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WHITEHEAD GROUPS MAY NOT BE FREE
EVEN ASSUMING CH, 11

BY
SAHARON SHELAH'

ABSTRACT

We prove some theorems on uncountable abelian groups, and consistency
results promised in the first part, and also that a variant of C_, called & (club),
. . . 1

is consistent with 2" > N,.

§0. Introduction

§§2, 4 and 5 assume knowledge of forcing whereas §§1, 3 and 6 do not.

In §1 we define uniformization properties, and show some easy properties.

-In §2 we prove that for a stationary set S, if for one ® = {n, : § € S}, (?,2) has
the uniformization property (see the definition at the beginning of §1), then this
does not necessarily hold for every (®'.2), ®' = {n;: 8 € S}. So the question
whether (@, 2) has the uniformization property does not depend on S only. By §3
this means that the question whether a group is a Whitehead group is delicate,
and apparently minor changes in the definition may change this property. In §2
we show also that the weak diamond from Devlin and Shelah [3] is not
equivalent to natural strengthening of it, and that the union of two ®’s with the
uniformization property does not necessarily have this property.

In §3 we indicate the connection between uniformization properties and
Whitehead groups. (Essentially they are equivalent, so we translate the (par-
tially) Whitehead problem to a purely combinatorial one.)

In §4 we show that it is consistent that some (®,2) has the uniformization
property, ® a set of sequences of natural numbers. Remember that in [7], N;-free
groups of cardinality X, were partitioned into three cases; case IIl is the free one.
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It was proved: (a) [CH] if G is of case I, it is not Whitehead; (b) [V =L)if G is
of case I or II, it is not Whitehead. By [8], it is consistent with ZFC + G.C.H. that
there are Whitehead groups of case I, and by [3] CH implies there are always
non-Whitehead groups of case II. By [9] MA + 2% >N, implies G (N;-free,
| G| = N,) is Whitehead iff it is of case II or III. Now we can complete the picture
by showing it is consistent with ZFC that there are Whitehead groups of case I.
(Always there are non-Whitehead groups of case I, see [9].) So the result is a
conistency of a statement which at first glance should follow from MA + 2% >N,
but not only does it not follow, it contradicts MA + 2" > N,.

In §5 we prove the consistency of ZFC + &, +2" = 2" This is dual to [8] as
we show that even though CH fails, ©,, almost holds.

In §6, we prove another result.

Consequences and more results on abelian groups appear in [9).

ReMARKS. (1) In [8] theorem 2.4 Og holds for S € V¥, S¥ @mod D too.
(This is because if A C w,, A € V7, as P satisfies the 8,-C.C. for some a (0) < w,,
A € V%o, then we make the forcing in two stages. The first is P, ,, after which
O%, holds, hence Os. The rest of the forcing behaves just like P itself, so we
finish.

@) It is not hard to check that if VE(NSCw)(3SCS)
Stat (S)— Stat(S,) A (w; — So) € D] then this holds in V* too. (It suffices to
check this in V"o, as in the previous remarks, because the forcing by P
preserves stationarity (see [8] 1.8).) Let $* be the diagonal union of the S,
a < a(0). We can assume S € V%o, § N §* =, Let § be a P,o-name of S. For
each p € P, and working in V, let S, = {8 < w,: for some ¢q,p =q € P.q),
qr«“s€8S}te V. Clearly S, is stationary, so choose S;CS,, w,— SSED, S)
stationary. Now let §° be a diagonal union of the $%s (as |P.q)| =N,), so
w;— S°€ D, and it is clear that F7-*“S§ N S° is stationary”, as required.

NoraTION as in [8]; in particular k, |, m, n are natural numbers, A, g, x,
cardinals (usually infinite) and i, j, a, B, ¥, 8, &, ¢ ordinals; 8 is a limit ordinal.

§1. Uniformization properties

DeriniTION 1.1. Let A be a set, h be a function from A to the cardinals > 1,
and ® = {n*:i <i*}, a family of one-to-one sequences from A. (Essentially, A
is defined by ® and by h, so we write A = Dom ®; if h is constant, we replace it
by its value.)

(1) ®isof type (A, 1, 8)if i*= A, [A|= p, and I(n*) = & for each i. We say ®
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is continuous if for i <j <i*, { limit  1({) = 9 $({) if for all large enough B < ¢,
11 (B)=n7(B). We say @ is (forms) a tree if

nia)=7n3(B) > a=Br(Vy<a)lni(y)=17(y)]
We say @ has splitting < « if for each a, «
{n(a+1):9 €P, n(a)=a}|<«.

We say ® is almost disjoint if for i,j <i*, i#j there are a <I(n%), B <Ii(n?)
such that

asa'<lpHrAB=p'<I(n})=> ni(a)#n3(B).

(Remember, A and p are cardinals, but not necessarily 8.)

(2) We call f a candidate, if f = {f, : i <i*}, Dom f, = Range 7,, and for each
a <I(m), fi[nt(a) € h[n ()]

(3) We say the candidate f can be uniformized if there is a uniformizing
function g, i.e., Domg = A, and for each i <i* there is @ <I(n?%) such that

a=B<I(n?) > g[ni(B)]=fi[ni(B))

Let a = F(i), then F determines, essentially, g; we call F a compressing
function (for f).

(4) We say (&, h) has the uniformization property, if each candidate f can be
uniformized.

(5) G is a homomorphism from (&', h') to (¥, h?) if () G maps Dom @' into
Dom®? 5 €®' > (G(n(a)): @ <I(n)) € ®* or is an unbounded subsequence
of a member of ®°, and (b) h*(G(a))= h'(a).

Remark. (1) Those notions have obvious monotonicity properties which we
do not bother to mention.

(2) If 5o, €EP and
Vio, i) (Fjo, i) ie <l A i1 <I(n1) =i = jo<l(n3})
A= [ <l(n1) A 3Go) = 110

then clearly ® does not have the uniformization property. So the “natural” ®’s
are those with @ almost disjoint.

Cramm 1.1. (1) If ® has type (N),N,, w) then (d,8;) does not have the
uniformization property.

(2) If @ has type (A, u, «), and is continuous, A > u, then (®, u) does not have
the uniformization property.
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(3) If ® has splitting < « *, is continuous, and |®| > |Dom ®|, then (P, x ) does
not have the uniformization property.

(4) If there is a homomorphism from (®', k') to (&7 h?), (@ h°) has the
uniformization property, then so does (&', h").

Proor. (1), (2) follow from (3).
(3) For each a let
{be:B<B.=«x}={n(a+1):n(a)=anEP}

and for each i, and a <I(n?%), let f,(n*(a)) be the ordinal such that bp">=
n*(a +1). So f ={f,:i <i*}is defined, and suppose it can be uniformized and
let F be a compressing function. As [®|>|Dom®| for some i#j, and
nI(F(i))=n7(F(j)). Now we prove by induction on e« = F(i), n(a)=
7 (F(j)+ (a — F(i))). For a = F(i) we have just proved it; for a limit it follows
by the continuity of ®, and for a successor by the definition of f. Now clearly 7,

n; contradict uniformization (as they are almost disjoint).
(4) Easy.

CLaiM 1.2. Suppose MA +2% > N,.

(1) If @ has type (N, Ny, @) and is a tree, then it has a subset ¢’ of the same
type which is a tree of splitting = 2. By 1.1(3), (', 2), hence (®, 2), does not have
the uniformization property.

(2) If @ has type (N, No, ), then there are &', a tree with splitting <3, and a
homomorphism from (9',2) to (®,2), provided that ¢ is almost disjoint.

(3) For @ of type (8., No, @), (P, 2) does not have the uniformization property.

Proor. (1) W.lo.g. let © = Dom®. Let @, = {n € ®: for every n < w, there
are uncountably many v € ®, such that n [ n < »}. Clearly |® — ®,| =N,, hence
[®,]=N,.

Let P ={t:r a finite subset of ®,, which is a tree of splitting =2}.

We consider P as a partially ordered set ordered by inclusion.

We first show P satisfies the countable chain condition. Let t; (i < w,) be N,
elements of P. For each i there is n = n(i)such that n£veEt > nln#vin
So for some uncountable S, C wi, and n < w, i €Sy > n(i)=n.Lett, ={n: 1<
m;}. As (Vk)[ni(k)< w] and m; < w, there is an uncountable $, C Sy and m < w,
and  wvy," ', Vw1 such that for every i€S, m=m, 1qiln=y
(I1=0,1,--,m-1).Clearly ,j €S, > t, U, € P,so all 1, (i ES,) are pairwise
compatible.

Let ®,={n":a < w,} be an enumeration with no repetitions; D* = {t € p:
(B > a)n? €1t} for a < w;.
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Each D“ is dense (use ®,’s definition). Hence there is a (directed) G C P,
intersecting each D*. Now @' = U{t : t € G} clearly is a tree of splitting <2 (as
each t € G is; and G is closed under finite union). @’ has cardinality N, because
it intersects each D,.

(2) Similar,

(3) By (2), 1.1(4).

LemMa 1.3. Let ®={n, :i <A} have type (A, p, k).

(1) If A =2* then (®,2) does not have the uniformization property. In fact it
suffices to assume there is A C u, 2*'=|{n €®:|A NRangen|=«}|."

(2) If MA holds, and A <2", k = w, and for each countable A C Dom ®

[{n € ®: A NRange 7 is infinite}| = N,

and ® is almost disjoint then (®,N,) has the uniformization property.

(3) Suppose S C w, is stationary, and § € S > (Ja)d = w’a. Then we can find
for each 8 € S an increasing sequence of ordinals 15 of length w® converging to §,
such that ({ns:8 € S},2) does not have the uniformization property. Moreover
there are c, = “”2 for 6 € S such that for any f: w,—2

*) {€S:(An<w)(Vm = n)(Ak)(VI Z k)[f(ns(wm + 1)) = c; (wm + D)]}

is not stationary.
(4) If 2% =N,, S C w, stationary then for any choice of n; as in (3) we can find
s € “?2 such that (*) holds.

Proor. (1) Let 7w (@ <2"') be distinct, and | A N Range 7iw)| = k. Let
{fo:a <2*} be a list of the functions f:A —2. We define fi (i <A),
f. : Range 7 =2 by fiw(a)=1-fa) for a € Range ..

(2) Let {f. : i <A} (f : Range n: = w) be given, and we shall prove they can be
uniformized. Let

P ={h : h a finite function from A to w, and:

if 7 (a)=7,(B), « Z h(i), B = h(j) then fi(n(a))= fi(n (BN}

P is partially ordered by inclusion, and we shall first prove P satisfies the
countable chain condition. Let h, (a < ;) be N, pairwise incompatible members
of P.

Let Dom h, = {a}; I < n(i)}, g the function g (y)= m iff for some [ < n(i),
h(a)=n<w, v =1.0), foi(n.(n))=m. We can assume w.l.o.g. n(i)=n,

* In fact, in 1.3(1) it suffices to assume 2* <2*.
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and h Ch, h = h;|Dom h, and Dom h, - Dom h (i < w,) are pairwise disjoint,
so w.lo.g. h = (as h; | (Dom h, —Dom h ) € P are pairwise incompatible). So
clearly Dom g; are pairwise almost disjoint, and for i # j, g; U g; is not a function.
Let A= U,.,Domg; by a hypothesis, the definition of the g;’s, and as
Domh, (a < w,) are pairwise disjoint clearly for every i, for some j(i),

ji)Ea<w, »|A NDomg,| <N,

So for each limit § < w,, there is a(8) < § such that A, N Dom g;;)C A.e). By
several applications of the Fodour theorem, there is a stationary S C w,, such
that for 6 € S, g, [ (As N Dom g;,) is constant. So choose 6,, 5, € S, j(8,) < 8,,
SO gs, U g, is a function, contradiction.

(3) Let, for each a <w,, {n7:i <w,} be a tree of type (N;, N, w) and of
splitting < 3 with domain [, a + @]. We define 7;, so that for some increasing
sequence of limit ordinals a(n)= a(n,8) converging to 8, Rangen, =
U.-. Rangen3™.

By the proof of 1.1(3) for each a there are functions f7 (i < w,) so that not
only {fi: i < @) cannot be uniformized, but even any uncountable subsequence
cannot be uniformized. Define ¢, as follows:

cs(ns(on + k)) = f32(n5™2(k)).

(4) For €S let a(8,n)=U{n:(i):i <w(n +1)} (so it is a limit ordinal).
For each limit « let {f{: i <N} be a list of all functions f : a — 2. Now we define
¢s such that:

foreachn < w,andi < 8, a = a(3, n),

{k < @:fi(ns(wn + k)) # cs(wn + k)} is infinite.

LemMMma 1.4. (1) Let S be a stationary subset of w,, and for simplicity a € S
implies wa. = a. Let 15 denote always an increasing «-sequence converging to 8.

If ({ns : 8 € S}, 2) has the uniformization property for every 7, then ({n;:8 €
S},N0) has the uniformization property for every 7s.

(2) ({ns: 8 € S}, N,) has the uniformization property (where Range 7, is a set of
ordinals) if for every {c®:8 € ) (¢; € w), {n35": 8 € S},2) has the uniformiza-
tion property where for each 8, k,=2Z..,(c’(l)+2), and for k,=i<k,.,
n5(i) = ons(i)+i.

ReMARrk. Notice this proof does not work if we restrict ourselves to trees.

Proor. (1) By (2).
(2) It suffices to prove that any candidate {c®: § € S} can be uniformized for
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({ns : 8 € S}, N,). Define, for each § € S, ¢, as follows: k, =3, (c*(1)+2),
cs(i)=0 if for some nk,=<i<k..,~1, and c¢;(i)=1 otherwise. Now
{cs : 6 € S} can be uniformized for ({n3’: 8 € S}, 2), and its compressing function
is sufficient for the uniformization we need.

DEerFINITION 1.2. We call & ={n*:i<i*} free if there is a function F,
DomF = i* F(i)<lI(n?*), and for any distinct i,j <i*

[Fi)=a <ImDIA[FG)=B <I(n})] > ni(a)# n7(B).

CLamM 1.5. If @ is free then (@, x) has the uniformization property, for any

Proor. Trivial; we use F as a compressing function.

LEMMA 1.6. If there is a non-free ®, n € ® = I(n) = w, such that (®,2) has
the unifiormization property, then for some regular A > 8, and stationary S C {8 <
A :cf8 = No}, and a tree ® = {7, : 5 € S}, ns an increasing w-sequence converging
to 8 (for & € S), (P,2) has the uniformization property. It is obviously not free by
the Fodour Lemma.

Proor. Easy, by induction on [®].
Case 1. If [®|=N,, it is easy to prove it is free, contradiction.

Case II. If |®| is a singular cardinal, then by [10] for some ®'C®,
|®'| <|®|, @' is not free. Clearly @ too has the uniformization property, hence
we can use the induction hypothesis.

Case III. We are left with the case A = |®] is a regular cardinal and w.lo.g.
every &' C®, |®'| <|®] is free. Clearly [Dom®|= A.
We know that @ is almost disjoint (as (®, 2) has the uniformization property).

Case Illa. For some A CDom®, |A|<Dom® but the cardinality of
®,={n €d:(Rangen)N A is infinite} is A.

For every n €®, let ' be an w-subsequence of 7, Rangen C A (i.e.
' =)k <o)k <b,-o).

Let ®'={n':n €®d,}. Clearly there is a homomorphism from (®’,2) into
(9, 2), hence by 1.1 also (@', 2) has the uniformization property. As A = |®, ]| also
A =|®'| (as ® is almost disjoint) so |®'| = A >|A | D Dom®’; so trivially &' is
not free. Let 4 =|[Dom®'| <A, so w.lo.g. u = Dom®’, and let

O'={v,:8€S8}, $={8<A:cfd=N,, 8 divisible by uw andby || w}.
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We can choose a(8,n) for 8 €S, n <w such that § =U,_,a(8,n) and
a(d,n)=a(d’,ny>n=n', and an+l)=a(d,n+1)> a(§n)=
a(8',n) and a(8, n) is divisible by .

We let ns(n)=a(8,n)+v(n) for ES, n<w, and {ns:8 € S} is as re-
quired.

Case IIIb. There is no A as above. As |[Dom®|=|®|+N8,=A, w.lo.g.
Dom® C A, and let ® = {v, : i < A}. As Case Illa fails, for every i < A, for some
f()<A, f(i)=j <A implies (Rangen;)N i is finite.

Let So={8 <A : 8 a limit ordinal, and for every i < §, f(i) < 8}. Clearly S, is
closed unbounded. Let

S ={8 € Sy: there is i = & such that (Range ;) N & is infinite}.

We now show that § is stationary. Otherwise there is a closed unbounded set
$,CSo— S, and let S;U{0}={a(i):i <A}, a(i) increasing continuous. Let
O, ={n:ai)=j<a(i+1)}, so ®=U,_, ®. By the choice of S,, there is a
function F*: A — w such that o, €®,; k = F(j) implies n;(k)= a(i). Now by
the choice of | ®| as minimal each @, is free (as [®.| =] a(i + 1)| < A)so thereisa
function F, DomF ={a:a(i)Sa <a(i+1)} exemplifying it. Define
F:F(a)=Max{F*(a), F,(a)} when a(i) = « < a(i + 1). Clearly F exemplify ®
is free, contradiction. So S is stationary and working a little as in Case IIla we
can finish (using 1.1(4)).

§2. Consistency results

In this section 7, will always be an increasing sequence of length @ converging
to 8, § will be limit ordinal < w; and § a stationary set of limit ordinals < w,, and
® be {ns:8 €S} (with a common superscript attached to each of them, if
necessary). We let f be a function from w; (usually to w + 1).

The question we deal with is “if (®, h) has the uniformization property, does
(@', h') have it too?” and our results are the consistency of negative answers.

We first deal with the model V'* constructed in [8] 1.1 (and its notations) with
only one change: h will be a fixed function from w, to o, and instead of
demanding ¢; € “2 we demand everywhere

s € “w A (Vn)[cs(n) < h(ns(n)))

hence in the proof of 1.8 from [8] Q(W, k) will change accordingly, but remains
finite. So P depends on the choice of (®,h) and in V¥, (®,h) has the
uniformization property.
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This is a totally inessential change.

THEOREM 2.1. (V =L) In the Model V7 described above, let (®* h*) be
another pair and

(A) §* - S is stationary,
or

(B) for every closed unbounded C C w,, there are 8 € $* N S N C, such that for
every a <8, n<wthereis B, a <B <6, BEC, and

[T thnmpsm < mimy< ]’

<[T{h*(3(m)):m <w,a <ni(m)<B}.

Then in V7, (®*, h*) does not have the uniformization property (whereas (®, h)
has).

Remark. If h*(i) = o for every i, condition (B) always holds. But even if we
demand Range h * C w there is no problem to construct examples: if [ns(n) =
ns(m)—>n=marnsin=mn5Im] then let dI*=d, h*(n(n))=1+
Mg b (s (D)]"

Proor. Case A is trivial as Os._s holds in this case so we concentrate on case
B, first assuming ®*, h* € V. As V = L, O%.qs holds; we shall use this to define
in V appropriate ¢;’s at the end of the proof (from the proof we shall see the
demands on them).

So suppose ¢ = {c; : 8 € $*) is given, and we suppose for simplicity ¢ I-* ¢
can be uniformized (for ®*)”, and we shall get a contradiction.

As P satisfies the N,-C.C. we can replace P by some P, a(0) < w,, and let 1
be a name of such a uniformization. Let

N = (H(wz), £, Pa(o), ”_, T)

and N'<N be an elementary submodel of N, of cardinality N,, such that
A.[a. EN'|D{a.:n<w}EN' and a€bEN'D>aEN'. Let N'=
U.<., N., N, countable, increasing and continuous. We code N’ as a subset A
of wy, so that A N & codes (N, : a < 8). Now as O%- holds (in V) we are given
for each 6§ € S$* possible (N, : a < 8):(N2": a <8), so that for each (N, :a <
w;) as we get above {8 : (3In)(Va < 8)N2"= N.} contains a closed unbounded
set, hence for some & and n, (Va < §)N:"= N, and the condition from B holds.
We want to define ¢; such that if at last N2"= N, for a < §, and the condition
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from B holds then there will be p € P,, p F=o*“for infinitely many n < o,
7(ns(n)) # cs(n)’. We should remember that even if p,=p.. in P.q,
Dom p,({) = a, for each { € Dom p,, U ..., = 8, not.necessarily U, p. is
included in a condition of P,¢,. Hence we should repeat the trick of [8] 1.8, that
is, we define by induction on k < @, ax1 < @, W, and T,, satisfying (i), (ii), (iv),
(v) there with N2 for N, there (and we forget to say there that T,, Wi € N,).
At the end we shall get a set of conditions P, (see last paragraph of [8] §1) such
that for at least one ¢ there is g € P, p = q; now for each k and p; there is
ti € Q(W,, k) with maximal domain such that T(t;) = p.. Hence it suffices that
for each m < w, if (N>™: a < 8) satisfy the condition from (B), then there are k,
such that: for each t € Q(W,, k) with maximal domain for some /

U NER“T() R0 “r(na () # e (1)

a<§
More exactly T,, W, depends on m, so we should have written «, TV, W{; and
we define T¢, WY, a by induction on m + k, and a finite information on c;.

The point is that we have N, assignments and on each stage we have one
assignment and have defined already c; (/) for finitely many I’s only. So suppose
T., Wi € NJ, a = 8w, by (B) we find an appropriate 8 = N3™ N w,, and we can
find T', T. = T'€ N3™, such that for each t € Q(W,, k) of maximal domain,
T'(t) determines (by IH~@) what is 7(n, (1)) when 7,(n) < 8. Now we can define
¢s (1) for the I's satisfying a < 7, () < B, to contradict this.

We demanded ®*, h* € V, but this is not necessary, for each ®*, h*, as
P = P,, satisfies the 8,-C.C. for some a(0), h*, d* € V'-o, so we can make the
forcing in two steps: first by P, ), and then it is known that V*-o= O% (which is
what we really demand from V in 2.1), and then the rest of the forcing, where
the proof of 2.1 works. Note also that by Theorem 2.3, it may occur that (A) and
(B) fail, but still (®, k) has the uniformization property but (®*, h *) does not.

CLamm 2.2, If (An)(Vi < w){h.(i)= hy(i)") and (P, h;) has the uniformiza-
tion property then so does (®, h,).

Proor. Trivial.

THEOREM 2.3. For k =N, it is consistent with ZFC+ G.C.H., that for some
stationary S C w,, the assertion (¥5) fails but (®5) holds for each k < k, where

(®3) for every function F : *"2— « (a = US) there is g € *« such that for every
fe*2, {BES:F(fIB)=g(B)} is stationary.

ReMARk. By Devlin and Shelah [3] (®2) follows from 2" < 2™ clearly for
k <k, (@5 @Y.
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ProeLeM. Does (&%) or even @), follows from CH?'

Proor. Start with V = L, choose stationary costationary S C w,, and for
simplicity let k = k + 1 <N,, and like [8] §1, we defined P, (« = w;), P = P,, s0
that in V*, the statement (®~ ) fails for some specific F* € V. More exactly, for a
given F*:“"2>k, and g:w,—«, let Qf ={f:Domf an ordinal a < w,,
Range f C 2 and for every limit § = a, § € S implies F*(f | 6) # g(8)}. Now F*
shall be chosen later and g. is a P,-name for a function from w, to «, and
P,={p:Domp a countable subset of w, for { €Domp, pi{F*“p({)E
Q;’}. The proof that forcing by P,, does not change cofinalities, preserve
stationarity, does not add reals, and in V* F* exemplify @5 fails, is just like [8].
Now suppose k <k, and we want to show that (¥s) holds. So let FE€ V7,
F:“”2—>k, hence (as P satisfies the N,-chain condition) for some ¢ < w,,
F € V' and let F be a name for it. We have to define g € V" which exemplify
(®5) for F. Also let f€ V” be f:w,—2, and g, f their respective names.

Remember we have to define F*€ V and g € V% As in V, O holds, let
(S5 : 6 € S) examplify it. If S, C 8 encode an appropriate model (N;, P, I, q, f)
(as in the proof of 2.1), let A be the set of “ordinals” of N;, and as in [8] 1.8 we
define a function p;, ¢ € “« such that:

(1) Domp; = A, 8 = Dom p.({) for each { € A, each p, is a union of a generic
(for N;) set of conditions in P, [{ € A,C.[{=¢1L]> [po] ¢ = psl ] So p.
determine f[8 or f. [ 8.

(2) The functions p:({) ({ € A, ¢ € “«) are distinct (members of °2).

So we define F*|°2 such that F*(p.({)) = é(¢) (the range of F*is C«k as ¢
was a function from A to k). As (S;:8 €ES)E V clearly F*€ V.

For notational simplicity let £ = 0 so F € V. Analysing for which sets T C “«,
there is always ¢ € “x and p € P, p. = p; we see that a sufficient condition is:

in the following game Gm(T) player I has no winning strategy:
by induction on { € A, player I chooses i; < «, and a; < w,,
(*) a; >U, B, and then player II chooses ¢, <k, ¢;# i, and
B < w1, By > U, . Player Il wins if (¢, : { € A)E T and for
every limit § € A, U, a; (= U, B;) does not belong to S.

PROOF OF THE SUFFICIENCY OF (*)

We describe a strategy for player I: in addition to choosing i;, a; he chooses
p: € P, such that (c;: £ € A)E “k; ¢/ =c¢, for £ <{ implies p.[{ = p;, and
U£<[a€ é Dom pC (i) _—_<— «, and p‘ I+ “g( (5) = l‘(”-

' We now know that the answer is negative.
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As player 1 has no winning strategy there is a play in which he uses this
strategy, but player II wins. Now U c.p, is the required p.

Now “k = U, T, where for each ¢ € T, F(f: ] 8)=1 where f.[§ is the
value of f [ & as forced by P (remember we have assumed w.l.o.g. F € V). Now
player I cannot have winning strategy for all the game Gm(T;) (I <k).

Otherwise, let y be the order type of A. We can prove by induction on v, that
there is an increasing and continuous sequence (N;:i =y +1) of countable
elementary submodels of (H(N,),E), such that A, {p.:CE€ A) and the k
strategies belong to Np; and N; € N.,; and for every limit § =y, (N;:i=
8)E N;.iand N; Nw, & S. Now there are k plays, the Ith one (I < k) being

(i6, o), {co, Boy; (i%, @), (i, B -~ s (ipagh{cy By -

such that
(1) the moves of player II do not depend on |, i.e.

(co Bo ={ce B

(2) In the Ilth play, player I uses his winning strategy for Gm(T)).

(3) For each £, (-~ +;{is @9, (Cs B2 - “)e<c belong to Np...

(4) Player II chooses B;=(N;.iNw)—N,, and c;=ci=min{i € «: for
every I <k, i# i}

It is easy to check all requirements, so we get that (c¢: ¢ € A) € “« does not
belong to T, (by the Ilth play) for each I < k. So player II constructs ¢ € “«
outside U, T;, contradiction. So we define g(8) as an I <k such that in
Gm(T,) player I has no winning strategy.

THEOREM 2.4. Suppose, for simplicity, V = L, S is a stationary, costationary
subset of w;,, ®={ns:8 €S}, h: w,— w + 1 are given. We can chose stationary
disjoint Sy, S, C S such that the following will hold.

We define ¢, P, as in [8] 1.1, but the domain of ¢ is not necessarily S but a
subset of it (so we have more conditions), and fora =28 +1 (1=0,1) ¢ -7~ “¢*
has the form {c5:8 € S,), c; €, h(ns(n). All the work of [8] §1 holds, in V*
(P, h) has the uniformization property (&, = {n;:8 € S;}) but

(*) notonly (®, h) does not have the uniformization property, but ®,, ®, cannot
be separated, i.e. (in V') for no A C w, does

(VI €2)(V8 € S))[for all large enough n, 9, (n)E A & 1 =0].
REMARK. We can strengthen (*) to: for no [,E2, A C w, does

=1, & (V8 € 8,)(Ine)(¥n Z no)[1s(n) € A].
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This does not require essential changes in the proof.

Proor oF 2.4. For simplicity let h(i) = w for every i. For each limit § < w,
the diamond sequence ‘‘guess” for us models (N;:i<8), N/ <
(H(N:),€,P,F,P,f),p €EP, pli*f afunction from w, to {0, 1} which separate ®,
from ®,”, which are as usual.

As in the proof of 2.1, 2.3, we let A be the set of “ordinals’ of N; = U.ssN,,

def
and we can find p: (CE T = I, ., h(ns(n))),

[l ¢ =¢E1¢] 2 [Pl {=p1 ], Domp.=A, Domp.({)= 4,

pe determines (through It) f [ 8 as f. and we know that for some ¢ € T, p: = p for
some p € P.

The main point is that a large number of p.’s are not necessary: if § € S, the
splitting is necessary only for a« + [ even. So we have a free choice to determine
to which /, 8 € §,, and in what way to reduce the set of p.. Let

T,={¢ € T :for every n large enough, f; (n¥’) = 0}, T.=T-T..

As in the proof of 2.3, we define games Gm(!), I = 0,1 in a play of Gm(l), in the
{-th move: if { = I mod 2 then player I chooses ¢; <o, a; <w,, a; > U, a,
and if £ # | mod 2 then player II chooses ¢; < w, ; < @, a; > U ;@ (s0 unlike
2.3, each time only one of the players moves).

In the end player II wins if (c,:{ € A)E T;, and for each limit 6 E A U
{SUPA}, U{EAE S.

As in the proof of 2.3, for some [/ player I has no winning strategy, and this
implies that for some ¢ € T, p. = p € P for some p.

THEOREM 2.5. In 2.4, if h : w, — @ we can give a priori stationary Sy, $:C S,
and then define appropriate n; (8 € S, U S,) so the conclusion holds.

Proor of 2.5. Define 5, (8 € S,) arbitrarily. Now for every 8 € §;, the
diamond sequence gives us 8, € Sy, 8. < 8nsyy U,8.=86, and (N.:i = w?
increasing continuous sequence of countable models, which are (up to isomorph-
ism) elementary submodels of (H(N.), €,P,F,p,f) as in 2.4, N, N w, =&,
(N;:i =j)E N,,;. We have to define 7.

We define by induction on k, Ti, W,, 1, (k) as in the proof of 1.1 {8] (or 2.11
with N, for N, but the domain of W, consists of odd ordinals only (because
8§ €S, and

*) for every maximal t € Q(W,, k), T (c)F“f(ns(k))=0".
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If we succeed — fine; otherwise we use 8., to show f is not a counterexample.
We define T,;,, W, (I <w)asin 1.1 [8] (or 2.1) but with the models N, ..., and
Ms..., Such that Dom W, — Dom W, consists of even ordinals only, W, = W,,
Tio= T.. In the end we use the following Claims 2.5(1), (2).

CramM 2.5(1). Suppose I isatree, I = U, I, I, the nth level of I, |I,| = 1.
Let L =AUA,, A;NA,=F and k =V, UV, VNV, =J. Then we can
find 1 €{0,1} and J C I such that

(i) LcJ,

(i) fa€l,NJ, n€ V,n<kthen each immediate successor of a isin J,

() ifa€ I, NJ, n€ Vi, n <k then at least one immediate successor of a
is in J,

(iv) I. NJ C A,

Proor. We prove by downward induction on m =k that for each a € J,
there is J, C I and I, € {0, 1} satisfying (ii), (iii), (iv)whenm =n =k anda € J..

For n =k let J, ={a},
{O a EAo,
I, =

1 GEAl.

Suppose we define J,, I, for every a € J,, n' > n; and w.lo.g. n € V,. If for each

immediate successor b of a, [, =0, let I, =0 and J, = {a}U{J, l a<bel,.}.

Otherwise a has an immediate successor b, I, = 1, andlet I, =1,J, ={a} U J,.
Clearly for the a € J,, J, is a J as required.

CLamM 2.5(2). Let v, £ be ordinals, I a tree, I = Uosyl‘,, I, the ath level,
| I,] = 1, with unique limits.

Let A; ({ < £¢)be a partition of I,, and V, ({ < &) a partition of y, and each V;
is the union of a finite number of closed intervals. Then there are JC I, { < ¢
such that (i}-(iv) of the previous claim holds, with { replacing 1

Proor. By 2.5(1).

THEOREM 2.6. Suppose, e.g., V =L, and S is a stationary costationary subset
of i, ®={n;: 8 €S}, h: w,— w and P are defined as in 2.1 such that in V",
(®, h) has the uniformization property.

Then we can define {n%:8 € S}, such that: for every A Cw,, A€ V* for a
stationary set of 86 €ES, for every n large enough, (ni(2n)E A)=
i2n+1eA).

Proor. Left to the reader.
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THEOREM 2.7. Suppose V = L, S C w, stationary and costationary, and & =
{ns : 8 € S}. Suppose S; is a countable family of functions from Range 7, to 8.

Then for some forcing notion P, it does not change cofinality, stationarity and
does not add w-sequences, and

(1) every (cs: 8 €ES), cs € S;, can be uniformized but

(2) (@,2) does not have the uniformization property.

Proor. Left to the reader.

So as usual we are given 8, (N; : <8), p, f and we want to define the right p.’s.
Let S; = {c.: n < w}, so we can (in [8], 1.1, more exactly 1.8, p. 199) redefine:

(i) Q(W,k)={r:Domr is an initial segment of W}, we let r € Q(W, k), we
define ¢(7) as a function with domain Dom W,

tENE@) = cloT{ns(i): awey = ns (i) < au};

(ii) we say p is consistent with r € Q(W, k) if p is consistent with ¢(7).

Now we define Ti, Wi € N,,, e <axs (and U, a, = 8). The point is that
though eventually Dom W, has to grow, we can hold it fixed, for ‘‘a long time”,
by computation (as |Dom W, | is smaller than 2’ for big enough /). We can define
¢s so that f will be forced by some condition not to be eventually equal to it on

MNs-
We leave the details to the reader.

THEOREM 2.8. Suppose V =L, S C w, Sstationary, costationary and &=
{ns : 8 € S}, s increasing sequence converging to 8, t a two-place function on .
We can find a forcing notion P, as in the previous theorems, such that

(1) in V¥, for every h:w,—> o, (®,h) has the uniformization property;
moreover, for every h : w,—> w, we can uniformize

(c;::8ES), if ¢s € “w, c¢s(n)<t(h(ns(n)),n),
(2) (@, N,) does not have the uniformization property.

ProOF. Again as in [8] §1, this time the trees are finite though we do not have
an a priori bound on the size of the tree after n stages; so (2) is easy as in 2.1.

§3. The uniformization property and Whitehead groups

Let a fixed triple (®,d, G) be given (for this section). & ={n,:8 <A},
Ns=(Ms(n):n<w); n#m > ns(n)# ns(m); ns(n) a successor ordinal < §,
and the n,’s are almost disjoint. Also d =(d; : 8 <A), d; = (ds(n): n < w), each
ds;(n) is a natural number > I and d;s(n) divides ds(n + 1), ds(n) # ds(n + 1).
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Let d3(n)=ds(n)/ds(n — 1) where we stipulate ds;(—1)=1. G is an abelian
group, generated by x..; (i <A), ys = y,, (8 <A, § always limit) and 2} (§ < A,
n < w) with the only relations:
ds(n)zi=ys~ 2 bix, (1)
Isks(n)

where b;EZ (the integers) and the greatest common divisor of ds (n), b
(ks(n—1)<I=ks(n)) is ds(n—1). We write G =G(®,d) if by =d,(l),
ks(n) = n. Our sysem is a tree if ® is a tree, and in addition 7sey(!) = 9s0)(1);
kso(n —1)<I=kso(n) implies kso(m)=ksey(m) for m=0,--- n
N (0 (ks@(n) + 1) = sy [ (ks(n) + 1) and bFy= b3y, for m = kse(n) and
dso(m) = dsqy(m) for m = n.

Aset SCA is closed if 5€ESAn<w > n,(n)ES and for a closed S let
G(S) be the subgroup of G generated by x..1, ys, 23(i + 1E S, 8 €S, n < w).

We call @ free if there is §:limA — @, s.t. 9(8)=n<w, §,# 8,€limA
implies 75,(n:) # ns(n.), where limA ={8:8 <A limit}. We call & A-free if
every ' C D, |®'| <A, is free.

ExpLANATION. If we would omit the generators zj; we would get a free
group. But as we have defined, for each §, we make it somewhat more difficult
for G to be free. However, as the 7, are almost disjoint those reasons are
unrelated. Note that if G, is the subgroup generated by the {x..,:i + 1 <A}, then
in G/G,, y, is divisible by infinitely many integers: the ds(n) (n < w). So if
ds(n)=n! then G/G, is, essentially, a vector space over the rationals.

CLamm 3.1. Suppose « is an (infinite) cardinal. If ® is k-free then G is
k-free. If ® is a tree, G k-free then ® is «-free.

PROOF.  As the condition for k = N, implies the condition for x = N,, we can
assume K. > No.

Let H C G, | H| <k, then for some closed S C A, |S| <k, and H C G(S). As
every subgroup of a free group is free it suffices to prove G(S) is free. Let
g:SNlimA - w be as mentioned in the definition of freeness. Let

S'={ns(1):6€ 8,1z g(8)},
Sy=S-S'- S NLima.

We define S; by induction on i such that:
(@) if NLimA, g(8)=n, and 7n,(n)E S, then §E S,
(*) (b) if NLim A, then for every [ < w, n5(I)E S,
(c) S is increasing and continuous.
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Now S, is defined: for i limit there is no problem; for i =j+1, choose
8 € S - S, with minimal g(8) and let

Sii=8 U{8}U{n:(l): I <w}.

So clearly for some a, S.=3S, and it suffices to prove that G(S,),
G(S:.1)/G(S) are free. This is quite easy.

We have proved one implication, the “only if” part. Now we prove the “if”’
part. So let S C A, | S| < «, and we should prove {7, : § € S} is free. For this end
we prove a somewhat stronger assertion:

suppose SoCS:CA, |Si/<k, So and S, are closed and

*) 8€8,—S, implies {n:;(n):n<w}nN$S, is finite and
G(8:)/G(S,) is free (abelian group), then {n;:8 € S;— S,} is
free.

Why is (¥) enough? For a given S, we let ;=S U{n;(n):n<w, 6 €S},
So =D then G(So) = {0}, G(S)) is free by the hypothesis (as | G (S1)| = | So| + No <
k), so (*) gives the required conclusion.

Now we prove (*) by induction on |S,—S,|. If |S,~S,/=N,, then
{ns:8 € S,— Sy} is free because it is countable and {n;:8 € limA} is almost
disjoint. Suppose now u = 8§;— S, is uncountable. Note that G(S,)/G(S,) is
generated by p element: x.. + G(So), Yo+ G(So), 25+ G(So) i +1E€ S§,- S,,
8E S -8, and n <w); let {1, + G(S,):i < pu} be a free basis of G(S.)/G(So).
Let

K={§:8,CSCS,, S is closed and G(S)/G(S,) is generated
by {ri+ G(So): 7 € G(S)} and i ES - S,, n < w, and if (38)
Ns(n)=1i then (36 €S - Sy) ns(n)=i}.

Clearly (VS C S)(AS'EK)(SCS'A|S' = So|=|S — So|+8) and K is closed
under increasing chains. Hence we can find T; (i = u) increasing continuous,
T0=So, TF, =Sl, ‘T:"So'</.l. for l<[L, and 'I‘,EK.

Facr. f TEK, 8 E€S8,~ T then {n;(n):n <w}N T is finite.

We delay the proof of the Fact. Meanwhile, clearly Ti., T; satisfies the
requirements on S;, S, in (*) so by the induction hypothesis on u, T;,, — T; is free
hence some f; exemplify it. Define f, Domf = (S§;— Sg)NlimA:

If 8 € T...— T (this holds for one and only one i) f(8) is the maximal element
of {f:(8)}U{n + 1:9,(n) € T.}; there is a maximal element by the Fact.

So we have just to prove the Fact.
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Proor oF THE Fact. If S, 8 € §,— 8, are a counterexample, as @ is a tree,
ns(n) € S for every n. So in G(S,)/G(S), ys is divisible by ds (n) for every n, and
this shows G(S;)/G(S) is not free, contradiction.

Cramm 3.2. If A is regular and {6 : (Vn)[ns(n) < 8]} is a stationary subset of
A then @ is not free.

ReMARk. Claim 3.2 indicates a way to produce many non-free ®; and 3.1
gives the expected translation of properties of G to those of ®.

Proor. (1) Suppose f:limA - w exemplify @ is free and we shall get a
contradiction. Let f':lim& — A be defined by f'(8)= n:(f(8)), so clearly
8 €S > f(8)< 8, hence by the Fodour theorem f' is constant on some
stationary set $’'C S. But any distinct 8,, 8, € S’ contradict the choice of f.

ReMark. In fact we can devise a necessary and sufficient criterion for the
freeness of G.

DerinmioN 3.1, Let H be a torsion-free group.

(1) For¢y,¢c: € H,d € Z we say ¢, = ¢c;modyd if forsome x € H, dx = ¢, — c..
This is equivalent to saying c./dH = c¢,/dH where dH is the subgroup
{dx : x € H}.

(2) E«(H) is the group' consisting of the sequences ¢ ={¢;:8 <A) where
s ={cs(n):n<w), cs(n)€ H, and ¢s(n + 1)=¢;(n)modyds(n). We let c3(n)
be the unique solution of ds(n — 1)x = ¢s(n)—cs(n — 1).

We call ¢ appropriate for d (and H).

(3) E\= E.(H)is the subgroup of E, consisting of those ¢’s such that for some
h:A—H,

ca(n)Eh(S)—l > )béh(na(l))modﬂds(n).

ks(n
(4) We let E = E(H) be Eo/El.
Cramm 3.3. E is isomorphic to Ext(G, H).
Proor. Check the (computational, not categorical) definition of Ext (see [4]).

DEeriNTION 3.2, Let @* be the set of finite sequences of non-zero natural
numbers d = (d,, - - -, d._,) such that d, divides d,.,. Writing ¢, =c,mod,d we
mean ¢; = c;modyd,_;.

' Addition is coordinatewise.
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CLamm 3.4. We can define for every d € 9* a set H[d] C H of representa-
tives mody d, such that:

(0) 0€ H[d],

(1) H[d[k]C H[d],

(2) H[d] is a set of representatives mod,d,

(3) if a€H[d], b€EH[dIk], a=bmodd|k then a-be H[d] and
(a - b)/d(k - I)E H«dk Jdi-yy i/ Qiery - vy dn—l/dk——l)) where d = (do, -+, dy—y).

Proor. First define H[d] for every d of length=1. Now for d=
<d07' T dn—l)e 9* let

H(J) = { 2 dl—lxl X € H(d,/d,_l)} .
1=0
(We stipulate d_, = 1.)

Cramm 3.5. Let for d € 2* H[d] be a set of representatives modxd. Then
for every ¢ =(c;: 8 <A)E E, there is ¢’ =(c;: 6 <A), c;(n) € H[ds | (n + 1)],
such that &'~ ¢ € E,.

Proor. By induction on n.
Choose c;(n)E H[ds [ (n +1)], cs(n)=cs(n)modyds[(n +1). Now h =0,
show ¢’ — ¢ € E; (see Definition 3.1(3)).

CLaM 3.6. Suppose (@, g) has the uniformization property, where

g(i)={x: for some 8 n and m, x € H[d,[(m +1)), x =
Omodd,[m, ns(n)=i and ks(m —1)<n = ks;(m)}

(remember d%(n)= ds;(n)/ds(n — 1); more formalistically, we should replace
g(i) by |g(i)|). Then Ext(G, H)=0.

Proor. By 3.3 it suffices to prove that E, = E,. So assume we are given an
appropriate ¢ € E,, w.l.o.g. as ¢’ in 3.5. Now we apply the uniformization
property of (®, g) for the case. We attach to 7, the sequence e; = (e;(n): n < w)
where e;(n) is defined as follows. First we define e;(I)€ H, I < ks;(m) by
induction on m such that ¢;(n)= — Z,5i,n) bses (1) modyds (n).

For n =0, we can first choose the e;(!)’s as integral multiples of ¢, (0), and as
the greatest common divisor of the b (I = k,(0)) is 1 = d, (— 1), this is possible.
Then we can replace them by equivalent members of H ((ds(0))). We can
continue to define for n + 1 such that

en+)=— X  bies(I)moduds(n +1)

Iskg(n+1)
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and for ks;(n)<I!=ks(n+1), e(I)=0moduds(n) (remember c,(n+1)
=¢s(n)moduds(n)); let es(l)=es(e)/ds(n)€ H[{d¥(n))]. So es=(es(I): 1<
w) are defined (by 3.4 they are suitable for the application of this uniformiza-
tion). So there is a function f*:limA — w, such that: n, = f*(§,) (I=0,1),
NaNo) = ns(n1) (then e;(n) are equal (for I =0,1)). We can assume f*(8)=
ks (f°(8)) for some f°:limA - w.

We let So= U{n,(n): n = f(8)}. We now define an h : A — H exemplifying
CEE, On A-limA-S, h is constantly zero. We now define h(ns(n))
(8 €limA) and h(8) (f(8)=n, 8 ELim A) as follows:

() if n=f*(8), h(8)= cs(n)+ Ziznbsh(ns (1))
and

(ii) forevery 8, n > f*(8) let h(ns(n)) = es(n) (well defined as f* uniformize).
There is no problem in the checking.

The following is a (one-sided) translation of the Whitehead problem to a
combinatorial one.

Concrusion 3.7. If there is a non-free ®, and (®, 2) has the uniformization
property then there is a non-free Whitehead group.

Proor. By 1.6 w.lo.g. ® is a tree. By 3.1, G = G(®, d) (where d;(n)=2"
for every n) is not free. By 3.2, G is a Whitehead group.

ReMark. (1) There is no real difficulty in generalizing this section to not
necessarily torsion free H. In such cases ¢ *(n) is not uniquely defined.
A partial converse to 3.7 is:

CrLaim 3.8. Suppose @ is a tree G=G(P,d) and let g be such that
g(i)={H/d%(n)H | whenever n;(n) = i. Then Ext(G, H) = 0 implies (®, g) has
the uniformization property, provided that:

(i) H=1Z
or

(i) H = Z, = the direct sum of N, copies of Z.

Proor. Let{c3(n):n <w) (8 €limA)be given, ci(n) € H[(d%(n))] and we
should find f :limA = @ such that §,# 8, Elim A, n = f(8,), n = f(8.), nafn) =
1s(n) implies ¢ (n)=c% (n).

Define ¢;(n) by

cs(n)=cs(n— 1)+ ds(n - 1)ci(n) (c:(—1)=0),
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¢s ={cs(n):n <w), ¢ =(cs: 8§ €ELimA). As we assumed Ext(G, H) = 0, there is
h as in Definition 3.1 (3).
So clearly ns(n) = ns(n) implies

cs,(n)— cs(n) = h(8,)— h(8;)mod ds (n).

We have to define f, and show that if in addition n = f(8,), n = f(8.) then
cin)=ci(n).

Case (a): H=1Z

We could have chosen H[(d)] = [0, d) so H[(d,, - -, d.-1)] = [0, d.-,). We can
assume for some m €{0,1,2} ¢3.+m=C3usms1=0 (We just decompose our
problem to three). So w.l.o.g. m =0.

Now if ds(n)>8|h(80)|, ds(n)>8|h(8,)|, then either (a) cs(n)—cs(n)=
h(80)— h(8,) or (b) cs(n)—cs(n)—(h(8o)— h(8:))= *xds(n) but if n is =
1modz3 then ¢;(n) = cs5(n —2), 0= ¢ (n —2) < ds(n —2) hence

[ca(n) = cs(n)| <2ds(n —2) < ds (n)/2.
But remember
[1(80)] < dsy(n)/8,
[1(8,)| < ds(n)/8.

So clearly (b) cannot hold. Now it is easy to prove that if d(n —3)>8h(5))
then c%,(n—2)=c% (n—-2), so clearly defining f(8) as the first n such that
ds(n —3)>8|h(8)] satisfies our requirement.

Case b: Let Z,, be freely generated by {x, : n < w}. Now w.L.o.g. c}(n)is in
the subgroup generated by {x, : n = < w}, and choose f such that h(5) is in the
subgroup generated by {x, : [ < f(8)}.

ReMARK. In 3.8, the essential property of Z,, is the infiniteness of each g(i).

THEOREM 3.9. There is a non-free Whitehead group of cardinality N, iff some
tree (D,h) has the uniformization property, |®|=8, h(a)>1 for every
a €EDom h but ® is not free.

Proor. Let to the reader.

§4. The uniformization property for some (®,2), ® of type (Ni, N, w) is
consistent.
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THEOREM 4.1. Suppose 2" =N, and Tisatreeh:T—>w, T=U, .. T, T,
— the nth level, and for each ! < w, for infinitely many n <w, for every
ag, "+, 4 € T, ao has more than T{h(b): b = a., m < I} immediate successors.

Then there is a ® of type (R, R,, w) such that

(* foreachn €®, {n(n):n<w}isabranchof T, n(n)eT,

and if k <w, ni€ED fori < w, | <k, then for some n < w, and distinct a, € T,
(I<k) and w C o,

(i) a =nln) for each i € w,

(i) fori#Zj€Ew, nin+1)#n(n+1),

(i) |w|> e Myza B (D).

Proor. Quite standard.

REMARK. Alternatively we can define ® as a generic set of branches. For our
purpose this forcing does not change, and we can have [®] > N,. (The conditions
have the form {a: € nioy: 1<k}, @ €T, i(l)<w;, i(l)=i(m)> a,a, are
comparable.) We can also in the main theorem make 2" any regular cardinal,
and do not assume any instance of G.C.H.

MaiNn THEOREM 4.2. Suppose G.C.H. holds; & satisfies (*) from Definition
4.1. Then there is a set of forcing conditions P = (P, =) such that

(1) |P|=N,, P satisfies the 8,-C.C.

(2) In V%, (®, h) has the uniformization property.

Proor. Let & ={n;:{ < w}.

For each candidate f let Pr be a set of forcing conditions which will give a
general compressive function. That is, Pr is the set of functions g, such that
Dom g is a finite subset of w,, for { EDomg, g({)< w, and for {, £ € Domg

(Vn)[g@)=nrg€)=n rn(n)=ne(n)—= fr(n:(n)) = fe (ne(n))]

the order is inclusion; trivially, P satisfies the N,-C.C. and the generic G is as
required. But we have to iterate, in order to take care of all f’s, including the
new ones. On iterated forcing see, e.g., [6].

So we define by induction on a = w, a set of forcing conditions P,, and
carefully chosen names f* = {f2:£ < w,}, such that I “f* is a candidate for
(®, k). The elements of P, will be all finite functions p, Dom p C a, for each
¢ € Domp p({) is a finite function from w; to w, and p [ { F “p({) € Pr”. (So
the elements of P, are in V)

The order is defined by g = p iff { EDomgq = q({)Cp({). Now P = P, ; the
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only non-trivial point is to show P satisfies the N,-C.C. For this we prove by
induction on a = w, the following stronger condition:

(**), If k <w, andfori < w,, | <k, p; € P, and ni€ ® and n, < w then there
are n <w, n>n,, distinct a,,- -, a1 € T and w C w, such that

) a=nin)forl<k i€w,

(i) fori#Zj€Ew, nin+1)#n{n+1)or ni=19)

(iii) |w [>T Mysq ki (D),

(iv) there is q € P, such that p, =g for each i E w.

Case I: a=0
There is nothing to prove.

Case II: a=w,
Then for some B < a, p; € P, for every i, so (¥*), gives the desired conclusion.

Case IHH: « limit, cfa=w
Let a = U, . a,, then for each i, for some n(i), p. € P, ,, so for some n,
[{i : n(i) = n}| = 8,, so by renaming, (**),, gives the conclusion.

CaselV: a limit, cfa = w;

Let a; (i <w,) be increasing and continuous, @ = U,.,, a. For each i let
h(i) = sup({0} U (Dom p; N i)); so for i >0, k(i) <i, so for some i(0), S ={i <
w,:h(i)<io} is stationary. W.lo.g., i,j €S, i <j implies p; € P,. Now for
i,j €S, p, p; are compatible iff p; [ au(), p; [ @i, are, so rename and use (**);,.

Case V: a=8+1

W.lo.g. |Domp;(B)| is constant, so let Domp,(B)={n!:k =1<k(0)} and
w.Lo.g. p.(8)(n}) depend on [ only. Now we apply (**), to h(0), p/ =p. | B E Ps
and 7! (i < wy, 1 < k(0)).

We get appropriate n = n, + no, a; (I < k(0)), wo and g, satisfying (i)-(iv) from
(**)g. Clearly we can find g, € P, qo = g, such that for each i € w,, k =1 < k(0)

and m=n
gk “fe(m)=c(Lm)’  where ;= 1,.

Clearly c;(I, m)<h(n)(m)), hence the number of possible functions c; is
= nksl<k(0)nbsa,h (b)
As |[wo]> Tk lpsq B (D) clearly for some ¢, w={i € wo:¢; =c} has
cardinality >I1,.. II,5, i (b). Now it is easy to check that
9=q:U {<I3, U pf(B)>} € P,
i€Ewg

and n, a, (I <k), w, g exemplify the conclusion of (**),.
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ConcLusion 4.3. It is consistent with ZFC that some @ of type (N, o, )
have the uniformization property (provided that ZFC is consistent). In this
model there is a Whitehead group of cardinality N, which satisfies Case I from

[7].

§5. Club is not equivalent to diamond

For a stationary S C A, A regular Os means there are S, C a for « € S such
that for any ACA, {« €ES: A Na =8,} is stationary. (O is O,,.) Jensen [6]
introduces this principle and shows it holds if V = L; and it is widely used. Note
that O = A~ = A so O, > 2™ =N,. This is discussed in Devlin [2].

Ostaszewski suggests a version called & = &, where for a stationary S C A
(A regular) &s means: there are S, C a unbounded in a, for each « € S such
that for any unbounded S C A, S, C S for at least one a € S (equivalently, for a
stationary set of such a’s). Our result may be helpful in proving consequences of
the diamond are independent of CH. On forcing, see e.g. Jech [6].

Burgess and Devlin show CH+ & = &, and in fact A =A™ + &5 S O (if
S. exemplifies &5, {A; i <a} enumerate {A C A :|A|< A}, each appearing A
times). Let B, = U,cs A, for a €8, so for each A C A let j(y) be the first
j>Ug<,j(B) such that A; = A N(U;s,j(B)). Now J ={j(y):y <A} is un-
bounded, so for some «,S. CJ hence B,= A Na.

In Devlin [2] and in a list of problems of Fleissner, it is asked whether
% = CH (equivalently # = <). The answer is negative. Baumgartner had
proved years ago the consistency of a weaker assertion with 2" > N,: there is a
family of N, countable subsets of N,, such that any uncountable subset of N,
contains one of them.

THEOREM. It is consistent with ZFC that & whereas CH fails, and e.g.
2% =2" =N, (we can give 2", 2" any reasonable value).

Proor. Start with V = L. Use forcing. First add 8; subsets of ,, by the
forcing: P°={f:f a function from a countable A C w; to {0,1}} ordered by
inclusion (so in V*°, 2% = R,, 2" = N, = 2*2 and cardinalities are preserved). Next
collapse 8, by the forcing P' = {f : f a function from a finite A C  to w,} (so P’
collapse N, and preserve cardinals # N, and preserve 2* for A # N). (V)" is as
required by the following two facts:

Factr 1. If &5 holds, A =supS is regular, |[P|<A, P a set of forcing
conditions then in V* (i.e., any generic extension of V by P) & holds. This is
because in V¥, any subset of A is the union of =[P/ substs of A which belong to
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V. Hence any unbounded subset of A in V* contains an unbounded subset of A
from V. So if (S, :a € S)E V exemplifies &5 in V then it exemplifies in V*
too.

Facr 2. IfOs holdsin V, A =sup S isregular, SC{8 <A :cf6=u}, Pisa
u “-complete set of forcing conditions, then in V% & holds.

By Os we can define M, = (a, =, R.) for a € S such that for any (partial)
order =* on A, and two-place relation R on A, for a stationary set of a’s,
=,==*la, R, = R|a Foreach a € § choose ¢(,<a {fori <p), a =supél;
and choose inductively on i <pu if possible B., vy, such that o =0, {L=vy.,
R.(BL, v and BL(i <p) increase by=*with i. If we succeed, let S, =
{ywi<u} and if we fail, let S, = {¢,:i <u}. Now {S, : « € S} exemplifies &g
even in V*. For suppose p € P, p -“7 is an unbounded subset of A”’. As Oy,
clearly A* = A, so we can choose Q C P, such that |Q|= A, p € Q, any chain in
Q of length = u has an upper bound and for every q € Q, a <A, for some
GFE€EQ a'>a, q=q', q¢'F“a’€71”. Let Q={q(i):i <A}, go=p, and define
P =% iff q(i)=q(), R = {0 )):q()Fj €77

For some a €S, M, is an elementary submodel of (A,=* R), and any
increasing chain (by =*) of length < x has an upper bound in it. So we succeed
in defining B., v. as required, hence q(8:) € Q (i <) is increasing, so it has a
bound q. Soas B2=0,p=qgo=gq;and as g(B)=¢q,qFr“y.E1”.SoqF“S.C
7 and g, = q, hence we finish.

§6. For many G, |Ext(G,Z)|# N,

The motivation of the following theorem was whether for some abelian group
G, |Ex(Z, G)| = N, (see Hiller and Shelah [5] where it is proved that when V = L
there is no such G). The main point is that for N,-free G, Ext(G,Z) has
cardinality 1 or=2". By [5] this has consequences in algebraic topology. We
want to prove this without the hypothesis V = L, but our result only implies this
in many cases.

Noration 6.1. Let « be a cardinal, {A, : i € S} an indexed family of sets, and
9; a k-complete filter over A, A* = U,c5A;. Let P(S) be the family of subsets
of S. A colouring of A; is a function ¢ : A; —{0, 1}, a T-colouring (for T C S) is
an indexed family {¢;:i € T}, ¢; a colouring of A;. Let 0, be the constant
function 0 on A, 0, ={0,:i € T}. We let, for TC S, {c!:i € T}=1{c?:i € T}if
some f:A*—{0,1} exemplify it, i.e., for each i€T, {a€ A :ci(a)=
c¥(a)+ f(a)mod2} € 9.. Clearly =~ is an equivalence relation, and let u(T) be
the number of equivalence classes.
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We call f: A*—{0,1} a solution of {c,:i € T} if it exemplifies its =~-
equivalence to 0.

We say T C S is separated if for some A CA* foreachi€ T, AANAEP,
and foreach i€ S—-T, A - A€ 9.

THEOREM 6.2. Suppose there is no measurable cardinal k, and i € S such that
k <k =|A;|. If some {c; : i € S} has no solution (or equivalently u(S)>1) then
@ (S)= 2%, Moreover 1 (S)Z «* except, possibly, when there are infinitely many
measurable cardinals > x, <|S|. Also if |S|=«" then u(§)=2"".

Proor. Let E be the family of subsets T of S satisfying
(a) every (¢, :i € T) has a solution,
(b) T is separated.
We now show E is an ideal (over S). For this we have to show:
(A) SEZ E.
This is so, as by hypothesis some {c; : i € $) has no solution, contradicting (a).
(B) If TEE and T\C T then T,EE.
T, satisfies (a) trivially, and as for (b) define ¢; (i € T) as follows:

0 ieT,
c(a) =
1 IET—Tl.

By (a) for T we have a solution f and by (b) a separating set A C A* for T. Now
A N{a:f(a)=0}is a separating set for T,.

(C) E is closed under union (of two).

If Ty, T.€ E, we can assume they are disjoint (by (B)), so if A;, A, are
separating sets for T,, T, resp. then A, U A, is a separating set for T, U T, (as
each % is a filter), so T, U T, satisfies (b). As for (a), let {c;:i € T, U T3} be
given, then we can find solutions f,, f, of {c; : i € T\}, {¢. : i € T} resp. and then
HTAIULT(A*— A,) is a solution for {c,:i € T, U T,}.

(We remark that E is in fact x-complete, but we do not need this.)

Now

CLaM 6.3. S is not the union of k members of E.

Proor. Let T, € E for a < «, and suppose U..., T. = S, and we shall get a
contradiction by showing every {c; : i € S} has a solution.

An E is an ideal; we can assume the T.’s are pairwise disjoint.

For each a <k, as T, € E there is a separating set B, for it. We can assume
that also B, (a < k) are pairwise disjoint, for if B, = B, — U, B, then for
ig T,
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A -B.DA -B, €9 hence A, - B.€ %,

and for i€ T,

A NB.=(ANB,)- U (A —Bg)= N [A NB, - (A NB,)]
p<a <a
as B# a, i€ T, [AiNB, — (A NB)|E D, but a <k, 9P, is k-complete, so
A, NB. €Y.
Now let us show each {c, : i € S} has a solution, for let f, be a solution of
{c.:i € T,}, then U, (f.] B.) is a solution for {c,: i € S}.
This contradicts a hypothesis, hence the claim holds.

Let E° be the closure of E under unions of = x sets, so E° is a non-trivial
k *-complete ideal over §.

CLaM 6.4, If there are A pairwise disjoint subsets of S not in E then
n(S)=2"

Proor. Let S, (@ < A) be pairwise disjoint subsets of S which are not in E
and suppose u(S)<2* For each I C A let ¢’ ={c/:i € S}, where

0 ie Yy S.
acl
ci(a) = [
1 otherwise.

So there are distinct I, J C A such that ¢' =s¢”; and let f : A* — {0, 1} exemplify
it. Let K = U{S,:a €I =a¢ J}, thus we can check that {a : f(a)= 1} sepa-
rates K. So for every family of A disjoint subsets of S not in E, there is a
non-empty subfamily whose union is separated. As we can partition {S, : a <A}
into A pairwise disjoint families we have A pairwise disjoint S, C S, each S, is
separated but does not belong to E. Hence each S, fails to satisfy condition (a),
so some {c{:i € T,} have no solution. Define for each ICA, & ={c!:i € S}
where

ci=

{c? i€ET, ac€cl
0 otherwise.

Then ¢, (I C A)is a family of 2* pairwise non =s-equivalent S-colourings, so
we prove the claim.
It remains to find those A sets, so Theorem 6.2 follows from

CLamm 6.5. (1) P(S)/E is infinite, hence there are in it P(S)— E N, pairwise
disjoint sets.
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(2) Letting A be the first A such that in P(S)— E there are no A pairwise
disjoint elements, then A is regular and 2* = «*, except, maybe, when there are
infinitely many measurables=|S|, > «.

(3) If |S|=«", then A =«".

Proor. (1) Otherwise T, - -, T, are pairwise disjoint, U/_, T, = S, T\& E,
but EIT,={ANT,:A€E} is a prime ideal or equivalently 9'=
{T.— A : A € E}is an ultrafilter over T,. If no @' is « *-complete each T, is the
union of = k members of E | T, hence § = U,_, T, is the union of = x members
of E, contradicting 6.3. So assume 2, is « "-complete iff | =m where 1 =m =n,
and choose T/ € @' of minimal cardinality. Let «, = | T}|, T)= {s.: a <«,}, and
D1={ACki:{si:a € A}E @'}; clearly D1 is a uniform « *-complete ultrafilter
over k;, for | =m. Moreover, letting ko= U{|A;|":i €S}, each D! is o
complete (as if (D) is the maximal x for which @ is «-complete, k(D) is
measurable, see e.g. [6]; and by a hypothesis in 6.2). Clearly for each a < ;,
Ti={sg:B<a}€ E!T, (by the choice of T}). Let for every a, <k, -, an <
Km,

T(a, - a.)= U WU U (,-TH)U U T
I=m+1 =1 =1
It is easy to check T(a,, -, a.) is the union of = k members of E. Let @* be
DX XDPT s0 it is a Ko-complete ultrafilter over kX - -+ X k..

Let {c,:i€ S} be any S-colouring, so for every a, <&y " ", tm < Km
{c.:i € T(ay, -, @)} has a solution f.., ... (by the proof of 6.3). Let us define
function f: A*—{0,1}. f(a) is defined such that

Koy, am) E Ky X 2 X K :fa1.~--,am(a)=f(a)}e P*

(as @* is an ultrafilter, f(a) exists). As D* is xo-complete, and for each i,
|Ai| <Ko, ko measurable, so 2*/ <«k,, clearly f is a solution for {c,:i € S},
contradiction. So we prove that in P(S)— E there are No-disjoint elements.

(2) We define by induction on a < A, for n €°2,sets T, CS. T, ,=T,if T,
is defined, € E, and T, [ E is not a prime ideal, we choose disjoint T,~q,,
T, € P(T,)— E whose union is T,, and for n of limit length & such that
(Va < 8) (T,s isdefined) let T, = 5 T,o. Let V = {5 : T, defined}; clearly if
some n € V has length = A, there are A pairwise disjoint sets in P(S)— E, so
suppose 1 € V 2 I(n)<A. We have a partition {T,:n €Q,}, Q:={n: T~
not defined but T, is defined} of S into=2<* sets. Now for n €Q,, T, € E or
E[T, is a prime ideal. So if 2** = x we can continue as in (1).

(3) By the Ulam theorem.
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