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WHITEHEAD GROUPS MAY NOT BE FREE 
EVEN ASSUMING CH, II 

BY 

SAHARON SHELAH + 

ABSTRACT 

W e  p r o v e  s o m e  t h e o r e m s  o n  u n c o u n t a b l e  abe l i an  g r o u p s ,  a n d  c o n s i s t e n c y  

results promised in the first part, and also that a variant of O~ called 4, (club), 
is consistent with 2"~ > N~. 

w Introduction 

w167 4 and 5 assume knowledge of forcing whereas w167 3 and 6 do not. 
In w we define uniformization properties, and show some easy properties. 

In w we prove that for a stationary set S, if for one ~ = {'08 : 8 E S}, (~, 2) has 

the uniformization property (see the definition at the beginning of w then this 

does not necessarily hold for every (qb',2), ~ ' =  {r/J: ~ E S}. So the question 

whether (~, 2) has the uniformization property does not depend on S only. By w 

this means that the question whether a group is a Whitehead group is delicate, 
and apparently minor changes in the definition may change this property. In w 

we show also that the weak diamond from Devlin and Shelah [3] is not 

equivalent to natoral strengthening of it, and that the union of two O's with the 

uniformization property does not necessarily have this property. 

In w we indicate the connection between uniformization properties and 

Whitehead groups. (Essentially they are equivalent, so we translate the (par- 

tially) Whitehead problem to a purely combinatorial one.) 

In w we show that it is consistent that some (~,2) has the uniformization 

property, �9 a set of sequences of natural numbers. Remember that in [7], I%-free 

groups of cardinality l~li were partitioned into three cases; case III is the free one. 

, The author would like to thank the United States-Israel Binational Science Foundation for 
Grant 1110 and the NSF for Grant MCS--08479. 

Received December 24, 1978 and in revised form December 16, 1979 

257 

Sh:98



258 S. SHELAH Israel J. Math. 

It was proved: (a) [CH] if G is of case I, it is not Whitehead; (b) [V = L] if G is 

of case I or II, it is not Whitehead. By [8], it is consistent with ZFC + G.C.H. that 

there are Whitehead groups of case II, and by [3] CH im. plies there are always 

non-Whitehead groups of case II. By [9] MA + 2'%> 1,11 implies G (Nl-free, 

I G I = N~) is Whitehead if[ it is of case II or III. Now we can complete the picture 

by showing it is consistent with ZFC that there are Whitehead groups of case I. 

(Always there are non-Whitehead groups of case I, see [9].) So the result is a 

conistency of a statement which at first glance should follow from MA + 2'% > 1,11, 

but not only does it not follow, it contradicts MA + 2"0 > ~h. 

In w we prove the consistency of ZFC + 4,~, + 2", = 2",. This is dual to [8] as 

we show that even though CH fails, Q,, almost holds. 

In w we prove another result. 

Consequences and more results on abelian groups appear in [9]. 

REMARKS. (1) In [8] theorem 2 . 4 0 s  holds for S E V e, S ~ O m o d D  too. 

(This is because if A _C to], A E V e, as P satisfies the ~2-C.C. for some a(0) < to2, 

A E V~(o,, then we make the forcing in two stages. The first is Po(o), after which 

~*~, holds, hence Os. The rest of the forcing behaves just like P itself, so we 

finish. 

(2) It is not hard to check that if V~(VS(2tOl)(:ISo_CS) 

Stat(S)--~Stat(So) ^ (to~- So)E D] then this holds in V e too. (It suffices to 
check this in V~(o,,  as in the previous remarks, because the forcing by P 

preserves stationarity (see [8] 1.8).) Let S* be the diagonal union of the So, 

a < a (0). We can assume S E V P*(~ S f3 S* = O. Let S be a P~(0rname of S. For 

each p E P,,(o), and working in V, let Sp = {~5 <tox: for some q, p _- q E P,,(o), 

q IF"6 ~ $ }  ~ V. Clearly Sp is stationary, so choose S~ Sm to]-  S~  D, S ~ 

stationary. Now let S o be a diagonal union of the S~ (as IP,,to)l = N~), so 

t o 1 - S ~  D, and it is clear that II-~,o)"S N S O is stationary", as required. 

NOTATION as in [8]; in particular k, l, m, n are natural numbers, )t, /.t, X, K 

cardinals (usually infinite) and i, j, a,/3, 7, 6, ~, ~" ordinals; 8 is a limit ordinal. 

01. Uniformization properties 

DEFINITION 1.1. Let A be a set, h be a function from A to the cardinals > 1, 
and (k = {r/* : i < i*}, a family of one-to-one sequences from A. (Essentially, A 

is defined by q~ and by h, so we write A = Dora(k; if h is constant, we replace it 

by its value.) 

(1) q~ is of type (h,/~, 8) if i* = A, [A [ =/~, and 1(,/*~) = 8 for each L We say q~ 
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is continuous if for i < j < i *, ~" limit 77 *(~') = 1'/*(s r) if for all large enough/3 < ~', 

7/*(/3) = r/*(/3). We say r is (forms) a tree if 

n* ( ,~ )  = n T ( # )  ~ ,~ = # ^ (v-r < ,~)[n':(~,)  = n ,'.(~')]. 

We say �9 has splitting < K if for each a, a 

I{rt(a + 1):r/~5 O, r t(a)  = a H  < K. 

We say �9 is almost disjoint if for i,j < i*, i # ]  there are a < l(r#*),/3 < I(r#*) 

such that 

a =< a' < t(n *) ^/3 -</3' < t(n ~) ~ n ~(o,') # 7/*(/3'). 

(Remember,  A and/~ are cardinals, but not necessarily &) 

(2) We call f a candidate, if f = {~ : i < i *}, Dora [~ = Range ~/,, and for each 

a < l(n,), f ,[n ~(ot)] ~ h[n*,(a)]. 
(3) We say the candidate f can be uniformized if there is a uniformizing 

function g, i.e., D o m g  = A, and for each i < i* there is a < l(ag~ ) such that 

-~ /3 < l(n *) ~ g[n *(#)] = / ,  [n ~(#)]. 

Let a = F(i), then F determines, essentially, g; we call F a compressing 
function (for f) .  

(4) We say (O, h) has the uniformization property, if each candidate f can be 

uniformized. 

(5) G is a homomorphism from (01, h ') to (0  2, h 2) if (a) G maps D o m O '  into 

D o m O  2, 7/E O' ::), (G(Tl(a)) : a < l(TI)) ~ 02 or is an unbounded subsequence 
of a member of �9 2, and (b) h2(O(a)) >-_ hi(a). 

R~MARK. (1) Those notions have obvious monotonicity properties which we 
do not bother to mention. 

(2) If rt0, 77, E �9 and 

(Vio, il)(3jo, j,)[io < 107 *) A i, < l ( r / * ) ~  io =< jo < l(r/~) 

^ i ,  _-< j l  < l ( n  *) ^ n *(./0) = ,7 *O,)]  

then clearly �9 does not have the uniformization property. So the "natural" O's 

are those with �9 almost disjoint. 

CLAZM 1.1. (1) If �9 has type (M,,l~0, to) then (O,l~0) does not have the 
uniformization property. 

(2) If �9 has type (A, ~z, K), and is continuous, A > tz, then (0,  ~)  does not have 
the uniformization property. 
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(3) If ~ has splitting < K +, is continuous,  and J~l > [ D o m e ] ,  then (~,  K) does 

not have the uniformizat ion proper ty .  

(4) If there  is a homomorph i sm from (~l ,h~)  to (~2, h2), (~2, h2) has the 

uniformization proper ty ,  then so does ( ~ ,  h ~). 

PROOF. (1), (2) follow from (3). 

(3) For  each a let 

{b~'":/3 </3~ -< K} = {r/(a + I ) :  r/(ot) = a, r / E  (I)} 

and for each i, and a < l(r/*),  let f~(r /*(a))  be the ordinal  such that ba , ( ' ) ' '=  

rt *(a + 1). S o / r  = {f~ : i < i*} is defined, and suppose it can be uniformized and 

let F he a compressing function. As I(:I)l>lDom(1)l for  some i # j ,  and 

r l~(F(i) )=~*(F(l) ) .  Now we prove  by induction on a _ > F ( / ) ,  r / i ( a ) =  

rl,(F(j)+ (a - F(i))). For  a = F(i)  we have just proved it; for  a limit it follows 

by the continuity of ~ ,  and for a successor by the definition of fi Now clearly rl~, 

r/, contradict  uniformization (as they are almost disjoint). 

(4) Easy. 

CLAIM 1.2. Suppose M A  + 2 '̀ 0 > N,. 

(1) If ~ has type (Nt, No, to) and is a tree,  then it has a subset ~ '  of  the same 

type which is a tree of splitting =< 2. By 1.1(3), (~ ' ,  2), hence (~,  2), does not have 

the uniformizat ion proper ty .  

(2) If q~ has type (N~, N0, to), then there  are ~ ' ,  a t ree with splitting < 3, and a 

homomorph i sm from (~ ' ,2 )  to (~ ,2) ,  provided that ~ is almost disjoint. 

(3) For  ~ of type (N,, No, to), (~,  2) does not have the uniformizat ion proper ty .  

PROOF. (1) W.l.o.g. let to = D o m e .  Let  ~ t  = { r /E  ~ :  for every n < to, there  

are uncountably  many v E ~ ,  such that r / I n  < v}. Clearly I ~ - * ,  I_- < N0, hence 

I,,t=N,. 
Let  P = {t : t a finite subset of ~ t ,  which is a t ree of splitting =< 2}. 

We consider  P as a partially o rdered  set o rde red  by inclusion. 

We first show P satisfies the countable  chain condition.  Let  t, (i < to~) be N1 

elements  of P. For  each i there  is n = n(i)  such that r / #  v E tl :~ 7/I n #  v I n. 

So for some uncountable  So C_ to~, and n < to, i E So :ff n (i) = n. Let  t, = {r/i: l < 

m, }. As (Vk) [7/i(k) < to] and m, < to, there  is an uncountable  S~ _C So and m < to, 

and v o , " ' ,  vm_~ such that for  every i E  &, mi = m, "01rn = vt 

(l = 0, 1 , . . . ,  m - 1). Clearly i, j E $1 ::> t~ O t~ E P, so all t~ (i E &)  are pairwise 

compatible .  

Let  ~ = {r I ~ : a < to,} be an enumera t ion  with no repeti t ions;  D "  = {t ~ p : 

(::1/3 > a ) r l  ~ ~ t} for  a < to , .  
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Each D ~ is dense (use ~l ' s  definition). Hence there is a (directed) G _C P, 

intersecting each D L  Now ~ '  = U{t  : t ~ G} clearly is a tree of splitting _-< 2 (as 

each t E G is; and G is closed under finite union). (P' has cardinality N1 because 

it intersects each D~. 

(2) Similar. 

(3) By (2), 1.1(4). 

LEr~4A 1.3. Let ~ = { r / , : i < A }  have type (A, Iz, K). 

(1) If: A = 2 ~ then (r 2) does not have the uni[ormization property. In fact it 

suffices to assume there is A C_l~, 2 IAI= 1{~7 ~ : I A  n Range~7 1 = r}l.* 
(2) I f  MA holds, and A < 2"o, K = to, and for each countable A C_ Dora 

I { * / ~ : A  O Range 7/is in]inite}l<No 

and ~ is almost disjoint then (~, No) has the uni[ormization property. 

(3) Suppose S C_ tol is stationary, and 8 E S ~ ( 3 a  )8 = to2a. Then we can find 

Ior each 8 E S an increasing sequence o]: ordinals 718 of length toz converging to 8, 

such that ({r/~ : ~ E S}, 2) does not have the uni]:ormization property. Moreover 

there are c6 = ('~)2 j:or 8 E S such that ]:or any ]: : tol ~ 2 

(*) {a ~ S : ( 3 n  < to)(Vm _- n)( :~k) (Vl  >= k)[]:(n,(tom + l) )= c~(tom + l)]} 

is not stationary. 
(4) I]: 2 .0 = ~ ,  S C_ to~ stationary then ]:or any choice o[ rl~ as in (3) we can find 

c8 E ('~)2 such that (*) holds. 

PROOF. (1) Let ~7,(,,) (o~ < 2  IAI) be distinct, and IA ORangeT/,(,~)l= K. Let 
{jfo:a < 2  IAI} be a list of the functions [:A---*2.  We define f, (i <A) ,  

/, : Range 7/, ~ 2 by/,(, ,)(a) = 1 - i f ( a )  for a ~ Range r/,. 
(2) Let {~ : i < A} ~ : Range 7/, ~ to) be given, and we shall prove they can be 

uniformized. Let 

P = {h : h a finite function from A to to, and: 

if r/,(ot) = rl,(fl ), a >= h(i) ,  fl > h( j )  then .f,(r/,(a)) = ~(r/j(/3))}. 

P is partially ordered by inclusion, and we shall first prove P satisfies the 
countable chain condition. Let h~ (a < to~) be N~ pairwise incompatible members 

of P. 
Let Domh,  = {a~t;l < n(i)}, g, the function g~(y)= m iff for some l < n(i),  

h , (al )<-n <to, y = 71~(n), ]:~i(7/~i(n)) = m. We can assume w.l.o.g, n ( i ) =  n, 

* In fact, in 1.3(1) it suffices to assume 2 ~ < 2  ". 
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and h _C h,, h = h, r Dom h, and Dom h, - Dom h (i < to,) are pairwise disjoint, 

so w.l.o.g, h = ~ (as hi l" (Dora h, - Dora h )  ~ P are pairwise incompatible). So 

clearly Dom g~ are pairwise almost disjoint, and for i ~ j, g, U gj is not a function. 

Let  A, = Uj<~ Domgi ;  by a hypothesis, the definition of the g,'s, and as 

Dom h~ (a < to1) are pairwise disjoint clearly for every i, for some j(i) ,  

j(i)<=a <to1 ~ [A, OOomg, , [  <~o.  

So for each limit 8 < to,, there is a (8) < 8 such that A8 n D o m  gj<a) _C A,x~ >. By 

several applications of the Fodour  theorem, there is a stationary S C_ to~, such 

that for 8 E S, gx~>r(A# O Dora gxs>) is constant.  So choose 81, 82E S, j(8,)  < 82, 

so g~ U g~ is a function, contradiction. 

(3) Let,  for each a <to~, {r/7:i  <to~} be a tree of type (N~,N0, to) and of 

splitting < 3 with domain [a, a + to]. We define r/~, so that for some increasing 

sequence of limit ordinals a ( n ) = a ( n ,  8) converging to 8, Range r /8=  

U,<~, Range r/;<"). 

By the proof of 1.1(3) for each a there are functions f7 (i < to~) so that not 

only (f7 : i < to~) cannot be uniformized, but even any uncountable subsequence 

cannot be uniformized. Define c8 as follows: 

ca(~8(ton + k ) ) =  f~( '~ ' (~( '~) (k)) .  

(4) For 8 E S let a(8, n ) =  U{r/~(i) :  i < to(n + 1)} (so it is a limit ordinal). 

For  each limit a let {f7 : i < ~1} be a list of all functions f : a ---* 2. Now we define 
c~ such that: 

for each n < to, and i < 8, ot = o~ (8, n), 

{k < to : fT(r/a (ton + k)) ~ c6 (ton + k )} is infinite. 

LEMMA 1.4. (1) Let S be a stationary subset of to,, and for simplicity ct E S 
implies toa = ~. Let ~la denote always an increasing to-sequence converging to & 

If ({~/8 : 8 E S}, 2) has the uniformization property for every ~l~ then ({r/~ : (5 

S}, 1%) has the uniformization property for every '1~. 
(2) ({r/~ : 8 ~ S}, I%) has the uniformizationproperty (where Range r/~ is a set of 

ordinals) if for every {c a : 8 ~ S) (c~ ~ to), ( { ~ ' :  8 U S},2) has the uniformiza- 

tion property where for each & k .=  E,<.(c~(l)+ 2), and for k.<-_i <k.+,, 

= i. 

REMARK. Notice this proof does not work if we restrict ourselves to trees. 

PRoov. (1) By (2). 
(2) It suffices to prove that any candidate {c a : 8 ~ S} can be uniformized for 
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({r/6 :~ E S},M0). Define, for each 8 E S, c, as follows: kn = X~<. (c*( l )+2) ,  

c 6 ( i ) = 0  if for some n , k . < i < k . + ~ - l ,  and c , ( i ) = l  otherwise. Now 

{c8 : 8 E S} can be uniformized for ({y/g' : 8 E S}, 2), and its compressing function 

is sufficient for the uniformization we need. 

DEFINITION 1.2. We call �9 = {y/*:i < i*} free if there is a function F, 
D o m F =  i*, F ( i ) <  l(y/*), and for any distinct i,j < i* 

[F(i)  <= a </(r/~)] ^ [ e ( j )  </3 </(y/*)]  f f  n * ( a ) #  rl*(/3). 

CLAIM 1.5. If O is free then (0,  K) has the uniformization property, for any 
/ ( .  

PROOF. Trivial; we use F as a compressing function. 

LE~tA 1.6. I f  there is a non-free 0 ,  ti E �9 ~ l(tl ) = to, such that (0 ,2)  has 

the unifiormization property, then for some regular A > No and stationary S C_ {8 < 

A : cf 8 = N0}, and a tree �9 = {y/~ : 8 E S}, 7/~ an increasing to-sequence converging 

to 8 (for ~ E S), (0 ,2)  has the uniformization property. It is obviously not free by 

the Fodour Lemma.  

PROOF. Easy, by induction on I OI. 

Case I. If I �9 I_-< No, it is easy to prove it is free, contradiction. 

Case IL If IOI is a singular cardinal, then by [10] for some O'_CO, 
I O'1 < IOI, O' is not free. Clearly O' too has the uniformization property, hence 

we can use the induction hypothesis. 

Case III. We are left with the case A = I OI is a regular cardinal and w.l.o.g. 

every O' C_ O, I O' I < I OI is free. Clearly I Dom �9 I ~ A. 
We know that �9 is almost disjoint (as (0,  2) has the uniformization property). 

Case IIIa. For some A _ C D o m O ,  I A l < D o m O  but the cardinality of 
0~ = {7/E �9 : (Range r/) N A is infinite} is A. 

For every y / E O ,  let y/' be an to-subsequence of y/, Range~  _CA (i.e. 

y / '= (y / ( /k ) :k  < c o ) , ' ' ' , l k  < lk+1 , ' ' ' ) .  

Let O~= {y/x: y/E Or}. Clearly there is a homomorphism from (O1,2) into 

(0,  2), hence by 1.1 also (O ~, 2) has the uniformization property. As A = IO11 also 

A = I(1)~ I (as �9 is almost disjoint) so IO~1 = A > l A I D  DomO~; so trivially (I) ~ is 

not free. Let /~ = IDomO' l  < A, so w.l.o.g, lz = D o m O ' ,  and let 

�9 ~ = {v, : 8 E S}, S = {8 < A : cf 8 = No, 8 divisible by/~to and by 13 I" to}. 
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We can choose a(8, n) for 8 E S, n < to such that 8 = U , < , a ( &  n) and 

a(8, n) = a(8 ' ,  n') ~ n = n',  and a(8, n + 1) = a(8 ' ,  n + 1) ~ ct(8, n) = 
a(8 ' ,  n) and a(8, n) is divisible by ft. 

We let rib(n)= a(& n)+ v~(n) for 8 ~ S, n < to, and {r/8 : 8 E S} is as re- 

quired. 

Case IIIb. There is no A as above. As [ Dom �9 [ _-< I ~1 + no--< A, w.l.o.g. 
D o m ~  _C A, and let �9 = {v, : i < h}. As Case IIIa fails, for every i < A, for some 

f ( i)  < A, f ( i)  _--< j < h implies (Range rh) fq i is finite. 

Let So = {8 < h : 8 a limit ordinal, and for every i < 8, f ( i)  < 8}. Clearly So is 

closed unbounded. Let 

S = {8 ~ So: there is i _-> 8 such that (Range 7/,) t-1 8 is infinite}. 

We now show that S is stationary. Otherwise there is a closed unbounded set 

S~ C_ So-  S, and let S~ O {0} = {or(i): i < A}, a(i)  increasing continuous. Let 

~ = {,lj:a(i)<=j < a(i + 1)}, so qb = U,<~ qb,. By the choice of S,, there is a 

function F* :A  ~ t o  such that 7/i E ~ , ;  k = F( j ) impl ies  r / i (k)= > a(i).  Now by 

the choice of I ~ l  as minimal each ~, is free (as 1~, I =< I a (i + 1)1 < x) so there is a 

function F~, DomF~ = { a  : a ( i ) < = a  < a ( i +  1)} exemplifying it. Define 

F: F(a  ) = Max {F*(a ), E (ot )} when a(i ) <= a < a(i + 1). Clearly F exemplify 

is free, contradiction. So S is stationary and working a little as in Case I l ia we 

can finish (using 1.1(4)). 

02. Consistency results 

In this section r/8 will always be an increasing sequence of length to converging 
to 8, 8 will be limit ordinal < to1 and S a stationary set of limit ordinals < to1, and 

be {r/~ :8 E S} (with a common superscript attached to each of them, if 

necessary). We let [ be a function from tol (usually to to + 1). 

The question we deal with is "if  (~, h) has the uniformization property, does 

(~1, h 1) have it too?" and our results are the consistency of negative answers. 

We first deal with the model V P constructed in [8] 1.1 (and its notations) with 

only one change: h will be a fixed function from to~ to to, and instead of 

demanding c8 E "2 we demand everywhere 

c8 ~ "to a Otn)[cs(n) < h(rb(n))  ] 

hence in the proof of 1.8 from [8] Q(W, h)  will change accordingly, but remains 
finite. So P depends on the choice of ( ~ , h )  and in V e, ( ~ , h )  has the 

uniformization property. 
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This is a totally inessential change. 

THEOREM 2.1. ( V  = L )  In the Model V P described above, let (alP*, h*) be 

another pair and 

(A) S* - S is stationary, 

o r  

(B) [or every closed unbounded C C_ to~, there are 8 E S* O S n C, such that[or 

every a < 8, n < to there is ~, a < [3 < 8, [3 E C, and 

[ri ]" {h(rl~(m)):m < to, r/~(m) < [3} 

< ]1 {h *(r/*(m )): m < to, a < r/*(m ) </3}. 

Then in V P, (~*, h *) does not have the uniformization property (whereas (~, h) 

has). 

RE~ARI~. If h *(i) = to for every i, condition (B) always holds. But even if we 

demand Range h * C to there is no problem to construct examples: if [~/~(n) = 

rls,(m)--->n=m ^rl~oln=rl~,Im ] then let ~ * = ~ ,  h*(~/8(n)) = 1 + 

II,~. h [r/8 (l)]". 

PROOF. Case A is trivial as Os.-s holds in this case so we concentrate on case 

B, first assuming ~*,  h * E V. As V = L, ~ ] .ns  holds; we shall use this to define 

in V appropriate q ' s  at the end of the proof (from the proof we shall see the 

demands on them). 

So suppose g" = (c8 : ~ E S*) is given, and we suppose for simplicity d' IFP "~" 

can be uniformized (for ~*)" ,  and we shall get a contradiction. 

As P satisfies the ~lz-C.C. we can replace P by some P.~o~, a ( 0 ) <  to2, and let l- 

be a name of such a uniformization. Let 

N = (H(to2), e, P~<o), IF, 7) 

and N I <  N be an elementary submodel of N, of cardinality N1, such that 

A , [ a ,  E N  1 ] ~ { a . : n < t o } E N  ~ and a E b E N  1::), a E N  ~. Let  N 1= 

U . . . .  N~, N~ countable, increasing and continuous. We code N 1 as a subset A 

of to1, so that A O 8 codes (N. : a < 8). Now as G* s- holds (in V) we are given 

for each ~ E S* possible (N. : a < 6 ) : ( N ~ " :  a < 8), so that for each (N,  : a < 

to1) as we get above {8 : ( 3 n ) ( V a  < 8 )N~"=  N~} contains a closed unbounded 

set, hence for some 8 and n, 0 f a  < 8 )N~"=  N~ and the condition from B holds. 

We want to define c~ such that if at last N~*= N~ for a < & and the condition 
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from B holds then there will be p E P~t0), P II-~c~ infinitely many n < to, 

1"(rls(n))~cs(n)". We should remember that even if p . < p , §  in P~to), 

Domp. (~ )  = a .  for each ~ E Domp, ,  I,.Jn<.a. = 8, not.necessarily I,.).<,~p. is 

included in a condition of P~to>. Hence we should repeat the trick of [8] 1.8, that 

is, we define by induction on k < to, a~§ < to, WE and TE, satisfying (i), (ii), (iv), 

(v) there with 8,~, N .. . .  for N~ there (and we forget to say there that Tk, WE E Nk). 

At the end we shall get a set of conditions P~ (see last paragraph of [8] w such 

that for at least one ~ there is q E P~to), P~ --< q ; now for each k and p~ there is 

tk E Q(Wk, k)  with maximal domain such that T( tk )=  p:. Hence it suffices that 

for each m < to, if (N~ '~ : a < ~5) satisfy the condition from (B), then there are k, l 

such that: for each t E Q(Wk, k)  with maximal domain for some l 

I,.J N~" ~ "Tk (t)1~-~,o,"7(n~ (l)) ~ c8 (l)". 

More exactly T~, Wk depends on m, so we should have written a ~', T~', W~'; and 

we define T~', W~', a 7  by induction on m + k, and a finite information on c~. 

The point is that we have N0 assignments and on each stage we have one 

assignment and have defined already c~ (l) for finitely many l's only. So suppose 
& r a  Tk, Wk ~ N~, ,  a = 8to, by 03) we find an appropriate/3 = N~"  tq to~, and we can 

t ~ & r n  find T ,  TE < T' ~ N o , such that for each t E O(Wk, k ) of maximal domain, 

T'(t) determines (by I1-~,o~) what is ~'(n8 (l)) when ,/~ (n) </3. Now we can define 

cs(l) for the l 's satisfying a < r/~(l)</3, to contradict this. 

We demanded ~*, h * E  V, but this is not necessary, for each ~*, h*, as 

P = P~ satisfies the ~I2-C.C. for some a (0), h *, ~* E V~o>, so we can make the 

forcing in two steps: first by P~o), and then it is known that V~,o~  ~ *  (which is 

what we really demand from V in 2.1), and then the rest of the forcing, where 

the proof of 2.1 works. Note also that by Theorem 2.3, it may occur that (A) and 

(B) fail, but still (~, h) has the uniformization property but (~*, h *) does not. 

CLAIM 2.2. If (~n)CCi < to~)(h~(i) <-- h~(i) n) and (~, hz) has the uniformiza- 

tion property then so does (~, h~). 

PROOF. Trivial. 

THEOREM 2.3. For r <= 1% it is consistent with ZFC + G.C.H., that for some 

stationary S C_ to~, the assertion (r fails but (r holds for each k < r, where 

(r for every function F : ~ >2 --', ~ (a = I,.J S) there is g ~ ~ ~ such that for every 

f E ~ 2, {/3 ~ S : F ( f  [/3) = g (/3)} is stationary. 

REMAINS. By Devlin and Shelah [3] ( ~ , )  follows from 2 -0 < 2", clearly for 

k < (,:,;) 
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PROBLEM. Does (q~'o) or even r follows from CH? + 

PROOF. Start with V = L, choose stationary costationary S C_ to1, and for 

simplicity let r = k + 1 < No, and like [8] w we defined P,, (a _-< to2), P = P,~ so 

that in V P, the statement (~,~,) fails for some specific F* E V. More exactly, for a 

Qs - { [ : D o m [  an ordinal a < t O l ,  given F* : ~',>2 ~ r, and g : to1 ~ K, let v. _ 

Range[  _C 2 and for every limit 6 _-< a, 6 E S implies F*(f  r 6) ~ g(6)}. Now F* 

shall be chosen later and g,, is a P,,-name for a function from to1 to K, and 

P,, = {p : D o m p  a countable subset of wl for sr~ Domp, p r ~  P,''p(~)E 
Q,~"'}. The proof that forcing by P,~ does not change cofinalities, preserve 

stationarity, does not add reals, and in V P F* exemplify ~ ]  fails, is just like [8]. 

Now suppose k < K, and we want to show that ( ~ )  holds. So let F ~  V~ 

F : ~ , > 2 ~  k, hence (as P satisfies the •2-chain condition) for some ~ < to2, 

F E V ~'* and let F be a name for it. We have to define g E VP~ which exemplify 

(r for F. Also let [ E V ~" be [ : to~ --* 2, and g, .( their respective names. 

Remember we have to define F* ~ V and g ~ V"~. As in V, Os holds, let 

(S8 : 6 E S) examplify it. If $8 _C 6 encode an appropriate model (N~,P~',Ik,q,.() 
(as in the proof of 2.1), let A be the set of "ordinals" of N~, and as in [8] 1.8 we 

define a function p~, 6 ~ a such that: 

(1) Dom p~ = A, 6 = Dom p~ (~') for each ~" E A, each p~ is a union of a generic 

(for N~) set of conditions in P~, [~" E A, e~ I ~ = ~ I ~] ::)' [P~, I ~" = p~ f ~]. So p~ 

determine j' 18 or f, I 6. 

(2) The functions p~(~) (~ E A, e E AK) are distinct (members of ~2). 

So we define F* 182 such that F*(p~ (~')) = ~(~') (the range of F* is _C K as 

was a function from A to r) .  As (S~:6 E S)~ V clearly F * ~  V.. 

For notational simplicity let ~: = 0 so F E V. Analysing for which sets T C At, 

there is always ~" ~ AK and p E P, p, = p ; we see that a sufficient condition is: 

in the following game G m ( T )  player I has no winning strategy: 

by induction on ~" ~ A, player I chooses i~ < r, and a~ < to~, 

(,) a~ > U~<H3e, and then player II chooses c~ < r, c ~  i~ and 

/3r < to1,/3~ > Ue<~a~. Player II wins if (c~ : ~" ~ A)  ~ T and for 

every limit 6 ~ A, U~<~a~ ( = U ~ / 3 r )  does not belong to S. 

PROOF OF THE SUFFICIENCY OF (*) 

We describe a strategy for player I: in addition to choosing ic, a~ he chooses 

p ~ P ~  such that (C 'e:~A)~AK;  c~=c~ for ~<~" implies p~f~<p~, and 

U~<~oq =< Domp~(i)_- < a~, and p~ II-"g~(6) = i~". 

* We now know that the answer is negative. 
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As player I has no winning strategy there is a play in which he uses this 

strategy, but player II wins. Now U ~ A p ~  is the required p. 

Now :'K = Ut<k T~, where for each ~ ~ T~, F(f~ [ 8) = l, where f~ r 8 is the 

value of [ [ 8 as forced by P~ (remember we have assumed w.l.o.g. F E V). Now 

player I cannot have winning strategy for all the game Gm(T~) (l < k). 

Otherwise, let 3' be the order type of A. We can prove by induction on y, that 

there is an increasing and continuous sequence (N , : i  =< I: + 1) of countable 

elementary submodels of (H(N2),E),  such that A, (p~:~ ~ A)  and the k 

strategies belong to No; and Ni ~ N,+I and for every limit 6 =< y, (N , : i  =< 

6) E N~+I and N~ n to~ ~ S. Now there are k plays, the lth one (l < k) being 

�9 1 l I t ' " '  ' ' "  " '  
/3 0); (l I, O~ I), (C /I, f~ I), "" " ; (l ~r, Ol.t ~), (C ~r, /3 ~), "'" 

such that 

(1) the moves of player II do not depend on l, i.e. 

1 I - -  0 
- 

(2) In the Ith play, player I uses his winning strategy for Gm(T~). 

(3) For each ~, (...;(i~,a~),(c~/3~);--")e<c belong to N~+~. 

(4) Player II chooses /3~=(N~+intol)-N~, and '- co- c~= min{i E r: for 
every I < k, i~ i~}. 

It is easy to check all requirements, so we get that (c~: ~ E A ) E  '*r does not 

belong to Tt (by the lth play) for each l < k. So player II constructs C E'*K 

outside Ut<kT~, contradiction. So we define g(8)  as an l <  k such that in 
Gm(T~) player I has no winning strategy. 

THEOREM 2.4. Suppose, for simplicity, V = L, S is a stationary, costationary 

subset of to~, �9 = {718 : 8 E S}, h : to~ ---> to + 1 are given. We can chose stationary 

disjoint So, S1C S such that the following will hold. 

We define ~ ,  P, as in [8] 1.1, but the domain o[ ~ ~ is not necessarily S but a 

subset of it (so we have more conditions), and/or ot = 2/3 + l (l = 0, 1) ~b It -~  " ~  

has the form (c~: 8 E S,), c : E  l-I,h(r/8(n). All  the work of [8] w holds, in V P 

(r h) has the uniformization property (~, = {TI8 : 8 E S~}) but 

(*) not only (r h) does not have the uni/ormization property, but ~o, ~ cannot 

be separated, i.e. (in W' )  /or no A C_ to~ does 

(VI E 2)(V8 ~ S~)[for all large enough n, r/~ (n) ~ A r162 l = 0]. 

REMARK. We can strengthen (*) to: for no lo~ 2, A C_ to~ does 

1 = lo r (V8 E S~)(]no)(Vn >= no)[~/,(n)~ A].  
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This does not require essential changes in the proof. 

PROOV O~ 2.4. For simplicity let h (i) = o~ for every i. For each limit 8 < ~0~, 

the diamond sequence "guess" for us models (N~ :i  < 6 ) ,  N~ < 

(H(~,), ~ ,  P, IF, P , f ) ,  p ~ P, p IF "jr a function from ~o~ to {0, 1} which separate ~ 

from ~z", which are as usual. 

As in the proof of 2.1, 2.3, we let A be the set of "ordinals" of N~ = U,<~N,, 
clef 

and we can find p~ (~" ~ T = II,<~ h (r/~ (n))), 

[Co [ ~r = ~ r ~'] ~ [P~o [ s r = P~, r ~'], Dom p~ = A, Dora Pc (~r) = 8, 

p~ determines (through IF) [ r 8 as f~ and we know that for some ~ E T, p~ _-< p for 

some p E P. 

The main point is that a large number of p~'s are not necessary: if 8 E St, the 

splitting is necessary only for a + 1 even. So we have a free choice to determine 

to which 1, 8 E St, and in what way to reduce the set of p~. Let 

To = {e E T : for every n large enough, [~ (rl ~")) = 0}, T~ = T - T,,. 

As in the proof of 2.3, we define games Gm(l),  I = 0, 1 in a play of Gm(1), in the 

~'-th move: if ~" = I rood2 then player I chooses c~ <o~, at <oJ~, at > U~<;a~, 

and if ~'~ I rood 2 then player II chooses c; < ~o, at < ~o:, oq > U~<~a~ (so unlike 

2.3, each time only one of the players moves). 

In the end player II wins if (c~ : ~'E A ) ~  T,  and for each limit 8 E A U 

{SupA}, U~,~ S. 

As in the proof of 2.3, for some I player I has no winning strategy, and this 

implies that for some ~ E T~, pc _-< p E P for some p. 

TrIEOREM 2.5. In 2.4, i f  h : ~o~ ~ ~o we can give a priori stationary So, S~ C_ S, 

and then define appropriate ~ (8 E So U S~) so the conclusion holds. 

PROOF OF 2.5. Define rt, (8 E So) arbitrarily. Now for every 8 E S~, the 
diamond sequence gives us 8. E So, 8, < 8.+, U,cs, = 8, and (N~ : i _<- ~o 2) 

increasing continuous sequence of countable models, which are (up to isomorph- 

ism) elementary submodels of (H(I~), ~ , P ,  IF, p , f )  as in 2.4, N~, A o~= 8., 

(N~ : i =< j) ~/q~+~. We have to define r/~. 

We define by induction on k, T~, W~, rl~(k ) as in the proof of 1.1 [8] (or 2.11 

with N,~+~ for N~ but the domain of W~ consists of odd ordinals only (because 

8 ~ S~) and 

(*) for every maximal t ~ Q(W~,  k ), T~ (c)IF "J'(r/~ (k)) = 0". 
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If we succeed - -  fine; otherwise we use 8k+, to show .f is not a counterexample.  

We define Tk.~, Wk.~ (l < to) as in 1.1 [8] (or 2.1) but with the models No, k§247 and 

r/~§ such that Dom Wk.~ - Dom Wk consists of even ordinals only, Wk.o = W~, 

T~.o = Tk. In the end we use the following Claims 2.5(1), (2). 

CLAIM 2.5(1). Suppose I is a tree, I = U , ~ k l , ,  I,  the n th  level of I, II01 = 1. 

Let I E = A o U A 1 ,  A o O A l = O a n d  k = V o O V ~ .  I / o 0 V ~ = O .  Then we can 

find l E {0, 1} and ] C_ I such that 

(i) IoC_J, 

(ii) if a ~_ I. n J, n E V .  n < k then each immediate  successor of a is in J, 

(iii) if a ~ I. n J, n E V l - .  n < k then at least one immediate  successor of a 

is in J, 

(iv) Ik O ] C A,. 

PROOF. We prove by downward  induction on m =< k that for each a E Jm 

there is J ,  _C I and lo E {0, 1} satisfying (ii), (iii), (iv) when m =< n _--- k and a E J,. 

For  n = k let J ,  = {a}, 

l ={01 a E a o ,  

a ~ A ~ .  

Suppose we define J,, I, for every a E J,, n '  > n ; and w.l.o.g, n E Vo. If for each 

immediate  successor b of a, lb = 0, let I, = 0 and J ,  = {a} U {J~ I a < b E L.,}.  
Otherwise a has an immediate  successor b, lb = 1, and let la = 1, Ja = {a} U Is. 

Clearly for the a E Jo, J~ is a J as required. 

CLAIM 2.5(2). Let y, ~ be ordinals, I a tree, I = U o a ,  L ,  L the a t h  level, 

1Iol--1, with unique limits. 

Let  A~ (~" < ~) be a partition of I , ,  and V~ (s r < ~) a partition of y, and each Vr 

is the union of a finite number  of closed intervals. Then there are J C_/, ~ < 

such that  (i)-(iv) of the previous claim holds, with ~ replacing l. 

PROOf. By 2.5(1). 

TrmOREM 2.6. Suppose, e.g., V = L, and S is a stationary costationary subset 

of to,, ~ = {~!8 : 8 E S}, h : tot---* to and P are defined as in 2.1 such that in V ~, 

(~, h)  has the uniformization property. 

Then we can define {n * : 8 E S}, such that: for every A C_ to~, A E W" for a 

stationary set of 8 ~ S ,  for every n large enough, (~ /* (2n)~A)- - -  

(rt ~(2n + 1 )~  A) .  

PROOF. Left  to the reader. 
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THEOREM 2.7. Suppose V = L, S C_ o~1 stationary and costationary, and dp = 

{Ts : 8 E S}. Suppose So is a countable family of functions from Range 7, to 8. 

Then for some forcing notion P, it does not change cofinality, stationarity and 

does not add co-sequences, and 

(1) every @8 : 8 E S), co ~ So, can be uniformized but 

(2) (~, 2) does not have the uniformization property. 

PROOF. Left to the reader. 

So as usual we are given 8, (N~ : < 8), p, f and we want to define the right p /s .  

Let S, = {c~ : n < r so we can (in [8], 1.1, more exactly 1.8, p. 199) redefine: 

(i) Q(W, k) = {r : Dom 7- is an initial segment of W}, we let ~- E Q(W, k), we 

define t(~') as a function with domain Dom W, 

(t(~'))(~') -- c~c,)[ {7o (i): ~w<,)=< 7, (i) < ~k }; 

(ii) we say p is consistent with r E Q(W, k)  if p is consistent with t(r). 

Now we define T~, Wk E N ,  k, ak <a~§ (and U~a~ = 8). The point is that 

though eventually Dom Wk has to grow, we can hold it fixed, for "a long time", 

by computation (as I Dom Wk I is smaller than 2' for big enough l). We can define 

c~ so that f will be forced by some condition not to be eventually equal to it on 

70. 

We leave the details to the reader. 

Trmom~M 2.8. Suppose V =  L, S C_co~ stationary, costationary and dp= 

{7o : 8 E S}, 7, increasing sequence converging to 8, t a two-place function on ~o. 

We can find a forcing notion P, as in the previous theorems, such that 

(1) in V~ for every h:~2--*r (alp, h)  has the uniformization property; 

moreover, for every h : ~ ~ oJ, we can uniformize 

( c , : S E S ) ,  i fc,  E'aJ, c , ( n ) < t ( h ( 7 , ( n ) ) , n ) ,  

(2) (~, I%) does not have the uniformization property. 

PrOOf. Again as in [8] w this time the trees are finite though we do not have 

an apriori bound on the size of the tree after n stages; so (2) is easy as in 2.1. 

w The uniformization property and Whitehead groups 

Let a fixed triple (~ ,a ,  G) be given (for this section). ~ =  {78:8 <A}, 

7, = (78(n):  n < co); n ~  m ::> n s ( n ) ~  78(m); 78(n) a successor ordinal < 8, 

and the 78's are almost disjoint. Also d = (d8 : 8 < )t), d~ = {ds(n) : n < co), each 

ds(n) is a natural n u m b e r > /  and ds(n) divides d~(n + 1), d s ( n ) ~  do(n + 1). 
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Let d * ( n ) =  do(n)/d6(n- 1) where we stipulate d o ( - 1 ) =  1. G is an abelian 

group, generated by x,+l (i < A), Yo = y~, (8 < A, 8 always limit) and z ~ (8 < A, 

n < to) with the only relations: 

do(n)z~= Yo- ~, b ~ , ( l )  
I~ka(n) 

where b ~ E Z  (the integers) and the greatest common divisor of do(n), bt 
( k o ( n - 1 ) < l = < k o ( n ) )  is d o ( n - l ) .  We write G = G ( ~ , d )  if b~-~=do(l),  

ko(n) = n. Our sysem is a tree if �9 is a tree, and in addition r/oto~(l)= ~ot,(l); 

ko(o)(n - 1) < l -< ko(o)(n) implies ko(o)(m ) = k~o)(m ) for m = 0 , . . . ,  n, 

r/~(0)r(koto)(n)+ 1)= r/oo)r(k, to)(n)+ 1) and b,m(o) = b,"(~ for m < ko~o)(n) and 

doto)(m ) = do<~)(m ) for m < n. 

A set S C A is closed if 8 ~ S ^ n < to ::> r /o(n)E S and for a closed S let 

G(S) be the subgroup of G generated by x~+~, ys, z~ (i + 1 E S, 8 ~ S, n < to). 

We call ~ free if there is ~:limA---* co, s.t. ~d(8~)_-< n~<to, 8 ~ # 8 2 E l i m A  

implies ~/~(n~)# r/~(n2), where l ima = { 8 : 8  < A limit}. We call ~ A-free if 

every ~ ' C  ~ ,  t~ ' t  < A, is free. 

EXPLANAaaON. If we would omit the generators z~, we would get a free 

group. But as we have defined, for each 8, we make it somewhat more difficult 

for G to be free. However,  as the r/o are almost disjoint those reasons are 

unrelated. Note that if Go is the subgroup generated by the {x,§ : i + 1 < A}, then 

in G/Go, y~ is divisible by infinitely many integers: the do(n) (n < to). So if 

do(n) = n! then G/Go is, essentially, a vector space over the rationals. 

CLAIM 3.1. Suppose r is an (infinite) cardinal. If ~ is K-free then G is 

K-free. If ~ is a tree, G K-free then �9 is K-free. 

PROOF. As the condition for K = No implies the condition for r = N~, we can 

assume r. > No. 

Let H C G, IHI  < r,  then for some closed S C A, IS I < r,  and H C_ G(S). As 

every subgroup of a free group is free it suffices to prove G(S) is free. Let 

g : S O lim A ---> to be as mentioned in the definition of freeness. Let 

S ~ = {r/o ( / )  : 8 ~ S, l => g ( 8 ) } ,  

S0 = S - S ~ - S tq LimA. 

We define S~ by induction on i such that: 

(a) if n L i m A ,  g(8)<n,  and 71o(n)~S~ then 8~S, ,  
(*) (b) if n Lim A, then for every l < to, r/o (l) ~ S,, 

(c) S, is increasing and continuous. 

Sh:98



Vol. 35, 1980 WHITEHEAD GROUPS 273 

Now So is defined: for i limit there is no problem; for i =  j + 1, choose 

8 ~ S - S, with minimal g(8)  and let 

s,+, = s ,  u{8}  u {,7,(t): / < to}. 

So clearly for some a, S, = S, and it suffices to prove that G(So), 
G(S~+I)/G(S~) are free. This is quite easy. 

We have proved one implication, the "only if" part. Now we prove the "if" 

part. So let S _C A, IS I < r, and we should prove {r/~ : 8 ~ S} is free. For this end 

we prove a somewhat stronger assertion: 

suppose So C_S1C_A, [S~I<K, So and $1 are closed and 

(.) 8 E S ~ - S o  implies {~/~(n) :n<to} tqSo is finite and 

G(S~)/G(So) is free (abelian group), then {r/s :8  ~ S~-So} is 

free. 

Why is (*) enough? For a given S, we let S~= S U{r/~(n): n <to,  8 E S}, 

So = O then G(So) = {0}, G(S~) is free by the hypothesis (as [ G(SOI --< I Sol + No < 
K), so (.) gives the required conclusion. 

Now we prove (*) by induction on IS I -So l .  If Is,-Sol<= o, then 

{r/5 : 8 E S~-So} is free because it is countable and {~/~ : 8 ~ lim A} is almost 

disjoint. Suppose now ft = S~-So  is uncountable. Note  that G(SO/G(So) is 

generated by tt element: x,§ G(So), yo+ G(So), z]  + G(So) (i + 1 E S~-  So, 

6 ~ S~-  So, and n < to); let {~'~ + G(So): i < ~} be a free basis of G(S~)/G(So). 
Let 

K = {S : So C S C S~, S is closed and G(S)/G(So) is generated 
by {r~ + G(So) : z~ E G(S)} and i E S - So, n < to, and if (:Its) 
r/8(n) = i then (:It5 E S - So) r/8(n) = i}. 

Clearly QCS C_ S,)(:IS'  E K ) ( S  C_ S' ^ I S ' -  Sol = IS - Sol + rio) and K is closed 
under increasing chains. Hence we can find T~ (i _-< p.) increasing continuous, 
To=So, T, =S~, I T ~ - S o l < / z  for i < / z ,  and T~EK. 

FACT. If T ~  K, t5 ~ S~-  T then {*/8(n): n < to}f) T is finite. 

We delay the proof of the Fact. Meanwhile, clearly T~§ T, satisfies the 

requirements on S~, So in (*) so by the induction hypothesis on/z, T~§ - T~ is free 

hence some f~ exemplify it. Define f, Dom f = (S~ - So) I"1 l ima : 

If t5 ~ T~+I - T~ (this holds for one and only one i) f(ts) is the maximal element 

of {f~ (ts)} U {n + l : r / s  ( n ) ~  T~}; there is a maximal element by the Fact. 

So we have just to prove the Fact. 
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PROOF OF THE FACT. If S,  8 E S ,  - $, are a counterexample, as �9 is a tree, 

r/~ ( n ) E  S for every n. So in G (Sz)/G (S), y8 is divisible by d8 (n ) fo r  every n, and 

this shows G(S~)/G(S) is not free, contradiction. 

CLAIM 3.2. If A is regular and {8 : OCn)[n~(n) < 8]} is a stationary subset of 

A then �9 is not free. 

REMARK. Claim 3.2 indicates a way to produce many non-free ~ ;  and 3.1 

gives the expected translation of properties of G to those of ~.  

PROOF. (1) Suppose f : l i m ) t - *  to exemplify �9 is free and we shall get a 

contradiction. Let f ' : l imS- -+  A be defined by f ' ( 8 ) =  r/~(/(8)), so clearly 

8 E S :~ i f (G)< 8, hence by the Fodour  theorem [ '  is constant on some 

stationary set S'  _C S. But any distinct 8,, 62 E S' contradict the choice of f. 

REMARK. In fact we can devise a necessary and sufficient criterion for the 

freeness of G. 

DEFINITION 3.1. Let H be a torsion-free group. 

(1) For cz, c2 E H, d E Z we say c~ -= c2modMd if for some x E H, dx = c~ - c2. 

This is equivalent to saying cl/dH = c2/dH where dH is the subgroup 

{dx : x E H}. 

(2) Eo(H) is the group* consisting of the sequences ~ = (ca :8 < ;t) where 

ca = (cs (n) : n < to), c~ (n) E H, and c, (n + 1) -= c~ (n) modu da (n). We let c ; (n )  

be the unique solution of d~(n - 1)x = c s ( n ) -  cs(n - 1). 

We call # appropriate for d (and H) .  

(3) E~ = El(H) is the subgroup of Eo consisting of those #'s such that for some 

h : A ~ H ,  

ca(n)~h(8)- ~ b~hO?8(l))modnd~(n ). 
I~ka(n) 

(4) We let E = E ( H )  be Eo/E~. 

CLAIM 3.3. E is isomorphic to Ext (G,  H) .  

PROOF. Check the (computational, not categorical) definition of Ext (see [4]). 

DEFINITION 3.2. Let 9 "  be the set of finite sequences of non-zero natural 

numbers d = ( d o , " . ,  d,_~) such that dt divides dt+l. Writing c~ -= c2modud  we 

mean cl ~ c2modz-zd,,-l. 

* Addition is coordinatewise. 
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CLAIM 3.4. We can define for every d E ~ *  a set H [ d ]  _C H of representa- 

tives modHd, such that: 

(0) 0 ~ H[d] ,  

(1) H [ d  t k ] _C H[J], 
(2) H[aT] is a set of representatives modnd,  

(3) if a ~ H [ d ] ,  b E H [ a T r k ] ,  a - b m o d a T r k  then a - b E H [ a T ]  and 

(a - b )/d(k - 1) E H((dk/&-i ,  dk+,/d~-l, " ", d,_ddk-~)) where d = (do , "  ", d,_~). 

PROOF. First define H[aT] for every aT of length_-1. Now for aT= 

(do , "  ", d,_,) E ~ *  let 
o-1 )} 

.(a)-- t ,20 ,x,: x, m d , / d ,  1 

(We stipulate d-i = 1.) 

CLAIM 3.5. Let for d E  9 "  H i d ]  be a set of representatives modnaT. Then 

for every e = (ca : 8 < ,~)E E0 there is e ' =  (cd: 8 < ,~), cd(n)E H[aT~ r(n + 1)], 

such that ~ ' -  ~ E E0. 

PROOF. By induction on n. 

Choose cd(n) E H[d,  [ (n + 1)], cd(n) = cs (n) modnd,  [ (n + 1). Now h = 0, 

show g ' - g  E E;  (see Definition 3.1(3)). 

CLAIM 3.6. Suppose ( ~ , g )  has the uniformization property, where 

g( i )={x :  for some 8, n and m, x ~ H [ a T s r ( m + l ) ) ,  x =- 
0mod aT8 Im, r /8 (n ) -  i and k , (m - 1 ) < n  .N k,(m)} 

(remember d*(n)= d~(n) /d6(n-  1); more formalistically, we should replace 

g(i) by Ig(i)l). Then E x t ( G , H ) =  0. 

PROOF. By 3.3 it suffices to prove that Eo = E,. So assume we are given an 
appropriate g E E0, w.l.o.g, as ~" in 3.5. Now we apply the uniformization 

property of (q), g) for the case. We attach to r/8 the sequence e8 = (e,(n) : n < w) 
where e~(n) is defined as follows. First we define e~( l )EH,  l<-k~(m) by 

induction on m such that cs (n)= -Y~k , ( , )b~e , ( l )modnds(n) .  

For n = 0, we can first choose the e, (/)'s as integral multiples of c8(0), and as 

the greatest common divisor of the b ~ (l =< k, (0)) is 1 = d8 ( -  1), this is possible. 

Then we can replace them by equivalent members of H ((d,(0))). We can 

continue to define for n + 1 such that 

c.(n + 1 ) -  - ~'~ b~ses(l)modnds(n + 1) 
I~ka(n+l ) 
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and for ks (n ) < l <= k, (n + 1), eg(1)=-Omodnds(n) (remember c~(n + 1) 

-= c~ (n) modud,  (n)); let e8 (l) = e~(e)/ds (n) E H[(d*(n))]. So es = @8 (l) : l < 

to) are defined (by 3.4 they are suitable for the application of this uniformiza- 

tion). So there is a function [* : l ima- -* to ,  such that: nt >[*(St)  (I = 0, 1), 

r/~o(no ) = 7/~(nl) (then es(nt) are equal (for ! = 0, 1)). We can assume [*(8) = 

k~([~ for some fo: lim A --* to. 

We let So = U{~/~(n): n => [(8)}. We now define an h :A --> H exemplifying 

~" ~Eo.  On A - l i m A -  So, h is constantly zero. We now define h(rls(n)) 
(8 ~ limA) and h(8) (f(8) = n, 8 E LimA) as follows: 

(i) if n =[*(8) ,  h ( 8 ) =  c~(n)+Y.,.~,b~h(~l~(l)) 
and 

(ii) for every 8, n > [*(8)let  h (r/~ (n ) )=  e~ (n)(well defined as f* uniformize). 

There is no problem in the checking. 

The following is a (one-sided) translation of the Whitehead problem to a 
combinatorial one. 

CoscLUSlOn 3.7. If there is a non-free ~ ,  and (~,2) has the uniformization 

property then there is a non-free Whitehead group. 

PROOF. By 1.6 w.l.o.g, cb is a tree. By 3.1, G = G(~ ,  d) (where d~(n)= 2" 
for every n) is not free. By 3.2, G is a Whitehead group. 

REMARK. (1) There is no real difficulty in generalizing this section to not 

necessarily torsion free H. In such cases c*(n) is not uniquely defined. 

A partial converse to 3.7 is: 

CLAIM 3.8. Suppose (b is a tree G = G((b,d)  and let g be such that 

g(i) = IH/d*(n)H I whenever ~ ( n )  = i. Then Ext (G, H)  = 0 implies (~, g) has 

the uniformization property, provided that: 

(i) S = Z  

or 

(ii) H = Z~, = the direct sum of No copies of Z. 

PROOF. Let (c*(n) : n < to) (8 ~ lim A) be given, c*(n) E H[(d*(n))] and we 

should find [ : lim A --* to such that 8o ~ 81E lim A, n _-> [(80), n -> [(8~), 7/~(n) = 

r/~,(n ) implies c *o(n ) = c *,(n ). 
Define c~ (n) by 

c,(n) = c,(n - 1)+ d,(n - I)c (c,(- I) = 0), 
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c, = (ca ( n ) : n  < to), 6 = (ca :8  E Lim A). As we assumed Ext (G, H ) =  0, there is 

h as in Definition 3.1 (3). 

So clearly r/,o(n ) = r/,,(n) implies 

c,o(n ) - c~,(n ) = h (80)-  h (81)mod ds(n ). 

We have to define f, and show that if in addition n => f(8o), n _-> f(81) then 

C*o(n) = c*,(n). 

Case (a):  H = Z 

We could have chosen H[(d) ]  = [0, d)  so H[(do, �9 �9 -, d,-l)] = [0, dn-i). We can 

assume for some m E {0, 1,2} C*n+m= C* . . . .  1 = 0 (we just decompose our  

problem to three). So w.l.o.g, m = 0. 

Now if d,o(n) > 81 h (8o) 1, ds,(n) > 8[ h (8~)1, then either (a) c~(n) - cs,(n) = 

h(80) -h (81)  or (b) cso (n ) - c s~ (n ) - (h (8o ) -h (81 ) )  = +--d,(n) but if n is = 

1 modz 3 then c,, (n) = ca, (n - 2), 0 =< c,, (n - 2) < d,, (n - 2) hence 

But  remember  

[ C~o(r~ ) -- C~l(~'[) I < 2de~(n -- 2) < d,,(n)/2. 

I h (8o) 1 < d,o(n)/8, 

I h(8,)l < dsx(n)/8. 

So clearly (b) cannot hold. Now it is easy to prove that if d ( n -  3 ) >  8h (8,) 

then C**o(n-2)= C**l(n-2), so clearly defining f (8 )  as the first n such that 

d, (n - 3) > 81 h (8)1 satisfies our  requirement.  

Case b: Let Z,~ be freely generated by {x~ : n < to}. Now w.l.o.g, c ~(n) is in 

the subgroup generated by {x, : n -< l < to}, and choose f such that h(8)  is in the 

subgroup generated by {x, : ! < f(8)}. 

REMARK. In 3.8, the essential property of Z,~ is the infiniteness of each g(i).  

THEOREM 3.9. There is a non-free Whitehead group of  cardinality N~ iff some 

tree (r has the uniformization property, I ~ l = ~ t l ,  h ( a ) > l  for every 

a E D o m  h but �9 is not free. 

PROOF. Let  to the reader. 

w The uniformization property for some (~,2) ,  �9 of type (~l,~to, tO) is 

consistent. 
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THEOREM 4.1. Suppose 2 No= N1, and T is a tree h : T - ~  to, T =  U,<.~T,, T, 

- -  the nth level, and for each 1 < to, for infinitely many n < to, for every 

a o , "  ", at-1E T,, ao has more than l-I{h (b) : b =< am, m < l} immediate successors. 

Then there is a r of type (all, N0, to) such that 

(*) foreachTl~dP,  { T q ( n ) : n < t o } i s a b r a n c h o f T ,  71 (n )ET .  

and if k < to, r / l~ �9 for i < to~, l < k, then for some n < to, and distinct at E T, 

(l < k )  and w C_ to1 

O) a, = f inn)  for each i E w, 

(ii) for i ~ j  E w, 71~n + 1)~ r/~(n + 1), 

(iii) twl>f l ,<k Ilb.~o,h(b). 

PROOF. Quite standard. 

REMARr. Alternatively we can define �9 as a generic set of branches. For our 

purpose this forcing does not change, and we can have I~l > Ir (The conditions 

have the form {at E r/,to: l < k}, at E T, i ( l ) <  to~, i(l) = i (m)  => at, am are 

comparable.) We can also in the main theorem make 2 No any regular cardinal, 

and do not assume any instance of G.C.H. 

MAIN THEOREM 4.2. Suppose G.C.H. holds; dp satisfies (*) from Definition 

4.1. Then there is a set of forcing conditions P = (P, < ) such that 

(1) [P I= N2, P satisfies the alrC.C. 

(2) In V e, (~, h)  has the uniformization property. 

PROOF. Let * = {,/: : ~" < to~}. 

For each candidate f let Pr be a set of forcing conditions which will give a 

general compressive function. That is, Pr is the set of functions g, such that 

Doing  is a finite subset of to, for ~" ~ Doing, g(~')< to, and for ~', ~ E Doing  

0r = < n ^ g(~:)-< n ^ r/~(n) = rl~(n)---*f~(rl~(n)) = f~ (r/~(n))] 

the order is inclusion; trivially, Pr satisfies the I%-C.C. and the generic G is as 

required. But we have to iterate, in order to take care of all f 's ,  including the 

new ones. On iterated forcing see, e.g., [6]. 

So we define by induction on a =< to2 a set of forcing conditions P~, and 

carefully chosen names f~ = {f~: ~ < to~}, such that Ik~ " p  is a candidate for 

(~, h)" .  The elements of P~ will be all finite functions p, Dom p C_ a, for each 

E D o m p  p(~') is a finite function from to~ to to, and p r ~-ik ~', "p(~-) E Pf,".  (So 

the elements of P,  are in V.) 

The order is defined by q =< p iff ~[ E Dom q ::> q(~[) C p(~'). Now P = P,~; the 
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only non-trivial point is to show P satisfies the I~,-C.C. For this we prove by 

induction on a < toz the following stronger condition: 

(**). If k < to, and for i < to~, l < k, p, E P .  and 711E �9 and n~ < to then there 

are n < to, n > nl, distinct ao," �9 ", a~_l E T and w _C to, such that 

(i) a, = r/,~n) for l < k, i E w, 

(ii) for i ~ j  E w, Tl~n + 1)~  r/~(n + 1) or 7/I = ~/~, 

(iii) Iwl>l-I,<k II~-~a,h(b), 

(iv) there is q ~ Pa such that pi =< q for each i ~ w. 

Case I:  a = 0 

There is nothing to prove. 

Case H : a=r  

Then for some/3 < a, pi E P~ for every i, so (**)~ gives the desired conclusion. 

Case III:  a limit, c f a  = to 

Let a = U , < , a , ,  then for each i, for some n( i ) ,  p~ ~ P*.o>, so for some n, 

[ { i  : n( i )  = n}[ = N~, so by renaming, (**)~. gives the conclusion. 

C a s e l V :  a limit, c f a  = to~ 

Let  a~ (i < oJ~) be increasing and continuous,  a = U~<~ a~. For  each i let 

h ( i ) =  sup({0} U (Domp~ N i)); so for i > 0 ,  h ( i ) <  i, so for some i(0), S = {i < 

to~ : h ( i ) <  i0} is stationary. W.l.o.g., i , j  ~ S, i < j  implies p~ E P~c Now for 

i, j E S, p~, pj are compatible iff p~ [ a~<o), pj [ a~<o> are, so rename and use (**)~to>. 

Case V:  a = /3 + l 

W.l.o.g. IDomp~(/3)l is constant,  so let Domp~(/3) = {r/I: k < l < k(0)} and 

w.l.o.g, p~ (/3)(7/~ depend  on l only. Now we apply (**)~ to h (0), pf = p~ [/3 E P~ 

and 7/~ (i < oJa, l < k (0)). 

We get appropriate n > n, + no, a~ (l < k(0)), wo and qo satisfying (i)-(iv) f rom 

(**)~. Clearly we can find qz E P~, qo --< q~, such that for each i ~ wo, k _-< l < k (0) 

and m _-< n 
q~lF~'~ " / ' ~ ( m ) =  c,(/, m ) "  where r / l=  r/,. 

Clearly c~ (/, m)  < h ( ~ ( m ) ) ,  hence the number  of possible functions c~ is 

--< fl~ ~<~<o> f l ~ ,  h (b). 

As  lwoI>Yl~<~<o>fl~,,h(b) clearly for some c, w = { i E w o : q = c }  has 

cardinality > fl~<~ f l~o ,h(b) .  Now it is easy to check that  

q = q ~ U { ( / 3 ,  U P,(/3))} ~ P~ 
i ~ w  0 

and n, at (l < k),  w, q exemplify the conclusion of (**),. 
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CONCLUSION 4.3. It is consistent with ZFC that some @ of type (N1,1%, to) 

have the uniformization property (provided that ZFC is consistent). In this 

model there is a Whitehead group of cardinality lql which satisfies Case I from 

[71. 

05. Club is not equivalent to diamond 

For a stationary S _C A, A regular Os means there are S~ C_ a for a E S such 

that for any A _C A, {a E S : A n a = S~ } is stationary. (O is O,,.) Jensen [6] 

introduces this principle and shows it holds if V = L ; and it is widely used. Note 

that Os ::> A <~ = A so O,, :ff 2"o = 1~,. This is discussed in Devlin [2]. 

Ostaszewski suggests a version called ~. = 4,~,, where for a stationary S _C A 

(A regular) 4,s means: there are S~, _C a unbounded in a, for each a @ S such 

that for any unbounded S C_ A, S, _C S for at least one a E S (equivalently, for a 

stationary set of such a 's).  Our  result may be helpful in proving consequences of 

the diamond are independent of CH. On forcing, see e.g. Jech [6]. 

Burgess and Devlin show C H +  .I. ~ O, and in fact A = A <~ + ~s ~ Os (if 

So exemplifies 4, s, {A~ : i < a } enumerate  {A _C h : I A [ < h }, each appearing h 

times). Let  B~ = U , ~ s A ,  for a E S, so for each A _C h let j ( y )  be the first 

j > U~<~j(/3) such that Aj = A O (Uo,~j( /3)) .  Now J = {J(3'): 3' < A} is un- 

bounded, so for some a, So C_ J hence B~ = A n a. 

In Devlin [2] and in a list of problems of Fleissner, it is asked whether 

4, ~ CH (equivalently 4, ~ 0) .  The answer is negative. Baumgartner  had 

proved years ago the consistency of a weaker assertion with 2"0 > ~I,: there is a 

family of 1,ll countable subsets of I, ll, such that any uncountable subset of N] 

contains one of them. 

TrtEOREM. It is consistent with ZFC that ~. whereas CH fails, and e.g. 

2 -0 = 2", = 1~12 (we can give 2 "~ 2", any reasonable value). 

PROOF. Start with V = L. Use forcing. First add ~3 subsets of to1, by the 

forcing: p o =  { f : f  a function from a countable A C_ to3 to {0, 1}} ordered by 

inclusion (so in V m, 2 -0 = ~1, 2", = N3 = 2"~ and cardinalities are preserved). Next 

collapse ~q~ by the forcing p1 = {f : f a function from a finite A _C to to to~} (so p1 

collapse N~, and preserve cardinals ~ lql, and preserve 2* for A ~ 1%). (Vm) P' is as 

required by the following two facts: 

FACT 1. If "l's holds, A = s u p s  is regular, I P I < A ,  P a set of forcing 

conditions then in V P (i.e., any generic extension of V by P)  4,s holds. This is 

because in V ~, any subset of A is the union of _- I P I substs of A which belong to 
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V. Hence any unbounded subset of h in V P contains an unbounded subset of A 

from V. So if (S,~ : a  C S ) E  V exemplifies .t.s in V then it exemplifies in V e 

t oo .  

FACT 2. If Os holds in V, h = sup S is regular, S C {8 < h : cf 8 = t z }, P is a 

tz+-complete set of forcing conditions, then in V~ r  holds. 

By <>s we can define M,~ = (a, =<,,, Ro) for o~ E S such that for any (partial) 

order <* on A, and two-place relation R on A, for a stationary set of a ' s ,  

_-<,, = _-<* f a, R,, = R ra. For each a E S choose ~ , <  ot (for i < /z ) ,  a = s u p ~ ;  

and choose inductively on i < / x  if possible /3'~, 3,~ such that /3 ~  0, ~ i <  3'~, 

R,, (/3 ~, "y i,) and /3~( i</z)  increase by-<*with i. If we succeed, let S~ = 

{3'i,; i < # }, and if we fail, let S,, = {~i, : i < tz}. Now {S~ : a E S} exemplifies 41, s 

even in V p. For suppose p E P, p IF"r is an unbounded subset of A". As Os, 

clearly A ~' = A, so we can choose O _C P, such that [ O ] = A, p ~ O, any chain in 

O of length =</z has an upper bound and for every q E Q, a < A, for some 

q ' E  Q, a '  > a, q = q', q' I F " a ' E  r " .  Let O = {q(i) : i < A}, qo = p, and define 

i<= *] iff q(i)<-q(j) ,  R = { ( i , j ) :q( i ) lF" j  E r"}. 

For some a ~ S, M,, is an elementary submodel of (A,= <*, R), and any 

increasing chain (by =*) of length < /z  has an upper bound in it. So we succeed 

in defining/3~,, 3~ as required, hence q(/3~)E (~ (i < tz) is increasing, so it has a 

bound q. So a s / 3 ~  p = qo<=q; and as q([3'~) <= q, q IF"3,~E r " .  So q IF"S,, C 

r "  and qo---< q, hence we finish. 

06. For many G, IExt(G, Z) l ~ no 

The motivation of the following theorem was whether for some abelian group 
G, JEx (Z, G)I = n0 (see Hiller and Shelah [5] where it is proved that when V = L 

there is no such G). The main point is that for Nl-free G, Ext (G,Z)  has 

cardinality 1 or_-> 2",. By [5] this has consequences in algebraic topology. We 

want to prove this without the hypothesis V = L, but our result only implies this 

in many cases. 

NOTATION 6.1. Let K be a cardinal, {A, : i E S} an indexed family of sets, and 

~ a K-complete filter over A,, A * = U,~sAi .  Let P(S) be the family of subsets 

of S. A colouring of A~ is a function c : A~ --* {0, 1}, a T-colouring (for T _C S) is 

an indexed family {c, : i  E T}, c, a colouring of A,. Let 0, be the constant 

function 0 on A,  0~ = {0~ : i E T}. We let, for T ~ S, {c ~ : i E T} ~ T {c ~: i E T} if 

some y:A*--~{0,1} exemplify it, i.e., for each l E T ,  { a E A ~ : c ~ ( a ) =  

c ~(a ) + f (a  ) mod 2} E ~,. Clearly ~ T is an equivalence relation, and let ~ (T) be 

the number of equivalence classes. 
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We call / :A*--*{0,1} a solution of { c , : i E T }  if it exemplifies its ~ r -  

equivalence to Or. 

We say T _C S is separated if for some A C A *, for each i ~ T, A~ n A E ~ ,  

and for each i E S - T ,  A ~ - A E ~ .  

THEOPmM 6.2. Suppose there is no measurable cardinal K~ and i E S such that 

K < K, <-IA, 1. I f  some {c, : i  E S} has no solution (orequivalently ~ ( S ) >  1) then 

(S) => 2% Moreover I~(S)>= K + except, possibly, when there are infinitely many 

measurable cardinals > K, < IS I. Also if IS I = K § then/z  (S) = 2"*. 

PROOF. Let E be the family of subsets T of S satisfying 

(a) every (c, : i  E T) has a solution, 

(b) T is separated. 

We now show E is an ideal (over S). For this we have to show: 

(A) S ~  E. 

This is so, as by hypothesis some (c, : i E S) has no solution, contradicting (a). 

(B) If T ~ E  and T ,_CTthen  T, E E .  

T, satisfies (a) trivially, and as for (b) define c, (i E T) as follows: 

c,(a) = {01 i E T ~ ,  

i E T - T 1 .  

By (a) for T we have a solution f and by (b) a separating set A C_ A * for T. Now 

A O {a : f ( a ) =  0} is a separating set for T1. 

(C) E is closed under union (of two). 

If T1, T 2 E E ,  we can assume they are disjoint (by (B)), so if At, A2 are 

separating sets for T1, /'2 resp. then A1U Az is a separating set for T1U T2 (as 

each ~, is a filter), so T1 U 7'2 satisfies (b). As for (a), let {c, : i E T, U 7"2} be 

given, then we can find solutions/1, f2 of {q : i E T~}, {q : i E Tz} resp. and then 

fl I A~ U f21 (A * - At) is a solution for {c, : i E T1U 7"2}. 
(We remark that E is in fact K-complete, but we do not need this.) 

Now 

CLAlM 6.3. S is not the union of K members of E. 

PROOF. Let T,, E E for o~ < K, and suppose U,,<~ T,~ = S, and we shall get a 

contradiction by showing every {c, : i E S} has a solution. 

An E is an ideal; we can assume the To's are pairwise disjoint. 

For each a < K, as T,, E E there is a separating set B,, for it. We can assume 

that also Ba (a < K) are pairwise disjoint, for if B" = B~ - Us<aB~ then for 

i~ .T , , ,  
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A, - B'~ D_ A, - Ba E 9, 

and for i E T ~  

hence A, - B ' E  ~ 

A, AB '=(A,  AB,,)- U ( A , - B o ) =  n [A, NB,,-(A, AB~)] 

as fl#a, i~ T~, [A~ AB~-(A~ NB~)]E @~, but a < r ,  ~ is K-complete, so 

Ai n B" E @i. 
Now let us show each {c, : i E S} has a solution, for let f,, be a solution of 

{q : i  ETa}, then U,,<, (f,, rB,,) is a solution for {c, : i  E S}. 

This contradicts a hypothesis, hence the claim holds. 

Let E" be the closure of E under unions of =< K sets, so E c is a non-trivial 

r +-complete ideal over S. 

CLAIM 6.4. If there are A pairwise disjoint subsets of S not in E then 

~,(S) => 2 ~ . 

PROOF. Let Sa (a < ),) be pairwise disjoint subsets of S which are not in E 

and suppose /.L(S) < 2 ~. For each I _C A let ~i = {c~: i E S}, where 

i ~ U S ~ ,  

c,(a) = {01 "~' 
otherwise. 

So there are distinct I, J _C 3, such that C" ~st~ j; and let [ : A * -~ {0, i} exemplify 

it. Let K = U { S , , : a  ~ I - a ~  J}, thus we can check that {ol : / ( a ) =  1} sepa- 

rates K. So for every family of A disjoint subsets of S not in E, there is a 

non-empty subfamily whose union is separated. As we can partition {S~ : a < A } 

into A pairwise disjoint families we have A pail'wise disjoint S,, _C S, each S,, is 

separated but does not belong to E. Hence each S,, fails to satisfy condition (a), 

so some {cT:iE To} have no solution. Define for each I C_ A, ~, = {c~:iE S} 
where 

c[= {;? iET~, a l l ,  

otherwise. 

Then ~'~ (I _C A) is a family of 2 ~ pairwise non ~-s-equivalent S-colourings, so 

we prove the claim. 

It remains to find those A sets, so Theorem 6.2 follows from 

CLAIM 6.5. (1) P(S)/E is infinite, hence there are in it P ( S ) -  E No pairwise 

disjoint sets. 
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(2) Let t ing )t be the first A such that in P ( S ) - E  there  are no A pairwise 

disjoint elements,  then A is regular  and 2 <~ -> K +, except,  maybe,  when there  are 

infinitely many measurables  = IS I, > K. 

(3) If I S I=  r+,  then A = K+. 

PROOF. (1) Otherwise T1 , ' - - ,  7", are pairwise disjoint, I,.Jt"_-, T~ = S, T ~ E ,  

but E r T ~ = { A N T ~ : A E E }  is a pr ime ideal or equivalently 9 t =  

{Tt - A : A ~ E} is an ultrafilter over  TI. If no 91 is K +-complete each T~ is the 

union o f -  < K members  of E r T, hence S = I,.)~:, TI is the union of-< K members  

of E, contradicting 6.3. So assume 9~ is K *-complete iff l _-< m where  1 -< m _-< n, 

and choose T ' t~  9 t of minimal cardinality. Let  K~ = I T'tl, T't = {s~: a < KI}, and 

9t, = {A C_ KI : {s~: a E A} E 9 t} ;  clearly 9t~ is a uniform K +-complete ultrafilter 

over  K~, for  l<=m. Moreover ,  letting Ko=U{IA~I*:iES}, each 9~1 is to- 

comple te  (as if K ( 9 )  is the maximal r for  which 9 is K-complete,  K ( 9 )  is 

measurable,  see e.g. [6]; and by a hypothesis  in 6.2). Clearly for each a < ri,  

TT= {s~:/3 < a } E  E I 7", (by the choice of T't). Let  for every  a~ < K~, . . . ,  a,, < 

K i n ,  

n m rn  

T ( a l , - . . , a , , ) =  U T, U U ( T , - T ' t ) U  U T~'. 
/ = m + l  /=1 /=1 

It is easy to check T(o~, , . - . ,  a , , )  is the union of-< K members  of E. Let  9 "  be 
1 m 91 x �9 �9 �9 x 9 , ,  so it is a Ko-complete ultrafilter over  K, x -- �9 x K,,. 

Let  {c, : i  E S} be any S-colouring,  so for every a ~ <  K,- - . ,o~ , ,  < K,,, 

{c, : i E T(a~, �9 �9 -, a,,)} has a solution fo, . .o~ (by the proof  of 6.3). Let  us define 

function f : A  *---> {0, 1}. [ ( a )  is defined such that 

{ ( O l l , " "  ", ~ m ) ~  m 1 X " ~  X K m : f,~l,... ,~m(a) = f ( a ) }  f~  ~ *  

(as 9 "  is an ultrafilter, f(a) exists). As 9 "  is Ko-complete, and for each i, 

/A , ]<Ko ,  Ko measurable,  so 2r Ko, clearly f is a solution for {c, : i  ~ $}, 

contradict ion.  So we prove that in P ( S ) - E  there  are 8o-disjoint elements.  

(2) We define by induction on a _-< A, for  T/E ~ sets T, _C S. T( >= T, if T, 

is defined, ~ E, and T, I E is not a pr ime ideal, we choose disjoint T,^<0~, 

T,^<,EP(T,)-E whose union is T~, and for T/ of limit length 8 such that 

~ a  < 8) (T,I~ is defined) let T~ = f"l~<s T,I~. Let  V -- {~ : T, defined}; clearly if 

some 7 /E  V has length _-> A, there  are h pairwise disjoint sets in P ( S ) -  E, so 

suppose 7 /E  V ~ 1 ( ~ ) <  h. We have a part i t ion { T ~ : ~  EQ,} ,  Q~ = {~ :T~^,> 

not defined but  T~ is defined} of S into = 2 <~ sets. Now for r/(E Q~, T. @ E or  

E I T~ is a pr ime ideal. So if 2 ~ _-< K we can cont inue  as in (1). 

(3) By the Ulam theorem.  
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