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ABSTRACT 

We give bounds for R~, where cf J = El, (V a < J)R~ < R6, in cases which 
previously remained opened, including the first such cardinal: the tot-th 
cardinal in C~ ffi N n<~ Cn where Co is the cardinal and Cn+~ the set of fixed 
points of C.. No knowledge of earlier results is required. A subsequent work 
generalizing this was applied to many more cardinals ([Sh 7]). 
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O. Introduction 

The problem of what 2 ~o can be has been considered central in set theory for 
a long time. Scott [Sc] had proved that, e.g., 2 ~ = lc + if ~c is measurable and 
( ~//~ < lc) 2 u =/~ +. Solovay [So] proved that if t0 is strong limit singular larger 
than a supercompact (or even a compact) cardinal, then 2 ~ = x*. Magidor 
[Mg 1], confirming the general expectation, proved the consistency of "R6 
strong limit, 2 ~, >_- R6+~+ l" (c~ < g and even a = c~) for, e.g., g = co, col, using 
supercompact cardinals. Magidor then proved that if a certain filter exists on 
small cardinals then 2~-,is small (see [S]). Subsequently Silver [S] proved, 
contradicting the general expectation, that, e.g., if R,o, is strong limit, 
{~ < col:2 ~' = R~+l} is stationary, then 2~, = R~,+l. 

Immediately much activity follows (see on the history, e.g. [Sh 5], [Sh 6, 
Ch. XIII, §0]). We continue the chain: Galvin and Hajnal [GH], Shelah [Sh 2], 
[Sh 5]. Galvin and Hajnal proved, e.g., 2 ~o, < St2%+ when R~, is strong limit, 
and more generally To. , (J)< R l/flloo, where: Do,, is the filter of closed un- 
bounded subsets on col, II f Iloo, is the reasonable rank function f o r f ~  ~,Ord, 

i.e., f is a function from col to ordinals, II fl[oo, = sup{ II g liD., :g f},  
and 

TDo.,( f ) = sup( I G I : G c '°,Ord, ( V g E G )g <z~., f ,  ( V gl ~ g2 ~ G )gl # D., g2 ). 

And when ~ = I..)i<o,, ai, ai increasing, R~, = To( f )  where f ( i ) =  lIj<i F,~,. 
Remember  that when R6 is strong limit, R~ 6 -- 2~,; so they get a bound to 2 ~, 

for such R6 when ~ < R6. They bound II fll.o, by (H~<o,, f(i)) +. The first 
cardinal ;~, cf2 = Rl ^ (V# < ) .)~,  < 2, on which they do not get information 
was the co~-th fixed point where 2 is a fixed point iff 2 = Rz. 

In [Sh 2] we consider II f II, for all normal D getting better bounds for II f II- 
(hence R~,) when, e.g., ~o, <f ( i )<a~+ (i.e. ~ rather than ((~o~)~,) + + 
This is represented in [EHMR]. We get also a bound for R~, for 2 the col-th 
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fixed point (and R~0 < R~ for a < k): the oh-th fixed point but only provided 
that Chang's conjecture holds. 

Finishing to prepare the final version of [Sh 2], we succeeded in eliminating 
Chang's conjecture (at the expense of using the ~2(R1)+-th fixed point). We use 
a different rank (alternatively, games) rko(f), rk~(f) (D a filter on o91) which 
are < oo, if the covering lemma for K[A] (.4 c_ ~2(R~) +, K standing for the core 
model of Dodd and Jcnsen) fails. By this we prove the existence of (normal) 
filters D (on o9~) such that 

(a) Ord'°,/D has k-like initial segment (for each regular k > ~2(~1) there is 
such D); 

(b) D is nice: in the following game Player II has a winning strategy: 

in the n-th move Player I chooses A. _ o9~ and f. E o,,Ord such that 

Am<. f,. <O.+A.f. (Do = D) and A. # ~ modD. and Player II chooses 

D. + i, D. U {A } C_ D. + i, D. + l, a normal filter on o91 and ordinal a., 

Am<. a. < am. Playcr II loses if he has no legal move and wins otherwise. 

This was used to prove, e.g., for appropriate R6, if thcrc is no weakly 

inaccessible k < R6 then there is no weakly inaccessible k < R~,. See [Sh 5] for 

the details. 

We then even claim ([Sh 3]) that the method gives: 

SMALLNESS THESIS. IfO is "small", cf6 = R~, (Va < ~) R~0 < R6, then R~, 
is "small" (see more in [Sh 5]). 

Hajnal pointed out that the proof does not work for the og,-th member of Co, 
where 

Co= 

Cn+  = n q l  = 

Co,=Qq. 
n<:¢.o 

Now, finishing to prepare the final version of [Sh 5] we have proved the 
smallness thesis in this case. 

Making the cofinality R1 (and the filters on o91) is just to save a parameter, 
any uncountable regular cardinal r will do, we can use fine (normal) filters on 
~<~(k), and in the definition of nice filters we can use many functions. 

0.I. PROBLEM. IS the role of~2(R1) in [Sh 5] and a~(R~) here really neces- 

sary? 
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0.2. PROBLEM. IS there a bound for R~o when, e.g., R6 is minimal such that 

R6 = 5, cf J = R0? Even being smaller than the first (weakly) inaccessible. 

The work was announced in [Sh 5]. 

However in the summer of '86 we strengthened it considerably. After some 

considerations we revised it by adding the parameter or, originally it was a = 1, 

and the reader may want to read it that way. In particular, in our conclusion 

~3(~1) was replaced by ~2(R~) thus partially solving 0.1. On the new results see 

[Sh 7]. 

NOTATION. We do not always distinguish strictly between a filter D on I 

and {x C_A "x U ( l - A ) E D ) w h e r e A  ED.  

m, n, l, k are natural numbers; 

a, fl, 7, 5, ~, ( are ordinals (d a limit ordinal); 
2, / t ,  x, X are cardinals (usually infinite); 

BA denotes the family of functions from B to A; 

Ord is the class of ordinals. 

So ~,Ord is the class of functions from RI ( = set of  countable ordinals) to 

ordinals; 

f ,  g, h denote functions from ~N~¿ to ordinals; 

f<~g means { i < R ~ : f ( i ) < g ( i ) } E D  (similarly for <n ,  =D, ÷o)  so 

f ~ o g, f <t, g are not the negations o f f  = o g, g -< o f ,  respectively, 
as D is not an ultrafilter (but see 0.B); 

f <  g means ( V i < co0 f( i)  < g(i); 
P denotes a forcing notion, and we assume it has a minimal element which 

we denote by ~ e, and sometimes Z~ ; 
G_e denotes the P-name of the generic subset of P; 

x[G] denotes the interpretation of the P-name x when G is a subset of  P 

generic over V; 

~(A) = {B" B C_ A } is the power set of A. 

If the reader is not happy with the definitions below, for the sake of this 

paper alone, he can think systematically as follows: Let D be a normal filter on 

toi; we identify it with (D t A) + for any A E D where D f A = {X n A : X ~ D }, 

D+=(X:XC_ U{A:A~D},and U(A:A~D}-Xq~D}. 

We let E denote a set of normal filters on o~l, with a minimal one Min E. We let 

E be a set of E's. 
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L e t D + A  ~ ( X : X C _ U { B : B E D } , A - X ~ D + } ,  

(D t B) + + A  = ((D + A ) t B )  +. 

0.A. DEFINITION. We define by induction on ~ (an ordinal) a set OB,, and 

for X E D ~ OB~ a set DEx j E OB, and Min D for D E OB, such that OB~ O 
OBo = ~ for 0 < a, and we let lev(E) be the unique o" such that E ~ OBlev(E). 

Case l. ~=O: we let OB,= {A :A C_ oo~}. 
Case 2. ~ = l : w e l e t  

OBo = {D: for some A ~ D, D _ ~'(A) and 

{X C (£)1 : X n A ~D}  is a normal ideal on ~ol} 

for D ~ OBI, Min D is the A mentioned above, which is UxeD Xand for y ~ D ,  
D[y] def {x C_y:xED}.  

Case 3. c r = O + l , O > O ,  

OB~ = {E: E i s  a subset of Ui<~ OBi, such that: E N OBe has a minimal 

element under inclusion, Min E, 

(V D EE)(V y ED)[DlylEE] and 

E n OB<o = U{A:(qDEOBo)(A  ~ D ~ E ) } }  

for E E OBa, x ~ E , 

EtOl de=_r {D" D E E  O OBo, [lev(x) < 0 --,-x ED],  [lev(x) = 0 ~ x  __ O]}, 

E[x] %f E H ~f E~xl U U{D:D@E~xl). 

Case 4. cr limit, 

OBo -- (E : E C_ OB<~, andE n OB~#EOBo+I for 0 <cr} 

if EEOB~, xEE, 

Eix I = {D: for some 0, lev(x) < 0, lev(D) < 0 and D ~(E n OB<<_#)Ixl}. 

0.B. DEFINITION. 

( 1 ) For f ,  g E ~,Ord, D E OB~, f < n g iff Min D - ( i : f(i) < g(i)) q~ D. 
(2) For E ~ OBo, ~ > 1, f <~ g means that for every D E E  n OBi, f <n g. 
(3) E~ < E2 if lev(E,) = lev(E2) and Ez c_ E I. 

(4) For E ~ OB~, let ill(E) = (A C_ OJl : O~,, <E O,,,_A U IA } where iA is a 

function with domain A and constant value i. 
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(5) Fil(E) = {fil(EtD]): D E E } .  
(6) f < o  g for f ,  g E ~,Ord, D E OB~ means: Min D - (i : f(i) < g(i)}; for 

f,  g ~ ~,Ord, E E OB,, tr > 1 let f <~ g mean: f < D  g for every D E E f~ 
OBl. 

0.C. FACT. 
(1) OB~ are really pairwise disjoint and [El~OBo,, EE~OB~: 

El C E2 ~ o"1 < 0"2]. 
(2) If X EE  E OB~ then EIxlE OB~, Fix I c_ E. 
(3) --<eis transitive. 
(4) If f <=eg, D E E  or D _ E (and D, E ~ Uo OB,), thenf_-<og. 
(5) Every EEOB~has cardinality =<~(Rl) so IOB~I < ~ + l ( R 0 .  
(6) For E E OB~, a > 0, ill(E) is a normal filter on col. 

0.D. LEMMA. 

(1) I f  f ~ , O r d  for a < 2 ,  2 > 2  s~ then for some a < # ,  f~<=fp, i.e. 
( V i < wl)[ f~(i) < fp(l")] (really i f2  = c f 2  ^ ( V ~  < 2 ) / t ~ , < 2  there is A c_2, 
I A I = 2 such that for a <#from A,f~ < fp, {i : f~(i) < fp(i)} constant). 

(2) I f  D is a filter on o9~, f ~ O r d  for a < 5 ,  [ a < #  < 5 = * f ~ < o f p ]  and 
cf ~ > 2 ~, then { fJD : a < 5 } has a least upper bound#D, i.e. ( V a < 5) f~ <D g 
a n d i f ( V a < 5 ) f ~ < D g ' ~ g  <og' (see [Sh 2] or [Sh 5]). 

§1. Existence of nice t's 

Here we repeat some material from [Sh 5]: 

1.1. DEFINITION. We say t = (P, D) is pre-nice if: 
(a) P is a forcing notion (i.e., a partially ordered set). 
(b) Q is a P-name of an ultrafilter on the Boolean algebra 

dof {A. A __ A e V}. 

(c) For each p E P ,  D~ de__r (A" A C_ o91, A E V, p [t-e"A ED"}  is a normal 

filter on o91. 

1.1A. REMARK. (1) Condition (c) does not seem essential. 
(2) Note that A ~ ~ mod D~, A __ o91, p ~ P  implies that for some q, 

p < q E P ,  D~ +A C_D~. 
(3) Note that for p _-< q in P, D~ C_ D~. 

1.2. D~FINITION. We say t = (P, D) is nice to g E  ~,Ord i f t  is pre-nice and 
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(d) [t---e"if: f ~  V, f <  g} is well ordered by <~" (so for G ___ P generic 
over V, ({ f/D,[G] : f E  V, f <  g}, <owl) is isomorphic to an ordinal). 

1.3. FACT. I f t  is nice to f ,  g < f ( o r  even g <o'~f) then t is nice to g. 

1.4. DEEINITION. We say that t = (P, D) is nice if it is nice to g for every 
g ~ ~,Ord. 

The following is a consequence of a theorem of Dodd and Jensen [Do J]: 

1.5. THEOREM. If,~ is a cardinal, S c_ 2 then: 
(1) K[S], the core model, is a model ofZFC + (V/t >= 2)2 u = # + .  
(2) I f  in K[S] there is no Ramsey cardinal # > 2 (or much less) then 

(K[S], V) satisfies the p-covering lemma for l~ >= 2 + RI, i.e., if  B E Visa 
set of ordinals of power < p then there is B'EK[S], B c_C_ B', V¢ IB'I _-< 

lt. 
(3) I f  V ¢ ( 3 p  >_2)(qx) # ~ > p + > 2  ~ then in K[S] there is a Ramsey 

cardinal tt > 2. 

1.6. LEMMA. Suppose fE~,Ord ,  2>l-l,<,o, l f ( i ) + l l ,  ; t~ ,>2 + (so 
2 > 2~,), then some t is nice tof. 

PROOF. Without loss of generality (Vi) f ( i )  > 2. 
Let S __C 2 be such that i f g E  ~,Ord, (Vi  < wl) g(i) <f( i )  then gEL[S]. In 

K[S] there is a Ramsey cardinal p > 2 (see 1.5(3)). Let I = iX:  X _ / t ,  X n o9~ 
an ordinal > 0}. Let, for i < o9~, 

Ji = i X E I :  Xhas  order type >_- f(i)}. 

Let F be the minimal fine normal filter in K[S] on I to which each Ji belongs. 
Now F is non-trivial as # is Ramsey. 

Now for g ~ , O r d  such that Ai<o,, g( i )<f( i )  let g be the function with 
domain I, g(X) = the g(X n to0-th member of X if there is one, zero other- 
wise. For a </~ and such g let S~ dcf { X E I :  g(X) = a}. 

Let P = {Y: Y C I, YEK[S], Y ~ ~ mod F ( in  K[S])} ordered by inverse 
inclusion and we define a P-name 

O = { A CO. (2)1 : { X E I :  X n tOlEA } @Gp}. 

It is easy to check that (P, D') is nice to f i n  K[S]. By the choice of  S this is 
inherited by our universe V. 

1.7. REMARK. (1) Clearly the proof gives: 
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(.) i f2  --,(f(i))#, '° for i < tal, then there is a t nice t o f .  

(2) In 1.5, instead of  2 ~, > 2 ÷ we can use other violations of  the covering 
lemma, e.g., 2 cfx > 2 +, 2 > 2 eft. 

(3) In 1.1 we say t is x-pre-nice if (a) and 

(b)' D is a P-name of  an ultrafilter on the Boolean algebra 

~ ( ~ < ~ , ( x ) )  v = {A :A __ ~<~(x)V,A ~ V} 

where 

~<~,(A) = {a:a C_A,lal <~1}" 

(c)' for each p E 0~ 

D~ def {A" A ___ ~<~,(x),  A E V, p I~-e "A E D " }  is a normal filter on ~'<~,(x). 

(4) We define "t is K-nice to g"  similarly. 

(5) Suppose 1.6, we assume g EL[S] for every g : ~<~,(x)  ~ Ord. Let 

I = { X :  ~ : X C _  ~'<~,(x)v U/~}, 

F the minimal fine normal filter to which each Jr = {X E I :  X has order 

type > f(i)} belongs and we define P similarly. We get that there is a 

K-nice t. 
(6) In 1.6 and in 1.7(5) I E P i s  the minimal member  of  P a n d p f  is the filter 

generated by the closed unbounded  subsets (i.e. D,o,, D<~,(x) respecti- 

vely). 

(7) In Do is a normal fine filter on ~'<~,(x) 

Do = {At: x < i < 2 (~°)} 

and 2~0 < x, and there is a K-nice t, and for some p E P ,  D~ = D<~,(x) 

then for some xo-nice to, for some pEP,  D'0 = D0. So e.g. if the 2 u > 

2 + + 2 u + z3(R~) + every normal filter on tal is nice. 

(8) If  (2, Rl)--~(Ri, Ro) we can replace S<~l(X) by suitable S c_ 

{a ___ x :1 a ~ tall = R0} with profit. 

1.8. THEOREM. Iffor every f:  RI ---" (22"') +, some t is nice to f then for every 
f E  ~,Ord some t is nice to f.  So, the existence of 2, 2--'(a)#o °~ for every 
a < z2(Rl) +, is enough. 

PROOF. The theorem is proved in [Sh 5] and is not really needed for our 

main results. 
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1.9. FACT. If there is t = (P, D) nice tofthen there is t ~ = (P~, Q~) nice t o f  

of  power _-< l-li<o,~ If(i) + 1 I. 

PROOF. See [Sh 5]; it is true by the Lowenheim-Skolem argument. 

§2. Various ranks 

2.1. CONVENTION. 

(1) For some fixed a, ~: : a is an ordinal > 1, •EOBa+ 2. Usually we do not 

mention (in the simple version, a = 1). Only rarely we vary them, thus 
adding parameters to the rank. 

(2) We use A, B, C to denote the member of OBo, D to denote members of 
OB,, E to denote members of a:. 

So r k ~ ( f ) =  a really means °rkte(f, F ) =  a or " ~ r k ~ ( f ) - - a  relative to F". 

(Not to mention the use of oJ~ rather than say R8 or normal filters on 

{a __c_ R6:lal  < •1})" 

2.1A. REMARK. We could change the definition of OB, by letting, e.g., 

OB~ = IX: ~(o9~) - X is an R~-complete filter D on I, 
L 

I=  U I , I .q!Xfora<~ol},  
a < t O  1 

with little change in the proofs. 

2.2. DEFINITION. 

(l) For a f ~  ~,Ord, E ( E IF, of course) and ordinal a we define, by induction 
on a, when rk~(f)  < a: 

rk2(f)  < a i f  for every D ~ E  and g <ELoj f(equivalently, g <D f )  

there are fl < a and El C_ EtD l such that rk2 (g) _-< ft. 

(2) Let rk2(f)  be the minimal ordinal a such that rk~(f)  < a, and oo if there 
is no such a (see 2.4 below). 

2.2A. CONVENTION. If in rk~(f),  E is illegal (mainly EEl> 1 where D SE) ,  
the value will be zero or undefined, and will not be counted as appearing (e.g. 
3.2); similarly for the other ranks. 

2.3. FACT. If rk~(f)_-<a holds and a<fl  then rk2e(f)_-<fl. Hence 
rk2(f)  = a implies: rk2(f )  < fl i f fa  _-< ft. 
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2.4. DEFINITION. rk~(f)  = Min{rk~,(f) : El C_ E}. 

2.5. FACT. 
(1) rk3(f)_--< rk2(f).  
(2) If El _ E2 then rk3,(f) > rk32(f). 
(3) For every f ,  E for some El _C E, rk3(f)  = rkE,(f) = rk3,(f). 

2.6. DEFINITION. Suppose (P, D) is pre-nice (see Definition 1.1) and let 
t = (T, D). 

(1) We write ~ for the minimal element of P. 
(2) We define by induction on 0 >_- 1 for p EP ,  an object °D~ EOBe: 

'D~ -- (A :7[p  It- ~,A ~O]},  

°+'D~={OD~:p<qEP}U U °D~, 
p<q 

= U 

Let (in §2, §3) D~ = ~D~, E~ = a+lD/~, ~_~ -~- a * 2 D t .  

2.6A. OaSERVATION. 
(i) For any pre-nice t = (P, D), 0 > 1, eD~ E OBo. 
(ii) For 0(1) < 0(2)°(l)D t C_ °(2)D~. 

(iii) For p _-< q from P, eD~ c_ aDJ. 

PROOF. By induction on 0. 

2.7. DEFINITION. 
(1) rk}(f)  is the minimal ordinal a such that for some pre-nice t = (P, Q): 

(a) E' _c E, E~ = E; 
(b) I t-~, "the order type of {g/DIG] : gE ~,Ord, g <oral f}  is < a ' .  

We call t a witness for rk~(f). 
(2) rk [ ( f )  = Min{rk~,(f) • E, _C E}. 
We call (t, E0 a witness for rk [ ( f )  when t is a witness for rk[,(f)  = a, El _C E 

and a = rk[,(f)  is rk[( f ) .  

2.8. FACT. 

(1) rk [ ( f )  _--< rk~(f). 
(2) If El C_ E2 then rk[,(f) >_- rk[,(f). 
(3) For every f ,  E for some El C_C_ E, rk [ ( f )  = rk~,(f) = rk[,(f). 

2.9. CLAIM. rk~(f)  _--< rk~(f).  
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PROOF. We prove it by induction on rk4(f) .  
Let fl-= rk4(f);  if fl = 0 the assertion is trivial. So there is a witness 

t = (P, D) for rk~(f)  = ft. We want to show rk~(f)  < / / .  By Definition 2.2(1) it 
suffices, given DI E E and g <o, f ,  to find ~, < / /  and E~ C_ Eto,j such that 
rk2e,(g) < y. As t witnesses rk~(f)  =/ / :  

(i) I~e"{h /D[G]"  h <oIGI f }  is well ordered, of order type < / / " ;  
(ii) E~ --- E. 

As D~ E E ,  E = E~,  there is p ~ P  such that D~ = Dr. Now as g <D, f ,  clearly 
p I~e"g/Q[G] <f/D[G] and {h/D[G]" h/D[G] <f/D[G]} has order type 
< / / " .  We can deduce p I~e"{h/Q[G]'h/Q[G] <g/D[G]} has order type 
< / / "  hence for some q, p < q E P and ~, < / /  

q I~e"{h/Q[G]" h/D[G] <g/D[G]} has order type < y". 

Let E~ = Eq, clearly (as p < q) El __. E~ c_ Eto~l = Eto,j (see Definition 2.6) so 
rk~,(g) < ~, (see Definition 2.7(1); we can use for witness t ' =  (P*, Q I P*) 

where P* d,f {r ~ P  : r > q}, so ~ee  = q) so by the induction hypothesis (on//) 
rk2,(g) _--< ~, which is as required. 

2.10. CONCLUSION. r k ~ ( f ) < r k ~ ( f ) .  

PROOF. By 2.9 (and Definitions 2.4, 2.7(2)). 

2.1 1. CLAIM. For I = 3, 5, ifg < o f ,  D = Min E, then rk~(g) < rk~(f)  (or 
both are ~) .  

PROOF. Without loss of generality rk te ( f )<  oo. 
First we deal with l = 5. 

If E l witness rk~(f)  = a (i.e., Et __. E,  rk~,(f) = a) and t = (P, D) witness 
r k ~ , ( f ) = a ,  then [~-e"{h/Q[G]'h/Q[G]<f/Q[G]} has order type 
< a "  so (as in the proof  of 2.9) for some pEP and fl<a, 
p lF-e"{h/Q[G]:h/Q[G] <g/D[G]} has order type < p " .  So E~ (which tri- 
vially is ___ E~ = El __. E) witness r k ~ ( g ) < / / a s  rk~,(g)< fl is witnessed by 
(e t {r~e: r > p}, D). 

Now we prove for I = 3. 
def 

Let E0 ___ E, a = r k ~ ( f ) =  rk~(f) .  By Definition 2.2(1) for r k ~o ( f )<a  
(letting g, D there be chosen here as g, Min E0 resp.) there are E~ C_ (E0)tM~n E01 = 
E0 __C_ E and fl < a such that rk2,(g) < ft. 

So by Definition 2.2(2), rk~(g) < ft. 

2.12. CONCLUSION. I f X  = ill(E), l = 3, 5 then II f l l x  <-- rk~(f).  
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PROOF. By the definition of II fl lo (see §0) and 2.11. 

2.13. CLAIM. 
(1) For l = 2, 4: 

f o r D E E ,  rkte+l(f) < /+l < rkEt~j ( f )  = rktet~(f) --< rAte ( f ) .  

(2) I f f < e g  then rAte(f) _-< rAte(g) for l = 2, 3, 4, 5. 
(3) I f f=MinEg then rk~( f )  = rAIL(g) for l = 2, 3, 4, 5. 

PROOF. (1) The first inequality holds by 2.5(2) [or 2.8(2)], the second by 
2.5(I) [or 2.8(1)] and the third by Definition 2.2(1) [or 2.7(1), using 
(p I {r: r >-_ q), D) as in the proof of 2.11]. 

(2) Left to the reader. 
(3) Follows from (2). 

2.14. CLAIM. Suppose l = 2, 4, rAtE(f) = rkte+l(f). Then for every D E E ,  

rk~l  ( f )  = I+l rkE~l ( f )  = rk~( f )  = rk~+l ( f ) .  

PROOF. By 2.13. 

2.15. DEFINITION. (1) Let for E EOB> t 

Te( f )  = sup{ Tx( f )  : x E E A OBl } = sup{ Tn~e,)( f )  : E~ C_ E} 

where 
(2) for D E OBl, To ( f )  = sup( I F I : F c__ ~,Ord, ( V g E F)g < o  f a n d  for dis- 

tinct g, h from F,  g 4: o h }. 
(3) T * ( f )  = Min{TE, ( f ) :E ,  c_ E; so lev(E~) = a + 2, E~EF}. 

2.16. FACT. 
(1) If El _C E 0 then Te,(f)  <= Teo(f). 
(2) T ~ ( f )  <-_ T*o(f) < TEto~(f) < TE(f)  when D E E .  
(3) For every EEN: a n d f E  ~,Ord for some El __C_ E: 

TE,(f) = T * ( f ) =  T~E,~to,(f)= T~to,(f) for every DEE1.  

PROOF. See Definition 2.15. 

2.17. LEMMA. ( l )TE( f )<=  Irk~(f) l  + I ~ - I f o r l = 2 , 4 .  

(2) I f r k~ ( f )  = rk~+l(f)  then TE(f)  < Irkte(f) l + 2 ~, for l = 2, 4. 
(3) T * ( f )  < Irkte(f)l + 2 ~ , f o r l = 2 , 3 , 4 ,  5. 

PROOF. (1) By 2.9 without loss of  generality I = 2. Suppose this fails, then 
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for s o m e x E E  n OB~ o r x  =EEOB1, Tx ( f )>2  d~d Irk~(f)l  + IEI. So there 
a r e f  < , f f o r  i < 2  + such t h a t f  ~ ,  fj for i < j  < 2  +. By the definition o f rk  2 
(see 2.2) for each i for some ordinal a~ < rk~(f),  and Ei ___ E~DI, a, = rk~,(f) < 
rk2(f);  without loss of generality rk},(f)  = rk3,(f). As 2 > Irk~(f)t  + IIFI 
without loss of generality E~ = E0, r k ~ ( f )  = y. But for some i < j , f  <o  fj (see 
0D(1 )) hence f <Mi, eo fj, contradiction to 2.11. 

(2) By 2.14 (and Definition 2.15) it suffices to prove Tx(f) < I rkle(f) 1 + 2 ~' 

for x = ill(E). So s u p p o d e f  (i < 2 ÷ ) are as in the proof of (1), 2 da I rkte ( f )  I + 
2 ~,. So without loss of generality rkie+ ~ ( f )  is a constant 7 < rk~(f) ,  contradic- 
tion by 2.11 and 0D(1). 

(3) Easy by now. 

2.18. LEMMA. I rk~(f)  I < T r ( f )  + I E I for l = 2, 3, 4, 5 provided that 
rk~( f )  < oc. 

2.19. REMARK. Note that E has cardinality < ~ + t ( R t )  and that 
IF I, I E I > 2~' and every x E OB~ l has cardinality > 2 a,. The same applies to 
2.20, 2.21. 

def 
PROOF. Let a = rk~(f).  
First let I = 4, and t = (P, O) witness rk}(f )  < a. For every X E E  n OBt, let 

{gX:i<2x} be a maximal family of functions g~n ,Ord ,  g < x f ,  
[i vaj=*g x v~xgf]. Clearly there is such a family and 2x < Tx(f)  <-_ TE(f). Let 
t = (P, O) witness rk~(f)  < a. 

We can find P¿ _c P, Ip l l  < TE(f) + IEI such that: 
(a) ~ZEP';  
(b) if p ~ P  ~, D EE'p then for some q, p <= qEP  t, D~ = D ;  

(c) if p E P  ~, gE(gX: i <,ix, X E E  n OBi}, then for some q, p <__q~pl, 
and for some fl q l~-e "(h/D[G] : h/O[G] <g/D[G]} has order type p". 

It is easy to find such a PL Let S = {fl: for some q ~ P t  and g E {gX : i < 2x, 
X E E  n OBl} we have q l~-e"{h/D.[Gl:h/O[G] <g/O[Gl} has order type 
p"}. Clearly IS1 --< TE(f)+ IEI ,  and let 0 be an order prserving one-to-one 
function from S onto some ordinal a*, necessarily I~*1 =< T~(f) + IEI.  

Define a pl-name D ~ dej {A C m t ' A ~ V ,  and for some p E G  ~, A =o9~ 
mod l , t I l) = . Dfi }. Easily ~ r ( e  l, Q witness rk~(f)  < a* The proof for rk~(f)  is 
similar, e.g., take a suitable elementary submodel of(H(2), E ), 2 large enough 

(or use rk~(f)  < rk~(f)). 
Now for rk3(f) ,  rk~(f)  use their definitions (2.4, 2.7(2)) and that we have 

proved 2.18 for rk2(f) ,  rk~(f)  respectively, observing 2.16. 
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2.20. FACT. I f /  = 2, 3, 4, 5 rkte(f) < ~ ,  then for some E~ c_ E, and E1 c__ E 
(E~EE~) we have (for E,): 

Irk~,(f)l <-_Te(f)+2 ~, and lEvi < T E ( f ) + 2  R'. 

PROOF. Let l = 4. 

The proof  is like that of  2.17, but PI __ P has cardinality < T e ( f )  + 2 Rl and 

satisfies: 

(a) ~EP~;  
(b) i f p  ~P~, then A ~ ~ mod D t for some q, p < q ~ p l  and A E D  t ; 

(c) i fp  ~ P ' ,  g ~ {g~: i < 2x, X = ID t for some r ~P~ (r > p)} then for some 

q, p < q E P~ and for some ]~ 

q l~-v "{h/D[G] : h/D[G] <g/D[G]} has order type fl". 

The rest should be clear, as well as the proof  for l = 2, 3, 5. 

N o w b y  2.17 and 2.18: 

2.21. THEOREM. 

(I) For I = 2, 4 if rk~( f )  < ov then 

I rk~(f) l  + IEI = r e ( f ) +  IIFI. 

(2) l f l  = 2, 4, rk~( f )  = rkte+ ~(f) < ~ then 

l rk~(f ) l  + lEt  = T e ( f ) +  lEi. 

(3) For I = 3, 5, similar results hoM, i frkte(f)  < ~ ,  then 

Irkte(f)l + IEI = T * ( f ) +  IEI 

[note IEL < ~+~(R~), I~:1 <~+~(R1)].  

§3. More on ranks 

3.1. COr~VENTION. n:, awil l  be fixed, as in 2.1, andA,  B; D; Ewi l l  be used 

similarly. 

3.2. FACT. (1) If09~ = A  U B , f ~  ~,Ord, l = 2, 4, D = M i n E  then 

rkte(f) = Max{rk~,~,(f), rk~t,,(f) }. 

(2) If  o9~ = A U B, f E  KiOrd, 1 = 3, 5 then 

rkte(f) = Min{rtet,,(f), rktet,,(f)}. 
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(3) Ifog~ = ( i :  i E Uj<~+iAj} where Aj c_ tot fo r j  < ogt then for l = 2, 4 

rkte(f) = sup{rk~,o.,,,(f) : i < o~t}. 

(4) Ifo9~ = {i: i E  Uj<~+~Aj} then for l = 3, 5 

rk~( f )  = Min{rktetA,,(f) • i < to~}. 

PROOF. Easy, using the definitions. 

3.3. DEFINITION. F o r f ~ R , O r d  let: 

(1) Ao(f)  = {i < ~ol : f ( i )  = 0}; 
(2) A~(f)  = {i < o~t : f ( i )  is a successor ordinal}; 
(3) As( f )  = {i < tol : f ( i )  is a limit ordinal}. 

3.4. FACT. I f f ~  R,Ord, A0(f )Ef i l  E,  1 = 2, 3, 4, 5 then rkte(f) = 0. 

PROOF. Easy. 

3.5. FACT. I f f ,  gER,Ord,  { i : f ( i ) = g ( i ) +  1}Ef i lE ,  then 

rk:e(f) = sup{rk3to,(g) + 1" D E E } .  

PROOF. Easy, by the definition of  rk~. 

3.6. FACT. (1) I f f ,  gER,Ord ,  E E E ,  1 = 3 , 5 ,  and { i : f ( i ) = g ( i ) + l } E  
fil E then rk~( f )  = rk~(g) + 1. 

(2) If rk~( f )  = rk~(f) ,  { i ' f ( i )  = g(i) + l }~f i l  E then rk2(g) = rk~(g). 

PROOF. (1) By 2.11, rk~e(g) + 1 < rk~e(f) (as g <~lEf).  
By 2.5(3) (and 2.8(3)) for some El C_ E,  

rkte(g) = rk~-~(g) -- rkle,(g), 

hence rk~,(g)= rk~e,~o,(g) for every D ~ E I .  So by 3.5, for 1 = 3, r k ~ , ( f ) =  
rk~,(g) + 1; but rk3(g) is by the choice of El, rk~,(g) and by 2.5(2) rk3e(f )<  
rk~,(f), hence rk~( f )  < rk3(g) + 1. So together rk3( f )  = rk~(g) + 1. 

As for l = 5, use the definition directly. 
(2) Let a = r k ~ ( f ) =  rk3(f) .  By 3.6(1) rk~(g )=  a -  1 (and a -  1 is well 

defined). 
We can prove rk~(g)<  a -  1, using the definition. [Let D E E ,  gl <eto, g; 

then by 2.14 r k 3 ( f ) = r k 3 e t o , ( f ) = r k 2 t o , ( f ) = r k ~ ( f ) = a  hence by 3.6(1) 
rk~o~(g) = a - 1 but rk3eto,(gt) < rk3to,(g) (by 2.11), hence 

def rk3eto,(g 0 < a -  1 
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so there is El _ Etz~ 1, rk~,(g0 = ft. So El, fl are as required.] So we proved 
rk~(g) < a - 1, but rk~(g) >_- rk3(g) >= a - 1 (see 2.5(1)) so the conclusion 

follows. 

3.7. FACT. Suppose A 2 ( f ) E f i l E ,  KC_ ~,Ord, 

( V h ~ , O r d )  [h < ~ E f - - ' (  B g ~ K ) h  <filEg]. 
Then for l = 2, 

g<filEf for g E K ,  and 

rkte(f) = sup{rkte(g) • g E K}. 
def 

PROOF. Let a = s u p { r k ~ ( g ) : g E K } .  Trivially [by 2.13(2)) rkte(g) < 

rk~( f )  for g ~ K ,  hence a < rk~(f ) .  Let us prove the other direction. Let 

D E E ,  g <Et~j f .  Now let us define gt : gl(i) = g(i) + 1; clearly, as A 2 ( f ) E  fil E,  

gl <~lE f ,  hence for some g2 ~ K,  gt < ~E g2. So g <E~,j g2, D ~ E where rk~(g2) < 

a, so there are El _ Ett~ 1, fl as required, by the definition of  rk~(g2). 

3.8. FACT. If l = 3, a < rk~( f )  < oc, then for some g < E f ,  and E1 _ E,  

rk~,(g) = a (and rk~,(g) -- rk~ 7 l(g)). 

PROOF. Suppose not, then we shall prove by induction on fl >= a that 

(,) i f g  <E, f ,  El ----- E and rk3e,(g) > a then rk3,(g) >_- ft. 

For fl = a: trivial, as we assume our assertion fails. 

Forfl  = a + l: this is the assumption (using 2.5(3)). 

For fl > a limit: trivial by the induction hypothesis. 
For fl = ? + 1, 7 > a: we know, by the induction hypothesis, that rk3,(g) >= 

a + 1 hence rk~,(g)~a.  
By 2.2(1): 

(a) there are D EEl ,  and h <Eta, g such that for no ( < a and Ez C_ (EI)lOl is 

rkL(h) ___< (. 
For such D and h, we get: for E2 _ (El)tOl, rk22(h) > a. So by the defn i t ion  of 

rk3,, rk32(h) > a for every E2 c_ (E0tol. By the induction hypothesis rk32(h) > 7 

for every E2 C_ (E0to]. So D, h exemplifies rk~,(g) >_- ~, + 1 = fl for every E2 c_ 

(E0tol. Hence rk3e,(g) > fl for every E ~ _  (E1)tDI. As this holds for every El, 

rk~(g) > fl, hence rk3,(g) > fl for El C_ E. So we have carried the induction on 

fl, thus proved (.). So r k 3 ( f )  = oo, contradicting the assumption rk~,(f)  < 00. 

3.9. FACT. If  a < rk2 ( f )  < oo then for some El C_ E,  g <E, f ,  rk~(g) = 
rk3e(g) = a. 
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PROOF. By 3.8 it suffices to find E, c_ E, g <El f, rkX(g) >= a, which follows 
from 3.2-35. 

3.10. LEMMA. (1) Suppose x is a regular cardinal > I E I, g E ~,Ord, E E E 
and oo > rk~(f)  > x. Then for some g¢ ~ ~,Ord (for ~ < x) and El C_ E (El ~ E) 
the following holds: 

(n) g~ <e, f;  
(B) for ~ < ~ < x, g¢ <e., & and even rk2,(&) < rk~,(g¢); 

(C) Te,(&) < x for ~ < x; 

(D) i f  D E E,, ~ < ~c then T~eto,)(g¢) < x; and in particular T~ e, +A (&) < x 
when ~ < x, A ~ ~ mod(fil El); 

(E) { < rk},(&) = rk3e,(g¢) < x for ~ < x; 

(F) Tx(g~) = x for XEFiI(EI); 
(G) rk~,(g~) = rk~,(&) = x; 

(H) i f  g <og~, D ~ FiI(E), then for some ~ < x, g <(E,)to~ &. 
(2) I f l  = 2, 3, 4, 5, oo > rk~(f, E ) > x ,  IEI < x ,  then there are &(~ < x )and  

E~ as above. 

PROOF. (1) By 3.9 there are E~ __. E, g~ < f ,  such that rk2,(g~) = rk~e,(g~) = 
x. So it is enough to prove: 

3.11. SUBFACT. If  rk2,(g~) = rk3e,(g~) = x, x of cofinality > I ~:], then for 
some & (~ < x) (A)-(H) (from 3.10) are satisfied. 

PROOF. Easily A2(&)Efil(EO [otherwise there is iE{0 ,  1} such that 
Ai ( f )  4: J~ modfil(Et), hence E2 ~r (E~)IA,{y)]~ - and by 2.14 (as 
E2 = (EI)t(Mi, E,)tA,t~]l) clearly rkZ-,(&) = rk3,(&) = x and A, ( f )  E ill(E2) hence by 
3.4, 3.6 x is zero or a successor ordinal]. By 2.13(3) without loss of generality 
A2(g~) = col. By 3.9 for every ~ < x  for some E¢ __ E, & <e ,&,  rk3~(&) = 
rk2e~(g¢) = ~. As x has large cofinality, for some unbounded C __ x, I C I = x,  E¢ 
is constant for ( G C, so w.l.o.g. E¢ = E~ for ( ~ C. 

So for every ~ G C 

(*) { = rk~,(&) = rk~,(g¢) < x. 

So: 

(**) i f{  < ~ are in C, rk},(&) < ~. 

Now if ~ < ( are in C, A = {i < tnl :&(i)  > g¢(i)} and A 4: ~ mod fil El 
then (see 2.13(1) and 1.1(3)): 

(a) rk3,(&) _-< rk~,tA](g¢) _--< rk2(&) 
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hence 
(b) rk2,tAj(&) < (. 
On the other hand, applying (a) and (,) for 

(c) rk~,tAl(g¢) >_-- ~. 
But g¢ <=e, tAJ g~, a contradiction to (b) and 2.13(3). 
It follows that 

(***) for ~ < ( in C, & <filEt g¢. 

So restricting ourselves to ~, ( in C, (B), (E), (F) and (G) hold. Now (C) and 
(A) hold by 2.17(2) (and by previous information) and (F) holds by 2.21. If (H) 
fails, exemplified by g we can get rk~(g) > x, contradiction. Lastly (D) holds by 
2.16(2), 2.17. 

By renaming the g¢ (~ ~ C) we get the desired conclusion. 
(2) Left to the reader (use 3.10 for I = 2, 3.11 for I -- 3, 2.9 for I = 4, 2.10 for 

l = 5). 

3.12. DEFINITION. 
(1) IF is rkt-nice t o f i f f o r  every g < f a n d  E ~IF, rktE(g) < oo relative to IF. 
(2) IF is rkl-nice if for eve ry fand  EEIF, rk~(f)  < ~ ,  
(3) IF is nice if it is rk4-nice. 
(4) IF is hereditarily rkt-nice to f i f o  + 2 < a and E t E {E} t3 E such that 

lev(E0 > 0 + 2 implies E, is nice to f; similarly for the other definitions. 

3.12A. REMARK. For I = 2, 4, rkZ-niceness implies rk z+ ~-niceness. Also for 
l = 2, 3 rkt+2-niceness implies rkt-niceness (by 2.9, 2.10). 

3.13. FACT. 
(1) If l = 4 , 5 ,  r k ~ ( f ) < o o  relative to E, then for some Ft_IF, EEIF, 

I~:,1 < Irk~(f)l + IEI and D:~ is rkZ-nice to f (and 
rk~(f, IF,) = rkle(f, IF)). 

(2) In fact, i f t  = (P, D.) exemplifies rk~(f)  < oo (l = 4, 5) relative to IF, then 
we can choose IF~ aef IF~ (see 2.6). 

(3) Similar results hold for I = 2, 3. 

PROOF. Immediate. 

3.14. THEOREM. The following are equivalent: 

(1) There is a nice ~. ~ OBo + 2. 
(2) There is IF, rkS-nice for ~o + z(R,) + (i.e., the constant function with this 

value). 
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(3) There is t nice to ~+2(~) +. 
(4) For every f ~  a,Ord some t is nice to it. 

REMARK. Note that (4) does not depend on tr, so for all ordinals cr > 1 the 
conditions are equivalent. 

PROOF. (3)=*=,(4): By [Sh 5]. 
(2)=* (3): By the definitions. 
(3)=*(2): Easy (defining the F by t). 
(1) =* (2): By the definitions. 
(4) =, (1): By (4) for every ordinal a some t ~ is nice to it (i.e., to the 
constant function a). As the family of  possible E' is a set, and E t" is 
nice to a, and monotonicity, we are done. 

3.14A. REMARK. Instead of  using nice F, another way is to use nice fine 
normal filters on ~<~,(2). But it seems a stronger assumption. 

3.15. FACT. 
(1) I fF  is nice to zo+2(K]) +, then it is nice. 
(2) We can add in 3.14: 

(5) rk~(f, IF)< oo for every f :  0,) 1 --'~ ] o + 2 ( R I )  + .  

PROOF. As in [Sh 5]. 

§4. Preservative pairs 

4.1. CONVENTION. E~OBo+2 will be a nice collection for this section. 

4.2. DEFINITION. (1) The pair (Hi, H2) is rk~-preserving (i.e. Ork ~- preserv- 
ing) if: 

(a) for m = 1, 2 Hr, is a function from the ordinals into the ordinals, 
a~Hr, (a)  and a<fl=*Hm(a)~Hm(13) (we stipulate Hm(oo)=oo,  
a <  oo); 

(b) for e v e r y f E  ~,Ord, EEl= 

rk~(H~ o ./) < H2(rk~(f)); 

(Note H o f E  r~,Ord, (H o f ) ( i )  = H(f(i)).) 
(2) We say H is rkt-preserving i f (H,  H) is. 

(3) We say (H~,//2) is rkl-*preserving if we restrict (b) to the case 
Ak_2,4 [1E {k, k + 1 } =* rk~(f)  = rk*r+ ~ (f)] ;  this is clearly a weaker con- 
dition. 
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REMARK. AS we shall show, proving a pair is preservative, is a bound on 
some powers. 

4.2A. CLAIM. (1) If l = 3 ,  m = 5 ,  or l = 5 ,  m = 3 ,  H~ is defined by 
H~(o0 = (H2(la I ÷ + ~+ t(b~t)) ÷, and (HI,//2) is rkt-*preservative then (HI, H 9  
is rk re-*preservative. 

(2) If we replace =,+,(Rt) by :,+2(Rt) we can omit the " . ' .  

REMARK. For our applications an improvement in (1) will be inessential. 

PROOF. (1) Clearly (Ht, H~) satisfies condition (a) of 4.2(1) for being 
rk re-*preservative. As for condition (b), let f ~  ~,Ord, rk~(f)  = rk~ +l( f ) ,  so: 

(a) IrkS(H1 of) l  < TE(HI o f )  + zo+t(R~) by 2.18, and 
(b) TE(HI o f )  < j rkte(Ht o f)[  + ..io+t(~l ) by 2.21(2), 

hence together 

(c) Irk~(Ht of)l =< IrkS(Hi °f) l  + z,+t(Rt). 
As (Hi,//2) is rkt-preservative 

(d) IrkS(Hi o f )  l --< n2(rk~(f)). 
But similar to the proof of (c): 

(e) IrktE(f)l < Ir'~(f)l +~o+t(Rl). 
By (e) and monotonicity of//2: 

(JO H2(rktr(f)) --< H2(I rk~(f)]  + + =o + t(Rt)+) • 
But by the definition of H~: 

(g) n6(rk~'(f)) = n2( l rk~( f ) l  + + "~a+t(Rt)). 
So by (c), (d), (f) and (g) we get the conclusion (as z,+ t(Rt) < H~(a) for every a). 

(2) Similar proof. 

REMARK. So it usually doesn't matter whether we get a result for rk 3 or rk s. 

4.3. FACT. If(Ht,/-/2) satisfies (a) of 4.2, l = 3, 5 and we are proving (b) of 
4.2 by induction on a = rk~(f) (for a l l f and  E), we can assume 

(i) rkte(f) = rkte-t(f); 
(ii) for some l, Ii < 3, A t ( f ) E M i n  E, At,(Ht o f ) E M i n  E. 

So without loss of generality At ( f )  = cot, At,(Ht o f )  = cot. 

PROOF. By 2.5(3), 2.8(3) for some El _ E, rkte(f) = rk~7'(f) = rk~,(f). So 
H2(rkte(f)) = H2(rkte,(f)) and rkte(n~o f )  < rkte,(nl o f )  (by 2.5(2), 2.8(2)). So it 
is enough to prove that rk~,(Ht o f )  < H2(rk~,(f)), so (i) holds. For (ii) note that 
col = I.-Jt<3 At ( f )  and by 3.2(2) it is enough to prove for l < 3 that if At(f)  ~ O 
m o d D  then t = rkE, tA,~j)l(Ht o f )  < H~(rk~,tA~/)l(f)). So (ii) follows (the last phrase 
by 2.13(3)). 
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4.4. LEMMA. 

(1) The function H = H, = *Hs defined by Hs (a) = [ a I + + z, + t (R~) + (cardi- 
nal addition) is rk3-preserving. 

(2) The function H = H ~  defined by: n ~ ( a ) = l a [ + + ] a + | ( R i )  + is 

rkS-preserving. 

PROOF. (1) In Definition 4.2 (a) is immediate, and we prove (b) by 

induction on a -- rk3(f).  

By 4.3 without loss of generality rkae(f) = rk~(f)  and for some l, Al ( f )  = o.)1. 
If { i < o ~ ' f ( i ) < ( = ~ + l ( R O + } ~  modfil(E), it is enough to prove 

r 3 + < ke(~+~(R~) ) = :.+~(R~) +, and for this it suffices to prove that for f :  oh 
=.+t(R,) +, r k 3 ( f ) <  ~+~(Rt) +, which holds by 2.21(2), and cardinal arithme- 

tic. So without loss of generality f(i) >= (% + l(R,) ÷ for every / < oh. so clearly 

a = (=~+ t(R0 +. Assume that the desired conclusion fails. 
deC 

Let#  = I~1 + =~+~(~,) -- Ic~l, X = filE. So H(rk3(f) )  = p + ,  rk~(H o f ) >  
# +. As the range of H o fconsists of  limit ordinals, by 3.7 there are g <e  H o f 

and El C_ E such that rk~,(g) = rk~,(g) >/z +. 

Clearly (Vi < Ogl)[Ig(i)l < If(i)l], hence TE,(g) < TE,(f). By 2.21(2) 

I rk~,(g) [ < Ze,(g) + ~o+~(Rt) < Te,(f) +z,+~(R~) < Te( f )  + zo+~(Rt) 

= Irk~(f)l  +=a+I(R1)= lal + =~+~(R~)</z + 

but g was chosen such that rk3 (g) >_- a +, contradiction. 

(2) Same proof using 3.8 instead of 3.7. 

4.5. DEFINITmN. Let H be a function from the ordinals to the ordinals. 
(1) H <"> is defined by induction on a, 

H<°)(~) = ~, 

H<"+~)(~) = H(H(")(~) -4- 1), 

H<">(~) = U H<a>(~) for limit a; 
f l<a 

(2) H* is defined by H*(a) = H<">(O). 

4.6. FACT. If H satisfies 4.1(1)(a) then 

(1) ~ =< H<">(~) < H<">(() for ordinals ~ < (; 

(2) ~ < H*(~) < n * ( ( )  for ~ < (. 

PROOF. (1) Easy. 
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(2) H*(~) < H * ( ~ ) + 1  = H<¢>(0)+ 1 < H(H<~>(O)+ 1) = H<¢+~>(0) - 
H*(~ + 1) -_ H*(().  

4.7. LEMMA. I f  (HI, H2) is rkt-preserving, l = 3  then (HI*,H*) is 
rkt-preserving. 

REMARK. It does not matter so much that l = 5 doesn't  appear here 
because of 2.21, 4.2A. 

PROOF. Part (a) of Definition 4.1 is easy (look carefully at a < H'~(a)). Part 
(b) of Definition 4.1(1) we prove by induction on rk~(f).  By 4.3 without loss of 
generality rk~(f)  = rk3(f )  and for some m < 3, Am(f)  = o91. 

Case 1. Ao(f) = o91. 
So r k 3 ( f ) =  O, (H*o f ) ( i )=H*(O)=  H~°>(0) = 0 so the assertion is 

rk~(Oo,,) < H*(Oo,,) which holds trivially. 

Case 2. Al ( f )  = 091. 
So for some g E R,Ord, for every i, f( i)  = g(i) + 1. Now 
(a) rk~(H* o f )  = rk3(Hl o (H* o g + 1)) [by Definition 4.5]. 

(b) rk3e(Hl o (H* o g)) < H2(rk3(Hl * o g + 1)) [by the assumption "(HI, H2) is 
rkl- preservative"]. 

(c) H2(rk3r(H * og + 1))___< H2(H*(rk3(g)) + 1) [as g <~lEf, by 2.11 
rk3(g) < rk3e(f) hence by the induction hypothesis rk3(H * o g ) <  H*(rk~(g)). 
By 3.6(1) rk3(H~ 'og+ l ) = r k 3 ( H t o g ) + l  so by the previous sentence 
rk3(H * o g + 1) < H*(rk~(H* o g)) + 1; as H2 is monotonically increasing we 
can get (c)]. 

(d) H2(H*(rk3(g)) + 1) = H~'(rk~(g) + 1) [by the definition of H*(i.e., 4.5)]. 
(e) H*(rk3(g) + 1) =<_ n*( rk3 ( f ) )  [as g < f ,  by 2.1 1 rk~(g) < rk3( f )  hence 

rk3(g) + 1 < rk3( f )  apply H* is monotonic]. 
By (a)-(e) we fnish. 

Case 3. A2(f) = o91. 
Let K = {H* o g ' g  < E f } .  Easily (see 4.6(2)) for every h EK,  h <oHm* of. 

Also for every h < e l l *  o f t he re  is g < e f s u c h  that h < o H *  og [see 4.5 and 
4.6(2)]. Hence: 

(a) rk~(n* o f )  < rk~(H* o f )  [by Definition 2.4]. 
(b) rk~(H* o f )  = sup(rk3to~(h) • h < H *  of, D ~ E }  [by the definition of 

rk2e]. 
(c) sup(rk3e~o,(h) " h < H* o g, D ~ E ,  for some g <D f }  = sup(rk~oj(H* o g): 

g < o f ,  D ~ E }  [by what we say on K above and as rk3e~oj is monotonic]. 
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(d) sup{rk3eto,(H *o g)" g <D f ,  D ~ E }  < sup(H~'(rk3to,(g) : g < o  f ,  D e E }  
[apply the induct ion hypothesis  to g for each g,  Ew] where D E E ,  g < o  f ;  this 
is legitimate as by 2.1 l, rk3to~(g) < rk~to,(f) < r k 2 ( f )  and  rk3toj(f) = rk3e(f) by 
2.13 because we have assumed rk~( f )  = rk~(f)] .  

(e) sup{H*(rk3,o~(g)) " g < o f ,  D E E }  < H*(sup{rk3e,oj(g) : g < o f ,  D e E } )  
[because H~' is monotonical ly  increasing, see 4.6(2)]. 

(f) H*(sup{rk3,o,(g)'g<Df, D ~ E } ) = H ~ ( r k ~ ( f ) )  [by definit ion of  

rk~(f)] .  
(g) H*( rk~( f ) )  = H*(rk3e(f)) [as we are assuming (i) of  4.3]. 

By (a)-(g) we get the result. 

4.8. CLAIM. If(H~', H~') is rkt-preservative f o r x  = a,  b where I = 2, 3, 4, 5 
and H,, = H~ o//am for m = 1, 2 then (Hi , / /2)  is rkl-preservative. 

PROOF. 

rkte(Hl o f )  = rkte((H~ o Hi)  o f )  __- rkte(H~ o (H~o f ) )  < H~(rkte(H~ o f ) )  

< Hb(H~(rk~(f))) = (H~o H~)(rk~(f))  = H2(rk~(f)).  

4.9. LEMMA. Suppose (H~', H~') is rkt-preservativefor m < 09, l = 3, andH, 
is defined by H,(a) = SUPm <,o H,"(a) then (H~, 1-12) is rkt-preservative. 

PROOF. Part  (a) of  Definit ion 4.1 is easy. Part  (b) of  Definit ion 4.1 we 
prove by induct ion on rkle(f). By 4.3 we can assume rktE(f) ---- rkte- 1 ( f )  and  for 

some m, Am(f)  = 091. 

Case A. Ao( f )  = o91. 
Easy. 

Case B. Ao(f) = ~ ,  and for some m <091, A = {i <091:(H~'of)(i) = 
(H1 of)( / )}  ÷ ~ m o d  fil E ,  then: 

(a) rk~(H~ o f )  ___< rk~iA](H ~ o f )  [by monotonic i ty  of  rk t in El .  
(b) rktetA](H~ o f )  = rktetA](H~ ' o f )  [by choice of  A ]; 
(c) rktetAl(HI" o f )  =< HT(rk~ta](f)) [as (H~', Hi") is rkl-preservative]; 
(d) H~'(rk~tA](f)) =<_ H2(rk~Ea](f)) [by definit ion of  H2]; 
(e) H:(rkteEAl(f)) = H2(rk~(f)) [as rlde[Aj(f) = rkte(f) because r ~ ( f )  = rk~- ' (f)] .  
F rom these we get the conclusion.  

Case C. Ao(f) = ~ and for each m,  {i: (H~'of)(i) = (H1 of)( i )}  = 
m o d  fil E.  

Without  loss of  generality (H~' o f)( i)  < (Hi o f ) ( i )  for m < 09, i < 091. So for 
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every i, (Htof)( i)  is a limit ordinal. Note that (3EIC_E)[g<E,f],~* 
( qA)[A v~ ~ mod fil E and g <eae)+A f]. 

Now i f g  <E~,~ H~ of,  D ~ E ,  then necessarily for some m = m(g, D) < co 

B = Bg = {i < col :g( i )  < (H~' ° f)( i)} ÷ ~ mod  ill(E) 

hence g <B (H~' ° f ) .  Now under  those circumstances 
(a) rk~toj(g) < i m = rI~Etol)tBI(HI o f )  (by 2.5(2)). 

As (H~', H~') is rkt-preservative 
(b) rl~z[DI)[BI(H~ 'o f )  _--< H~n(rk~EIDI)tBI(f)). 

By the definition of / /2  

(c) n~'(rk~etDl)tBl(f)) _--< n2(rk~etol)[al(f)). 
By our use of  4.3 

(d) H2(rk~Etol)tBj(f)) < n2(rk~(f)) .  
By (a)-(d) we finish as 

rk~(H1 o f )  < rk2(Hl o f )  = sup(rk3e~o~(g) : g <erol H~ o f ,  D E E ). 

4.10. CONCLUSXON. If (Hi,/-/2) is preservative, a <col  then (H~ ~>, H~ ~>) is 
preservative. 

PROOF. By induction on a. 
a = 0: trivial. 
a successor ordinal: by 4.8. 
a limit: by 4.9. 

4.11. REMARKS AND GENERALIZATION. 

(A) 
(1) We can define when (/-it,/-/2) is rkt-preserving where /-il = (H~,~ : 7 < 

COl): 

(a) //2, H~,r are functions from ordinals to ordinals, a <= Hi,y(a), a <= H2(a), 

and for a < fl, Hl,~(a) < Hl,~(fl), H2(a) <= H2(fl); 
(b) let for fER,Ord ,  /-il o f  be defined by (//1 o f ) ( / ) =  Hu( f ( i ) ) ;  then 

rkte(H1 o f )  < H2(rkte(f)). 
All the section generalizes easily, and in addit ion 

(2) I f (Hi ,  Hi)  is rkl-preserving for i < wl and HI = (Hi,r : Y < coO, Hl,r(a) = 
sup{Hi,r(a) : i < 1 + a} and H2(a) = sup(HI(a)  : i < 1 + a)  then (111,112) is 
rkt-preserving (see the proof of  4.9, use "Fodor"  instead "Rl-completeness ') .  

(B) 
(1) Let). ~R~,IC_ (a:a c~, Ro= la n coil}. 
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We can replace the "normal filters on to~" in the definition of O B  I by filters 
over I which are fine (i.e., for 7 < 2 ,  { t~ I"  y ~ t } ~ D )  and normal (i.e., if 
ArED for 7 < 2  then { tEI :  A~ett~Ar}ED)(hence R~-complete). We can 
then use consistently I instead of tot. In (I) of (A) above we have H~ = 
(H~,t" t ~ I ) ,  so (2) of (A) above becomes stronger. Using this we may need 
(C)(2) below. 

(c) 
(1) Of course ifH~ < Hi [i.e., (Va)Hf(a) < Ht(a)] and Hz < H~, and H~H~ 

satisfies (a) of 3.1 and (Ht,/-/2) is rkl-preservative then (Hf, HJ) is 
rkt- preservative. 

§5. Conclusion 

By 3.14, 1.6, (1.2) for our purpose we can assume 

5.1. HYPOTHESIS. E is a nice collection. 

5.2. THEOREM. Suppose (H~, H2) is °rkt-preservative for IF, l = 3, 5 and 
rkte(f, IF) _-__ ao+l(Ri) (andiF is nice). 

(1) T~(H, of, IF) < nz(rkte(f, IF)). 
(2) lfcf(8) = Rl, (V# < R6)LuSo < R6], R6 > "lo+l(Rl), f ~  S,Ord is constant 

such that for every i < cot, (Hi o f)(i) = R6, then R~, < H2(rk~(f)). 
(3) Ifcf(5) = Ri, (V/~ < R6)[/t ~0 < R6], R~ > zo+l(Rt), f E  S,Ord, f(i) = tol, 

R6=nl( tot) ,  then R~, <n2((rkle(f))<H2((~o+t(Ri) +) (when 1-12 is 
strictly increasing the last inequality is strict). 

(4) I f  rkt(nl of, IF) >= ao+2(Ri) then Te(Ht of, IF2) ~<- n2(rk~(f, IF)). 

PROOF. Easy. 
(1), (4) By 2.21 and Definition 4.2. 
(2) By Galvin-Hajnal [GH] (see e.g., [Sh 5, 2.8]) TE(f) = R~, for E E IF; now 

use (1). 

(3) Use (2) and remember that, by 2.18, rkte(f, IF) < z,+ ~(Rt) ÷. 

5.3. DEFINITION. Let Co = {2" ;t an infinite cardinal}, C+~ = 
{2 e q "  q n ;t has order type 2}, C~ = ni<6 q .  

5.4. DEFINITION. (1) Let us define R~(2) by induction on i: 

Case (i). R°(2) = ;t +~. 
Case (ii). R~ + 1(2) is defined by induction on a: 
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1(2) = 2 ,  

i + I  R~+,(2) = R¢(Ro) where ~, = R/+l(;t) + 1, 

= 

Case (iii). R~(2) = U¢<¢ RJ(2) (for ~ a limit ordinal). 
(2) Let R~(~) = R~(I~ I + R0) for any ordinal ~. 

5.5. FACT. (1) R~(2) is a monotonically increasing function of i, a, 2 (but 
not necessarily strictly). 

(2) R',(2) > 2, a, i. 
(3) R~(2) is strictly increasing in a when i is a successor. 
(4) {Rj+'(2) • 6 a limit ordinal} is equal to {/t- R~ (2) = # } (i.e., a set of fixed 

points of R~(2) (as a function in x). 
(5) For ~ limit {R~(2) : 6 an ordinal} is equal to A~<¢{/1 : R~(2) =/t}.  
(6) For i > 0 {Rj(R0) • 3 or i is a limit ordinal} is equal to Ci. 
(7) Rk+p(2)= R~(R~(2)). 
(8) If H(a) a~=r Ri(R0) then n*(a)  = R-/+'(R0). 
(9) RJ(z,+t(R,)) = *H2l+O(a) (see 4.4, 4.5). 

5.6. CONCLUSION. (1) For ~ < o , ,  i f 2  d¢=_r R~,(z2(R,)), (Y/~ <2)Lu%<2]  

then (RL,(z2(RI))) % < Rf=~(~,~). 02(R,)). 
(2) If ~ <to , ,  )l is the to,-th member of C~, ;t > z2(R,), (V/~ < 2 ) ~ 0 < 2 )  

then 2% is smaller than the (zz(Rt))+-th member of C¢. 

PROOF. (1) Let a = 0. Use 4.4, 4.10 and 5.5, 5.4(5). 
(2) Use 5.6(1) and 5.5(6) (and definition of C~). 

5.7. LEMMA. The function H = H ~a is "rk3-preservative, where 

Hia(ct ) de__f Min{2 : 2 is weakly inaccessible, 2 > zo+t(Rl), 2 > a}. 

PROOF. Part (a) of Definition 3.1 is easy. Suppose f o r f a n d  D part (b) of 
Definition 3.1 fails, so 

rk~(H ~, f )  > 2 d~_r H~,(rk}(f)). 

As in 4.3 w.l.o.g, rk3e(f) = rk~(f).  So by 3.10 there are gc ~%Ord for ( < ;t, 
g~ <E Hia of, [( < ~  < 2 =,g¢ <e&] ,  and rk~(g~) = rk~(gc) < 2 for ( < 7 .  

As in [Sh 5, 5.x] we can prove that A~ = {i < tot : ga(i) is weakly inaccessible} 
~fil E. 
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Also A 2 = {i < (-/')1" ga(i) < Hia(f( i ) )}  ~fil E, hence A0 def At n A 2 E  fil E but 

for i < tOl, as ga(i) is < Hi~(f(i)) and is weakly inaccessible it follows that 

ga( i )<f( i )  (see definition of Hi~!). So ga <fitEf; so ). = r k ~ ( g ) < r k ~ ( f )  < 
n ia (rk~ ( f ) )  = 2, contradiction. 

5.8. LEMMA. H a-m is "rk3-preservative where 

H~-m(ot) = Min(2 :2  is weakly a-Mahlo, 2 > z~+~(Rl) + + I"1 ) 

when a < OOl. 

PROOF. E.g., like the proofs in [Sh 5, §7]; by 2.21 we can deal with 
rkS-preservation, and using the ultrapower by a generic filter (chosen as in 3.10) 
we have no problem. 

REMARK. See [Sh 7] for more. 
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