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ALL CREATURES GREAT AND SMALL

MARTIN GOLDSTERN AND SAHARON SHELAH

Abstract. Let λ be an uncountable regular cardinal. Assuming 2λ = λ+, we

show that the clone lattice on a set of size λ is not dually atomic.

0. Introduction

A clone C on a set X is a set of finitary operations f : Xn → X which contains
all the projections and is closed under composition. (Alternatively, C is a clone if
C is the set of term functions of some universal algebra over X.)

The family of all clones forms a complete algebraic lattice Cl(X). (A lattice is
complete if every subset has a greatest lower bound and a least upper bound; a
complete lattice is algebraic if it is isomorphic to the lattice of subalgebras of some
universal algebra.) The greatest element of this lattice is O =

⋃∞
n=1 X

Xn

, where

XXn

is the set of all n-ary operations on X. (In this paper, the underlying set
X will be a fixed uncountable set.) The coatoms of this lattice Cl(X) are called
“precomplete clones” or “maximal clones” on X. The classical reference for older
results about clones is [PK79].

For singleton sets X the lattice Cl(X) is trivial; for |X| = 2 the lattice Cl(X) is
countable and well understood (“Post’s lattice”). For |X| ≥ 3, Cl(X) has uncount-
ably many elements. Many results for clones on finite sets can be found in [Sz86]. In
particular, there is an explicit description of all (finitely many) precomplete clones
on a given finite set ([R70]; see also [Q71] and [B96]); this description also includes
a decision procedure for the membership problem for each of these clones. It is also
known that every clone C �= O is contained in a precomplete clone, that is: the
clone lattice Cl(X) on any finite set X is dually atomic. (This gives an explicit
criterion for deciding whether a given set of functions generates all of O: just check
if it is contained in one of the precomplete clones.)

Fewer results are known about the lattice of clones on an infinite set, and they
are often negative or “nonstructure” results: [R76] showed that there are always
22

κ

precomplete clones on a set of infinite cardinality κ (see also [GS02]). See the
survey [GP07] for more background and references.

Rosenberg and Schweigert [RSch82] investigated “local” clones on infinite sets
(clones that are closed sets in the product topology, where X is viewed as a discrete
space). It is easy to see that the lattice of local clones is far from being dually
atomic.
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7552 MARTIN GOLDSTERN AND SAHARON SHELAH

Already Gavrilov [G59, pages 22–23] asked whether the lattice of all clones on a
countable set is also dually atomic, since a positive answer would be an important
component for a completeness criterion, as remarked above. The same question for
all infinite sets is listed as problem P8 in [PK79, page 91].

In [GS05] we showed that (assuming the continuum hypothesis CH) the answer is
negative for countable sets. We are now able to extend this construction to work on
all regular uncountable cardinals as long as they satisfy the corresponding version
of CH. The question whether such a theorem is provable in ZFC alone remains
open.

We will write CHλ for the statement 2λ = λ+, or equivalently,

CHλ: If |X| = λ, then every subset of P(X) (the power set of X)
either has cardinality ≤ λ or is equinumerous with P(X).

We will show here the following for every uncountable regular cardinal λ:

Theorem 0.1. Assume that X is a set of size λ and that CHλ holds. Then the
lattice of clones on the set X is not dually atomic; i.e., there is a clone C �= O
which is not contained in any precomplete clone.

The clone CU that we construct has the additional feature that we can give a
good description of the interval [CU ,O].

The method behind our proof is “forcing with large creatures”, a new method
which is rooted in “forcing with normed creatures” ([Sh84], [RSh99]). However,
for the purposes of this paper the connection with forcing machinery is sufficiently
shallow to allow us to be self-contained. In particular, no knowledge of set theory is
required for our theorem, except for a basic understanding of ordinals, well-founded
relations and transfinite induction.

Remark 0.2. The reader familiar with our previous paper [GS05] may appreciate
the following list of differences/modifications:

(1) In our previous paper, the “largeness property” was connected with cardi-
nalities of finite sets going to infinity, and we could show several partition
theorems of the form: if the norms of a sequence of creatures (Sn) goes
to infinity, we can find a subsequence (Tn) of “nice” creatures (e.g., ho-
mogeneous for some coloring function) such that their norm still goes to
infinity.

This point has become easier now; rather than sets “large in cardinality”,
our large sets are now sets in certain ultrafilters.

(2) In our previous paper we had “unary” and “binary” partition theorems
guaranteeing that we can thin out creatures to creatures that are homoge-
neous with respect to certain coloring functions. In the current paper we
only have a unary partition theorem (see Lemma 2.25). This means that
our notions of “f -weak” and “f -strong” are somewhat weaker than the no-
tions in [GS05], which in turn means that we know somewhat less about
the structure of the clone interval we construct. In particular, instead of
showing that this interval is linearly ordered, we can only show that there
is a linearly ordered cofinal set.

(3) (A crucial difference) In our previous paper, the construction took ω1 steps,
so in each intermediate step we only had to consider the countably many
steps taken before. In particular, the σ-closure of our set of creatures was
easily proved via a “diagonal” construction. In the current paper we again
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ALL CREATURES GREAT AND SMALL 7553

have a simple diagonal construction (Lemma 4.8) to find a lower bound
of a decreasing chain of creatures of length λ, but we also have to deal
with shorter infinite sequences in Lemma 4.7, which necessitates a more
complicated setup.

(4) For any f : λ → λ let f̄ : λ → λ be defined as f̄(x) = sup{f(x) : x ≤ y}.
If λ = ω, then we have f ∈ C iff f̄ ∈ C for all (relevant) clones C , so in
our previous paper we could wlog assume that all unary functions that we
considered were monotone. But for λ > ω we cannot assume that anymore.

(5) We introduce “coordinates” for elements of creatures. This will obviate
the notational difficulties we had in [GS05, 3.10] (involving the possible
“recycling” of deleted nodes).

(6) Another notational change: Rather than defining a linear order of equiv-
alence classes of fronts as in [GS05, 5.2], we will work directly with the
induced order on the functions in O.

1. Preliminaries

Our base set will be a fixed uncountable regular cardinal λ, equipped with
the usual order. We are interested in operations on λ, i.e., elements of O =⋃

k=1,2,... λ
λk

, and in subsets of O.

Definition 1.1. We write Cmax for the set of all functions f which satisfy
f(x1, . . . , xk) ≤ max(x1, . . . , xk) for all x1, . . . , xk ∈ λ.

For each set D ⊆ O we write 〈D〉 for the clone generated by D . We will write
〈D〉max for 〈Cmax ∪ D〉.

Fact 1.2. (1) Cmax is a clone.
(2) Any clone containing Cmax is downward closed (in the sense of the pointwise

partial order on each of the sets λλn

).
(3) Assume that C ⊇ Cmax is a clone, and assume that f1, . . . , fk are functions

of the same arity. Then 〈C ∪ {f1, . . . , fk}〉 = 〈C ∪ {max(f1, . . . , fk)}〉.
(Here, max is the pointwise maximum function.)

Proof. (1) is trivial, and (2) is easy (see [GS05]): If g ∈ C , and f is k-ary, f(�x) ≤
g(�x) for all �x, then we can find a (k + 1)-ary function F ∈ Cmax with f(�x) =
F (�x, g(�x)) for all �x.

In (3), the inclusion ⊆ follows from the downward closure of 〈C ∪ {f1, . . . , fk}〉
and (2), and the inclusion ⊇ follows from the assumption that the k-ary maximum
function is in C . �

1.1. Proof outline.

Fact 1.3. Let (L,<) be a complete linear order, C ⊇ Cmax a clone, and ρ : O → L
a map into L with properties (a), (b), (c) for all f, g ∈ O, where we write f <ρ g
for ρ(f) < ρ(g), f ∼ρ g for ρ(f) = ρ(g) and f ≤ρ g for ρ(f) ≤ ρ(g). Then (1), (2),
(3) hold.

(a) f <ρ g ⇒ f ∈ 〈C ∪ {g}〉.
(b) f ∈ 〈C ∪ {g}〉 ⇒ f ≤ρ g.
(c) ρ(max(f, g)) = max(ρ(f), ρ(g)).

(1) For every d ∈ L the sets D<d := {f : ρ(f) < d} and D≤d := {f : ρ(f) ≤ d}
are clones (unless they are empty).
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7554 MARTIN GOLDSTERN AND SAHARON SHELAH

(2) For every clone D in [C ,O) there is some d ∈ L with D<d ⊆ C ⊆ D≤d.
(3) If, moreover, ρ[O] has no last element, then the interval [C ,O] has no

coatom.

Note that (b) is equivalent to (b’), and (a)+(b)+(c) is equivalent to (a)+(b’)+(c’):

(b’) f <ρ g ⇒ g /∈ 〈C ∪ {f}〉.
(c’) Whenever f <ρ g or f ∼ρ g, then max(f, g) ∼ρ g.

Proof. Writing 0 for inf ρ[O], we conclude from (b):

f ∈ C ⇒ ρ(f) = 0.

Property (c) implies that the sets D<e and D≤e are closed under the pointwise
max function; if they are nonempty, they contain C (and hence also all projections).
For e ≥ 0, k > 0 we show that 〈f1, . . . , fk〉 ⊆ D≤e for any f1, . . . , fk ∈ D≤e:

Let f := max(f1, . . . , fk) ∈ D≤e. So 〈C ∪{f1, . . . , fk}〉 = 〈C ∪{f}〉.
If h ∈ 〈C∪{f}〉, then (by (b)) ρ(h) ≤ ρ(f) ≤ e. So 〈C∪{f}〉 ⊆ D≤e.

Hence D≤e is a clone. The argument for D<e (with e > 0) is similar.
Now, given any clone D ⊇ C , let d0 := sup{ρ(f) : f ∈ D}. We claim D<d0

⊆
D ⊆ D≤d0

:

Clearly D ⊆ D≤d0
.

Let h ∈ D<d0
; then ρ(h) < d0. Hence there is some f ∈ D with

ρ(h) < ρ(f). So h ∈ 〈C ∪ {f}〉 ⊆ D by (a). Hence D<d0
⊆ D .

Finally, we see that the map d �→ D≤d is 1-1 from ρ[O] into [C ,O), since ρ(f) = d
implies f ∈ D≤d \D≤e for e < d. Hence [C ,O) contains a cofinal copy of ρ[O], thus
no maximal element. �

We will try to find a linear order L and a map ρ that will allow us to apply the
lemma. But rather than finding L explicitly, we will first construct relations <ρ

and ∼ρ:

(∗∗) f <ρ g ⇔ ρ(f) < ρ(g), f ∼ρ g ⇔ ρ(f) = ρ(g)

on O. The order L will then appear as the Dedekind completion of the quotient
order O/∼.

We will construct < and ∼ in λ+ many stages as unions
⋃

i <i and
⋃

i ∼i. Each
<i will be a partial order on O, and each ∼i will be an equivalence relation, but
only at the end will we guarantee that any two operations f and g are either <-
comparable or ∼-equivalent.

The relation f <i g will say that on a “large” set, f grows faster than g. This
i-th notion of “large” will come from a filter Di on λ. Eventually, the clone C at
the bottom of our interval will be determined by the filter

⋃
i Di.

1.2. Filter clones.

Definition 1.4. For any unbounded A ⊆ λ, let hA be the function hA(x) =
min{y ∈ A : y > x}. For any family U of unbounded subsets of λ let CU be the
clone 〈hA : A ∈ U〉max.

(The function hF will be defined below in Definition 3.9.)

Definition 1.5. For any unbounded A ⊆ λ we write f ≤A g iff f ∈ 〈hA, g〉max.

Fact 1.6. The relation ≤A is transitive.

Licensed to Tech Univ Wien. Prepared on Sun Apr 29 12:36:52 EDT 2018 for download from IP 128.131.236.183.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

Sh:884



ALL CREATURES GREAT AND SMALL 7555

Lemma 1.7. Assume that U is a filter on λ containing no bounded sets. Then

CU = {f : ∃A ∈ U ∃k ∀�x f(�x) ≤ h
(k)
A (max �x)} =

⋃
A∈U 〈hA〉max. (Here, h

(k)
A is the

k-fold iteration of the function hA.)

Proof. Write C ′
U := {f : ∃A ∈ U ∃k ∀�x f(�x) ≤ h

(k)
A (max �x)}, C ′′

U =
⋃

A∈U 〈hA〉max.
The inclusions C ′′

U ⊆ C ′
U ⊆ CU are trivial, and the inclusion C ′

U ⊆ C ′′
U follows from

the downward closure of 〈hA〉max.
To check CU ⊆ C ′

U , it is enough to see that C ′
U is a clone. So let f, g1, . . . , gn ∈

C ′
U , witnessed by A,A1, . . . , An, k, k1, . . . , kn. Let k∗ = max(k1, . . . , kn), A∗ =

A1 ∩ · · · ∩An. Then

f(g1(�x), . . . , gn(�x)) ≤ h
(k)
A (max(g1(�x), . . . , gn(�x)))

≤ h
(k)
A (h

(k∗)
A∗ (max �x)) ≤ h

(k+k∗)
A∩A∗ (max �x).

�

All clones constructed in this paper will be of the form CU for some filter U .

2. Creatures

2.1. Definitions.

Definition 2.1. A planar tree is a tuple (T,�, <) where:

(A) T is a nonempty set. (Elements of trees are often called “nodes”.)
(B) � is a partial order on T in which every set {η : η � ν} is well-ordered by

�.
(We take � to be reflexive, and write � for the corresponding irreflexive
relation.)

(C) < is an irreflexive partial order on T such that any two η �= ν in T are
<-comparable iff they are �-incomparable. (x ≤ y means x < y ∨ x = y.)

(D) Whenever η � η′ and ν � ν′, then η < ν implies η′ < ν′.

Example 2.2. Let T be a downward closed set of nonempty (possibly transfinite)
sequences of ordinals. Then T admits a natural tree order �: η � ν iff η is an initial
segment of ν. We also have a natural partial order <, namely, the usual lexico-
graphic order of sequences of ordinals (where sequences η � ν are <-incomparable).
Thus (T,�, <) is a planar tree.

It is easy to see that every planar tree in which the relation < is well-founded
is isomorphic to a planar tree as described in this example. None of our trees will
contain infinite �-chains, so they could be represented using sets of finite (or even
strictly decreasing) sequences of ordinals.

For notational reasons, however, we will use a completely different way to repre-
sent trees. The problem with the particular implementation described above is that
we will have to “glue” old trees together to obtain new trees (see Definition 2.24);
this means that the roots of the old trees will no longer be roots in the new tree.
Since we want to view the old trees as subtrees of the new trees, it is not reasonable
to demand that roots are always sequences of length 1.

Notation 2.3. Let (T,�, <) be a planar tree.

∗ We call � = �T the “tree order” and < = <T the “lexicographic order”
of T .
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7556 MARTIN GOLDSTERN AND SAHARON SHELAH

∗ For η ∈ T we write SuccT (η) or sometimes Succ(η) for the set of all direct
successors of η:

SuccT (η) := { ν ∈ T : η = max{ν′ : ν′ � ν} }.

∗ ext(T ), the set of external nodes or leaves of T , is the set of all η with
SuccT (η) = ∅.
int(T ) := T \ ext(T ) is the set of internal nodes.

∗ We let Root(T ) be the set of minimal elements of T (in the tree order �).
If Root(T ) is a singleton, we call its unique element root(T ).

∗ A branch is a maximal linearly ordered subset of T (in the sense of �).
The tree T is called “well-founded” iff T has no infinite branches, or equiv-
alently, no infinite linearly ordered subsets, equivalently, if (T,�) is well-
founded in the usual sense.
If T is well-founded, then there is a natural bijection between external nodes
and branches, given by ν �→ {η ∈ T : η � ν}.

∗ For any η ∈ T we let T [η] := {ν : η � ν}; this is again a planar tree (with
the inherited relations � and <).
More generally, if H is a set of pairwise �-incomparable nodes of S (often
H ⊆ Root(S)), then we define

S[H] := {η ∈ S : ∃γ ∈ H γ � η} =
⋃

γ∈H

S[γ].

This is again a planar tree, and Root(S[H]) = H.
If H = {γ ∈ Root(S) : γ0 < γ} for some γ0 ∈ Root(S), then we write
S[root>γ0] for S[H].

∗ A front is a subset of T which meets each branch exactly once. (Equiva-
lently, a front is a maximal subset of T that is linearly ordered by <.)

For example, ext(T ) is a front, and Root(T ) is also a front. If F ⊆
int(T ) is a front, then also

⋃
η∈F SuccT (η) is a front.

Let η ∈ int(T ), F ⊆ T [η]. We say that F is a “front above η” iff
F is linearly ordered by < and meets every branch of T containing η.
Equivalently, F is a front above η if F is a front in T [η]. (For example,
SuccT (η) is a front above η.)

∗ All trees S that we consider will satisfy ext(S) ⊆ λ, so it makes sense to
define the following notation:

– Let S be a tree with ext(S) ⊆ λ, and let η ∈ S. Then minS [η] :=
min(ext(S[η])).

– Similarly supS [η] := sup(ext(S[η])).

When < and � are clear from the context we may just call the tree “S”; we may
later write �S , <S for the respective relations.

We visualize such trees as being embedded in the real plane R2, with the order
� pointing from the bottom to the top, whereas the order < can be viewed as
pointing from left to right. (See Figure 1, where we have η1 � η2 � η3, ν1 � ν2,
ν1 � ν3, ν2 < ν3, and ηi < νj for all i, j ∈ {1, 2, 3}.)
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η3 = 0

η2

η1

root(T)

ν1

ν2 = 2 ν3 = 3

Figure 1. � and ≤

Definition 2.4. Let (L,<) be a linear order, D a filter on L. We say that “D
converges to supL” iff for all x0 ∈ L the set {y ∈ L : x0 < y} is in D.

Fact 2.5. If (L,<) is a linear order, D a filter on L converging to supL, then L has
no last element, and, moreover, each A ∈ D has no last element.

Proof. If A ∈ D, x0 ∈ A, then the set {x ∈ A : x > x0} is in D and hence cannot
be empty. �

Definition 2.6. An abstract creature is a tuple (S,�, <,D), where:

(A-D) (S,�, <) is a planar well-founded tree (see Definition 2.1).
(E) D = (Dη : η ∈ int(S)) is a family of ultrafilters.
(F) For all η ∈ int(S), the linear order (SuccS(η), <) has no last element.
(G) For all η ∈ int(S), Dη is an ultrafilter on SuccS(η) which “converges to

sup(SuccS(η))”.

We sometimes write (S,D) or just S for creatures if the other parameters are
clear from the context. When an argument involves several creatures S, T, . . ., we
may write DS , DT , etc., for the respective families of ultrafilters. (The notation
DS will be reserved for a quite different notion; see Definition 5.3.)

Remark 2.7. Since a creature S is really a well-founded tree (S,�), we have that
both (S,�) and (S,�) are well-founded. So when we prove theorems about the
nodes of a creature S or when we define a function on a creature, we can use one
of two kinds of induction/recursion:

• “Upward induction”. Every nonempty X ⊆ S has a minimal element with
respect to �. So if we want to define a function f “by recursion” on S,
we may use the values of f�{η : η � ν} when we define f(ν). Similarly,
we can prove properties of all η ∈ T indirectly by considering a minimal
counterexample and deriving a contradiction.

• “Downward induction”. Every nonempty X ⊆ S has a maximal element
with respect to �. So we can define a function f on S by downward recur-
sion; to define f(η) we may use the function f�{ν : η � ν} or more often
the function f�Succ(η). Similarly, we may use “maximal counterexamples”
in proofs of properties of all η ∈ S.
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7558 MARTIN GOLDSTERN AND SAHARON SHELAH

Motivation 2.8. Mainly for notational reasons it will be convenient to be able to
read off information about the relations η � ν and η < ν directly from η and ν. So
we will restrict our attention to a subclass of the class of all creatures:

First we will require all external nodes of our creatures to come from a fixed
linearly ordered set, the set of ordinals< λ. We also require that the “lexicographic”
order (see Notation 2.3) agrees with the usual order of ordinals.

We then want to encode information about the location of any internal node
η ∈ T within T into the node T itself. It turns out that we can use the pair
(min extT [η], sup extT [η]) as “coordinates” for η. Thus, all our creatures will be
subsets of λ ∪ (λ× λ).

Definition 2.11 below is motivated by the following fact:

Fact 2.9. Let S be a creature with ext(S) ⊆ λ such that the lexicographic order
on ext(S) agrees with the usual order on λ, which (in this paragraph only) we will
denote by ≤Ord. Then for all η, ν ∈ S:

• η �S ν iff minS [η] ≤Ord minS [ν] and supS [ν] <Ord supS [η].
• If η, ν are �-incomparable, then: η <S ν iff supS [η] ≤Ord minS [ν].

Proof. η � ν implies that extT [ν] � extT [η], so min extT [η] ≤ min extT [ν] and
sup extT [η] ≥ sup extT [ν]. In fact, using Definition 2.6(F) it is easy to see that
η � ν even implies sup extT [η] > sup extT [ν], so the map η �→ supS [η] is 1-1. �
Remark 2.10. Let S be a creature with ext(S) ⊆ λ such that the lexicographic
order on ext(S) agrees with the usual order on λ. Then for every η ∈ S (except
possibly η = root(S)) the set SuccS(η) has cardinality < λ.

Proof. If |SuccS(η)| ≥ λ, then we must have supS [η] ≥ λ. This can only happen if
η is the unique root of S. �
Definition 2.11. Let Λ := λ ∪ {(i, j) ∈ λ× λ : i < j}. We define two functions α
and β from Λ into λ: α(i, j) = i, β(i, j) = j, α(i) = β(i) = i for all i, j ∈ λ.

We define two partial orders � and < on Λ. For all η �= ν in Λ:

• η � ν ⇔ α(η) ≤ α(ν) and β(η) > β(ν).
• If η, ν are �-incomparable, then η < ν ⇔ β(η) ≤Ord α(ν).

Definition 2.12. A concrete creature (in the following, just “creature”) is a tuple
(S,�, <,D), where:

(A-G) (S,�S , <S , DS) is an abstract creature (see Definition 2.6).
(H) S ⊆ Λ, <S and �S agree with the relations < and � defined in Defini-

tion 2.11.
(I) Each η ∈ int(S) is a pair η = (α(η), β(η)), and ext(S) ⊆ λ.
(J) For all η ∈ int(T ), α(η) ≤ min ext(T [η]) and sup extT [η] = β(η).

Fact 2.13. Every creature (whose external nodes are a subset of λ with the natural
order) is isomorphic to a concrete creature (replacing each internal node η by the
pair (min[η], sup[η])).

Fact 2.14. If S and T are concrete creatures and η, ν ∈ S ∩ T , then η �S ν iff
η �T ν, and similarly η <S ν iff η <T ν.

We will often “thin out” creatures to get better behaved subcreatures. It will
be easy to check that starting from a concrete creature, each of these thinning-out
processes will again yield a concrete creature.
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2.2. Small is beautiful.

Definition 2.15. Let (S,D) = (S,�, <,D) be a creature. We say that (S,D) is

small, if Root(S) has a unique element: Root(S) = {root(S)}.
(This is a creature in the usual sense. We usually require
|Succ(root(S)| < λ.)

medium, if Root(S) is infinite without a last element but of cardinality < λ.
(Such a creature is often identified with the set (or naturally ordered
sequence) {S[γ] : γ ∈ Root(S)} of small creatures.)

large, if Root(S) ⊆ λ has size λ.
(These creatures are usually called “conditions” in forcing arguments.
They correspond to “zoos” in [GS05]. Again, it may be convenient to
identify such a large creature with a λ-sequence of small creatures.)

(We will not consider creatures S with 1 < |Root(S)| where Root(S) has a last
element.)

Fact 2.16. Let F be a front above η (see 2.3). Assume F �= {η}. Then:
(1) F is linearly ordered by < and has no last element.
(2) For all ν ∈ F : sup[ν] < sup[η].
(3) sup[η] = sup{sup[ν] : ν ∈ F}.
(4) sup[η] = sup{min[ν] : ν ∈ F}.

Proof. We only show (1); the rest is clear. Let ν ∈ F . We
will find ν′ ∈ F , ν < ν′.
Let η � η̄ � ν, with η̄ ∈ SuccT (η). As SuccT (η) has
no last element, we can find η̄′ ∈ Succ(η), η̄ < η̄′. So
sup[ν] ≤ min[η̄′].
There is ν′ ∈ F with η̄′ � ν′. By the definition of a planar
tree, ν < ν′.

� η

sup[ν] sup[η]

η̄ η̄′

ν
ν′

2.3. Thinner creatures.

Fact and Definition 2.17 (THIN). If (S,D) is a small (or large) creature, S′ ⊆ S,
then we write S′ ≤thin S iff

• Root(S) = Root(S′).
• ∀η ∈ S′ ∩ int(S) : SuccS′(η) ∈ Dη.

In this case, S′ naturally defines again a small (or large, respectively) creature
(S′, D′) by letting D′

η := {X ∩SuccS′(η) : X ∈ Dη} for all η ∈ S′ and by restricting
� and <.

Fact 2.18. If S is a concrete creature and S′ ≤thin S, then also S′ is a concrete
creature.

Proof. Let η = (α, β) ∈ S′. We have to show that α ≤ minS′ [η] and β = supS′ [η].
The first property follows from α ≤ minS [η] ≤ minS′ [η].

For the second property we use downward induction. Arriving at η, we may
assume supS′ [ν] = supS [ν] for all ν ∈ SuccS′(η). Now SuccS′(η) is cofinal in
SuccS(η); hence also {supS′ [ν] : ν ∈ SuccS′(η)} = {supS [ν] : ν ∈ SuccS′(η)} is
cofinal in {supS [ν] : ν ∈ SuccS(η)}. �
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7560 MARTIN GOLDSTERN AND SAHARON SHELAH

The following facts are easy:

Fact 2.19. If T and S are small or large creatures, T ≤thin S, then for any η ∈ T
we also have T [η] ≤thin S[η].

Fact 2.20. ≤thin is transitive.

2.4. Drop, short, sum, glue.

Fact and Definition 2.21 (DROP). Let S and T be large creatures. We write
T ≤drop S iff Root(T ) ⊆ Root(S) (with the same order <) and T = S[Root(T )].
(See Notation 2.3.)

Sometimes we drop only an initial part of the creature. This relation deserves a
special name:

Definition 2.22 (SHORT). Let S and T be large creatures. We write T ≤short S
iff there is some γ ∈ Root(S) such that S[root>γ] = T .

We write T ≤thin/short S iff there is some T ′ with T ≤short T
′ ≤thin S′. (Equiv-

alently, if there is some T ′ with T ≤thin T ′ ≤short S
′.)

Definition 2.23 (SUM). Let (S,D) be a medium concrete creature. (See Figure 2.)

· · ·

S[α]

Root(S)α

Figure 2. A medium creature S. . .

Let U be an ultrafilter on Root(S) converging to supRoot(S) (see Defini-
tion 2.4). Let

α := min{α(η) : η ∈ S}, β := sup{β(η) : η ∈ S} = sup ext(S), γ := (α, β).

(Note that γ � η for all η ∈ S.) Then
∑

(S,D) =
∑
U

(S,D) =
∑
U

S is defined as the

following small concrete creature (T,E) (see Figure 3):

– T := {γ} ∪ S, root(T ) = γ, Dγ = U .

– For all η ∈ Root(S) = SuccT (η): T
[η] = S[η].

Definition 2.24 (GLUE). Let S and T be large concrete creatures. We write
T ≤glue S iff for each γ ∈ Root(T ) the setHγ := SuccT (γ) is an interval inRoot(S)

with no last element and each T [γ] can be written as
∑

Uγ ,γ
S[Hγ ] for some ultrafil-

ters Uγ (see Figures 4 and 5).
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ALL CREATURES GREAT AND SMALL 7561

· · ·

S[α]

α

· · ·

root(
∑

S)

Figure 3. . . . whose sum is a small creature
∑

S

· · · · · · · · ·
Hγ

Figure 4. A large creature S

· · · · · ·· · ·
SuccT (γ)

γ

· · · · · ·

Figure 5. A large creature T ≤glue S

2.5. Partition theorems.

Lemma 2.25. Let E be a finite set.

(1) If S is a large or small creature, c : S → E, then there is a creature
T ≤thin S such that c�SuccT (η) is constant for all η ∈ T .

(2) If S is a small creature, c : ext(S) → E, then there is a small creature
T ≤thin S such that c�ext(T ) is constant.

(3) If S is a large creature, c : ext(S) → E, then there are large creatures T
and T ′ such that T ′ ≤drop T ≤thin S and c�ext(T ′) is constant.

Proof of (1). We define T by upward induction, starting withRoot(T )=Root(S).
Given η ∈ T , we find a set Aη ⊆ SuccS(η), Aη ∈ DS(η) such that c�Aη is constant,
and we let SuccT (η) := Aη. �
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7562 MARTIN GOLDSTERN AND SAHARON SHELAH

· · · · · ·

· · ·

S

T γ

γ

S[γ]

T [γ]

Figure 6. T ≤ S

Proof of (2). We define a map c̄ : S → E by downward induction (see 2.7):

∗ For η ∈ ext(S): c̄(η) = c(η).
∗ For η ∈ int(S) we find a (unique) value eη ∈ E such that the set {ν ∈
SuccS(η) : c̄(ν) = eη} is in Dη, and we set c̄(η) := eη.

Now we let e0 := c̄(root(S)),

T := {ν ∈ S : ∀η � ν c̄(η) = e0}.

Clearly T ≤thin S, and c�ext(T ) is constant with value e0. �

Proof of (3). We apply (2) to each S[γ], for all γ ∈ Root(S), to get a large T ≤thin

S such that c�ext(T [γ]) is constant, say with value eγ , for all γ ∈ Root(T ). Now

find e0 such that the set {γ : eγ = e0} has cardinality λ, and let T ′ :=
⋃

eγ=e0
T [γ].

Then T ′ ≤drop T ≤thin S, and c is constant (with value e0) on ext(T ′). �

2.6. Comparing large creatures. The constructions “glue”, “drop” and “thin”
are ways to get new, in some sense “stronger”, large creatures from old ones. The
following definition gives a common generalization of the above constructions.

Definition 2.26. Let S, T be creatures. We say T ≤ S iff there is a front F ⊆ T
such that

• F ⊆ Root(S),
• for each γ ∈ F : T [γ] ≤thin S[γ] (see Fact and Definition 2.17).

(See Figure 6.)
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ALL CREATURES GREAT AND SMALL 7563

Remark 2.27. We usually consider this relation if both S and T are large or both
are small, but we also allow the possibility that S is large and T is small. It is easy
to see that if S is small and T ≤ S, then also T must be small and T ≤thin S.

Fact 2.28. Assume that T ≤ S are concrete creatures. Then:

(1) For all η ∈ T ∩ S we have T [η] ≤thin S[η].
(2) ext(T ) ⊆ ext(S), and S is downward closed in T .

The next fact is the main reason for our notational device of “concrete” creatures
(in Definition 2.12): Thanks to Fact 2.14, we may just write η � ν in the proof
below rather than having to distinguish �S1 , �S2 , etc.

Fact 2.29 (Transitivity). If S3 ≤ S2 ≤ S1 are concrete creatures, then S3 ≤ S1.

Proof. Assume S3 ≤ S2 ≤ S1, where Sk ≤ Sk−1 is witnessed by a front Fk ⊆ Sk for
k = 2, 3. We claim that F2 ∩ S3 witnesses S3 ≤ S1. Clearly F2 ∩ S3 ⊆ Root(S1).
To check that F2 ∩S3 is a front in S3, consider any branch b in S3. b is of the form
b = {η ∈ S3 : η � ν0} for some ν0 ∈ ext(S3). The set {η ∈ S2 : η � ν0} is also a
branch in S2, so it meets F2 (hence F2 ∩ S3, by Fact 2.28) in a singleton.

For any η ∈ F2, S
[η]
2 ≤ S

[η]
1 . Let γ ∈ F3, γ � η. Then we have S

[γ]
3 ≤thin S

[γ]
2 , so

by Fact 2.19 also S
[η]
3 ≤thin S

[η]
2 ≤thin Sη

1 . �

Examples 2.30. (1) For any γ ∈ Root(S) we have S[γ] ≤ S.
(2) S ≤ S is witnessed by the front Root(S).
(3) Assume that T ≤drop S or T ≤thin S. Then again Root(T ) witnesses

T ≤ S.
(4) Assume that T is obtained from S as in GLUE (2.24). Then the front⋃

γ∈Root(T ) Succ(γ) witnesses T ≤ S.

Lemma 2.31. Let S and T be large concrete creatures, T ≤ S.

(1) ext(T ) ⊆ ext(S).
(2) If F ⊆ S is a front of S, then F ∩ T is a front of T .

Proof. (1) is clear.
For (2), note that nodes in F ∩ T are linearly ordered by <T , because they were

linearly ordered by <S , and S and T are concrete, so <S and <T agree. Every
external node of T is also an external node of S, so every branch of T contains a
branch of S. Hence every branch of T meets F . �

3. Creatures and functions

3.1. Weak and strong nodes. In this section we will consider functions f : λk →
λ. We will write tuples (x1, . . . , xk) ∈ λk as �x. For α ∈ λ we write �x < α iff we
have max(x1, . . . , xk) < α, similarly for �x ≤ α.

However, the use of k-ary functions is only a technicality; the reader may want to
consider only the case k = 1 and then conclude the general results either by analogy
or by assuming that all clones under consideration are determined by their unary
fragments (this is true if all clones contain a certain fixed 1-1 function p : λ×λ → λ).
Also, to more easily visualize the results below it may be helpful to assume all
functions under consideration are strictly increasing.
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7564 MARTIN GOLDSTERN AND SAHARON SHELAH

Definition 3.1 (Weak and strong nodes, strong creatures). Let f : λk → λ be a
k-ary function. Let (S,�, <,D) be a creature, η ∈ S.

(1) If η ∈ ext(S), then we say that η is f -weak.
(2) η ∈ int(S) is f -weak (in S) iff there is a �y ∈ λk, �y ≤ min[η], f(�y) ≥ sup[η].

(Alternatively, we may say that η is weaker than f or that f is stronger
than η.)

(3) η ∈ int(S) is f -strong (in S) iff for all �y ∈ λk with �y < sup[η] we have
f(�y) < sup[η]. (Alternatively, we may say that f is weaker than η or that
η is stronger than f .)

(4) We say that T is f -strong iff each γ ∈ Root(T ) is f -strong.

See Figure 7.

f
f

f -strongf -weak

Figure 7. f -weak and f -strong nodes

Remark 3.2. If η � ν and η is f -weak, then also ν is weak. So weakness is inherited
“upwards”. Strength is in general not inherited downwards, but the following holds:

If F is a front above η and all ν ∈ F are f -strong, then also η is
F -strong.

Fact 3.3. Let S and T be concrete creatures. Assume that η ∈ S ∩ T is f -strong
(or f -weak) in S and T ≤ S. Then η is again f -strong (or f -weak, respectively)
in T . Similarly, if S is f -strong, then (by Remark 3.2) so is T .

Proof. Assume η is f -strong in S, so f(�y) < supS [η] for all �y < supS [η]. Since
supT [η] = supS [η], η will also be f -strong in T .

Assume η is f -weak in S, so f(�y) ≥ supS [η] = supT [η] for some �y ≤ minS [η].
Clearly minS [η] ≤ minT [η], so also η will also be f -weak in T . �

Fact 3.4. Let S be a (large or small) creature, f ∈ O.

(1) There is T ≤thin S such that each η ∈ T is either f -strong or f -weak.
(2) Moreover, there is T as above such that also for each internal η ∈ int(T )

either all ν ∈ SuccT (η) are f -strong or all ν ∈ SuccT (η) are f -weak.
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ALL CREATURES GREAT AND SMALL 7565

Proof. We define T ≤thin S by upward induction, starting with Root(T ) :=
Root(S). Now for each η ∈ T we consider two cases:

(1) η is f -strong (in S). In this case we define SuccT (η) := SuccS(η). By
Fact 3.3, η will also be f -strong in T .

(2) For some �y < supS [η] we have f(�y) ≥ supS [η]. Recall that (by Fact 2.16),
supS [η] = sup{minS [ν] : ν ∈ SuccS(η)}. So we can find ν0 ∈ SuccS(η) with
�y ≤ minS [ν0].
Define SuccT (η) := {ν ∈ SuccS(η) : ν0 < ν}. (Note that this set is in DT

η .)
This ensures that η will be f -weak in T .

This completes the definition of T , proving (1). (2) now follows from (1) together
with Lemma 2.25(1). �
Fact 3.5. Let S be a large creature, f : λk → λ. Then there is T ≤ S which
is f -strong.

Proof. Using the regularity of λ, we can find a continuous increasing sequence of
ordinals (ξi : i < λ) with the following properties:

– For all i < λ, all �x < ξi: f(�x) < ξi.
– For all i < λ, all γ ∈ Root(S): If minS [γ] < ξi, then supS [γ] < ξi, and
moreover there is γ′ > γ in Root(S) with supS [γ

′] < ξi.
– For all i < λ, the set [ξi, ξi+1) ∩ ext(S) is nonempty.

These conditions will ensure that for all i < λ the set

Γi := {γ ∈ Root(S) : ξi ≤ min ext(S[γ]) < sup ext(S[γ]) ≤ ξi+1}
is infinite with no last element.

Now obtain T from S by gluing together each set {S[γ] : γ ∈ Γi} (see Defini-
tion 2.24) for each i < λ. �
3.2. Gauging functions with creatures. This section contains the crucial point
of our construction: the close correspondence between the relation f ∈ 〈g〉max and
the relation f <S g.

Definition 3.6. Let S be a large creature, f : λk → λ, F ⊆ S a front. We say
that F gauges f (in S) if

• For all η ∈ F , η is f -strong.
• Whenever η � ν, η ∈ F , then ν is f -weak.

We say that S gauges f if there is a front F ⊆ S gauging f .

Fact 3.7. Let T ≤ S be large concrete creatures. If S gauges f , then also T gauges
f .

Proof. By Lemma 2.31, F ∩ T is a front in T . Let F ⊆ S gauge f (in S). Then
F ∩ T still gauges f (in T ), witnessing that T gauges f . (Use Fact 3.3.) �
Fact 3.8. For every function f ∈ O and every large creature S which is f -strong
there is a large creature T ≤thin S which gauges f .

Proof. By Fact 3.4, we can first find T ≤thin S such that all nodes in T are f -strong
or f -weak and all internal nodes have either only f -weak successors or only f -strong
successors.

Now let F be the set of all η ∈ int(T ) with the property

η is f -strong, but all ν ∈ Succ(η) are f -weak.
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7566 MARTIN GOLDSTERN AND SAHARON SHELAH

Every branch b of T contains an f -strong node (in Root(T )) and an f -weak node
(in ext(T )) so b contains a highest strong node ηb. Since ηb has weak successors,
all successors of ηb are weak; hence {ηb} = b ∩ F . Hence F is a front, and clearly
F gauges f . �

Definition 3.9. Let S be a creature, F ⊆ S a front. We let

limF := {supS [η] : η ∈ F}
and we write hF for the function hlimF

.

Remark 3.10. In the special case that F = ext(S), we have limF = F , so our
(new) definition of hF agrees with our (old) definition in Definition 1.4 of hext(S).
However, we will usually only consider fronts F ⊆ int(S).

Remark 3.11. If F contains only internal nodes, then each point of limF is a limit
point of ext(S). We will see below that hF grows much faster than hext(S). In an
informal sense, hF is the smallest function that is still stronger than each η ∈ F .
Lemmas 3.12 and 3.13 below capture a part of that intuition.

Lemma 3.12. Let S be a large creature, F ⊆ S a front. Let g be a function which
is stronger than each η ∈ F . Then hF ≤ext(S) g. (See Fact 1.6 for the definition
of ≤A.)

Proof. Let A := ext(S). For each η ∈ F fix �xη such that max(�xη) ≤ min[η]
and g(�xη) ≥ sup[η]. (The existence of �xη follows from our assumption that g is
η-strong.)

We will define a function �y : λ → λk:

For each α ∈ A we can find η = ηα ∈ F with ηα � α. Let
�y(α) = �xηα

.

For α ∈ λ \A let �y(α) = �0.

Clearly �y(α) ≤ α, so the function �y (i.e., each of its components) is in Cmax.
For α ∈ ext(S) we have

hF (α) = sup[ηα] ≤ g(�y(α)),

and for α /∈ ext(S) we have hF (α) = hF (hA(α)). In any case we have

hF (α) ≤ g(�y(hA(α)));

therefore hF ∈ 〈hA, g〉max. �

Lemma 3.13. Let S be a large creature, F ⊆ S a front. Let f be a function weaker
than all η ∈ F . Then f ≤ext(S) hF .

Proof. For any �x, let η ∈ F be minimal such that sup[η] > �x. Then hF (max �x) =
sup[η], but (as η is f -strong), f(�x) < sup[η]. Hence f(�x) < hF (max �x) for all �x, so
f ∈ 〈hF 〉max. �

Lemma 3.14. Let S be a large creature, F ⊆ int(S) a front. Let f be a function
which is weaker than each η ∈ F . Then hF �≤ext(S) f .

Proof. Pick any η ∈ F , and let ξ := sup[η]. Let

D := {c ∈ O : ∀�x < ξ (c(�x) < ξ)}.
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f g

η
F

G

Figure 8. g is η-strong, f is η-weak

Then D is a clone containing f (as η is f -strong). As ξ is a limit point of ext(S), we
also have hext(S)(�x) < ξ for all �x < ξ, so hext(S) ∈ D . Hence 〈hext(S), f〉max ⊆ D ,
but hF /∈ D , so hF /∈ 〈hext(S), f〉max. �

Notation 3.15. If F is a front in S, ν ∈ ext(S), then we write F ·(ν) for the unique
η ∈ F with η � ν.

Recall from Remark 3.2 that “higher” nodes (in the sense of �) are usually
weaker (in the sense of f -weakness) than lower nodes. This apparent reversal of
inequalities lies at the heart of the next definition.

Definition 3.16. Assume that S is a large creature gauging f and g, witnessed by
fronts F and G. We write

f <S g iff: For all ν ∈ ext(S), F ·(ν) lies strictly above G·(ν): G·(ν) �
F ·(ν). (See Notation 3.15.)
f ∼S g iff: For all ν ∈ ext(S), F ·(ν) = G·(ν).

We say that “S compares f and g” iff S gauges f and g and one of

f <S g, f ∼S g, g <S f

holds.

Fact 3.17. If f <S g and T ≤ S, then f <T g. Similarly, if f ∼S g and T ≤ S,
then f ∼T g.

The following lemma is the core of the whole proof.

Lemma 3.18. Let S be a large creature gauging f and g. If f <S g, then f ∈
〈hext(S), g〉max, but g /∈ 〈hext(S), f}〉max. In other words:

If f <S g, then f ≤ext(S) g, but g �≤ext(S) f .

Proof. Let F gauge f . So every η ∈ F is f -strong but g-weak. By Lemma 3.13, we
have f ≤ext(S) hF and by Lemma 3.12 hF ≤ext(S) g. So f ≤ext(S) g, as ≤ext(S) is
transitive (Fact 1.6).

If we had g ≤ext(S) f , then (as hF ≤ext(S) g, by Lemma 3.12) we would get
hF ≤ext(S) f , contradicting Lemma 3.14. �

Licensed to Tech Univ Wien. Prepared on Sun Apr 29 12:36:52 EDT 2018 for download from IP 128.131.236.183.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

Sh:884



7568 MARTIN GOLDSTERN AND SAHARON SHELAH

Lemma 3.18 shows that if S can “see” that g grows faster than f , then together
with hext(S), g dominates f , but not conversely. We can also read this as:

If f <S g, then “on the set ext(S)” g dominates f quite strongly.

But can we always find a creature S that can compare the different behaviors of
f and g? This is answered in the next lemma.

Lemma 3.19. Let f, g ∈ O, and let S be a large creature. Then there is a large
creature T ≤ S which compares f and g, i.e., f <T g or f ∼T g or g <T f .

Proof. By Fact 3.5 we can find S1 ≤ S which is f -strong, and by Fact 3.8 we can
find S2 ≤ S1 gauging f , witnessed by a front F . Similarly we can find S3 ≤ S2

gauging g, witnessed by G. F ∩ S3 still witnesses that S3 also gauges f .
To each external node ν of S3 we assign one of three colors, depending on whether

(1) F ·(ν) = G·(ν), or
(2) F ·(ν) � G·(ν), or
(3) F ·(ν) � G·(ν).

Using Lemma 2.25 we can find T ≤ S3 such that all branches of T get the same
color. Now T ≤ S, and one of f ∼T g, f <T g, or g <T f holds. �

Fact 3.20. Assume f ∼S g or f <S g. Let F and G be the fronts gauging f and g,
respectively. Then:

(1) Every η ∈ S which is g-strong is also f -strong.
(2) For all η ∈ S: η is g-strong iff η is max(f, g)-strong.
(3) G gauges max(f, g).
(4) max(f, g) ∼S g.

Proof. (1) On every branch in S the g-strong nodes are exactly the nodes which
are � G; these nodes are � F , hence f -strong.

(2) Let η be g-strong, so for �x < sup[η] we have g(�x) < sup[η]. As η is also
f -strong, we also have

∀�x < sup[η] : max(f, g)(�x) < sup[η].

(3) By (2).
(4) By (3). �

4. Fuzzy creatures

Ideally, we would like to construct a decreasing sequence (Si : i < λ+) of crea-
tures such that the relations

⋃
i <Si

and
⋃

i ∼Si
can be used for the construction

described in Section 1.1. However, the partial order ≤ on creatures is not even
σ-closed; i.e., we can find a countable decreasing sequence with no lower bound.

We will now slightly modify the relation ≤ between large creatures to a relation
≤∗ which has better closure properties but still keeps the important properties
described in Lemma 3.18.

4.1. By any other name: ≤thin, ≤thin/short, ≈.

Fact and Definition 4.1. Assume that S, S1, S2 are concrete creatures and:

either: S is small, and both S1 and S2 are ≤thin S,
or: S is large, and both S1 and S2 are ≤thin/short S.
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ALL CREATURES GREAT AND SMALL 7569

We define a structure T = (T,�T , <T , DT ) (which we also call S1∩S2) as follows:

(1) Root(T ) = Root(S1) ∩Root(S2), T = S1 ∩ S2,
(2) <T = <S1 ∩<S2 ,
(3) �T = �S1 ∩�S2 ,
(4) Dη = DS1

η ∩DS2
η for all η ∈ T .

Then T is a creature, and T ≤thin S1, T ≤thin S2 (or T ≤thin/short S1, S2, respec-
tively).

Proof. We first check that T is a planar tree. Clearly T is nonempty: If S is small,
then T contains Root(S) = Root(S1) = Root(S2), and if S is large, then these
equalities Root(S) = Root(S1) = Root(S2) hold modulo a set of size < λ. Hence
we have Definition 2.1(A).

The orders �S1 and �S2 agree on T , as they both are restrictions of �S , and
the same is true for <S1 and <S2 . This implies Definition 2.1(B),(C),(D).

We now check that T is a creature. For any η ∈ T and any A ⊆ Succ(η) we have

A ∈ DT
η ⇔ A ∈ DS1

η ∧ A ∈ DS2
η ⇔ A ∈ DS

η ,

so DT
η is indeed an ultrafilter, i.e., Definition 2.6(E). Using Fact 2.5 we see Defini-

tion 2.6(F),(G). T ≤ S1, S2 is clear. �

Definition 4.2. Let S, S′ be small or large creatures. We write S ≈thin S′ for

∃T : T ≤thin S and T ≤thin S′.

Let S, S′ be large creatures. We write S ≈ S′ for

∃T : T ≤thin/short S and T ≤thin/short S
′.

Note that S ≈thin S′ implies that there is “union” creature S∗ ≥thin S, S′.

Fact 4.3. ≈thin and ≈ are equivalence relations.

Proof. If S, S′, S′′, T, T ′ are small (or large) creatures such that T witnesses S ≈thin

S′ and T ′ witnesses S′ ≈thin S′′, then by Fact and Definition 4.1 we see that
T ′′ := T ∩ T ′ is again a small (or large) creature, and T ′′ witnesses S ≈thin S′′.

The proof for ≈ is similar. �

Definition 4.4 (The relation ≤∗). Let T and S be large concrete creatures. We
say that T ≤∗ S if there is T ′ with T ≈ T ′ ≤ S.

Lemma 4.5 (Pullback lemma). If T1 ≤ S1 ≈ S0 are large creatures, then there is
a large creature T0 such that T1 ≈ T0 ≤ S0:

S0

≈
T1 ≤ S1

=⇒
T0 ≤ S0

≈ ≈
T1 ≤ S1

Proof. Let F witness T1 ≤ S1, and let γ0 ∈ F be so large that for all γ ∈ F with

γ > γ0 we have S
[γ]
1 ≈thin S

[γ]
0 .

Let F0 := {γ ∈ F : γ > γ0}, and define

T0 =
⋃

γ∈F0

{η ∈ T1 : η � γ} ∪ S
[γ]
0 .
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7570 MARTIN GOLDSTERN AND SAHARON SHELAH

T0 can be naturally equipped with a creature structure (�T0 , <T0 , DT0) such that
T0 ≈ T1. For defining DT0 we use the fact that for all η ∈ T0 with η � γ ∈ F0 the
set SuccT0

(η) is either equal to SuccT1
(η) or an end segment of this set, so in any

case is in DT0
η .

Now clearly T0 ≤ S0 is witnessed by F0. �

Corollary 4.6. The relation ≤∗ (between large creatures) is transitive.

Proof. Let T ≤∗ S ≤∗ R. We use our “pullback lemma”, Lemma 4.5:

S′ ≤ R
≈

T ′ ≤ S
≈
T

=⇒

T ′′ ≤ S′ ≤ R
≈ ≈
T ′ ≤ S
≈
T

and then appeal to the transitivity of ≤ and ≈. �

4.2. Fusion.

Lemma 4.7. Let δ < λ be a limit ordinal. Assume that (Si : i < δ) is a sequence of
large concrete creatures satisfying i < j ⇒ Sj ≤∗ Si. Then there is a large creature
Sδ such that for all i < δ, Sδ ≤∗ Si.

A main idea in the proof is to divide λ into λ many pieces, each of length δ:
λ =

⋃
ξ<λ[δ · ξ, δ · ξ + δ).

Proof. By elementary ordinal arithmetic, for each ζ < λ there is a unique pair (ξ, i)
with ξ < λ, i < δ, and ζ = δ · ξ + i.

Recall the definition of concrete creatures: each internal node η is a pair
(α(η), β(η)), and ext(S[η]) is a subset of the interval [α(η), β(η)), with supremum
β(η). We choose (inductively) a sequence r(ζ) (for ζ < λ) of roots such that for all
ξ < λ, all i < δ:

• r(δ · ξ + i) ∈ Root(Si).
• For all ζ ′ < ζ: r(ζ ′) < r(ζ).
(If ζ ′ = δ · ξ′ + i′, ζ = δ · ξ + i with i �= i′, then r(ζ ′) ∈ Si′ and r(ζ) ∈ Si

come from different creatures, but they can still be compared:
r(ζ ′) < r(ζ) means supSi′

[r(ζ ′)] ≤ minSi
[r(ζ)].)

Considering the matrix (S
[r(δ·ξ+i)]
i : i < δ, ξ < λ) of small creatures, we first note

that

T〈0〉 :=
⋃

ξ<λ

⋃

i<δ

S
r(δ·ξ+i)
i

is a large concrete creature. (Whenever δ · ξ′ + i′ < δ · ξ + i, and η′ ∈ S
r(δ·ξ′+i′)
i′ ,

η ∈ S
r(δ·ξ+i)
i , then η′ < η.)

We also see that T〈0〉 ≤∗ S0, because for each ξ < λ and each i < δ there is a
small creature X with

T
[r(δ·ξ+i)]
〈0〉 = S

[r(δ·ξ+i)]
i ≈thin X ≤ S0.

(See Figure 9.)
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S
[r(δ·ξ+i)]
i

ξ λ

δ

i

Si

· · · · · ·

Figure 9

ξ λ

δ

j

T〈j〉

Figure 10. The creature T〈j〉

Similarly, we see that for every j < δ,

T〈j〉 :=
⋃

ξ<λ

⋃

j≤i<δ

S
r(δ·ξ+i)
i

is a large creature and T〈j〉 ≤∗ Sj (see Figure 10).

It remains to define a large creature T̄ such that T̄ ≤∗ T〈j〉 for all j < δ.
For each ξ < λ the set

T〈0,ξ〉 :=
⋃

i<δ

S
r(δ·ξ+i)
i

is a medium creature (see Figure 11).
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ξ λ

δ

j

T〈j,ξ〉

. . .
. . .

T̄j,ξ

Figure 11. Obtaining T̄j,ξ from T〈j,ξ〉

Let U0,ξ be an ultrafilter on Root(T〈0,ξ〉) which converges to supRoot(T〈0,ξ〉),
and let rξ be a new root. Then

T̄0,ξ :=
∑

U0,ξ,rξ

T〈0,ξ〉

is a small creature, and T̄0 :=
⋃

ξ<λ T̄0,ξ is a large creature. By construction,

T̄0 ≤glue T〈0〉.
We can similarly define

T〈j,ξ〉 :=
⋃

j≤i<δ

S
r(δ·ξ+i)
i T̄j,ξ :=

∑

Uj,ξ,rξ

T〈j,ξ〉

(where Uj,ξ is the restriction of U0,ξ to Root(T〈j,ξ〉), an end segment of T〈0,ξ〉).

Again, T̄j :=
⋃

ξ<λ T̄j,ξ is a large creature satisfying T̄j ≤ T〈j〉. But by definition

we have T̄0 ≈thin T̄j , so T̄0 ≤∗ T〈j〉 for all j < δ. (See also Figure 12.) �

Lemma 4.8. Assume that (Sξ : ξ < λ) is a sequence of large concrete creatures
satisfying ξ < ξ′ ⇒ Sξ′ ≤∗ Sξ. Then there is a large creature Sλ such that for all
ξ < λ: Sλ ≤∗ Sξ.

Proof. We choose a fast enough increasing sequence (r(ξ) : ξ < λ) with r(ξ) ∈
Root(Sξ) such that

∀ζ < ξ : r(ζ) < r(ξ).

Now let T0 :=
⋃

ξ<λ S
[r(ξ)]
ξ , and similarly Tζ :=

⋃
ζ≤ξ<λ S

[r(ξ)]
ξ . It is easy to see

that T0 ≈ Tζ ≤ Sζ for all ζ. Hence T0 ≤∗ Sζ for all ζ. �
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r(δ)

r(δ + i)

r1

S0

· · ·

Si

...

...

r(i)

r(0)

r0

· · ·

r(δξ + i)

rξ

r(δξ)

Figure 12. A fusion of δ many large creatures

Corollary 4.9. Assume that S is a set of large concrete creatures which is linearly
quasiordered by ≤∗, and assume that |S| ≤ λ. Then there is a large creature T such
that ∀S ∈ S : T ≤∗ S.

Proof. By Lemmas 4.7 and 4.8. Use induction on |S|. �

5. The filter DS and the clone CS

Let S be a large concrete creature, and let f, g be operations on λ. Recall that
f <S g iff there are fronts F,G ⊆ S gauging f and g, respectively, such that F
meets each branch of S above G.

Definition 5.1. We write f <∗
S g if there is S′ ≈ S, f <S′ g; similarly for ∼∗.

Lemma 5.2. If f <∗
S g and T ≤∗ S, then f <∗

T g.

Proof. By the definition of ≤∗ (see Definition 4.4), there is T0 such that T ≈ T0 ≤ S.
Let S′ ≈ S be such that S′ gauges f . Using the pullback lemma, Lemma 4.5, we
find T ′ ≤ S′, T ′ ≈ T0. So T ′ ≈ T , f <T ′ g (by Fact 3.17), which implies f <∗

T g.

S′

≈
T0 ≤ S
≈
T

=⇒

T ′ ≤ S′

≈ ≈
T0 ≤ S
≈
T

�
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Sλ · · · · · ·

...

· · ·

· · ·

Figure 13. A fusion of λ many large creatures

Definition 5.3. Let S be a large creature. We define

DS := {A ⊆ λ : ∃S′ ≈ S, ext(S′) ⊆ A}.

Fact 5.4. Let S be a large creature. Then A ∈ DS iff there is T ≤thin/short S with
ext(T ) ⊆ A.

Proof. If A ∈ DS , then there are S′ and T such that T ≤thin/short S, T ≤thin/short

S′, and ext(S′) ⊆ A. But then also ext(T ) ⊆ ext(S′) ⊆ A. �

Fact 5.5. Let S be a large creature. Then:

(1) DS is a filter on λ, and all A ∈ DS are unbounded.
(2) If S′ ≈ S, then DS = DS′ .
(3) If T ≤ S, then DT ⊇ DS .
(4) If T ≤∗ S, then DT ⊇ DS .

Proof. (1) DS is clearly upward closed. Let A1, A2 ∈ DS , witnessed by S1, S2

≤thin/short S; then S1 ∩ S2 witnesses A1 ∩ A2 ∈ DS .
(2) Immediate from the definition.
(3) Follows from ext(T ) ⊆ ext(S) and the pullback lemma.
(4) By (2) and (3). �
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Definition 5.6. For any large creature S we let

CS := 〈hA : A ∈ DS〉max =
⋃

A∈DS

〈hA〉max.

As a corollary to Fact 5.5 and Lemma 1.7 we get:

Fact 5.7. Let S be a large creature. Then:

(1) CS = {f : ∃S′ ≈ S ∃k ∀�x (f(�x) ≤ h
(k)
ext(S′)(max(�x)))}

(2) If S′ ≈ S, then CS = CS′ .
(3) If T ≤ S, then CT ⊇ CS .
(4) If T ≤∗ S, then CT ⊇ CS.

Lemma 5.8. Let S be a large creature, f, g ∈ O, and assume f <∗
S g. Then

f ∈ 〈CS ∪ {g}〉, but g /∈ 〈CS ∪ {f}〉.
Proof. There is S′ ≈ S with f <S′ g. But DS = DS′ and CS = CS′ , so we may as
well assume f <S g.

By Lemma 3.18, f ∈ 〈hext(S), g〉max ⊆ 〈{hA : A ∈ DS} ∪ {g}〉max = 〈DS ∪ {g}〉.
Assume that g ∈ 〈CS ∪ {f}〉. Then there is A ∈ DS such that g ∈ 〈hA, f〉max.
Let S′ ≤thin/short S with ext(S′) ⊆ A. Then

g ∈ 〈hA, f〉max ⊆ 〈hext(S′), f〉max.

But S′ ≤ S, and f <S g implies f <S′ g. Hence (again by Lemma 3.18) we get
g /∈ 〈hext(S′), f〉max, a contradiction. �

6. Transfinite induction

Definition 6.1. We say that a sequence (Si : i < λ+) of large creatures is “suffi-
ciently generic” iff the sequence decreases with respect to ≤∗:

∀i < j : Sj ≤∗ Si

and
∀f, g ∈ O ∃i < λ+ : f <Si

g ∨ f ∼Si
g ∨ g <Si

f.

Lemma 6.2. Assume 2λ = λ+. Then there is a sufficiently generic sequence.

Proof. This is a straightforward transfinite induction: There are 2λ many pairs
(f, g) ∈ O × O. By our assumption 2λ = λ+ we can enumerate all these pairs as

O × O = {(fi, gi) : i < λ+}.
Using Corollary 4.9, we can now find a sequence (Si : i < λ+) of large concrete
creatures such that the following hold for all i:

• If i is a limit ordinal, then Si ≤∗ Sj for all j < i.
• Si+1 ≤ Si.
• Si+1 gauges fi and gi.
• Si+1 compares fi and gi: gi <Si+1

fi or gi ∼Si+1
fi or fi <Si+1

gi. �
Conclusion 6.3. Let (Si : i < λ+) be a sufficiently generic sequence. Define C∞ :=⋃

i CSi
. This is an increasing union of clones, so C∞ is also a clone.

Let f <∞ g iff there is i such that f <Si
g, or equivalently, iff there is i < λ+

such that f <∗
Si

g. Define f ∼∞ g analogously.
Then the properties (a)(b’)(c’) in section 1.1 are satisfied, so Section 1.1(1)(2)(3)

hold. Moreover, for all f ∈ O there is g with f <∞ g, so [C∞,O] has no coatom.
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Proof. (a) If f <∞ g, then f <∗
Si

g for some i. By Lemma 5.8, f ∈ 〈CSi
∪ {g}〉, so

f ∈ 〈C∞ ∪ {g}〉.
(b’) If g ∈ 〈C∞ ∪ {f}〉, then there is i < λ+ such that g ∈ 〈CSi

∪ {f}〉, as the
sequence (CSi

) is increasing, by Fact 5.7. Choose j > i so large that Sj compares f
and g, so one of f <Sj

g, f ∼Sj
g, g <Sj

f holds. The first alternative is excluded
by Lemma 5.8.

(c’) follows from Fact 3.20.
Finally, let f ∈ O. Find i < λ+ such that Si gauges f . Let A := {supSi

[γ] : γ ∈
Root(Si)}, and let g := hA. Then:

(∗) Each γ ∈ Root(Si) is f -strong but g-weak.

Now find j > i such that Sj compares f and g. The possibilities g <Sj
f and

f ∼Sj
g are excluded by (∗), so f <Sj

g; hence also f <∞ g. �
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[Sz86] Ágnes Szendrei, Clones in universal algebra, Séminaire de Mathématiques Supérieures
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QC, 1986. MR859550 (87m:08005)

Institut für Diskrete Mathematik und Geometrie, Technische Universität Wien,

Wiedner Hauptstraße 8–10/104, 1040 Wien, Austria

E-mail address: martin.goldstern@tuwien.ac.at

Einstein Institute of Mathematics, Edmond J. Safra Campus, Givat Ram, The Hebrew

University of Jerusalem, Jerusalem, 91904, Israel — and — Department of Mathemat-

ics, Rutgers University, New Brunswick, New Jersey 08854

E-mail address: shelah@math.huji.ac.il

Licensed to Tech Univ Wien. Prepared on Sun Apr 29 12:36:52 EDT 2018 for download from IP 128.131.236.183.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

Sh:884

http://www.ams.org/mathscinet-getitem?mr=763901
http://www.ams.org/mathscinet-getitem?mr=763901
http://www.ams.org/mathscinet-getitem?mr=859550
http://www.ams.org/mathscinet-getitem?mr=859550

	0. Introduction
	1. Preliminaries
	1.1. Proof outline
	1.2. Filter clones

	2. Creatures
	2.1. Definitions
	2.2. Small is beautiful
	2.3. Thinner creatures
	2.4. Drop, short, sum, glue
	2.5. Partition theorems
	2.6. Comparing large creatures

	3. Creatures and functions
	3.1. Weak and strong nodes
	3.2. Gauging functions with creatures

	4. Fuzzy creatures
	4.1. By any other name: \le\thin, \le\thinshort, ≈
	4.2. Fusion

	5. The filter 𝐷_{𝑆} and the clone \C_{𝑆}
	6. Transfinite induction
	References

