NOTES ON MONADIC LOGIC. PART A. MONADIC THEORY OF THE REAL LINE ${ }^{\dagger}$

BY
SAHARON SHELAH
Institute of Mathematics, The Hebrew University of Jerusalem, Jerusalem, Israel; and Mathematics Department, Rutgers University, New Brunswick, New Jersey, USA

ABSTRACT
The second-order theory of the continuum in the Cohen extension of a settheoretic universe is interpreted in the monadic theory of the real line and may be interpreted in the monadic topology of Cantor's discontinuum as well.

Introduction

Assuming the Continuum Hypothesis (CH), Shelah [Sh 42] proved the undecidability of the monadic second-order theory of the real line by interpreting true first-order arithmetic in it. But the monadic theory of the real line happens to be more expressive ([Gu 2], [GuSh 123], [GuSh 143]). In the last of the three papers, the second-order theory of the continuum in the Cohen extension of the universe has been interpreted, under CH , in the monadic theory of the real line as well as the monadic theory of any non-modest short chain. In this paper, we get rid of CH.

To simplify the exposition, we treat the case of the real line only. For the reader's convenience, the proof is self-contained. It is based on the notes of lectures in Rutgers and Jerusalem in Fall 1986.

Notation. (We work in the topological space ${ }^{\omega} \omega$ rather than in the standard real line.)

[^0]${ }^{\omega} \omega$ has the Tychnonov topology (considering ω as a discrete space).
u, u denote non-empty regular open subsets (of ${ }^{\omega} \omega$, i.e., they are equal to the interior of their closure).
$\mathrm{cl}(A)$ is the closure of A.
M_{X} (for a topological space X) is the model $(\mathscr{P}(X), \subseteq$, cl) where $\mathscr{P}(X)$ is the power set of X, \subseteq is inclusion, and cl is the closure operation.
We let X, Y, Z, T be monadic variables for a subset of ${ }^{\omega} \omega, X \equiv Y$ iff their symmetric difference is nowhere dense and $X \subseteq{ }^{*} Y$ if $X-Y$ is nowhere dense.
§1. The basic interpretation
1.1. Definition. (1) For any formula $\varphi(\mu, \bar{a})$ (not necessarily monadic) let
$\operatorname{val}^{\prime} \varphi(u, \bar{a})=\bigcup\left\{u: u\right.$ open regular subsets of ${ }^{\omega} \omega$, and $\left.{ }^{\omega} \omega \vDash \varphi(u, \bar{a})\right\}$.
(2) We call $\varphi(\mu, \bar{a})$ regular if $\operatorname{val}_{\mu} \varphi(\mu, \bar{a})$ is open regular; $\varphi(\mu, \bar{z})$ is regular if every $\varphi(u, \bar{a})$ is.
(3) We call $\varphi\left(u, X_{1}, \ldots, X_{k} ; \bar{a}\right)$ regular (in $\left.u, X_{1} \ldots, X_{k}\right)$ if
$\forall u \forall X_{1}, \ldots, X_{k} \forall X_{1}^{\prime}, \ldots, X_{k}^{\prime}\left[\bigwedge_{l=1}^{k} X_{l} \cap u \equiv X_{l}^{\prime} \cap u \rightarrow\right.$ $\left.\varphi\left(u, X_{1}, \ldots, X_{k} ; \bar{a}\right) \equiv \varphi\left(\mu, X_{1}^{\prime}, \ldots, X_{k}^{\prime} ; \bar{a}\right)\right]$.
1.1A. ObSERVATION. (1) $\varphi^{\prime}(u, \bar{a})=\left(\forall u^{\prime} \subseteq u\right)\left(\exists u^{\prime \prime} \subseteq u^{\prime}\right) \varphi\left(u^{\prime \prime}, \bar{a}\right)$ is always regular and $\operatorname{val}_{\mu} \varphi(u, \bar{a}) \equiv \operatorname{val}_{\mu} \varphi^{\prime}(u, \bar{a})$ for every a.
(2) $\varphi^{\prime}\left(u, X_{1}, \ldots, X_{k} ; \bar{y}\right) \stackrel{\text { def }}{=}\left(\forall u^{\prime} \subseteq u\right) \quad\left(\exists u^{\prime \prime} \subseteq u^{\prime}\right) \quad\left(\exists X_{1}^{\prime}, \ldots, X_{k}^{\prime}\right)$ $\left[\wedge_{l=1}^{k} \quad X_{i}^{\prime} \cap u^{\prime \prime} \equiv X_{l} \cap u^{\prime \prime} \wedge \varphi\left(u^{\prime \prime}, X_{1}^{\prime}, \ldots, X_{k}^{\prime} ; \bar{y}\right)\right]$ is always regular in $u, X_{1} \ldots, X_{k}$.
(3) We will assume without saying that we regularize our formulas this way.
1.2. Lemma. There are regular monadic formulas $\psi_{a}(u, \ldots), \psi_{b}(u, \ldots)$, $\psi_{c}(\mu, \ldots)$ and a sequence $\left\langle D_{i}^{r}: i<2^{\kappa_{0}}\right\rangle$ of dense countable pairwise disjoint subsets of ${ }^{\omega} \omega$ (we let $D^{r}=\bigcup\left\{D_{i}^{r}: i<2^{\aleph_{0}}\right\}$) such that:
(1) for some $W_{a} \subseteq{ }^{\omega} \omega-D^{r}$, for every $X \subseteq D^{r}$,
$$
\operatorname{val}_{\mu} \psi_{a}\left(\mu, X ; D^{r}, W_{a}\right) \equiv \operatorname{val}_{«}\left(v_{i} \mu \cap X \subseteq \mu \cap D_{i}^{r}\right)
$$
(2) for some $W_{a} \subseteq{ }^{\omega} \omega-D^{r}$, for every $X \subseteq D^{r}$,
$$
\operatorname{val}_{u} \psi_{b}\left(u, X ; D^{r}, W_{a}\right) \equiv \operatorname{val}_{u}\left(v_{i} u \cap X=u \cap D_{i}^{r}\right)
$$
(3) for every symmetric two-place function R from $\left\{i: i<2^{K_{0}}\right\}$ to $\left\{u \subseteq{ }^{\omega} \omega:\right.$ open regular $\} \cup\{\varnothing\}$, for some subset W_{R} of ${ }^{\omega} \omega$ (and W_{a} as in (2)), for every $X, Y \subseteq D^{\prime}$,
$\operatorname{val}_{\mu} \psi_{c}\left(u, X, Y ; D^{r}, W_{a}, W_{R}\right) \equiv \bigcup\{u:$ for some $i \neq j, u \subseteq R(i, j)$,
$$
\left.u \cap X=u \cap D_{i}^{r}, u \cap Y=u \cap D_{j}^{r}\right\}
$$

Proof. This is presented in Section 3.
Note we can agree $R(i, i)=\varnothing$.
1.3. Convention. Let $\left\langle D_{i}^{r}: i<2^{K_{0}}\right\rangle$ be as in $1.2, W_{a}, W_{R}$ be as in 1.2(2), $1.2(3)$ respectively. For R a symmetric two-place relation on $\left\{i: i<2^{K_{0}}\right\}$, we identify it with the function R^{\prime} :

$$
R^{\prime}(i, j)= \begin{cases}{ }^{\omega} \omega & \text { if } i \neq j, \vDash R[i, j] \\ \varnothing & \text { otherwise }\end{cases}
$$

1.4. Claim. There is a finite sequence \bar{W}^{0} (of subsets of ${ }^{\omega} \omega$) and regular formulas $\varphi_{\mathrm{nu}}, \varphi_{\mathrm{ze}}, \varphi_{\mathrm{suc}}, \varphi_{\mathrm{ad}}, \varphi_{\mathrm{ord}}, \varphi_{\mathrm{ml}}$ such that:
(1) for $X \subseteq{ }^{\omega} \omega, \operatorname{val}_{u}\left[\varphi_{\mathrm{nu}}\left(u, X ; \bar{W}^{0}\right)\right] \equiv \cup\left\{u\right.$: for some $\left.k, u \cap X=u \cap D_{k}^{r}\right\}$ [the intended meaning is that X represents a natural number].

$$
\begin{equation*}
\text { for } X \subseteq{ }^{\omega} \omega, \operatorname{val}_{u}\left[\varphi_{z e}\left(u, X ;{\overline{W^{0}}}^{0}\right)\right] \equiv \bigcup\left\{u: u \cap X=u \cap D_{0}^{r}\right\} \tag{2}
\end{equation*}
$$

[the intended meaning is that X represents zero].

$$
\begin{equation*}
\operatorname{val}_{«}\left[\varphi_{\mathrm{suc}}\left(u, X, Y ; \bar{W}^{0}\right)\right] \equiv \bigcup\left\{u: \text { for some } k, u \cap X=u \cap D_{k}^{r}\right. \tag{3}
\end{equation*}
$$

$$
\left.u \cap Y=u \cap D_{k+1}^{r}\right\}
$$

[the intended meaning is that Y is the successor of X, i.e., the corresponding numbers are like that].

$$
\begin{aligned}
& \operatorname{val}{ }_{«}\left[\varphi_{\mathrm{ad}}\left(u, X_{1}, X_{2}, X_{3} ; \bar{W}^{0}\right)\right] \equiv \bigcup\left\{u: \text { for some } k_{1}, k_{2}, k_{3}<\omega,\right. \\
& \text { (4) } \\
& \left.k_{3}=k_{2}+k_{1} \text { and } \wedge_{l=1}^{3} u \cap X_{l}=u \cap D_{k_{l}}^{r}\right\}
\end{aligned}
$$

[the intended meaning is addition].

$$
\begin{equation*}
\operatorname{val}_{\mu}\left[\varphi_{\text {ord }}\left(u, X ; \overline{W^{0}}\right)\right]=\bigcup\left\{u: \text { for some } i, u \cap X=u \cap D_{i}^{r}\right\} \tag{5}
\end{equation*}
$$

[the intended meaning is that X is an ordinal, i.e., represents one].

$$
\begin{align*}
& \operatorname{val}_{\mu}\left[\varphi_{\mathrm{ml}}\left(u, X_{1}, X_{2}, X_{3} ; \bar{W}^{0}\right)\right] \equiv \cup\left\{u: \text { for some } k_{1}, k_{2}, k_{3}<\omega,\right. \\
& \tag{6}\\
& \left.\quad k_{3}=k_{2} \times k_{1} \text { and } \wedge_{l=1}^{3} u \cap X_{l}=u \cap D_{k_{1}}^{r}\right\}
\end{align*}
$$

[the intended meaning is multiplication].
Proof. Easy (was done in [Sh 42]), but here are some new details. Let

$$
\begin{gathered}
R_{\mathrm{suc}}^{1}=\{\{k, \omega+k\}: k<\omega\}, \\
R_{\mathrm{suc}}^{2}=\{\{k+1, \omega+k\}: k<\omega\},
\end{gathered}
$$

and, for $l=1,2,3$,

$$
\begin{aligned}
R_{\mathrm{ad}}^{\prime}= & \left\{\left\{\omega^{3}\left(1+k_{3}\right)+\omega^{2}\left(1+k_{2}\right)+\omega\left(1+k_{1}\right), k_{l}\right\}:\right. \\
& \left.k_{3}=k_{2}+k_{1} \text { are natural numbers }\right\}, \\
R_{\mathrm{ml}}^{\prime}= & \left\{\left\{\omega^{3}\left(1+k_{3}\right)+\omega^{2}\left(1+k_{2}\right)+\omega\left(1+k_{1}\right), k_{l}\right\}:\right. \\
& \left.k_{3}=k_{2} \times k_{1} \text { are natural numbers }\right\} .
\end{aligned}
$$

Let $W_{\mathrm{suc}}^{m}=W_{R_{m \alpha}^{m}}, W_{\mathrm{ad}}^{\prime}=W_{R_{\mathrm{a}}^{\prime}}, W_{\mathrm{m} 1}^{\prime}=W_{\mathrm{R}_{\mathrm{al}}^{\prime}}$ for $m=1,2, l=1,2,3$. Let

$$
\begin{gathered}
D_{N}^{r}=\bigcup_{n<\omega} D_{n}^{r}, \\
\bar{W}^{0}=\left\langle D^{r}, D_{0}^{r}, D_{N}^{r}, W_{a}, W_{\mathrm{suc}}^{\mathrm{s}}, W_{\mathrm{suc}}^{2}, W_{\mathrm{ad}}^{l}, W_{\mathrm{ml}}^{r}\right\rangle_{l=1,2,3}
\end{gathered}
$$

Now we let

$$
\begin{aligned}
& \varphi_{\mathrm{nu}}\left(u, X ; \overline{W^{0}}\right) \stackrel{\text { def }}{=}\left[u \cap X \subseteq D_{N}^{r} \wedge \psi_{b}\left(\mu, u \cap X ; W_{a}\right)\right], \\
& \varphi_{z e}\left(u, X ; \bar{W}^{o}\right) \stackrel{\text { def }}{=}\left[u \cap X=u \cap D_{0}^{r}\right], \\
& \varphi_{\text {suc }}\left(\mu, X, Y ; \bar{W}^{0}\right)=\left[\varphi _ { \mathrm { nu } } (\mu , X ; \overline { W ^ { 0 } }) \wedge \varphi _ { \mathrm { nu } } (\mu , Y ; \overline { W } ^ { 0 }) \wedge (\exists Z) \left[\varphi_{\text {ord }}\left(\mu, Z ; \bar{W}^{0}\right)\right.\right. \\
& \left.\left.\wedge \mu \cap Z \subseteq D^{r}-D_{N}^{r} \wedge \psi_{c}\left(\mu, X, Z ; W_{R_{\mu \mu}^{\prime}}\right) \wedge \varphi_{c}\left(\mu, Y, Z ; W_{R_{\mu}^{2}}\right)\right]\right] .
\end{aligned}
$$

Similarly for φ_{ad} and φ_{ml}.
1.5. Definition. Let the monadic formula $\theta_{1}(\mu, \bar{T})$ say that \bar{T} satisfies all reasonable properties of what \bar{W}^{0} satisfies in u (we delay the question of "every
natural number is standard"), i.e., $\lg (\bar{T})=\lg \left(\bar{W}^{0}\right)$ and θ_{1} is the conjunction of the following formulas (all saying what occurs inside u only):
(1) every natural number has a unique successor, i.e., $(\forall X)\left[\varphi_{\mathrm{nu}}(\mu, X, \bar{T}) \rightarrow(\exists Y) \varphi_{\mathrm{suc}}(\mu, X, Y, \bar{T})\right]$ and
$(\forall X)\left(\forall Y_{1}\right) \forall Y_{2}\left[\varphi_{\text {suc }}\left(\mu, X, Y_{1}\right) \wedge \varphi_{\text {suc }}\left(\mu, X, Y_{2}, T\right) \rightarrow Y_{1} \cap \mu \equiv Y_{2} \cap \mu\right] ;$
(2) a natural number is a successor iff it is not zero;
(3) every pair of natural numbers has a unique sum;
(4) every pair of natural numbers has a unique product;
(5) $x+(y+1)=(x+y)+1, x+0=x$;
(6) $x \times(y+1)=x \times y+x, x \times 0=0$;
(7) addition and product are commutative;
(8) $x+1=y+1$ implies $x=y$.
1.5A. Convention. Omitting μ in θ_{1} means taking ${ }^{\omega} \omega$. Similarly everywhere else.
1.6. Claim. (1) $\vDash \theta_{1}\left[\bar{W}^{0}\right]$ (for the \bar{W}^{0} from Claim 1.4).
(2) If $\vDash \theta_{1}[\mu, \bar{W}]$ then we can find $D_{n}(n<\omega)$ pairwise disjoint such that:
(a) $\varphi_{z e}\left(u, D_{0} ; \bar{W}\right)$,
(b) $\varphi_{\text {nu }}\left(\mu, D_{n} ; \bar{W}\right)$,
(c) $\varphi_{\text {suc }}\left(\mu, D_{n}, D_{n+1} ; \bar{W}\right)$,
(d) $\varphi_{\mathrm{ad}}\left(u, D_{n}, D_{m}, D_{m+n} ; \bar{W}\right)$,
(e) $\varphi_{\mathrm{m} 1}\left(\mu, D_{n}, D_{m}, D_{m \times n} ; \bar{W}\right)$.
(3) If $D_{n}^{\prime}(n<\omega)$ satisfies (a), (b), (c) then $\Lambda_{n<\omega} D_{n} \cap u \equiv D_{n}^{\prime} \cap u$.

Proof. Easy.
As we have said, we desire to express " $\overline{W^{0}}$ code standard natural number only".
1.7. Definition. Let $\theta_{2}(\mu, \bar{Y})$ say that, hereditarily in μ :

$$
\theta_{1}(\mu, \bar{Y}) \wedge \neg\left(\exists \bar{Y}^{\prime}, u^{\prime}\right)\left[u^{\prime} \subseteq u \wedge \theta^{a}\left(\mu^{\prime}, \bar{Y}^{\prime}, \bar{Y}\right) \wedge \theta^{b}\left(\mu^{\prime}, \bar{Y}^{\prime}, \bar{Y}\right)\right]
$$

where
$\theta^{b}\left(\mu, \bar{Y}^{\prime}, \bar{Y}\right) \stackrel{\text { def }}{=} \theta_{1}\left(\mu, \overline{Y^{\prime}}\right) \wedge\left(\forall \mu, X_{1}, X_{2}\right)\left[\varphi_{\mathrm{scc}}\left(\mu, X_{2}, X_{1} ; \bar{Y}^{\prime}\right) \rightarrow\right.$

$$
\left.\left(\exists X_{1}^{\prime} \supseteq X_{1}\right)\left(\exists X_{2}^{\prime} \supseteq X_{2}\right) \varphi_{\mathrm{suc}}\left(\mu, X_{1}^{\prime}, X_{2}^{\prime} ; \bar{Y}\right)\right],
$$

$$
\theta^{a}\left(\mu, \bar{Y}^{\prime}, \bar{Y}\right) \stackrel{\text { def }}{=}(\forall X)\left[\varphi_{\mathrm{nu}}\left(\mu, X ; \bar{Y}^{\prime}\right) \rightarrow\left(\exists X^{\prime}\right)\left(X \subseteq X^{\prime}\right) \varphi_{\mathrm{nu}}\left(\mu, X^{\prime} ; \bar{Y}\right)\right] .
$$

1.8. Claim. (1) $\vDash \theta_{2}\left[\bar{W}^{0}\right]$.
(2) If $\vDash \theta_{2}[\bar{W}]$ and $D_{n}(n<\omega)$ are as in 1.6 then for every X

$$
\operatorname{val}_{\mu} \varphi_{\mathrm{nu}}(\mu, X ; \bar{W}) \equiv \operatorname{val}_{\mu}{ }_{n} \vee\left(\mu \cap X=\mu \cap D_{n}\right) .
$$

(3) The parallel of (2) holds for $\theta_{2}(\mu, \bar{W})$.

Proof. (1) Immediate.
(2) If not, let $X \subseteq{ }^{\omega} \omega$ be such that some open regular μ_{0} is disjoint from $\operatorname{val}_{\mu}\left(\mu \cap X=\mu \cap D_{n}\right)$ for every n but $\mu_{0} \subseteq \operatorname{val}_{\mu} \varphi_{\mathrm{nu}}(\mu, X ; \bar{W})$.
Fix μ_{0}, X. We define by induction on $n, X_{n} \subseteq \mu_{0}$ such that $\mu_{0} \subseteq$ $\operatorname{val}_{\mu} \varphi\left(\mu, X_{n} ; \bar{W}\right), \mu_{0} \subseteq \operatorname{val}_{\mu} \varphi_{\text {suc }}\left(\mu, X_{n}, X_{n+1} ; \bar{W}\right)$ and μ_{0} is disjoint from $\operatorname{val}_{\mu}\left(\mu \cap X_{n}=\mu \cap D_{m}\right)$ for every $m\left(X_{0}=X\right.$, of course). Let $X_{n}^{\prime} \subseteq X_{n}$ be countable and dense in $\mu_{0}, \Lambda_{k<n} X_{n}^{\prime} \cap X_{k}^{\prime}=\varnothing$. There is an autohomeomorphism F of ${ }^{\omega} \omega$ taking D_{n}^{r} to X_{n}^{\prime} for $n<\omega$ and μ_{0} to itself (Cantor Theorem). Now $F\left(\bar{W}^{0}\right), \mu_{0}$ can serve as \bar{Y}^{\prime}, μ contradicting the second part of $\theta_{2}(\bar{W})$.
1.8A. Remark. Applying this to other topological spaces, we can replace Cantor Theorem by strengthening of 1.2. Similarly in 2.10.

§2. Interpreting the universe after forcing

2.1. Definition. Let Q be the forcing notion: open regular subsets of ${ }^{\omega} \omega$, with the order: the converse of inclusion (this is the Cohen forcing).
2.1A. Convention. \bar{W} denotes a sequence such that $\vDash \theta_{2}[\bar{W}], D_{n}(\bar{W})$ $(n<\omega)$ are as in 1.2, $D(W)=\left\langle D_{n}(W): n<\omega\right\rangle$. In this section D denotes a ω-sequence of dense pairwise disjoint subsets of ${ }^{\omega} \omega$.
2.2. Definition. (1) We say that $X \bar{D}$-represents in μ_{0} a Q-name $\underset{\sim}{n}$ of a natural number if:
(a) $\mu_{0} \equiv \mu_{0} \cap \operatorname{val}_{\mu} \varphi_{\mathrm{nu}}(\mu, X ; \bar{W})$,
(b) H_{Q} " n is a natural number",
(c) for every $k<\omega$ and $\mu \subseteq \mu_{0}$

$$
u \mathbb{H}_{Q} " \underset{\sim}{n}=k " \quad \text { iff } u \cap X \equiv u \cap D_{k} .
$$

(2) If $u_{0} \equiv{ }^{\omega} \omega$ we omit it.
2.3. Claim. (1) Suppose $\vDash \theta_{2}[\bar{W}]$. $\vDash \varphi_{\text {nu }}(\mu, X ; \bar{W})$ iff $X \bar{D}(\bar{W})$-represents in u some Q-name of a natural number.
(2) If $X \bar{D}$-represents in \approx a Q-name $\underset{\sim}{n}$ (of a natural number), then $X D$ represents $\underset{\sim}{n}$ in every $u^{\prime} \subseteq u$.

Proof. Suppose $\vDash \varphi_{\mathrm{nu}}(\mu, X ; \bar{W})$. We know that

$$
K=\left\{\alpha: a \subseteq u \text { and } \alpha \cap X=u \cap \overline{D_{n}}(\bar{W}) \text { for some } n=n(\alpha)\right\}
$$

is such that
$(*)\left(\forall u^{\prime} \subseteq u\right)\left(\exists u^{\prime \prime} \subseteq u^{\prime}\right)\left(u^{\prime \prime} \in K\right)$.
Let $\left\{\sigma_{\alpha}: \alpha<A^{0}\right\}$ be a maximal subset of K such that any two members are disjoint. Clearly $\bigcup_{\alpha} \psi_{\alpha}$ is a dense subset of $u[$ by (*)]. We define $n \underset{\sim}{n}$ by

(Q_{Q} is the generic set) and zero otherwise.
Easily, n is a Q-name of a natural number and $X \bar{D}(\bar{W})$-represents it in u. The other direction is easy too.
2.4. Claim. Suppose $\vDash \theta_{2}[\mu, \bar{W}]$. If $\underset{\sim}{n}$ is a Q-name and $u \mathbb{F}_{Q}$ " n a natural number", then some $X \bar{D}(\bar{W})$-represents $n \underline{n}$ in u.

Proof. Let $\left\{u_{\alpha}: \alpha<\alpha_{0}\right\}$ be a maximal antichain of members of Q, $u_{\alpha} \subseteq u, \mu_{\alpha}$ force a value to $\underset{\sim}{n}$, say $n(\alpha)$. So $\left\{u_{\alpha}: \alpha<\alpha_{0}\right\}$ is a family of pairwise disjoint regular open subsets of u. Let $X=\bigcup_{\alpha}\left(u_{\alpha} \cap \bar{D}_{n(\alpha)}(\bar{W})\right)$.
2.5. Claim. Suppose $\vDash \theta_{2}[\bar{W}]$. If for $l=1,2,3, X_{l} \bar{D}(\bar{W})$-represents in u the Q-name n_{l} of a natural number, then for every $u \subseteq u$:
(a) $\alpha \mathbb{H}_{Q}$ " $n_{1}=0$ " iff $\varphi_{z e}\left(\alpha, X_{1} ; \bar{W}\right)$,
(b) $\cup \mathbb{H}_{Q}$ " $n_{1}=n_{2}$ " iff $u \cap X_{1} \equiv a \cap X_{2}$,
(c) $\alpha \mathbb{H}_{Q}$ " $n_{1}+1=n_{2}$ " iff $\varphi_{\text {suc }}\left(\alpha, X_{1}, X_{2} ; \bar{W}\right)$,
(d) $a H_{Q}$ " $n_{1}+n_{2}=n_{3}$ " iff $\varphi_{\mathrm{ad}}\left(a, X_{1}, X_{2}, X_{3} ; \bar{W}\right)$,
(e) $\alpha \mathbb{F}_{Q} " n_{1} \times n_{2}=n_{3}$ " iff $\varphi_{\mathrm{ml}}\left(\sigma, X_{1}, X_{2}, X_{3} ; \bar{W}\right)$.

Proof. Easy (from definition).
Next we deal with reals, i.e., sets of natural numbers.
2.6. Definition. We say that $Y \bar{D}$-represents in μ a Q-name a of a set of natural numbers if, for every $u \subseteq u$ and $k<\omega$,
(a) $a \Vdash_{Q}$ " $k \in \underset{a}{ }$ " iff $a \cap D_{k} \subseteq * ~ \cup \cap Y$,
(b) $\alpha \mathbb{F}_{Q} " k \notin \underset{\sim}{\text { " }}$ iff $a \cap Y \cap D_{k} \equiv \varnothing$.
2.7. Definition. $\varphi_{\mathrm{rl}}(\mu, Y ; \bar{W})$ is
$(\forall \alpha \subseteq u)(\forall X)\left[\varphi_{\text {пи }}(\alpha, X ; \bar{W}) \rightarrow\left(\exists \alpha^{\prime} \subseteq a\right)\left(\alpha^{\prime} \cap X \subseteq Y \vee \alpha^{\prime} \cap X \cap Y=\varnothing\right)\right]$.
2.8. Claim. Suppose $\vDash \theta_{2}[\mu, \bar{W}]$.
(1) $\vDash \varphi_{\mathrm{rl}}(\mu, Y ; \bar{W})$ iff $Y \bar{D}(\bar{W})$-represents in u some Q-name of a set of natural numbers.
(2) Every Q-name a of a set of natural numbers is $\bar{D}(\bar{W})$-represented by some Y.
(3) If $Y \bar{D}$-represents in u a Q-name a of a set of reals then $Y \bar{D}$-represents a in every $u^{\prime} \subseteq u$.

Proof. (1) Suppose $\vDash \varphi_{\mathrm{rl}}(\mu, \bar{Y}, \bar{W})$. Define a by:
(*) $k \in \underset{\sim}{a}$ iff there is $a \subseteq u, u \in G_{Q}$ (the generic subset) and $a \cap D_{k}(\bar{W}) \subseteq Y$.
It is easy to check that it is as required. For the other direction suppose X $\bar{D}(\bar{W})$-represents in u some Q-name $\underset{\sim}{a}$ of a set of natural numbers. Now for every $\alpha \subseteq u$ and X such that $\varphi_{\mathrm{nu}}(u, X ; \bar{W})$, first find $\omega_{0} \subseteq a$ and k such that $\alpha_{0} \cap X=\alpha_{0} \cap D_{k}(\bar{W})$ (see choice of $\varphi_{\text {nu }}$), next choose $\alpha_{1} \subseteq \alpha_{0}$ such that $a_{1} \mathbb{H}_{Q}$ " $k \in a$ " or $a_{1} \mathbb{H}_{Q}$ " $k \notin a$ ". If the former holds then (by Definition 2.6) $\alpha_{1} \cap D_{k}(\bar{W}) \subseteq{ }^{*} \alpha_{1} \cap X$ hence, for some $\alpha^{\prime} \subseteq \alpha_{1}, \alpha^{\prime} \cap D_{k}(\bar{W}) \subseteq \alpha_{1} \cap X$; so α^{\prime} is as required in the definition of φ_{rl}. If the latter ($\alpha_{1} \mathbb{H}_{Q}$ " $k \notin a^{\prime}$ ") holds, then (by Definition 2.6) $a_{1} \cap D_{k}(\bar{W}) \cap X \equiv \varnothing$; so for some $a^{\prime} \subseteq a, u^{\prime} \cap D_{k}(\bar{W}) \cap$ $X=\varnothing$ and so α^{\prime} is as required in the definition of φ_{r}.
(2) Let, for each $k,\left\langle u_{\alpha}^{k}: \alpha<\alpha_{k}\right\rangle$ be a maximal antichain of Q, such that $u_{\alpha}^{k} \mathbb{H}_{Q}$ " $k \in a$ " or $u_{\alpha}^{k} \mathbb{H}_{Q}$ " $k \notin a_{\alpha}$ ". Let

$$
Y=\bigcup\left\{D_{k}(\bar{W}) \cap u_{\alpha}^{k}: k<\omega, \alpha<\alpha_{k}, u_{\alpha}^{k} \Vdash_{Q} " k \in a^{\prime \prime}\right\}
$$

As $\left\langle D_{n}(\bar{W}): n<\omega\right\rangle$ are pairwise disjoint, Y is as required.
(3) Trivial.
2.9. Claim. Assume $\vDash \theta_{2}[\bar{W}], X \bar{D}(\bar{W})$-represents in u the Q-name n of a natural number, and $Y \bar{D}(\bar{W})$-represents in u the Q-name a of a real. Then for $a \subseteq u$:

$$
a \cap X \subseteq * Y \text { iff } \because \mathbb{F} \text { " } n \in \underline{a} \text { ". }
$$

Proof. Check definitions.
2.10. Definition. We say that $\bar{W}^{+}=\bar{W}^{* \wedge}\langle W\rangle \bar{D}$-represents in u a Q-name A of a set of reals if:
(a) $u H_{Q}$ " A is a set of reals";
(b) $=\theta_{2}\left[\mu, \bar{W}^{*}\right]$;
(c) $u \cap D_{n}\left(\bar{W}^{*}\right) \subseteq * D_{n}$;
(d) TFAE for all Q-names a of a real and $a \subseteq u$:
(a) " H_{Q} " $a \in A$ ",
(β) there is X such that
(i) $\vDash \varphi_{\text {ord }}\left(a, X ; \bar{W}^{*}\right) \wedge\left(\forall a^{\prime} \subseteq a\right) \neg \varphi_{\text {pu }}\left(a^{\prime}, X ; \bar{W}^{*}\right)$,
(ii) for every $u^{\prime} \subseteq u$, and $k<\omega$,

$$
\begin{aligned}
& u^{\prime} \vdash_{Q} " k \in \underset{\sim}{a} " \quad \text { iff } \vDash \psi_{c}\left(\alpha^{\prime}, D_{k}\left(\bar{W}^{*}\right), X ; D^{*}, W_{a}^{*}, W\right) \\
& \left(D^{*}, W_{a}^{*}-\text { from } \bar{W}^{*}\right) .
\end{aligned}
$$

Remark. On ψ_{c} see 1.2(3).
2.10A. Claim. Suppose $k \theta_{2}\left[\mu, \bar{W}^{*}\right]$. For every Q-name A of a set of reals there is W such that $\bar{W}^{+}=\bar{W}^{* \wedge}\langle W\rangle \bar{D}\left(\bar{W}^{*}\right)$-represents A in u.

Proof. Choose countable dense $D_{n}^{\prime} \subseteq D_{n}$, and so there is an autohomeomorphism F of ${ }^{\omega} \omega$ taking D_{n}^{r} to D_{n}^{\prime}. Let $\left\{{\underset{\alpha}{\alpha}}: \alpha<2^{N_{0}}\right\}$ list all Q-names of reals. For each α, k let $\left\{u_{\alpha, \zeta}^{k}: \zeta<\zeta_{\alpha}\right\}$ be a maximal set of pairwise disjoint members of Q such that

$$
u_{\alpha, \xi}^{k} \mathbb{F}_{Q} " a_{\alpha \alpha} \in A \text { and } k \in a_{\alpha} "
$$

Define a two-place function R from $2^{\mathrm{K}_{0}}$ to Q :

$$
R(\omega+\alpha, k)=R(k, \omega+\alpha) \equiv \bigcup\left\{u_{\alpha, \zeta}^{k}: \zeta<\zeta_{\alpha}\right\}
$$

(i.e., the interior of the closure of this union) and

$$
R(\alpha, \beta)=\varnothing \quad \text { when }(\alpha<\omega \wedge \beta<\omega) \vee(\alpha \geqq \omega \wedge \beta \geqq \omega)
$$

Now we apply $1.2(3)$ and get W_{R}. Lastly $W \stackrel{\text { def }}{=} W_{R}$ is as required.
2.11. Definition. Let $\varphi_{\text {sII }}\left(\mu, \bar{W}^{+}, \bar{W}\right)$ (where $\bar{W}^{+}=\bar{W}^{* \wedge}\langle W\rangle$) be the conjunction of the following formulas:
(a) $\vDash \theta_{2}\left[u, \bar{W}^{*}\right]$,
(b) $\vDash \theta_{2}[u, \bar{W}]$,
(c) $(\forall X)\left[\varphi_{\mathrm{nu}}\left(u, X ; \bar{W}^{*}\right) \rightarrow(\exists Y)\left[X \subseteq{ }^{*} Y \wedge \varphi_{\mathrm{nu}}(u, Y ; \bar{W})\right]\right]$.
2.12. Claim. Suppose $\vDash \theta_{2}[\bar{W}] . \bar{W}^{+} \bar{D}(W)$-represents in u a Q-name A of a set of reals iff $\vDash \varphi_{\mathrm{sr} 1}\left(\mu, \bar{W}^{+}, \bar{W}\right)$.
2.13. Claim. Suppose $\vDash \theta_{2}[\mu, \bar{W}], Y \bar{D}(\bar{W})$-represents the $\underset{\sim}{Q}$-name $\underset{\sim}{a}$ of a real in u, and $\bar{W}^{+} \bar{D}(\bar{W})$-represents the $\underset{\sim}{Q}$-name A of a set of reals in u.

Then for $u \subseteq u$

$$
u \Vdash^{-} a \in A " \quad \text { iff } \varphi_{\mathrm{mem}}\left(u, Y, \bar{W}^{+}, \bar{W}\right)
$$

where $\varphi_{\text {mem }}$ formalizes (d) of 2.10 , i.e.,
2.14. Definition. $\varphi_{\text {mem }}\left(\boldsymbol{u}, Y ; \bar{W}^{+}, \bar{W}\right)$ is (where $\left.\bar{W}^{+}=\bar{W}^{* \wedge}\langle W\rangle\right)$

$$
\begin{aligned}
& (\exists X)\left[\varphi_{\text {ord }}\left(\mu, X ; \bar{W}^{*}\right) \wedge(\forall a \subseteq u)\right\urcorner \varphi_{\mathrm{nu}}\left(\alpha, X ; \bar{W}^{*}\right) \\
& \wedge \wedge(\forall \alpha \subseteq u)\left(\forall Z_{1}, Z_{2}\right)\left[\left(\varphi_{\mathrm{nu}}\left(\alpha, Z_{1} ; \bar{W}\right) \wedge \varphi_{\mathrm{nu}}\left(\alpha, Z_{2} ; \bar{W}^{*}\right) \wedge\left[Z_{2} \subseteq Z_{1}\right]\right]\right. \\
& \left.\left.\quad \rightarrow\left[a \cap Z_{1} \subseteq * Y \Leftrightarrow \psi_{\mathrm{c}}\left(\alpha, Z_{2}, X ; D^{*}, W_{a}^{*}, W\right)\right]\right]\right] .
\end{aligned}
$$

Proof of 2.13. Check.
2.15. Definition. We define the forcing language L (for second-order theory of the continuum under the forcing Q) (it is a slight variant of the standard one). We have variables of three kinds: n (Q-names of natural numbers), a (Q-names of reals, i.e., sets of natural numbers), and A (Q-names of sets of reals). We have the individual constant 0 , function symbols for addition and multiplications of natural numbers, the successor relation on the natural numbers, equality between natural numbers, and two membership relations: $\underset{\sim}{\in} \in a, a \in A$ (so $a_{1}=a_{2}$ is not an atomic formula). From the atomic formulas, the formulas are generated as usual (with three kinds of quantifications).

Remark. We do not distinguish strictly between Q-names and variables over them. We know:
2.16. The Forcing Theorem (in this context). For any formula $\theta\left(n_{1}, n_{2}, \ldots, a_{1}, a_{2}, \ldots, A_{1}, A_{2}, \ldots\right) \in L$ and $a \in Q$, TFAE
(a) $\because \mathbb{F}_{Q} \theta\left(n_{1}, n_{2}, \ldots, a_{1}, a_{2}, \ldots, A_{1}, A_{2}, \ldots\right)$,
(β) for any $G \subseteq Q$ generic over the universe and such that $a \in G$, if $n_{l}=$ $n_{n}[G], a_{l}=a_{l}[G], A_{l}=A_{l}[G]$ then $\theta\left[n_{1}, n_{2}, \ldots, a_{1}, a_{2}, \ldots, A_{1}, A_{2}, \ldots\right]$ holds.
2.17. Main Lemma. For any formula $\theta\left(n_{1}, \ldots, a_{1}, \ldots, A_{1}, \ldots\right) \in L$ we can compute a formula $\varphi_{\theta}\left(\mu, X_{1}, \ldots, Y_{1}, \ldots ; \bar{W}_{1}^{+}, \ldots, \bar{W}\right)$ such that:
\oplus Suppose $\mathbb{F}_{\varrho} \theta_{2}[\mu, \bar{W}]$ and $X_{I} \bar{D}(\bar{W})$-represents the Q-name n_{2} of a natural number in $u, Y \bar{D}(\bar{W})$-represents the Q-name a_{j} of a real in u, and \bar{W}_{l}^{+} $\bar{D}(\bar{W})$-represents the Q-name A_{1} of a set of reals in u. Then
$u \mathbb{F}_{Q} \theta\left(n_{1}, \ldots, a_{1}, \ldots, A_{\sim}, \ldots\right)$ iff $\vDash_{Q} \varphi_{\theta}\left[\mu, X_{1}, \ldots, Y_{1}, \ldots ; \bar{W}_{1}^{+}, \ldots, \bar{W}\right]$.
Proof. By induction on θ.
For atomic formulas: see 2.5 (on formulas on natural numbers), 2.9 (on $\underset{\sim}{n} \in \underset{\sim}{a}$) and 2.13 (on $\underset{\sim}{a} \in A$).
For Boolean combinations of atomic formulas there are no problems.
For $\theta=\forall \underset{\sim}{n} \theta_{1}$ use 2.3, 2.4 and the induction hypothesis.

For $\theta=\forall a \theta_{1}$ use 2.8 and the induction hypothesis.
For $\theta=\forall A \theta_{1}$ use $2.10 \mathrm{~A}, 2.12$ and the induction hypothesis.
2.18. Conclusion. For every sentence θ in the language of the secondorder theory of the continuum we can compute a sentence φ_{θ}^{*} in the monadic theory of ${ }^{\omega} \omega$ such that:

$$
H_{Q} " \theta " \quad \text { iff } \quad M_{\left({ }^{(}{ }_{\omega)}\right)} \vDash \varphi_{\theta}^{*}
$$

Proof. By 2.17 there is $\varphi_{\theta}(\mu, \bar{W})$ as there. Let

$$
\varphi_{\theta}^{*}=(\exists \bar{W})(\forall \mu)\left[\theta_{2}(\bar{W}) \wedge \varphi_{\theta}(\mu, \bar{W})\right] .
$$

As Q is homogeneous and is Cohen forcing, we finish.

§3. The combinatorics

For diversity, we do not copy [GuSh 143].
3.0. Convention. B denotes a Hausdorf first countable topological space with $\leqq 2^{\mathrm{K}_{0}}$ open subsets (or just $\leqq 2^{\mathrm{K}_{0}}$ perfect subsets) (the main case is $B={ }^{\omega} \omega$). A will denote a subset of $B, D=B \backslash A$. The reader can restrict himself to the case $B={ }^{\omega} \omega, A=\{\eta \in B: \eta$ not eventually constant $\}$ without great damage (just lose, e.g., non-modest subsets of ${ }^{\omega} \omega$).
3.1. Notation. (1) $P \subseteq B$ is perfect in A if it is closed s.t.: if $x \in \mu \cap P$, [$x \in \operatorname{Av} x$ not isolated] then $\left(\exists P_{1}, P_{2}, u_{1}, u_{2}\right)$

$$
\left[u_{1} \cap u_{2}=\varnothing \wedge \wedge_{l-1}^{2}=\left(P_{l} \subseteq u_{l} \wedge P_{l} \cap A \neq \varnothing \wedge P_{l}=\operatorname{cl}\left(P_{l} \backslash A\right) \wedge u_{l} \subseteq u\right)\right]
$$

and $P \cap A \neq \varnothing$.
(2) If $\bar{D}=\left\langle D_{l}: l<n\right\rangle$, we let
$\mathrm{PR}_{A}^{n}(\overline{\mathrm{D}})=\left\{P: P \subseteq B\right.$ is perfect in A, and $\mathrm{cl}\left(P \cap D_{l}\right) \supseteq P \cap A$ for $\left.l<n\right\}$.
(3) $\operatorname{Pr}_{A}^{n}(W, \bar{D})$ with $D=\left\langle D_{l}: l<n\right\rangle$ as above means: there is a P, perfect in $A, A \cap P \subseteq W \cup \cup_{l} D_{l}, P \in \mathrm{PR}_{A}^{n}(\bar{D})$.
(4) In (2) and (3) we allow one to omit the superscript $n .^{\dagger}$
3.2. Convention. \bar{D} denotes a finite sequence of subsets of $B \backslash A \equiv D$ such that $\operatorname{cl}\left(D_{n}\right) \supseteq A \cup\{x \in D: x$ not isolated $\}$.

[^1]3.3. Definition. We say that we can separate $\left\{\overline{D_{i}^{a}}: i<\alpha^{a}\right\}$ from $\left\{\overline{D_{i}^{b}}: i<\alpha^{b}\right\}$ inside A, if there is $W \subseteq A$ such that
(α) for $i<\alpha^{a}, \operatorname{Pr}_{A}\left(W, \overline{D_{i}^{a}}\right)$,
(β) for $i<\alpha^{b}, \neg \operatorname{Pr}_{A}\left(W, \overline{D_{i}^{b}}\right)$.
Why does assuming CH simplify matters?
3.4. Claim (CH). Suppose $\left\{\overline{D_{\alpha}^{a}}: \alpha<\alpha^{a}\right\},\left\{\overline{D_{\alpha}^{b}}: \alpha<\alpha^{b}\right\}$ are given, $\left|\alpha^{a}\right|,\left|\alpha^{b}\right| \leqq 2^{N_{0}}$ and
(*) if $P^{a} \in \operatorname{PR}_{A}\left(\overline{D_{\alpha}^{a}}\right), P^{b} \in \operatorname{PR}\left(D_{\beta}^{b}\right)\left(\alpha<\alpha^{a}, \beta<\alpha^{b}\right)$ then: for a an open subset of $B, u \cap P^{b} \cap A \neq \varnothing$ implies $u \cap P^{b} \cap A \nsubseteq P^{a} \cap P^{b}$;
$(*)_{2} Q-D$ is not meager (as a topological space in the induced topology) when $Q \in \mathrm{PR}_{A}(\varnothing)$ (or even $Q \in \mathrm{PR}_{A}\left(\overline{D_{\gamma}^{b}}\right)$ for some γ implies $Q \cap A$ not included in the union of $P_{l} \subseteq A(l<\omega), P_{l}$ perfect in $\left.A\right)$.
Then we can separate $\left\{D_{\alpha}^{a}: \alpha<\alpha^{a}\right\}$ from $\left\{D_{\alpha}^{b}: \alpha<\alpha^{b}\right\}$.
Remark. We use only the existence of a family of $\leqq 2^{\kappa_{0}}$ perfect separable sets which is dense enough in the family of perfect sets. This is relevant to 3.6 too.

Proof. Let $\left.\left\{Q_{i}: i<2^{{ }^{N}}\right\}\right\}$ list the perfect subsets in A (of B). We know that w.l.o.g. $\alpha^{a}, \alpha^{b} \leqq 2^{N_{0}}$.

We choose, by induction on α, P_{α} such that:
(a) $P_{\alpha} \in \mathrm{PR}_{A}\left(\overline{D_{\alpha}^{a}}\right)$,
(b) if $\beta, \gamma<\alpha$ and $Q_{\beta} \in \operatorname{PR}\left(\overline{D_{\gamma}^{b}}\right)$ then $P_{\alpha} \cap Q_{\beta} \subseteq D$.

If we succeed we shall let $W=\bigcup\left\{P_{\alpha}: \alpha<2^{\mathrm{K}}\right\}$. Then requirement (α) of Definition 3.3 holds by demand (a). Next, (β) will hold; for, suppose $\operatorname{Pr}_{A}\left(W, \bar{D}_{y}^{b}\right)$, so that there is $P \in \mathrm{PR}_{A}\left(\bar{D}_{y}^{b}\right)$ such that $P \cap A \subseteq W$. But there is β such that $P=Q_{\beta}$, so

$$
W \cap P=\bigcup_{i}\left(P_{i} \cap Q_{\beta}\right) \cup D \subseteq \bigcup_{i<\beta}\left(P_{i} \cap Q_{\beta}\right) \cup D
$$

But $|\beta| \leqq \aleph_{0}$, and by $(*)_{1}, \bigcup_{i<\beta}\left(P_{i} \cap Q_{\beta}\right)$ is a meager subset of $Q_{\beta}-D$, but by the assumption above it is equal to $Q_{\beta}-D$, so this contradicts (*) ${ }_{2}$.
The choice of P_{α} is possible, by the following claim.
3.5. Claim. If $P \in \operatorname{PR}_{A}^{0}(\varnothing), D_{l} \subseteq P$ is not dense in P for $l<l(*)<\omega$, then there are $\left\langle P_{v}: \nu \in{ }^{\omega} 2\right\rangle$ such that
(a) $P_{\nu} \subseteq P$,
(b) $P_{v} \in \operatorname{PR}_{A}\left(\left\langle D_{l}: l<l(*)\right\rangle\right)$,
(c) $P_{v} \cap P_{\eta} \subseteq \bigcup_{l} D_{l}$ for $v \neq \eta$.

Proof. As in [Sh 42] §7.
3.6. Claim. A sufficient condition for the existence of W separating $L^{a}=\left\{\overline{D_{\alpha}^{a}}: \alpha<\alpha^{a}\right\}$ from $L^{b}=\left\{\overline{D_{\alpha}^{b}}: \alpha<\alpha^{b}\right\}$ inside A is:
(*) there exist families K^{+}, K^{-}of perfect subsets of A such that
(i) $\mathrm{PR}_{A}\left(\bar{D}_{\alpha}^{a}\right) \cap K^{+} \neq \varnothing$ for $\alpha<\alpha^{a}$;
(ii) if $Q \in \mathrm{PR}_{A}\left(\overline{D_{\alpha}^{b}}\right),\left(\alpha<\alpha^{b}\right)$ then there is a perfect $Q^{\prime} \subseteq Q$ such that $Q^{\prime} \in K^{-}$;
(iii) if $Q \in K^{-}, \quad P \in K^{+}$then $\quad|P \cap Q| \leqq \aleph_{0} \quad$ (or even just $|P \cap Q \cap A| \leqq \kappa$, where κ is a fixed cardinal $<2^{K_{0}}$;
(iv) we demand that for every Q from $K^{-}, Q-D$ has cardinality $2^{K_{0}}$.
3.6A. Remark. If we wish, in Definition 3.1(3), replace " $A \cap P \subseteq$ $W \cup \cup_{l} D_{l}$ " by " $A \cap P-D \subseteq W$ "; it suffices to strengthen (i) to:
(i) \bar{D} for every $\alpha<\alpha^{a}$ there is $P \subseteq \mathrm{PR}_{A}\left(\bar{D}_{\alpha}^{a}\right) \cap K^{+}, P-\bigcup_{l} D_{\alpha, l}^{a} \subseteq{ }^{\omega} \omega-D$.

REMARK. Instead of (ii) + (iii) it is enough to require:
(ii)' no $Q \in \mathrm{PR}_{A}\left(\bar{D}_{\alpha}^{b}\right)$ is included in the union of $<2^{\mathrm{K}_{0}}$ many members of K^{+}.

Proof. Let $\left\{Q_{j}: j<2^{N_{0}}\right\}$ be a list of the members of K^{-}. We choose, by induction on $\alpha<2^{\mathrm{K}_{0}}, P_{\alpha}, P_{\alpha}^{\prime}$ such that:
(a) $P_{\alpha} \in \mathrm{PR}_{A}\left(\overline{D_{\alpha}^{a}}\right), P_{\alpha} \subseteq P_{\alpha}^{\prime} \in K^{+}$,
(β) for $\beta<\alpha, Q_{\beta} \cap P_{\alpha} \subseteq D$.
In stage (α), we first choose $P_{\alpha}^{\prime} \in K^{+} \cap \mathrm{PR}_{A}\left(\overline{D_{\alpha}^{a}}\right)$ (use (*)(i)). Next, by Claim 3.5, there are $P_{\alpha, \eta}\left(\eta \in{ }^{\omega} 2\right)$ such that $P_{\alpha, \eta} \subseteq P_{\alpha}, P_{\alpha, \eta} \in \operatorname{PR}_{A}\left(\overline{D_{\alpha}^{a}}\right)$ and $\left[\eta \neq \nu \Rightarrow P_{\alpha, \eta} \cap P_{\alpha, \nu} \subseteq D\right]$. We know that $\left|P_{\alpha}^{\prime} \cap Q_{\beta}\right| \leqq \aleph_{0}$ for each $\beta<\alpha$ (by (*)(iii)); hence $X=\bigcup_{\beta<\alpha}\left(P_{\alpha}^{\prime} \cap Q_{\beta}\right)$ has cardinality $\leqq|\alpha|+\aleph_{0}<2^{\kappa_{0}}$. So for some $\nu_{\alpha} \in{ }^{\omega} 2, P_{\alpha, \nu} \cap X \subseteq D$. Now we let $P_{\alpha} \stackrel{\text { def }}{=} P_{\alpha, v}$.
$W=\bigcup\left\{P_{\alpha}: \alpha<2^{K_{0}}\right\}$ is as required.
3.7. Construction. We choose $\eta_{i} \in{ }^{\omega} \omega$ for $i<2^{\kappa_{0}}$ such that:
(a) for $i \neq j,\left\{k<\omega: \eta_{i}(k)=\eta_{j}(k)\right\}$ is a finite initial segment;
(b) $\eta_{i}(k)>p$ (p a fixed natural number).

We then let

$$
\begin{gathered}
D_{i}^{r}=\left\{v \in{ }^{\omega} \omega: \text { for every large enough } k, v(k)=\eta_{i}(k)\right\} \\
D^{r}=\bigcup_{i} D_{i}^{r} \\
A=B \backslash D^{n}
\end{gathered}
$$

(c) D^{r} contains no perfect set.
3.8. Lemma. With $B={ }^{\omega} \omega$, let:

$$
\begin{aligned}
& L^{a}=\left\{\left\langle D_{1}, D_{2}\right\rangle: \text { for some } i<2^{x_{o}} \text { and open } u(\text { a subset of } A) D_{1}\right. \\
&\text { and } \left.D_{2} \text { are dense subsets of } u \cap D_{i}^{r}\right\} ;
\end{aligned}
$$

$$
\begin{aligned}
L^{b}= & \left\{\left\langle D_{1}, D_{2}\right\rangle: \text { for some open } u, D_{1}, D_{2} \text { are dense subsets of } D^{r} \cap u\right. \text { but } \\
& \text { for no open } \left.u^{\prime} \subseteq u \text { and no } i<2^{\aleph_{0}} \text { are } D_{1} \cap u^{\prime} \subseteq D_{i}^{\prime}, D_{2} \cap u^{\prime} \subseteq D_{i}^{r}\right\} .
\end{aligned}
$$

Then some W separates $\left\{\bar{D}: \bar{D} \in L^{a}\right\}$ from $\left\{\bar{D}: \bar{D} \in L^{b}\right\}$.
Proof. Of course, we use the criterion (*) of 3.6.
We let for distinct $v_{i}{ }^{\dagger}$

$$
k\left(v_{0}, \ldots, v_{10}\right)=\operatorname{Min}\left\{k: v_{0} \upharpoonright k, \ldots, v_{10} \upharpoonright k \text { are distinct }\right\} .
$$

Let

$$
\begin{aligned}
K^{+}= & \left\{P: P \in \operatorname{PR}_{A}(\varnothing) \text { and for every distinct } v_{0}, \ldots, v_{10} \in P\right. \\
& \left.F \operatorname{cun}\left(v_{0}, \ldots, v_{10}\right)\right\}
\end{aligned}
$$

where: $: \operatorname{cun}\left(v_{0}, \ldots, v_{0}\right)$ iff $v_{0}, \ldots, v_{10} \in A$ are distinct, and for some $i<2^{{ }^{\mathrm{o}}} \mathbf{0}$, for every $k>k\left(v_{0}, \ldots, v_{10}\right)$, for at most one $l \leqq 10, v_{l}(k) \neq \eta_{i}(k)$,

$$
\begin{aligned}
K^{-}= & \left\{P: P \in \operatorname{PR}_{A}(\varnothing) \text { and for no distinct } v_{0}, \ldots, v_{10} \in P,\right. \\
& \left.\approx \operatorname{cun}\left(v_{0}, \ldots, v_{10}\right)\right\} .
\end{aligned}
$$

Let us check the conditions of (*) of 3.6.
Condition (i): So let $\bar{D} \in L^{a}, u \subseteq A$ open, $i<2^{\aleph_{0}}, \bar{D}=\left\langle D_{1}, D_{2}\right\rangle$ and D_{1}, D_{2} are dense subsets of $\mu \cap D_{i}^{\prime}$. We define by induction on $k<\omega, y_{k}, z_{k}, Z_{k}, m_{k}$ such that:
(1) Z_{k} is a subset of $D_{1} \cup D_{2}$ with exactly $k+1$ elements,
(2) $m_{k}<\omega, m_{k}<m_{k+1}$,
(3) for every $v \in Z_{k} \cap\left(D_{1} \cup D_{2}\right), v \upharpoonright\left[m_{k}, \omega\right)=\eta_{i} \upharpoonright\left[m_{k}, \omega\right)$,
(4) for every distinct $v_{1}, v_{2} \in Z_{k}, v_{1} \upharpoonright m_{k} \neq v_{2} \upharpoonright m_{k}$,
(5) $y_{k} \in Z_{k}, z_{k} \in Z_{k+1}-Z_{k}$ (so $Z_{k+1}=Z_{k} \cup\left\{z_{k}\right\}$),
(6) $z_{k} \upharpoonleft\left(m_{k}+2\right)=y_{k} \upharpoonleft\left(m_{k}+2\right)$, but $z_{k} \notin D_{i}^{r}$,
(7) for every $k, D^{\prime} \in\left\{D_{1}, D_{2}\right\}$ and $y \in Z_{k}$, for infinitely many $l>k, y_{l}=y, z_{k} \in D^{\prime}$.
There are no problems in doing this, and we let

[^2]$$
P \stackrel{\text { def }}{=} \mathrm{cl}\left(\bigcup_{k<\omega} Z_{k}\right) .
$$

Now $\bigcup_{k<\omega} Z_{k}$ is dense in itself (by (2) $m_{k}>k$ so by (6) and (7) this holds). Hence P is perfect. Also $P-\bigcup_{k} Z_{k}$ is disjoint from D^{r} and, as each D_{1}, D_{2} is dense in P (see (7)),

$$
\operatorname{cl}\left(D_{1} \cap P\right)=\operatorname{cl}\left(D_{2} \cap P\right)=P
$$

Lastly $P \in K^{+}$, so P is as required.
Condition (ii): We assume $\left\langle D_{1}, D_{2}\right\rangle \in L^{b}, Q \in \mathrm{PR}_{A}\left(\left\langle D_{1}, D_{2}\right\rangle\right)$. We should find a perfect $Q^{\prime} \subseteq Q, Q^{\prime} \in K^{-}$.

As $\left\langle D_{1}, D_{2}\right\rangle \in L^{b}$ there is an open u such that D_{1}, D_{2} are dense subsets of u, and for no open $u^{\prime} \subseteq u$ and $i<2^{\kappa_{c}}$ are $D_{1} \cap u^{\prime}, D_{2} \cap u^{\prime}$ dense subsets of D_{i}^{\prime}.
Case A: For some $i \neq j\left(<2^{K_{0}}\right)$ and open $u^{\prime} \subseteq u, D_{1} \cap u^{\prime} \cap D_{i}^{r}$ is dense in $u^{\prime} \cap Q, D_{2} \cap u^{\prime} \cap D_{j}^{\prime}$ is dense in $u^{\prime} \cap Q$.
We define by induction on $k<\omega$ a function h_{k} such that:
(1) $h_{k}:{ }^{k} 2 \rightarrow m(k) \omega$ for some $m(k)<k$,
(2) for $\eta \in^{k} 2, h_{k}(\eta)<h_{k}\left(\eta^{\wedge}\langle l\rangle\right)$ for $l=0,1$ (so $m(k)<m(k+1)$),
(3) $h_{k}\left(\eta^{\wedge}\langle 0\rangle\right), h_{k}\left(\eta^{\wedge}(1\rangle\right)$ are incomparable,
(4) $\left(\forall \eta \in^{k} 2\right)(\exists v)\left[h_{k}(\eta)<v \wedge v \in Q \cap u^{\prime}\right]$,
(5) for every $\eta \in^{(k+1)} 2$ there are l_{1}, l_{2} such that:
(i) $\lg \left(h_{k}(\eta \upharpoonright k)\right)<l_{1}<l_{2}<\lg \left(h_{k+1}(\eta)\right)$,
(ii) for no $i, h_{k+1}(\eta)\left(l_{1}\right)=\eta_{i}\left(l_{1}\right), h_{k+1}(\eta)\left(l_{2}\right)=\eta_{i}\left(l_{2}\right)$.

There is no problem to do this. Note that if $h_{k}(\eta)$ is defined (and satisfies the relevant parts of (1)-(5)) then we can choose $v_{0} \in Q, \eta<\nu_{0}$. Let k_{0} be such that $k_{0}>\lg (\eta)$ and $\left[k_{0} \leqq k<\omega \Rightarrow \eta_{i}(k) \neq \eta_{j}(k)\right]$; choose $v_{1} \in Q \cap\left(u^{\prime} \cap D_{i}^{r}\right)$ such that $v_{1} \backslash k_{0}=v_{0} \upharpoonright k_{0}$. Let $k_{1}<\omega, k_{1}>k_{0}$ be such that $v_{1}\left(k_{1}\right)=\eta_{i}\left(k_{1}\right)$. Choose $\nu_{2} \in Q \cap\left(u^{\prime} \cap D_{j}^{\prime}\right), \nu_{2} \upharpoonright\left(k_{1}+1\right)=\nu_{1} \upharpoonright\left(k_{1}+1\right)$, and let $k_{2}<\omega, k_{2}>k_{1}$, be such that $v_{2}\left(k_{2}\right)=\eta_{j}\left(k_{2}\right)$. Now $v_{2} \uparrow\left(k_{2}+4\right)$ is as required from $h_{k+1}\left(\eta^{\wedge}\langle l\rangle\right)$ in (5).

Now $Q^{\prime}=\left\{\nu \in{ }^{\omega} \omega\right.$: for some $\eta \in^{\omega} 2$ for every $\left.k, h(\eta \upharpoonright k)<v\right\}$ is as required (remembering that $\left\{\eta_{i} \uparrow l: 2^{N_{0}}, l<\omega\right\}$ forms a tree).

Case B: Not case A. For some $l \in\{1,2\}$ and open $u^{\prime} \subseteq u$, for every open $u^{\prime \prime} \subseteq u$: for infinitely many $i<2^{\kappa_{0}}, D_{l} \cap u^{\prime \prime} \cap D_{i}^{\prime} \neq \varnothing$.
We then define, by induction on $k<\omega$, a function h_{k} satisfying (1)-(4) (from case A) and
(5) for every k there is m such that:
(a) for every $\eta \in^{k+1} 2, \lg \left(h_{k}(\eta \upharpoonright k)\right)<m<\lg \left(h_{k+1}(\eta)\right)$,
(b) among $\left\langle\left(h_{k+1}(\eta)\right)[m]: \eta \in^{k+1} 2\right\rangle$ there are no two which are equal.

Condition (iii): Let $P \in K^{+}, Q \in K^{-}$. We should prove that $|P \cap Q| \leqq \aleph_{0}$. Really checking the definitions we see that, in fact, $|P \cap Q| \leqq 11$.

Condition (iv): Easy.
3.9. Lemma. For any two-place symmetric function R from $2^{N_{0}}$ to $\left\{u: u \subseteq{ }^{\omega} \omega\right.$ (regular open set) $\}$, we can separate:
$L^{a}=\left\{\left\langle D_{1}, D_{2}\right\rangle\right.$: there are $i \neq j$, such that: $\mu \subseteq R(i, j), D_{1}$ is a dense subset of $D_{i}^{\prime} \cap u$ and D_{2} is a dense subset of $\left.D_{j}^{r} \cap u\right\}$,
$L^{b}=\left\{\left\langle D_{1}, D_{2}\right\rangle:\right.$ for some open u and $i \neq j\left(<2^{N_{0}}\right), u \cap R(i, j)=\varnothing$ and D_{1}, D_{2} are dense subsets of $u \cap D_{i}^{r}, u \cap D_{j}^{r}$ respectively $\}$, by some $W \subseteq{ }^{\omega} \omega-D^{r}$.

Proof. Of course, we shall use the criterion of 3.6. We let $P \in K^{+}$iff: $P \subseteq{ }^{\omega} \omega$ is perfect, and for some $i \neq j, P \subseteq R(i, j)$ and:
(*) for every distinct $v_{0}, \ldots, v_{10} \in P$:
(a) for infinitely many $k<\omega$,

$$
v_{0}(k)=v_{1}(k)=\cdots=v_{10}(k)=\eta_{i}(k) ;
$$

(b) for infinitely many $k<\omega$,

$$
v_{0}(k)=v_{1}(k)=\cdots=v_{10}(k)=\eta_{j}(k) ;
$$

(c) if $v_{0} \upharpoonright k, \ldots, v_{10} \uparrow k$ are distinct then for at most one $l \leqq 10$,

$$
v_{l}(k) \notin\left\{\eta_{i}(k), \eta_{j}(k)\right\} .
$$

$P \in K^{-}$iff $P \subseteq{ }^{\omega} \omega$ is perfect and for some $i \neq j$,
$P \cap \operatorname{cl}(R(i, j))=\varnothing$ and (*) above holds.
Let us check the conditions of 3.6.
Condition (i): The same proof as in Lemma 3.8, except that in the definition of Z_{k} we replace condition (3) by
(3)' (a) for every $\nu \in Z_{k} \cap D_{1}, v \uparrow\left[m_{k}, \omega\right)=\eta_{i}\left[m_{k}, \omega\right)$,
(b) for every $v \in Z_{k} \cap D_{2}, v \upharpoonright\left[m_{k}, \omega\right)=\eta_{j} \upharpoonright\left[m_{k}, \omega\right)$.

Condition (ii): We use the proof of condition (i).
Condition (iii): So assume $P_{1} \in K^{+}, P_{2} \in K^{-}$. So there are $i_{1} \neq j_{1}<2^{\aleph_{0}}$ witnessing $P_{1} \in K^{+}$(in particular $P_{1} \subseteq R\left(i_{1}, j_{1}\right)$) and there are $i_{2} \neq j_{2}<2^{\kappa_{0}}$ witnessing $P_{2} \in K^{-}$(in particular $P_{2} \cap R\left(i_{2}, j_{2}\right)=\varnothing$). As R is symmetric and
$\left\{i_{1}, j_{1}\right\} \neq\left\{i_{2}, j_{2}\right\}$, by symmetry assume $i_{2} \notin\left\{i_{1}, j_{1}\right\}$. Suppose $\left|P_{1} \cap P_{2}\right| \geqq 11$. Choose distinct $v_{0}, \ldots, v_{10} \in P_{1} \cap P_{2}$, and we shall get a contradiction.

By the choice of $\left\{i_{2}, j_{2}\right\}$, for infinitely many k,

$$
v_{0}(k)=v_{\mathrm{t}}(k)=\cdots=v_{10}(k)=\eta_{i_{2}}(k) .
$$

But as $i_{2} \notin\left\{i_{1}, j_{1}\right\}$ for every large enough $k, \eta_{i_{2}}(k) \notin\left\{\eta_{i_{1}}(k), \eta_{j_{j}}(k)\right\}$. Now by (c) of (*) of the definition of K^{+}, those two facts contradict $P \in K^{+}$.

Condition (iv): Easy.
3.10. Proof of Critical Lemma 1.2. Really, the choice of $\left\langle D_{i}^{r}: i<2^{x_{0}}\right\rangle$ was done. We shall write down the formulas and then 3.8 and 3.9 (via 3.7) will show that the conclusion holds (don't worry for "regular", 3.8 by 1.1A). (Use 3.8 for ψ_{a}, ψ_{b} and 3.9 for ψ_{c}.)
$\psi_{a}(u, X, D ; W) \stackrel{\text { def }}{=} \mu \cap X \subseteq D \wedge u \subseteq \operatorname{cl}(u) \wedge\left(\forall X_{1}, X_{2}, u\right)$
[if $\alpha \subseteq \mu, X_{1}, X_{2} \subseteq u \cap X$ are dense then there is a perfect P, $P=\operatorname{cl}\left(X_{1} \cap a\right)=\operatorname{cl}\left(X_{2} \cap a\right)$ and $\left.P-\left(X_{1} \cup X_{2}\right) \subseteq W\right]$,
$\psi_{b}(\mu, X, D ; W) \stackrel{\text { def }}{=} \psi_{a}(\mu, X, D, W) \wedge(\forall u \subseteq \mu)(\forall Y)$
$[$ if $Y \subseteq a$ is dense in $\alpha, Y \cap X=\varnothing$ then $\left.\urcorner \psi_{a}(a, X \cup Y, D, W)\right]$,
$\psi_{c}(u, X, Y ; D, W) \stackrel{\text { def }}{=} \psi_{B}(u, X, D, W) \wedge \psi_{b}(\mu, Y, D, W) \wedge u \cap X \cap Y=\varnothing$

$$
\wedge\left(\forall X_{1}, Y_{1}, a\right)
$$

[if $a \subseteq u, X_{1} \subseteq X, u \cap X$ is dense in $\leadsto, Y_{1} \subseteq « \cap Y$ is dense in \leadsto then there is a perfect $\left.P, P-\left(X_{1} \cup X_{2}\right) \subseteq W, P=\operatorname{cl}\left(P \cap X_{1}\right)=\operatorname{cl}\left(P \cap X_{2}\right)\right]$.

We leave the checking to the reader.

Concluding remarks

What about $B \subseteq \mathbf{R}$ which is not p-modest? I.e. there are $D_{1}^{*}, \ldots, D_{p}^{*} \subseteq B$ such that, letting $D^{*}=\bigcup_{l=1}^{p} D_{l}^{*}, A=B \backslash D$, there are $P \in \operatorname{Pr}_{A}(D)$ for B, but for no $P \in \operatorname{Pr}_{A} \bar{D}$ is $P \subseteq D$. By replacing, for notational convenience, B by some subspace, we get ${ }^{\omega>} \omega \subseteq B \subseteq{ }^{\omega \geqq} \omega$, for $l=1, \ldots, p-1$;

$$
D_{l}=\left\{\eta \in^{\omega>} \omega: \max (\operatorname{Rang} \eta)=l\right\}
$$

$$
D_{p}=\omega>\omega \backslash \bigcup_{l=1}^{p-1} D_{l} .
$$

We define $D_{i}^{r}\left(i<r^{K_{0}}\right)$ as before.
There are minor changes in the proofs of 3.8 and 3.9. We replace L^{*} by $\left\{D^{* \wedge} \bar{D}: \bar{D} \in L^{a}\right\}, K^{ \pm}$by $K^{ \pm} \cap \operatorname{Pr}\left(\overline{D^{*}}\right)$. In the proof of condition (i) during the proof of 3.8 , we add to (5):

$$
\text { for } l=1, p \text {, for some } m \in\left(m_{k}, m_{k+1}\right), z_{k} \upharpoonright m \in D_{l}^{*}
$$

We change similarly the proof of condition (ii) and of 3.9.

References

[BISh 156] J. Baldwin and S. Shelah, Classification of theories by second order quantifiers, Proc. 1980/1 Jerusalem Model Theory Year, Notre Dame J. Formal Logic 26 (1985), 229-303.
[BsSh 242] A. Blass and S. Shelah, There may be simple $P_{\aleph_{1}}$ and $P_{\aleph_{2}}$ points and Rudin Keisler ordering may be downward directed, Ann Pure Appl. Logic 33 (1987), 213-243.
[GmSh 141] Y. Gurevich, M. Magidor and S. Shelah, The monadic theory of ω_{2}, J. Symb. Logic 48 (1983), 387-398.
[Gu] Y. Gurevich, Monadic second order theories, Ch. XIII in Model Theoretic Logics (J. Barwise and S. Feferman, eds.), Springer-Verlag, Berlin, 1985, pp. 479-506.
[Gu2] Y. Gurevich, Monadic theory of order and topology II, Isr. J. Math. 34 (1979), 45-71.
[GuSh 70] Y. Gurevich and S. Shelah, Modest theory of short chains II, J. Symb. Logic 44 (1979), 491-502.
[GuSh 123] Y. Gurevich and S. Shelah, Monadic theory of order and topology in Z.F.C., Ann. Math. Logic 23 (1982), 179-198.
[GuSh 143] Y. Gurevich and S. Shelah, The monadic theory and the next world, Proc. 1980/1 Jerusalem Model Theory Year, Isr. J. Math. 49 (1984), 55-68.
[GuSh 151] Y. Gurevich and S. Shelah, Interpreting the second order logic in the monadic theory of order, J. Symb. Logic 48 (1983), 816-828.
[GuSh 163] Y. Gurevich and S. Shelah, To the decision problem for branching time logic, in Foundation of Logic and Linguistics, Problems and their Solutions, Proc. Zalzburg 7/83 Meeting, Seventh International Congress for Logic Methodology and Philosophy of Science (G. Dorn and P. Weingartner, eds.), Plenum, New York, 1985, pp. 181-198.
[GuSh 168] Y. Gurevich and S. Shelah, On the strength of the interpretation method, J. Symb. Logic, to appear.
[GuSh 230] Y. Gurevich and S. Shelah, The decision problem for branching time logic, J. Symb. Logic 50 (1985), 181-198.
[Sh 42] S. Shelah, The monadic theory of order, Ann. of Math. 102 (1975), 379-419.
[Sh 171] S. Shelah, A classification of generalized quantifiers, Lecture Notes in Math., Vol. 1182, Springer-Verlag, Berlin, 1986, pp. 1-46.
[Sh 197] S. Shelah, Monadic Logic: Hanf numbers, Lecture Notes in Math., Vol. 1182, Springer-Verlag, Berlin, 1986, pp. 203-223.
[Sh 205] S. Shelah, Monadic Logic: Lowenheim Numbers, Ann. Pure Appl. Logic 28 (1985), 203-216.
[Sh 237e] S. Shelah, Notes, in Lecture Notes in Math., Vol. 1182, Springer-Verlag, Berlin, 1986, Remarks on squares, pp. 276-279.

[^0]: ${ }^{\dagger}$ No. 284a. The author would like to thank the United States-Israel Binational Science Foundation for partially supporting this research, and Alice Leonhardt for the excellent typing of the manuscript.

 The research was done in February-March 1986.
 Received February 22, 1988

[^1]: ${ }^{\dagger}$ Formally, PR was not defined for an infinite sequence, but the definitions and proofs work for countable sequences; however, we do not need them as the formulas are finitary.

[^2]: ${ }^{\dagger}$ Of course, the number 10 has no inherent significance; it just means that the author was too lazy to check the minimal number needed.

