Appendix

Remarks on some cardinal invariants of the continuum

by

S. Shelah Department of Mathematics Hebrew University Jerusalem, Israel

A.1. THEOREM. **ZFC** $\vdash \mathfrak{d} \leq \mathfrak{i}$.

A.2. NOTATION. Let $\mathcal{A} \subseteq [\omega]^{\omega}$ and $\operatorname{Fn}(\mathcal{A}) = \{f : f \text{ finite, } \operatorname{dom}(f) \subseteq \mathcal{A}, \operatorname{rng}(f) \subseteq \{0,1\}\}$. For the following f, g and h will always range over $\operatorname{Fn}(\mathcal{A})$. For $f \in \operatorname{Fn}(\mathcal{A})$, let

$$X_f = \bigcap_{a \in \operatorname{dom}(f)} a^{f(a)},$$

where $a^1 = a$, $a^0 = \omega - a$.

From now on let \mathcal{A} be independent i.e., X_f is infinite for all f. Let $I = I_{\mathcal{A}} = \{ A \subseteq \omega : \forall f \exists g \supseteq f \quad (X_g \cap A \text{ is finite}) \}.$ Clearly, I is an ideal containing all finite sets and $X_f \notin I_{\mathcal{A}}$ for all f.

A.3. LEMMA (Assuming $|\mathcal{A}| < \mathfrak{d}$). Let $E \in I_{\mathcal{A}}$ and assume that $f \in \operatorname{Fn}(\mathcal{A})$ and $A_0, A_1, \ldots, A_n, \ldots \in \mathcal{A}$ $(n \in \omega)$ are such that $\operatorname{dom}(f) \subseteq \mathcal{A}' = {}^{def} \mathcal{A} - \{A_0, \ldots\}$, then there is a set E' such that:

- $(\alpha) E' \in I_{\mathcal{A}}.$
- $(\beta) \ E' \cap E = \emptyset$
- $(\gamma) \ \forall g \in \operatorname{Fn}(\mathcal{A}')$: If $g \supseteq f$ then $X_g \cap E'$ is infinite.

PROOF. For any $H: \omega \to \omega$ let

$$E'_{H} = \bigcup_{n} \left[(A_{n} - \bigcup_{i < n} A_{i}) \cap H(n) \right] - E.$$

Then clearly $E'_H \in I_A$ and $E'_H \cap E = \emptyset$, so any E'_H satisfies (α) and (β). We have to find a suitable H such that (γ) is satisfied.

Note that if $g \supseteq f$ and $\operatorname{dom}(g) \subset \mathcal{A}'$ then $X_g \cap (A_n - \bigcup_{i < n} A_i) - E \notin I_{\mathcal{A}}$, so in particular it is infinite. (Since $(A_n - \bigcup_{i < n} A_i)$ is of the form X_h for some h with $\operatorname{dom}(h) \cap \operatorname{dom}(g) = \emptyset$, it is not in $I_{\mathcal{A}}$.)

For each $g \in \operatorname{Fn}(\mathcal{A}')$ extending f, let

$$H_g(n) = \min(X_g \cap (A_n - \bigcup_{i < n} A_i) - E).$$

218

Clearly H_g is a 1-to-1 function, and if $H_g(n) < H(n)$, then $H_g(n) \in X_g \cap E'_H$. Hence if for infinitely many n,

$$H_g(n) < H(n)$$

then

 $X_g \cap E'_H$ is infinite.

Since $|\mathcal{A}| < \mathfrak{d}$, we can find H such that for all $g \in \operatorname{Fn}(\mathcal{A})$ with $g \supseteq f$ there are infinitely many n for which $H_g(n) < H(n)$.

Then $E' = E'_H$ satisfies the requirements of the lemma.

PROOF OF THE THEOREM: Assume \mathcal{A} is an independent family of size $\langle \mathfrak{d}$. We will show that \mathcal{A} is not maximal.

Let $N \prec \langle H(\lambda), \in \rangle$ for sufficiently large λ with N countable and $\mathcal{A} \in N$. Let $\{f_n : n \in \omega\}$ list $\operatorname{Fn}(\mathcal{A}) \cap N$, such that each element of $\operatorname{Fn}(\mathcal{A}) \cap N$ appears with even and with odd index. By induction choose $E_n \in N$ such that:

(A) $E_n \in I_{\mathcal{A}}$

(B) $E_n \cap (\bigcup_{l < n} E_l) = \emptyset$

(C) If $f_n \subseteq g \in \operatorname{Fn}(\mathcal{A})$ and $\operatorname{dom}(g) \cap N = \operatorname{dom}(f_n)$ then $X_q \cap E_n$ is infinite

We can do this by the previous lemma, letting $E = \bigcup_{l < n} E_l$, $f = f_n$ and $\{A_0, A_1, \ldots\} \in N$ be some family disjoint from dom (f_n) . (we can have $E_n \in N$ by elementarity of N).

Now let $Y = \bigcup_n E_{2n}$. Then $\mathcal{A} \cup \{Y\}$ is independent: Let $g \in \operatorname{Fn}(\mathcal{A})$. Find n such that $f_{2n} = g \cap N$. Then $X_g \cap Y$ contains $X_g \cap E_{2n}$ which is infinite. If $g \cap N = f_{2k+1}$ for some k then $X_g \cap (\omega - Y)$ contains $X_g \cap E_{2k+1}$ which is also infinite. This finishes the proof of the theorem.

A.4. REMARK. $\vartheta < \mathfrak{i}$ is consistent: e.g., take a model of **CH** and add \aleph_2 many random reals with countable support. Then the old reals still form a dominating family. But an independent family of size ω_1 must be in an intermediate model, so it cannot be maximal, since the next random real will be independent from it. We can understand this argument more generally: if the set of reals is not the union of fewer than λ sets of measure zero, then any independent family of subsets of ω has cardinality at least λ . So if P is the forcing of the measure algebra of dimension $\lambda > \aleph_0$ then in V^P one has $\mathfrak{i} \ge \lambda$, whereas \mathfrak{d} is not changed by forcing with P.