ∈ P ′a∗
with r ≤′ p such that every sequence of reals r̄ = 〈rj : j ∈ a∗〉 which satisfies r
is Pa∗ -generic over N . Given such r̄ and i ∈ dom(p), p�i belongs to the generic
filter on Pa∗ ∩ N induced by r̄�a∗ ∩ i, and hence by the Claim, N [r̄�a∗ ∩ i] |=
p(i)[r̄�a∗ ∩ i] ≤ q(i)[r̄�a∗ ∩ i]. But p(i)[r̄�a∗ ∩ i] = p(i)(rj : j ∈ upi ), and similarly
for q. By absoluteness of the Mathias order and by r ≤′ p we obtain

r(i)(rj : j ∈ uri ) ≤ p(i)(rj : j ∈ upi ) ≤ q(i)(rj : j ∈ uqi ).
Since r̄ and i were arbitrary we conclude that r ≤′ q.

The proof of Corollary 3.7 now being complete, throughout the rest of this
paper we identify (Pγ ,≤) with (P ′γ ,≤′).
Definition 3.9. If u ⊆ γ is finite and p, q ∈ Pγ , then q ≤u p is defined by q ≤ p
and for all α ∈ u, q�α 
Pα “q(α) and p(α) have the same first coordinate”.

By arguments that are standard by now, we obtain the following lemma. Note
that it makes sense only in the light of Corollary 3.7. For the proof, make a similar
inductive construction as we did several times. At successor steps, use Lemma 1.2
to get generic conditions which are pure extensions, if required by u.

Lemma 3.10. Let (N,∈) be a countable model of ZF− such that γ is countable in
N . If p ∈ Pγ ∩ N , and u ∈ [γ]<ω, there exists q ∈ Pγ such that q ≤u p and q is
(N,Pγ)-generic.

For the proof that potential counterexamples to Propositions 2.3 and 2.4 are
added by an iteration of countable length, we will also need the following lemma.

Lemma 3.11. Suppose a∗ ⊆ γ is a countable closed set of ordinals, Pa∗ is a count-
able support iteration of Mathias forcing with domain a∗, and p ∈ Pa∗ . Let (N,∈)
be a countable model of ZF− with γ ∈ N , and suppose that a∗ ⊆ N , a∗ ∈ N , p ∈ N ,
and N |= p ∈ Pa∗ .

There exists q ∈ Pa∗ and a Pa∗ -name r̄′γ = 〈r′l : l < γ〉 such that q ≤ p and,
letting r̄a∗ = 〈rl : l ∈ a∗〉 be a name for the Pa∗ -generic sequence of Mathias reals,
we have

q 
Pa∗ “r̄′γ is Pγ-generic over N, and ∀l ∈ a∗(r′l = rl)”.

Proof. By induction on j ≤ γ, j ∈ N , we prove the following:
(∗) Suppose i ∈ j, i ∈ N , q ∈ Pa∗∩i, and r̄′i = 〈r′l : l < i〉 is a Pa∗∩i-name

such that q ≤ p�a∗ ∩ i and

q 
Pa∗∩i r̄′i is Pi-generic over N and ∀l ∈ a∗ ∩ i(r′l = rl).

Then there exists r ∈ Pa∗∩j and r̄′j = 〈r′l : l < j〉 such that r�a∗∩j = q,
r ≤ p�a∗ ∩ j, r̄′j�i = r̄′i, and

r 
Pa∗∩j “r̄′j is Pj -generic over N and ∀l ∈ a∗ ∩ j(r′l = rl).

Case A. N ∩ j = (N ∩ β) ∪ {β}, for some β < j. Then j = β + 1, since N |= ZF−,
and so β + 1 ∈ N . Hence we may assume β = i.
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Case A1. i ∈ a∗. Let r̄a∗∩i = 〈rl : l ∈ a∗ ∩ i〉 be Pa∗∩i-generic over V with q in
its generic filter. Let r̄′i = r̄′i[r̄a∗∩i]. Then N [r̄′i] ∈ V [r̄a∗∩i] and N [r̄′i] |= ZF−. By
assumption we have p(i)[r̄a∗∩i] = p(i)[r̄′i]. Let x be this common value. Then x is a
Mathias condition. By Lemma 1.2, in V [r̄a∗∩i] we may choose a Mathias condition
y ≤ x such that every z ∈ [ω]ω with uy ⊆ z ⊆ uy ∪ay is Mathias generic over N [r̄′i].
In V we have a Pa∗∩i-name qi such that q forces that all of the above holds for qi
instead of y. Now let r = q∧〈qi〉 and r′i = ri.

Case A2. i 6∈ a∗. Then Pa∗∩j = Pa∗∩i. Since N is countable, in V there exists a
Pa∗∩i-name r′i such that q forces that r′i is Mathias generic over N [r̄′i]. We let r = q
and r̄′j = r̄′∧i 〈r′i〉.

Case B. N ∩ j is unbounded in N ∩ j.

Case B1. j ∈ a∗. Since a∗ is closed and a∗ ⊆ N , we conclude that either a∗ ∩ j
is bounded in a∗ ∩ j, or else a∗ ∩ j is unbounded in j. In the first case we may
assume i > max(a∗ ∩ j), and proceed as in Case A2. In the latter case, a similar
diagonalization as in 3.1 and 3.8 works.

Case B2. j 6∈ a∗. Since a∗ is closed, a∗ ∩ j is bounded below j. Hence we may
assume i > max(a∗ ∩ j). Then Pa∗∩j = Pa∗∩i, and as in Case A2, in V there exists
a Pa∗∩i-name 〈r′l : i ≤ l < j〉 such that q forces that 〈r′l : i ≤ l < j〉 is Pj/r̄′i-generic
over N . We let r = q and r̄′j = r̄

∼
′∧
i 〈r′l : i ≤ l < j〉.

4. Proof of Proposition 2.3

The following lemma will give us the ω1-club for Proposition 2.3.

Lemma 4.1. Suppose V |= CH. Let 〈Pα, Qβ
∼

: α ≤ ω2, β < ω2〉 be a countable

support iteration of Mathias forcing. Let Gω2 be Pω2-generic over V and, for δ < ω2,
rδ the Qδ

∼
[Gδ]−generic real determined by Gω2 . Then the set S of δ ∈ S2

1 such that

for some αδ < δ

P(ω)V [{Gαδ ,rδ}] = P(ω)V [Gδ+1](∗)
is nonstationary.

Proof. Suppose that S is stationary. We will derive a contradiction. For δ ∈ S
choose pδ ∈ Pδ+1 forcing (∗). Since δ ∈ S2

1 and pδ is hereditarily countable, without
loss of generality we may assume that pδ(δ) is a Pαδ -name and sup(dom(pδ�δ)) < αδ.
Otherwise, increase αδ, and then (∗) still holds, of course. By Fodor’s Theorem
and V [Gα] |= CH for α < ω2, there exist α∗ < ω2, p ∈ Pα∗ and a stationary
S1 ⊆ S such that ∀δ ∈ S1(αδ = α∗ ∧ pδ�δ = p). Hence in V [Gα∗ ] we can compute
pδ(δ)[Gδ] for δ ∈ S1. Again by the CH in V [Gα∗ ] and the ℵ2-completeness of the
nonstationary ideal on ω2, there exist a stationary S2 ⊆ S1 and q ∈ Qα∗

∼
[Gα∗ ] such

that ∀δ ∈ S2(pδ(δ)[Gδ] = q).
Let G(ω2) be QV [Gω2 ]-generic over V [Gω2 ], where Q is Mathias forcing, such that

q ∈ G(ω2). Let rω2 be the corresponding Mathias real, and let Gω2+1 = G ∗G(ω2).
By Theorem 2.1, P(ω)/fin is ℵ1-distributive in V [Gω2 ]. Since Mathias forcing is the
composition of P(ω)/fin and some σ-centered forcing, it follows that V [Gω2+1] |=
c = ω2. By properness and V |= CH we have V [Gα∗ , rω2 ] |= CH. (If you do not
see this, let V = L and use [J, 15.3., p.130].) Hence there exists α∗ < α < ω2 such

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

Sh:494



2036 SAHARON SHELAH AND OTMAR SPINAS

that rα 6∈ V [Gα∗ , rω2 ]. Hence in V [Gω2 ] there exists q1 ∈ QV [Gω2 ] ∩G(ω2), q1 ≤ q,
forcing this. Let α < γ < ω2 such that q1 ∈ V [Gγ ]. By genericity there exists
δ ∈ S2 ∩ [γ, ω2) such that, if q1 = (u, a), then u ⊆ rδ ⊆ u ∪ a, that is, q1 belongs
to the generic filter generated by rδ. Let q2 = (u, a ∩ rδ). Then q2 ∈ QV [Gω2 ] and
q2 ≤ q1.

Let r be QV [Gω2 ]-generic over V [Gω2 ] such that u ⊆ r ⊆ u ∪ (a ∩ rδ). Then
r is an infinite subset of rδ. By the remark preceding Lemma 1.2, we have that
r is QV [Gδ ]-generic over V [Gδ]. From (∗) and the choice of q we conclude that
rα ∈ V [Gα∗ , r]. On the other hand, q1 belongs to the generic filter induced by r,
and we conclude rα 6∈ V [Gα∗ , r], a contradiction.

Let C ⊆ S2
1 \S be ω1-club, where S is as in Lemma 4.1. We claim that C serves

for Proposition 2.3. By contradiction, suppose that this is false. Hence there exist
α ∈ C, p∗ ∈ Pω2/Gα

∼
, and r

∼
such that

p∗ 
Pω2/Gα∼
r
∼

induces a Ramsey ultrafilter on ([ω]ω)
V [Gα
∼

]
which is

not induced by any real in V [G
∼α+1].

(+)

We may assume that cl(r
∼

) ⊆ cl(p∗).

Since forcing Pω2/Gα
∼

is equivalent to a countable support iteration of length

ω2 of Mathias forcing in V [Gα] (see [B, §5]), for notational simplicity we assume
V [Gα] = V for the moment, and later we shall remember that really V = V [Gα]
for some α ∈ C and derive a final contradiction.

First, we show that by the absoluteness results from §3, we may assume that
r
∼

is added by an iteration of countable length. Let a∗ = cl(p∗). So a∗ ⊆ ω2 is
countable. We may assume that 0 ∈ a∗ and a∗ is closed.

Lemma 4.2. Assuming (+), it is true that p∗ 
Pa∗ “r
∼

induces a Ramsey ultra-

filter on ([ω]ω)V which is not induced by any real in V [G0
∼

]”.

Proof. (a) p∗ 
Pa∗ r
∼

induces an ultrafilter on ([ω]ω)V : Otherwise, there exists a ∈
([ω]ω)V and p ∈ Pa∗ such that p ≤ p∗ and p 
Pa∗ “r

∼
∩ a and r

∼
∩ (ω \ a) are

both infinite.” Let χ be large enough and regular, and let (N,∈) ≺ (H(χ),∈) be
countable, containing everything relevant. By Lemma 3.1 choose q ∈ Pω2 such that
q is (N,Pa∗ , p)-generic, and let 〈rα : α ∈ ω2〉 be Pω2 -generic over V , with induced
filter G, such that q ∈ G. Then 〈rα : α ∈ a∗〉 is Pa∗ -generic over N with p, and
hence also p∗, in its generic filter, denoted by Ga∗ . Then clearly p∗ ∈ G. We
obtain that V [G] |= “r

∼
[G] ⊆∗ a or r

∼
[G] ⊆∗ ω \ a”, and N [Ga∗ ] |= |r∼[Ga∗ ] ∩ a| =

|r
∼

[Ga∗ ] ∩ (ω \ a)| = ω. But clearly r
∼

[G] = r
∼

[Ga∗ ], a contradiction.

(b) p∗ 
Pa∗ “No real in V [G0
∼

] induces the same ultrafilter (on ([ω]ω)V ) as r
∼

”:

Otherwise, there is p ∈ Pa∗ , p ≤ p∗, and a P1-name r
∼

1 such that p 
Pa∗ r
∼

and r
∼

1

induce the same ultrafilter. Choose (N,∈) as in (a), containing everything relevant.
We can get q ∈ Pa∗ , q ≤ p, as in Lemma 3.11. Let r̄a∗ = 〈rl : l ∈ a∗〉 be Pa∗ -generic
over V containing q in its generic filter. By Lemma 3.11, in V [r̄a∗ ] there exists
r̄′ω2

= 〈r′l : l < ω2〉 such that r̄′ω2
is Pω2-generic over N and rl = r′l, for all l ∈ a∗.

We obtain that r
∼

[r̄′ω2
] = r

∼
[r̄a∗ ] and r

∼
1[r̄′ω2

] = r
∼

1[r̄a∗ ]. Let the common value be
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r, r1, respectively. In N [r̄′ω2
] we have some x ∈ ([ω]ω)V such that r ⊆∗ x but

r1 6⊆∗ x, or conversely. Since N [r̄′ω2
] ∈ V [r̄a∗ ], we have that in V [r̄a∗ ], r and r1 do

not generate the same ultrafilters on ([ω]ω)V , a contradiction.
(c) p∗ 
Pa∗ r

∼
induces a Ramsey ultrafilter on ([ω]ω)V . Otherwise, there exist

p ∈ Pa∗ and f ∈ (ωω)V such that if D
∼

is a Pa∗ -name for the filter induced by r
∼

we have that p 
Pa∗ f is unbounded but not one-to-one modulo D
∼

. Let (N,∈) be
as above containing everything relevant. We can get q ∈ Pa∗ , q ≤ p, as in Lemma
3.11. Let r̄a∗ = 〈rl : l ∈ a∗〉 be Pa∗ -generic over V containing q in its generic
filter. By Lemma 3.11, in V [r̄a∗ ] there exists r̄′ω2

= 〈r′l : l < ω2〉 such that r̄′ω2
is

Pω2-generic over N and rl = r′l, for all l ∈ a∗. We obtain that r
∼

[r̄′ω2
] = r

∼
[r̄a∗ ]. Let

r be the common value. Then r induces the same filter, say D, in V [r̄a∗ ] and in
N [r̄′ω2

], and also f is unbounded modulo D in both models. Hence by construction,
on the one hand we have that V [r̄a∗ ] |= f is not one-to-one modulo D, but on the
other hand, N [r̄′ω2

] |= f is one-to-one modulo D. Since N [r̄′ω2
] ∈ V [r̄a∗ ] we have a

contradiction.

Continuing the proof of Proposition 1, let δ = o.t.(a∗). Then δ < ω1, and clearly
Pa∗ and Pδ are isomorphic. Then our assumption (+) becomes:

p∗ 
Pδ r
∼

induces a Ramsey ultrafilter on ([ω]ω)V which is

not induced by any real in V [G
∼0].

(++)

Let D
∼

be a Pδ-name for the filter on ([ω]ω)V induced by r
∼

. In V , let (N,∈)

be a countable elementary substructure of (H(χ),∈), where χ is a large enough
regular cardinal, such that δ, p∗, D

∼
, r
∼
∈ N . This N will be fixed for the rest of

this section. Let G0 be Q0-generic, containing a (N,Q0)-generic condition below
p∗(0). In V [G0] we define
Y = {Y : ∃(N [G0], Pδ/G0

∼
)-generic q(q ≤ p∗�[1, δ) ∧ q 
Pδ/G0

∼
“D
∼
∩N = Y ”)}.

Since every Ramsey ultrafilter is a p-point (see §1), and every Y ∈ Y is a count-
able subset of the denotation of D

∼
in a Pδ/G0

∼
-generic extension of V [G0], and D

∼
is

forced to be a Ramsey ultrafilter on ([ω]ω)V , we conclude that such Y is definable
from ([ω]ω)N and a member of ([ω]ω)V , and hence Y ⊆ V .2

Lemma 4.3. Y is a Σ1
2 set in V [G0].

Proof. We show that Y ∈ Y is equivalent to saying:
There exists a countable model (M,∈) such that N [G0]∪
{N [G0], Y } ⊆ M , (M,∈) |= ZF−, and (M,∈) |= ∃q ∈
Pδ/G0

∼
(q is (N [G0], Pδ/G0

∼
)-generic and q 
Pδ/G0

∼
“D
∼
∩

([ω]ω)N = Y ”).
It is well-known (see [J, the proof of 41.1., pp.527f.]) that the quantification

over countable models as above is equivalent to quantifying over structures (ω,R),
where R is a well-founded binary relation, which makes the formula no worse (and
no better) than Σ1

2, and that the rest is arithmetical.

2Added in proof: This argument works only if Y ∈ V , which is false in general. It is here that
we need that D

∼
is forced to be a P -filter in V [G

∼δ
] (see footnote 1).
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If Y ∈ Y, then choosing a countable (M,∈) which is elementarily embeddable
into (H(χ)V [G0],∈) and contains N [G0]∪{N [G0], Y }, we easily see that one impli-
cation holds.

Conversely, if (M,∈), Y, q are given, as above, then by Lemma 3.10, in V [G0]
choose q1 ≤ q which is (M,Pδ/G0

∼
)-generic. Here we use again the fact that Pδ/G0

∼
is equivalent to a countable support iteration of Mathias forcing. Then clearly q1
is also (N [G0], Pδ/G0

∼
)-generic, and q1 
Pδ/G0

∼
“D
∼
∩ ([ω]ω)N = Y ” holds in V [G0].

In fact, let G1 be Pδ/G0
∼

-generic over V [G0], containing q1. Then G1 is Pδ/G0
∼

-

generic over M and contains q. By assumption on M , G1 is Pδ/G0
∼

-generic over N .

Moreover, r
∼

[G0 ∗G1] is the same real in V [G0 ∗G1] and N [G0 ∗G1]. Hence we are
done.

The crucial fact, whose proof will require considerable space, is that Y is un-
countable. Then we obtain that in V [G0], Y is an uncountable Σ1

2 set which is a
subset of V . By a well-known result of descriptive set theory (see the remark after
Corollary 4.10, below), either Y has a perfect subset, or else Y is the union of ℵ1

countable Borel sets. The first case will be ruled out by a theorem which says that
Mathias forcing does not add a perfect set of old reals. In the second case we shall
remember that really V = V [Gα] for some α ∈ C, and by the definition of C we
will obtain a contradiction.

In order to prove that Y is uncountable, by fusion we shall build a perfect tree of
(N [G0], Pδ/G0

∼
)-generic conditions which all decide D

∼
∩N in different ways. This is

much harder than it might seem at first glance. The crucial lemma will be Lemma
4.7 below.

Definition 4.4. (1) For u ∈ [δ]<ω and p ∈ Pδ, let

E(p, u) = {a ∈ ([ω]ω)V : ∃q ≤u p(q 
Pδ a ∈ D)}.
(2) Suppose x̄ = 〈xα

∼
: α ∈ u〉 is such that every xα

∼
is a Pα-name for a finite subset

of ω with elements larger than the members of the first coordinate of p(α). Then by
p∪x̄ we denote the condition p̄ ∈ Pδ by p̄(α) = p(α) for α 6∈ u, and first coordinate of
p̄(α) = first coordinate of p(α), and second coordinate of p̄(α) = (second coordinate
of p(α)) ∪ xα

∼
, for α ∈ u. Moreover, by x̄ ∪ p we denote the condition q̄ ∈ Pδ by

q̄(α) = p(α) for α 6∈ u, first coordinate of q̄(α) = (first coordinate of p(α))∪ẋα and
second coordinate of q̄(α) = (second coordinate of p(α)) \(max(xα

∼
) + 1) for α ∈ u.

Lemma 4.5. The ordering ≤u has the pure decision property; that is, for τ a Pδ-
name for a member of {0, 1} and p ∈ Pδ there exists q ≤u p such that q decides
τ .

Proof. We prove it by induction on max(u). Let α0 = max(u) and u0 = u \ {α0}.
We may regard τ as a Pα0 -name for a Pδ/Gα0

∼
-name. First, if α0 = 0, then by the

pure decision property of Mathias forcing (proved in [B, 9.3.]) there exists q(0) ∈ Q,
q(0) ≤{0} p(0), deciding the disjunction “∃q1 ∈ Pδ/G0

∼
(q1 ≤ p � [1, δ) ∧ q1 
1δ τ =

0) ∨ ∃q1 ∈ Pδ/G0
∼

(q1 ≤ p � [1, δ) ∧ q1 
1δ τ = 1)”. By the maximum principle of

forcing we may find q1 such that q(0)∧q1 ≤{0} p and q(0)∧q1 decides τ .
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For the inductive step, as in the case α0 = 0, we know that for some q1 ∈ Pδ/Gα0
∼

,

q1 ≤{α0} p � [α0, δ), p � α0 
Pα0
“q1 decides τ”; moreover, by induction hypothesis

there exists q0 ≤u0 p, q0 ∈ Pα0 , which decides whether for such q1, q1 
 τ = 0 or
q1 
 τ = 1. Then q0

∧q1 is as desired.

Lemma 4.6. Let p ∈ Pδ, u ∈ [dom(p)]<ω, n ∈ ω and x̄ = 〈xα
∼

: α ∈ u〉 such that

xα
∼

is a Pα-name for the first n members of the infinite part of p(α). Suppose also

that for no q ≤ p, E(q, u) is a filter.
Then for i ∈ {0, 1} there exist qi ≤u p and disjoint ai ∈ [ω]ω such that qi ∪ x̄ 


“ai ∈ D∼”.

Proof. First note that if q ≤ p, for every k ∈ ω we may find a disjoint sequence
〈ai : i < k〉 of members of [ω]ω and 〈qi : i < k〉 such that qi ≤u q and qi 
 “ai ∈ D∼”.

In fact, since E(q, u) is not a filter, there exist a′0, a′1 ∈ E(q, u) such that a′0 ∩ a′1 6∈
E(q, u). Let q′i ≤u q force “a′i ∈ D∼”. By the pure decision property of ≤u, as proved

in Lemma 4.5., there exists q0 ≤u q′0 deciding whether a0 := a′0 \ a′1 or a′0 ∩ a′1
belongs to D

∼
. Then clearly q0 
 “a0 ∈ D∼”. Hence we may let q1 = q′1, a1 = a′1.

Now proceeding by induction we easily construct 〈ai : i < k〉 and 〈qi : i < k〉 as
desired.

For α ∈ u let 〈yiα
∼

: i < 2n〉 be an enumeration (of names) of all the subsets of (the

denotation) of xα
∼

, and let 〈ȳi : i < n∗〉 enumerate all ȳσ = 〈yσ(α)
α˜ : α ∈ u〉, where

σ ∈ u(2n). Now using the observation above we easily construct qτ and aτ ∈ [ω]ω,
for every τ ∈ ≤n∗(n∗ + 1), such that the following requirements hold:

(1) q∅ = p, a∅ = ω,
(2) 〈aτ 〈̂i〉 : i < n∗ + 1〉 is a partition of ω,
(3) τ ⊆ σ ⇒ qτ ≥u qσ,
(4) |τ | > 0⇒ ȳ|τ |−1 ∪ qτ 
 “aτ ∈ D∼”.

Now choose q0 ≤u p such that for every i < n∗ and τ ∈ <n∗(n∗ + 1), ȳi ∪ q0

decides for which j, aτ 〈̂j〉 belongs to D
∼

. For this we use again the pure decision

property of ≤u. Then clearly we may find τ1 ∈ n∗(n∗ + 1) such that, letting a1 :=⋃
{Aτ1|j : 1 ≤ j ≤ n∗}, a0 := ω \ a1 and q1 := qτ1 , the conclusion of the lemma

holds.

The following lemma shows that the assumption of Lemma 4.6 holds. As always,
we implicitly regard Pδ/G0

∼
as a countable support iteration of Mathias forcing.

Lemma 4.7. In V [G0], for no q ∈ Pδ/G0
∼

with q ≤ p∗�[1, δ), and for no u ∈
[dom(q)]<ω is it true that E(q, u) is a filter.

Proof. Suppose by way of contradiction that for some q ≤ p∗�[1, δ) and u ∈
[dom(q)]ω , E(q, u) is a filter. By the pure decision property of ≤u, then E(q, u) is
an ultrafilter. By the transitivity of the ordering ≤u we have that for every q′ ≤u q,
E(q′, u) ⊆ E(q, u) and hence E(q′, u) is a filter. By the pure decision property
again, we obtain E(q′, u) = E(q, u). This fact will be used several times in the
sequel.
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In V let E
∼
, q
∼

be Q0-names for E(q, u), q. Without loss of generality we may

assume that the above properties of E(q, u), q are forced by p∗(0) to hold for E
∼
, q
∼

.

Moreover we may certainly assume E
∼
, q
∼
∈ N .

Let G0 = G′0 ∗ G′′0 be the decomposition of G0 according to the decomposition
of Mathias forcing Q0 = Q′0 ∗Q′′0

∼
. Let p∗(0) = (up

∗
, ap

∗
). In V [G′0] we can define

D1 = {a ∈ [ω]ω : ∃a′ ∈ G′0(up
∗
, a′) 
 “a ∈ E

∼
”}.

By hypothesis and as Q(G′0) has the pure decision property (see [JSh]), we
conclude that D1 is an ultrafilter. Working in V [G′0], we distinguish two cases
according to whether G′0 is a projection of D1 or not. In both cases we derive a
contradiction.

Case 1. G′0 ≤RK D1.

Let f ∈ ωω witness this. As Q′0 is σ-closed and hence does not add new reals,
f ∈ V . As N ′ := N [G′0] ≺ (H(χ)V [G′0],∈) (see [Shb, 2.11., p.88]) and D1 ∈ N ′, we
may assume f ∈ N ′, and hence f ∈ N by properness. Since G′0 ∩N is countable,
there exists a ∈ G′0 such that G′0 ∩N = {b ∈ N : a ⊆∗ b}.

We work in V [G′0]. By Case 1 there exists b ∈ D1 such that f [b] ⊆ a. Let
x ∈ Q(G′0) with up

∗
as its first coordinate be such that

x 
Q(G′0) b ∈ E∼ .(1)

Note that x is trivially (N [G0], Q(G′0))-generic, since Q(G′0) is ccc. By Lemma 3.10
there exists a Q(G′0)-name q1

∼
for a (N [G0

∼
], Pδ/G0

∼
)-generic condition, such that

p∗(0) 
Q(G′0) q1
∼
≤u q
∼

. By the remark at the beginning of this proof, we have

p∗(0) 
Q(G′0) E(q
∼
, u) = E(q1

∼
, u).(2)

We conclude that x ∗ q̇1 is a (N [G′0], Q(G′0) ∗ (Pδ/G0
∼

))-generic condition below

p∗. By (1) and (2), there is a Q(G′0)-name q2
∼

such that p∗(0) 
 q2
∼
≤u q1

∼
and

x ∗ q2
∼

 b ∈ D

∼
. Clearly, x ∗ q2

∼
is (N [G′0], Q(G′0) ∗ (Pδ/G0

∼
))-generic. Let G1 be

Q(G′0) ∗ (Pδ/G0
∼

)-generic over V [G′0] such that x ∗ q2
∼
∈ G1. We conclude that

b ∈ D
∼

[G′0 ∗G1].

Note that we must have that f∗(D∼ [G′0 ∗ G1]) 6= G′0. Otherwise, D
∼

[G′0 ∗ G1]

could be computed from f and G′0 in V [G′0]. For this we use that D
∼

[G′0 ∗ G1] is
Ramsey. Moreover, since any two RK-comparable Ramsey ultrafilters are actually
RK-equivalent (see [J, Ex. 38.4, p.480]), and G′0 is induced by some real in V [G0]
(namely the Mathias real determined by G0), the same is true for D

∼
[G′0 ∗ G1]

(the function witnessing equivalence moves the Mathias real to a real inducing
D
∼

[G′0 ∗G1]). Here, G0 is the Q0-generic filter determined by G1. This contradicts

our basic assumption (++).
Hence this inequality holds in N ′[G1]. Therefore there exists a1 ∈ N ∩ G′0 such

that f−1[a1] 6∈ D
∼

[G′0∗G1]. Let b1 = b\f−1[a1]. So b1 ∈ D∼ [G′0∗G1]. We obtain that
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f [b1]∩ a1 = ∅, f [b1] ⊆ a, and a ⊆∗ a1. Hence f [b1] is finite. But then f [b1] 6∈ G′0, a
contradiction.

Case 2. G′0 6≤RK D1.

In V let D
∼ 1 be a Q′0-name for D1, and let G′0

∼
be the canonical name for the

Q′0-generic filter. Then by hypothesis there exists t0 ∈ [ap
∗
]ω such that

t0 
Q′0 “G′0
∼
6≤RK D1”.

We may certainly assume D
∼1, t0 ∈ N .

In V let g be Q′-generic over N such that t0 ∈ g, where Q is Mathias forcing and
Q = Q′ ∗ Q′′

∼
its canonical decomposition. In N [g] let d = D

∼1[g]. By elementarity

we conclude

N [g] |= d is an u.f., g a Ramsey u.f. and g 6≤RK d.(3)

In [GSh] it was shown that for any ultrafilter D on ω there exists a proper
forcing QD such that whenever G is a Ramsey ultrafilter with G 6≤RK D, then after
forcing with QD, G still generates an ultrafilter but D does not. Moreover QD is
ωω-bounding. Hence by Lemma 1.1, every such G generates a Ramsey ultrafilter
in every QD-generic extension.

Definition 4.8. Conditions in QD are f = 〈h,E;E0, E1, . . .〉 where h : ω →
{−1, 1}, and the sets E,E0, E1, . . . belong to the ideal dual to D and partition
ω.

The ordering is defined as follows: 〈h,E;E0, E1, . . .〉 ≤ 〈h′, E′;E′0, E′1, . . .〉 if and
only if
E ⊇ E′,
E,E0, E1, . . . is a coarser partition than E′, E′0, E′1, . . . ,
h�E′ = h′�E′,
for all i: h�E′i ∈ {h′�E′i,−h′�E′i}.

A QD-generic filter G determines a generic real s =
⋃
{hf : f ∈ G}.

By standard arguments one proves that whenever s ∈ ω{−1, 1} is QD-generic, f
belongs to the generic filter which s generates, and sf is defined by

sf (n) =

{
s(n), n ∈ Ef ,
−s(n), n 6∈ Ef ,

(4)

then sf is QD-generic as well and f belongs to its generic filter. Here Ef is the
second coordinate of f . Hence especially −s, where (−s)(n) = −s(n), is also QD-
generic.

In N [g] we have the forcing Qd. In V , choose s ∈ ω{−1, 1} Qd-generic over N [g].
By the properties of Qd and (3), g generates a Ramsey ultrafilter in N [g][s].

Finally, in V choose t1 ⊆ t0 Q(g)-generic over N [g][s]. Since every infinite subset
of t1 is also Q(g)-generic and, as just noticed, −s is also Qd-generic, without loss
of generality, we may assume that

V |= t1 
Q′0 “s−1(1) ∈ D
∼ 1”.
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Otherwise, work with some t2 ∈ [t1]ω and −s. Hence, by the definition of D1, and
since Q′0 does not add reals, we may assume:

V |= (up
∗
, t1) 
Q0 “s−1(1) ∈ E

∼
”.(5)

Claim 1. There exists a Q-name q′
∼
∈ N [g, s, t1] such that

N [g, s, t1] |= (up
∗
, t1) 
Q “q′

∼
∈ Pδ/G0

∼
∧ q′
∼
≤u q
∼
∧ q′
∼

Pδ/G0

∼
‘r
∼
⊆∗ s−1(1)’”.(6)

Proof. Otherwise, there exist (u′, t′) ≤ (up
∗
, t1) and q′

∼
such that in N [g, s, t1], q′

∼
is

a Q-name for a condition in Pδ/G0
∼

, and

N [g, s, t1] |= (u′, t′) 
Q “q′
∼
≤u q
∼
∧ q′
∼

Pδ/G0

∼
‘r
∼
\ s−1(1) is infinite’”.

Such q′
∼

exists by the existential completeness of forcing and the pure decision

property of ≤u.
By Lemma 3.10, in V there exists q̄ ∈ Pδ such that q̄ ≤u (u′, t′) ∗ q′

∼
and q̄

is (N [g, s, t1], Pδ)-generic. Since by the observation at the very beginning of the
present proof we know that

p∗(0) 
Q “E
∼

= E(q̄�[1, δ), u)”,

by (5) and the definition of E
∼

, there exists ¯̄q ∈ Pδ such that ¯̄q ≤u q̄ and ¯̄q 
Pδ
“r
∼
⊆∗ s−1(1)”. Now choose G Pδ-generic over V such that ¯̄q ∈ G. Then clearly

V [G] |= r
∼

[G] ⊆∗ s−1(1) and N [g, s, t1][G] |= |r
∼

[G] \ s−1(1)| = ω. But r
∼

[G] is the
same real in both models, a contradiction.

Let us abbreviate the formula “. . . ” in (6) by φ(q′
∼
, s).

Since t1 is Q(g)-generic and g generates a Ramsey ultrafilter in N [g][s], there
exists (u′, t′) ∈ Q(g) such that u′ ⊆ t1 ⊆ t′ and

N [g, s] |= (u′, t′) 
Q(g) “(up
∗
, t
∼

) 
Q ‘φ(q′
∼
, s)’ ”,(7)

where t
∼

is the canonical name for the generic real added by Q(g), and in the formula

φ(s), q′
∼

is now a Q(g)-name for the above q′
∼

.

Since s is Qd-generic over N [g] and (u′, t′) ∈ N [g], there exists f ∈ Qd such that
f belongs to the Qd-generic filter induced by s, and in N [g] the following holds:

f 
Qd “N [g][s
∼

] |= ((u′, t′) 
Q(g) ‘(up, t
∼

) 
Q φ(q′
∼
, s
∼

)’)”,

where s
∼

is the canonical Qd-name for the Qd-generic real and in φ(q′
∼
, s
∼

), q′
∼

denotes

now a Qd ∗Q(g)-name for the q′
∼

in (7). By the definition of Qd we have ω \Ef ∈ d.

Claim 2. V |= t1 
Q′ “ω \ Ef ∈ D
∼1”.

Proof. As g is Q′-generic over N , ω \ Ef ∈ d = D
∼1[g], and Q′ does not add reals,

there exists u ∈ g such that

N |= u 
Q′ “ω \ Ef ∈ D
∼1”.
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By elementarity we conclude that this is true in V . But clearly we have t1 ⊆∗ u.

Let sf be defined as in Definition 4.8. By the remarks after 4.8, sf is Qd-generic
over N [g], and clearly f belongs to the generic filter determined by sf . Hence (5)
holds if s is replaced by sf . Clearly N [g][s] = N [g][sf ], and hence t1 is Q(g)-generic
over N [g][sf ], and consequently N [g][s][t1] = N [g][sf ][t1] =: N∗.

LetG∗ beQ-generic over V, containing a (N∗, Q)-generic condition below (up
∗
, t1).

Then by Claim 2, ω \ Ef ∈ E
∼

[G∗]. But also s−1(1), s−1
f (1) ∈ E

∼
[G∗0]. In fact, in

N∗[G∗] we have q1 := q′
∼

[s][t1][G∗] and q2 := q′
∼

[sf ][t1][G∗] with the property that

Pδ/G0
∼
|= q1, q2 ≤u q, and q1 
Pδ/G0

∼
r
∼
⊆∗ s−1(1), and q2 
Pδ/G0

∼
r
∼
⊆∗ s−1

f (1).

Otherwise, as in the proof of Claim 1, in V [G∗] we could find (N [G∗], Pδ/G0
∼

)-generic

conditions q̄1 ≤u q1 and q̄2 ≤u q2 forcing the opposite. By choosing filters which
are Pδ/G0

∼
-generic over V and contain q̄1, q̄2 respectively, we obtain a contradiction.

Consequently, s−1(1), s−1
f (1), and ω \ Ef belong to E

∼
[G∗]. But s−1(1), s−1

f (1) are

complementary on ω \ Ef , and hence E
∼

[G∗] is not a filter, a contradiction.

Using 4.6, 4.7 and [B, Lemma 7.3], by standard arguments on proper forcing we
obtain the following corollary.

Corollary 4.9. In V [G0], there exist 〈qs : s ∈ <ω2〉, 〈as : s ∈ <ω2〉 such that the
following hold:

(1) if s ⊆ t, then as ⊇ at and aŝ 〈0〉 ∩ aŝ 〈1〉 = ∅,
(2) if f ∈ ω2, then 〈qf�n : n < ω〉 is a descending chain in Pδ/G0

∼
which

has a lower bound qf such that:
· qf is (N [G0], Pδ/G0

∼
)-generic,

· qf 
 ∀n(af�n ∈ D∼ ),
· qf decides D

∼
∩N .

Corollary 4.10. Y is uncountable.

From Lemma 4.3 and Corollary 4.10 we conclude that Y is an uncountable Σ1
2

set in V [G0] which is a subset of V . By well-known results from descriptive set
theory, Y is the union of ω1 Borel sets, say 〈Bα : α < ω1〉, and this decomposition
is absolute for models computing ω1 correct (see [J, Theorem 95, p.520, its proof
on p.526 using the Shoenfield tree, and Lemma 40.8, p.525, where its absoluteness
is proved]). If one of the Bα is uncountable it contains a perfect subset (see [J,
Theorem 94, p.507]). This case will be ruled out by Lemma 4.11.

Otherwise, each Bα is countable. Now Y and hence 〈Bα : α < ω1〉 is coded by
a real x. We may assume that x also codes 〈qs : s ∈ <ω2〉 and 〈as : s ∈ <ω2〉
from 4.9. Now remember that V here is really V [Gα] where α ∈ C (C coming
from 4.1), and hence V [G0] = V [Gα+1]. Clearly there exists β < α such that
x ∈ V [Gβ , rα]. Then also 〈Bα : α < ω1〉, 〈qs : s ∈ <ω2〉, 〈as : s ∈ <ω2〉 ∈ V [Gβ , rα],
and hence, as each Bα is countable, Y ⊆ V [Gβ , rα]. But from this we conclude
P(ω)V [Gβ,rα] = P(ω)V [Gα+1], as a new real in V [Gα+1] \ V [Gβ , rα] would give a
new branch through 〈as : s ∈ <ω2〉 and hence a new member in Y. But α ∈ C, and
hence (∗) in 4.1 fails for it, a contradiction.

Therefore, in order to finish the proof of Proposition 2.3 it suffices to prove the
following lemma:
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Lemma 4.11. 3 Suppose q ∈ Q, where Q is Mathias-forcing, τ is a Q-name, and

q 
Q “τ ⊆ <ω2 is a perfect tree”.

Then q 
Q “[τ ] 6⊆ V ” .

Proof. By applying the pure decision property of Q repeatedly, without loss of
generality, we may assume that if q = (s, a), then for every t ∈ [a]<ω and n ∈ ω
there exists m ∈ ω such that (s∪ t, a \m) decides the value of τ ∩<n2. Hence if we
let

Tt = {ν ∈ <ω2 : ∃n((s ∪ t, a \ n) 
Q “ν ∈ τ”)},
then Tt is a tree with no finite branches.

We shall define a Q-name η for a real in [τ ] \V . To this end, for every t ∈ [b]<ω,
we construct b ∈ [a]ω, ηt ∈ Tt and n(t) ∈ ω such that the following hold:

(1) (s ∪ t, b \ (max(t) + 1)) 
Q “ηt ∈ τ”;
(2) if Tt ∩ [ηt] has infinitely many branches, hence by compactness a non-

isolated one, and xt is the lexicographically least such one, then for
every m ∈ b \ (max(t) + 1), ηt∪{m} is not an initial segment of xt, but
ηt∪{m}�n(t ∪ {m}) is; moreover, limm→ω n(t ∪ {m}) =∞;

(3) if Tt∩[ηt] has finitely many branches, then for everym ∈ b\(max(t)+1),
· if Tt∪{m} has a member extending ηt which does not belong to Tt,

then ηt∪{m} is like that, say among the shortest the lexicographi-
cally least one;
· if Tt∪{m} has no such member, then ηt∪{m} = ηt.

The construction of b, 〈ηt : t ∈ [b]<ω〉 and 〈n(t) : t ∈ [b]<ω〉 is by fusion: Suppose
that an initial segment of b, say t, has been fixed and for some b′ ∈ [a \ t]ω, for
every t′ ∈ P(t) and m ∈ b′, ηt′ , n(t′) and ηt′∪{m}, n(t′ ∪ {m}) have been defined
such that (1), (2), (3) hold for ηt′ , ηt′∪{m}, n(t′), n(t′ ∪ {m}) and b′. Now the least
element of b′, say k, is put into b. Then successively for each t′ ∈ P(t), first count
how many branches Tt′∪{k} ∩ [ηt′∪{k}] has, and then accordingly define ηt′∪{k}∪{m}
and maybe n(t′∪{k}∪{m}) (if we are in case (2)) for m ∈ b′, all the time shrinking
b′ to make sure that in the end, for some b′′ ∈ [b′]ω, for every t′ ∈ P(t ∪ {k}), (1),
(2) and (3) hold for ηt′ and b′′. The construction is totally straightforward, so we
leave the rest to the reader.

We define a Q-name as follows:

η =
⋃
{ηt : t ∈ [b]<ω ∧ ((s ∪ t, b \ (max(t) + 1)) ∈ G

∼
)}.

Here G
∼

is the canonical name for the Q-generic filter. By construction we con-
clude:

(s, b) 
Q “η ∈ [τ ] ∪ τ”.

Suppose now that some (s∪ t, b∗) ≤ (s, b) forces that η belongs to V , so, without
loss of generality, there exists η∗ ∈ V such that

(s ∪ t, b∗) 
Q “η = η∗”.

From this we will derive a contradiction. Then the Lemma will be proved. Clearly
we have η∗ ∈ ωω ∪ <ωω. We distinguish the following cases:

3The referee informed us that this is a corollary of a theorem of Groszek and Slaman which
implies that if a proper forcing P adds new reals, then every perfect set in V P contains a new
real.
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Case 1. Tt ∪ [ηt] has infinitely many branches.

Subcase 1a: η∗ = xt. By construction, if m ∈ b∗, then (s∪ t∪ {m}, b∗ \ (m+ 1))

Q “ηt∪{m} ⊆ η” and ηt∪{m} 6⊆ xt, a contradiction.

Subcase 1b: η∗�n 6= xt�n for some n. If m ∈ b∗ with n(t ∪ {m}) ≥ n, then by
construction (s ∪ t ∪ {m}, b∗ \ (m + 1)) 
Q “η�n(t ∪ {m}) = xt�n(t ∪ {m})”, a
contradiction.

Case 2. Tt ∩ [ηt] has only finitely many branches.

Subcase 2a: η∗ ∈ [Tt] ∪ Tt. Since τ is forced to be a perfect tree, there exists
u ∈ [b∗]<ω such that Tt∪u has a member above ηt which is not in Tt. But then by
construction (s ∪ t ∪ u, b∗ \ (max(u) + 1)) 
Q “η 6∈ [Tt] ∪ Tt”, a contradiction.

Subcase 2b: η∗�n 6∈ Tt for some n. By construction of Tt, there exists m such
that (s ∪ t, b∗ \m) 
Q “τ ∩ ≤n2 = Tt ∩ ≤n2”. But (s ∪ t, b∗ \m) 
Q “η�n ∈ τ”, a
contradiction. ��

5. Proof of Proposition 2.4

The proof will use several ideas from the proof of Proposition 2.3. Suppose that
Proposition 2.4 is false, that is, there exist Q-names D

∼
and r

∼
, and p ∈ Q such that p

forces that r
∼

induces a Ramsey ultrafilter D
∼

on ([ω]ω)V which is not RK-equivalent

to G′
∼

by any f ∈ ωω ∩ V .
First note that a σ-centered forcing P does not add such D

∼
. In fact, since

V |= CH, such D is forced to be generated by a ⊆∗-descending chain 〈aα
∼

: α < ω1〉
of members of ([ω]ω)V . For every α < ω1, choose pα ∈ P and aα ∈ ([ω]ω)V such
that pα 
P aα

∼
= aα. Since P is σ-centered, there exists X ∈ [ω1]ω1 such that

pα, pβ are compatible whenever α, β ∈ X . By the ccc of P , there exists a P -generic
filter G which contains pα for uncountably many α ∈ X . Then clearly D

∼
[G] ∈ V ,

as D
∼

[G] is generated by 〈aα : α ∈ X〉. The argument shows that no condition in P
forces that D

∼
does not belong to V .

Since Q(G′
∼

) is forced to be σ-centered, by what we have just proved, we may

assume that D
∼

is a Q′-name. As usual, we write p = (up, ap). For t ∈ Q′ we define

Dt = {a ∈ ([ω]ω)V : t 
Q′ “a ∈ D
∼

”}.

The following claim follows immediately from the definitions:

Claim 1. For all t ∈ Q′ with t ≤ ap, we have that a ∈ Dt if and only if (up, t) 
Q
“r
∼
⊆∗ a”.

Claim 2. Suppose that (N,∈) is a countable model of ZF− such that r
∼
, p ∈ N , and

r
∼

is hereditarily countable in N . Then for every a ∈ [ω]ω ∩N and t ∈ Q′ ∩N with

t ≤ ap, it is true that (up, t) 
Q “r
∼
⊆∗ a” implies that N |= (up, t) 
Q “r

∼
⊆∗ a”.

Proof of Claim 2. Otherwise, there exists q ∈ N ∩ Q such that q ≤ (up, t) and
N |= q 
Q “r

∼
∩ (ω \ a) is infinite”).

By Lemma 1.2, there exists q′ ∈ Q such that q′ ≤ q and q′ is (N,Q)-generic.
Let G be Q-generic over V , containing q′. Then by assumption r

∼
[G] ⊆∗ a. On the
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other hand, N [G] |= |r
∼

[G] ∩ (ω \ a)| = ω. As r
∼

[G] is the same real in V [G] and

N [G] we have a contradiction.

By assumption, and since Q′ does not add reals, we conclude:

ap 
Q′ “D
∼

and G′
∼

are Ramsey ultrafilters which are not RK -equivalent.”

Choose a countable elementary substructure (N,∈) ≺ (H(χ),∈) where χ is a
large enough regular cardinal, such that D

∼
, r
∼
, p ∈ N .

In V , let g be Q′-generic over N such that ap ∈ g. In N [g], let d = D
∼

[g]. By
elementarity we conclude

N [g] |= “g and d are Ramsey ultrafilters which are not RK -equivalent.”(1)

In V , choose s ∈ ω{−1, 1} Qd-generic over N [g], where Qd is the forcing from
4.8, defined in N [g] from the ultrafilter d. From (1), Lemma 1.1, and [GSh], we
conclude that g generates a Ramsey ultrafilter in N [g][s].

Finally, in V choose t1 ≤ ap Q(g)-generic over N [g][s]. Since every infinite subset
of t1 is also Q(g)-generic and −s is also Qd-generic, without loss of generality we
may assume that s−1(1) ∈ Dt1 .

By Claims 1 and 2, we conclude:

N [g][s][t1] |= (up, t1) 
Q “r
∼
⊆∗ s−1(1)”.(2)

Since g generates a Ramsey ultrafilter inN [g][s], by the remark preceding Lemma
1.2, we conclude that t1 is Q(g)-generic over N [g][s]. Since Q(g)N [g] is dense in
Q(g)N [g][s], there exists (u′, t′) ∈ Q(g)N [g] such that u′ ⊆ t1 ⊆ t′ and

N [g, s] |= (u′, t′) 
Q(g) “(up, t
∼

) 
Q ‘r
∼
⊆∗ s−1(1)’ ”.(3)

Here t
∼

is the canonical name for the generic real added by Q(g).

Since s is Qd-generic over N [g] and all the parameters in the formula “ . . . ” of
(3) belong to N [g], there exists f ∈ Qd such that f belongs to the Qd-generic filter
induced by s, and in N [g] the following holds:

f 
Qd “N [g][s
∼

] |= [(u′, t′) 
Q(g) ‘(up, t
∼

) 
Q ‘r
∼
⊆∗ ṡ−1(1)”]”.

Here s
∼

is the canonical Qd-name for the Qd-generic real. By definition of Qd,

ω \ Ef ∈ d.

Claim 3. V |= ω \ Ef ∈ Dt1 .

Proof of Claim 3. As g is Q′-generic over N , ω \ Ef ∈ d = D
∼ 1[g], and Q′ does not

add reals, there exists w ∈ g such that

N |= w 
Q′ “ω \ Ef ∈ D
∼

”.

By elementarity we conclude that this is true in V , so by definition of Dw,
ω \ Ef ∈ Dw. Clearly we have t1 ≤ w, so ω \ Ef ∈ Dt1 .

Let sf be defined as in the remark after 4.8. Then sf is also Qd-generic over
N [g], and clearly f belongs to the generic filter determined by sf . Hence (3) holds
if s is replaced by sf .

Clearly N [g][s] = N [g][sf ], and hence t1 is Q(g)-generic over N [g][sf ], and con-
sequently N [g][s][t1] = N [g][sf ][t1].
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From (3) we conclude:

N [g][sf ][t1] |= (up, t1) 
Q “r
∼
⊆∗ s−1

f (1)”.(4)

From Claim 3 together with Claims 1 and 2 we conclude:

N [g][sf ][t1] |= (up, t1) 
Q “r
∼
⊆∗ ω\Ef” .(7)

Since s−1(1), s−1
f (1) are complementary on ω \ Ef , (2), (4) and (5) imply that

r
∼

is forced to be finite, a contradiction. ���
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