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THE JOURNAL OF SYMBOLIC LOGIC 

Volume 45, Number 1, March 1980 

A NOTE ON CARDINAL EXPONENTIATION 

SAHARON SHELAH1 

Abstract. Silver and subsequently Galvin and Hajnal, got bounds on 2Ka, for Xa strong 
limit cardinal of cofinality > X0. We somewhat improve those results. 

We discuss here bounds on 28a for sa strong limit, a problem on which much 
work was done lately, and whose history is well known (see Silver [S], Galvin and 
Hajnal [GH], Magidor [Mg 1], Baumgartner and Prikry [BP], Jech and Prikry 
[JP] and, from other angles, Jensen's Marginalia (Devlin and Jensen [DJ]) and 
Magidor [Mg 2], [Mg 3]. We continue [GH]. 

For simplicity in the introduction we concentrate on the case cf X=x1. Let 
D(st), D(ub) be the filters of closed unbounded subsets of ci, cobounded subsets 
of co respectively. For fe ordwl I1fIID t) is the rank of f, i.e., it is the minimal a 
such thatg <D(st) f implies IgIID(5W) < a. As D is X1 closed this is well defined. By 
Galvin and Hajnal [GH], 2ia ? Xa(*). where a(*) < IlaIID(st); now easily Ia IID(st) 

< (Ialali)+, so we get bounds on 28a. Three natural questions arise. 
(a) Can we get any result when cf a = so? 
(O Can we improve the bound of Ia 1I D(st) ? on 2Kf a? 
(r) The first a on which the theorem says nothing is the first a = a, cf a = (c1. 

Can we nevertheless prove something on this a? 
Concerning (a), as stated we know nothing at present. The expected result is 

that, assuming the consistency of some large cardinal, sx, may be strong limit, and 
2Kw can be any sa, cf sa > sX,, but the present consistency results (Magidor [Mg 2], 
[Mg 3]) are far from this. It may be interesting to note that by [Sh 2], if cf a = No, 
a = Uaw, an < an+i, D a nonprincipalultrafilter over o), then the cofinality of 

< )/D is < a c(*) < (21a1)+, and in (sa, <),wD there is no in- 
creasing sequence of length Xa(*). Consequently there is G '- H n<ow a,,, I GI < Xa(*) 
such that for everyf E 11Hn<, s?rn for some g e G, {n;f(n) ? g(n)} is finite. 

Concerning question (i), Magidor [Mg 1] proves, assuming Chang-conjecture, 
that if a = Wi then 2$a < 8 a,2. We notice that part of his argument implies im- 
mediatelyjjw1 ID (st) = 02 (see 1 1), thus the conclusion follows from [GH]. This was 
noticed by Benda, too. 

We get here (in conclusion 25) better bounds on lIallDst) for "large a ", more 
exactly a >(2l)+. E.g., if tal =z,, then la I!D(st) < c+. Forthiswehavetouse 
our main technical Lemma 19. Let for g e cardol, D an s1-complete filter on co, 
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A NOTE ON CARDINAL EXPONENTIATION 57 

TD(g) = Sup{IGI: G a family of functionsf E ordel, (Vi)f(i) < g(i), such that 

fl # f2 e G=f1 # D f2 i.e., {i: f1(i) # f2(i) E D}. The main technical lemma of 

[GH] is that if g(i) = a+f (i), Xa strong limit, then TD(g) < I a+ 1f lD, and they 
also proved TD(A) = 2A if A = Ago, 2Y = AR,, which is the case for strong limit A = 

sa, cf Ma = x1. We prove a kind of converse (Lemma 19): if If IID ? A > 211, A 
regular, g(i) = If(i)l, gE cards, then for some 81-complete filter D1 - D, TDI(g) 
> A. As TD1 (zO)) = z,: for any x1-complete D1 ' D, we prove the above mentioned 
result. If, e.g., z0, =_ t, we can get similar results for 7rI , r < +.1. How- 
ever, for s,+,1 we can bound TD(Xa+0w) by Galvin-Hajnal result, and then 
use the above mentioned result to bound II$.+ ,,II D. We are thus forced to prove 
results on a family D of 81-complete filters (sometimes-normal). We can in this 
way get bounds on 11 r 11 D, TD(A) for r, A smaller than the first : = XP. 

This leads us naturally to the third problem. We get a result only if we assume, 
e.g., Chang conjecture: if sA(s0) is the first cardinal a = Ma of confinality A 
(A a regular cardinal) and s,,(s0) is strong limit, then 2K1(Ko) < stj2(s). 

The results in this paper are more elaborate (e.g, "8a strong limit" can be 
considerably weakened); they were announced in [Sh 1], and a preliminary version 
was [Sh 3], as remarks to the book of Erdis, Hajnal, Mate and Rado on partition 
calculus. We end by discussing whether Chang conjecture can be eliminated. 

ADDED IN PROOF. Further results were obtained and announced in the Notices 
of the American Mathematical Society, vol. 25 (1978), p. A-599. 

1. Notation. (A) If will be a fixed regular cardinal > so. 
(B) I a family of sets of ordinals Ut<e t = W). 
(C) D a K-complete filter over I such that {t: a e t } e D for any a < d(I). 
(D) ua(D) the maximal ,u such that D is u-complete (hence ,u is regular). 
(E) For f, g E ord', f < D g if {t E I:.f(t) < g(t)} E D, and similarly for <, ?, 

=, etc. 

(F)ForJ I, f r J <Dgr J if {teJ; f(t) <g(t)} U (I- J)eD. 
(G) [E] is the filter generated by E, but [D U {A}] is denoted by D + A. 

(H) The function from I with constant value c is denoted by c or c,. 
(I) D(st) = Dx(st) is the filter over X generated by the closed unbounded sets. 
(J) D(ub) = D(ub) is the filter over X generated by the sets with a bounded 

complement (both filters are K-complete). 
(K) D is 1u-incomplete if there are 1u sets in D with empty intersection which 

form a decreasing sequence (this is not negation of any kind of u-complete). 

(L) Let A.<x = tl< . 
2. DEFINITION. Forf e ordI we define the rank IIf II D as the minimal ordinal such 

that 

9 <D fw =:> 191D < 11f 11D 

(as D is x1-complete, it is always well defined). 
3. DEFINITION. For every fe Card' we define TD(f) as the supremum of IGI, G 

a family of functions from I to ordinals such that; 

gEG= g <D f; g1 # g2E G => g1# OD g2 

(clearly we can replace g < D f by {t: g(t) e At} E D where IAI =-f (t). 
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58 SAHARON SHELAH 

4. DEFINITION. D is called a normal, if when I - A 0 0 mod D (i.e., I - A 0 D) 

f a choice function on A (i.e., (Vt E A) [f(t) E t]) then for some c, An f -1 (c) # 

0 mod D. 
5. Fact. (A) f =Dg => I|f 11D = 1IgIID, TD(f) = TD(g). 

(B) For A 0 0 mod D, p(D + A) > 1(D). If D is a(D)-incomplete, which holds 
in all our examples, equality holds. 

(C) A + 0 mod D, D normal implies D + A is normal. 
6. LEMMA. (A) If I, D, (1 = 1, 2) are as in 1, D1 c D2 then for f e ordI, IfIJID1 < 

If 1ID2 and for g E card': TD1(g) < TD2(g). 

(B) If II, D, (1 = 1, 2) are as in A, h: I2 -- 1I and A E D1 - h-1(A) E D2 then for 

f E ord" I1f lID1 < uhf ID2 and for g E card"2, TD1(g) < TD2(hg). If the hypothesis 
holds, we write D1 < RK D2. 

PROOF. Easy and known. 
7. LEMMA. (A) If D is ic-incomplete, then for every a, 1IalIID(ub) < I|aliD, in fact 

D(ub) < RK D. If in addition D is i-complete and normal then D(st) < RK D. 
(B) Iff E ic is monotone, i.e., a < ,3 =>f(a) < f(t3), then I f IID st) = I f IID(ub) 

PROOF. (A) Use 6(B), for let Ai E D, Ui<x Ai = 0, Ai decreasing: define h: I 

x by h(t) = {min i: t E Ai}. Now assume D is normal i-complete. 
Note that for each a < 3(I), {t E I: a E t} E D, and D is i-complete. So for 

every i < i, {tel: i c t} eD, so w.l.o.g. teAi = i c t. We can also assume Ai 
is continuous, Ao = I. So for every t for a unique i = h(t), t E Ai - Ai+1. So 

h(t) c t. Let B = {t: h(t) E t} . So t E I-B implies h(t) = t n i. 
If B # 0 mod D, h is a choice function on B: (it is a choice function by the 

definition of B). So as D is normal for some i, B1 = {t E B: h(t) = i} 0 0 mod D. 

So B1 Ai - Ai+, contradicting the hypothesis Ai+1 E D. So B = 0 mod D, 
and w.l.o.g. B = 0. If C c x is closed unbounded we shall show that h-1(C)eD, 
this suffices by 6(B). So suppose h-1(C) 0 D so A = I - h-1(C) : 0 mod D. 

Define a choice function f on A: f(t) = max[C n h(t)]; it exists as C n h(t) is a 
bounded subset of x n h(t) by A's definition, and max(C n h(t)) exists and is in t 
as C is closed. By the normality of D for some a < i, f-1({Qa) : 0 mod D, but 
triviallyf-1(a) c {t: t n c - (a + 1)} = 0 mod D, contradiction. 

(B) By 6(A), IIf IID(ub) < IIf IID(st); so we prove by induction on 4, that IIfIIDst 
2 t-If IID(ub) 2 (, for monotonic f. 

For t = 0, e limit, this is trivial; so let t = 4 + 1; hence there is g < Df, 11gI ID(st) 

2 C; so for some closed unbounded C c i, t e C => g(t) < f(t) and let C = {a(i): 
i < i}. We can assume: 

(I) a E C, fi< a => i(@ < . 

If for some a, g-1(a) is stationary, choose a minimal such a, so easily I1glID(st,) = 

a; then ak < ?D(st) g < D(st) f and asf is monotonic a, < D (ub) f, so 

If IID(ub) > IIaKIID(ub) = a = I1gIID(st) > C. 

So, by Fodour's theorem we can assume 

(II) A~a(i)) 2 a(i). 

Define 

? (a(i)), a(i) ? < a(i + 1). 
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A NOTE ON CARDINAL EXPONENTIATION 59 

By (I) and (II), g* is increasing and g* <D (ub) f and g* = D (st) g so the result 
follows. 

8. Question. Is lf IDK(st) = Ilf(IDl(b)always; for f constant? Does A = 0 
mod D(st) => IIAIID(st) = IAXIID(st)+A? 

9. DEFINITION. IMg(3, p) is the family of subsets of 3 of order type ? p but 
< ph+. (So 3(IMg(3, p)) = 3.) DMg(3, p) is the filter over IMg(3, p) generated by the 
following sets. For any model M with universe 3 and language <i, AM = {INI 
E Img(J, 1): N -< M, NI flnx a proper initial segment of i} (the last condition is 
not really necessary, in our results for successor X we got the same filter) (Mg for 
Magidor). Theorems 10, 11 are rephrasings of, or obvious from [Mg 1] who uses 
DMg()2, Wi). Omitting p we mean order type <X. 

10. THEOREM. (A) DMg(/, p) is nontrivial if A = 82, P = x = t1 and Chang con- 
jecture holds (this is in fact equivalent) or A > p ? a, A a Ramsey Cardinal (i.e., 

ii- (A)2). Using DMg(A, p) we assume implicitly it is nontrivial. 
(B) DMg(J, p) is normal, x-complete and x-incomplete, IMg(J, p) = J. 
11. THEOREM. Suppose 
(*) D is a normal filter over I, fD E ord', fD(t) is the order-type of t. Then 

(A) (fD((D = 3(1), so if pI < DfD, then I(P1(D ? 3(1) (this occurs if DMg(A. p) 
is not trivial). 

(B) For f E ordI let f be defined by: f (t) is the f(t)th element of t U {Sup t} if 
it exists, and min t otherwise (where Sup t = minfa : (VB E t)(p <a)}. Then for 
every A # 0 mod D,f <DfD, lf IID+A = v(f, A) = VD(, A) = minfa: a ?3(I) 
or {t:f(t) = a)} # 0 mod D + A}. 

(C) For any f < DfD, for some A # 0 mod D, for any normal D1, if D + A c 
D1 then lf IID= If ID1 (it is 3(I) iff =D1 fD, and v(f, I) otherwise). 

PROOF. (A) Follows by (B). 
(B) Let 

S1 = {If :fE 3(I)I, f ? fD (i.e., t E I=f(t) < fD(t))}, 

S2 = {f : Domf = I, andf(t) e t U {Sup t} for t E I}. 

Note that SI, S2 i 0 and if f < D fD then for some f ' =Df f' e S1, and if 

{t: teI, f(t)e t U {Sup t}} ED then for some f'=Df, f'eS2.Alsof =Df', 

f?DfD implies f = D !- 

It is easy to check that f e-< is a one-to-one mapping from S1 onto S2. Also 

fA <D f2 ifff1 <D f2. Forfe S2, A c I, A # 0 mod D, let 

v(f, A) = minfa: {teA: f(t) =a}#0 mod Dor a ?(I)}. 

As D is normal, v(f, A) is well defined; and, if f D+A ftD then 

(0) v(f, A) = max {a: {t E A: f(t) <a) =0 mod D}. 

Now we prove forfe SI, A g I, A # 0 mod D 

(1) Ilf || D+A = v(f, A). 

For one inequality, we prove by induction on a, that 

(2) a ? v(f, A) implies a < IIf ID+A 
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60 SAHARON SHELAH 

For a = 0, a limit, this is immediate, for a= f3 + 1, clearly 3 < 3(I), so let 
gp E ord' be defined by 

gP(t) -{utif 3Eit, : sup t if: 0 t. 

Clearly gp e S2, so for some fp Sife = gp. It is also clear that gp < D+A f (by the 
definition of v(f, A)), hencefp < D+A f so llf IID+A > I|fpID+A, but clearly v(gp, A) = 

3, hence by the induction hypothesis (as fp= gp) IIfpII D+A 2 ,3; together we get 
lIf IID+A ? 8 ? 1 -=a. 

To complete the proof of (1) we have to prove the other inequality, i.e., we prove 
by induction on a that 

(3) a?< If IID+A implies ac< v(f, A). 

For a = 0, a limit, this is obvious (see the definition of v(f, A)). So assume a = 

,B + 1, so there is g E ordI, g <D+A f, < 11 |gIID+A, there is g1 E S1, g1 =D+A g, 
so g1 <D+A f, 3< 11gIID+A, and so g, is well defined and g, <D+A f. By the in- 
duction hypothesis, as ,B < ?g1 II D+A, t8 < v(f, A) so by (0), {t E A: gl(t) < ,3} = 0 
mod D, but 

{t E A: f(t) < a}= {t E A: !(t) < } c {t e A: gl(t) < ,B} mod D 

(because g, < D f). So combining {t E A: f(t) < a)} = 0 mod D, but this implies 
v(f, A) ? c, as required. 

(C) Easy by (B). 
12. Conclusion. If D is normal and x-incomplete and each t E I has order type > 

p then IIPIID(st) < 3(I), so if DMg(J, p) is nontrivial, IIPIID(st) < 3. 
PROOF. By 6(B), 7(A) and last lemma. 
13. LEMMA. (A) If a < 1u(D), I = U j<p Ij,, f fj E ordI, f r I >2D fj r Ii, then 

If lID ? minj<,a If1lID- 
(B) If (*)D is normal, Icx c I(cx < 3(I)), U, I,, = 1, (so w.l.o.g. they form a 

partition of I) and t E I a > a E t, andf r Ia ?Dfa r Ia then IIfIlD ? mina 11 fallW 
PROOF. We prove (B) only, as the proof is the same (in fact the property of the 

la's we need is A # 0 mod D => (3a) ia n A 0 0 mod D). 
We prove by induction on e that if for all a, hIfa ID > 4 then Ilf 1I D > 4. For 0 = 0, 

e limit, it is immediate. So let e = 4 + 1; so there aref* <D fa, CIf IID ? 4. Define 
f Uafa* r Ia. By the induction hypothesis lIf* lD ? C, so it suffices to show 
f* < Df. Otherwise let J = {t e I: f(t) < f*(t)}j 0 mod D. On J we define a 
choice function h: h(t) = a o t E Ia. By normality h is constant on some J1 ' J. 
J? + 0 mod D, with value a*, so J1 ' I, so 

P r J1 = (fa r J1) <D (f. r J1) <f r 

contradiction to J's definition. 
13(C). REMARK. We can replace minjffjlID by minjllfjllD+I,. (Also in 14(A)). 
14. LEMMA. (A) If in 13(A) (or (B))f,fj E card', then TD(f) > minjTD(fj). 
(B) Suppose g E CardI, (Vt)[cf g(t) = p], u < p(D), and let g(t) =Ea<,uga(t) 

ga(t) < g(t). Then 

TD(g) < % -2"I + sup{TD+A (ga): a<auA # 0modD}. 
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A NOTE ON CARDINAL EXPONENTIATION 61 

PROOF. (A) If {gi: i < x+} exemplifies TD(fj) > %, let gi = Uj(gi r Ij) and 
{gi: i < x+} exemplify TD(f)> x. 

(B) Suppose {fj: i < x+} contradicts TD(g) < x. For each fi let Ai = {t E I: 
f(t) < ga(t)}, so I = Ua<,u Aa so for some a(i), Aq(i) # 0 mod D and as 2"' <x 
for some a*, A: I{i: a(i) = a*, Aq(i) = A}l = x+. Then {fi: i < v+, a(i) = a*, 
AO) = A}, show TD+A(ga*) > x, contradiction. 

15. THEOREM (GALVIN AND HAJNAL [GH]). (A) TD(st) ( =A) -x (Note. If Ka is 
strong limit of cofinality K, Xa=K<<X':< 2Kr) [in fact TD(Ub)(A<') = Ax, similarly 
in B]. 

(B) If a = Ui<, a; ai < a increasing H< jxj Naj= g(i) then TD(,1)(g) = 

16. THEOREM (GALVIN AND HAJNAL [GH]). If g(i) = 8[aijf(i)] ai (i < K) 

increasing and continuous, g E card", then TD(st)(g) < XL'a+1lf11D(x)1 where Na= 
sUpiTD(st)(Xa), 2 ?< xa. 

Combining 15, 16, they get bounds on AX, if we have bounds of f II D (t). They 
use: (for D = D(st)) the following bound on I1f IID (st): 

17. LEMMA [GH]. (A) lif IID < I Hlf(s)lI, so IlaCID < (IaIa")+. 

(B) TD(g) < Hl sC- g(S) (when g(S) 0 0). 

We can generalize 16 trivially to, e.g.: 
18. LEMMA. (A) If g(i) = 4a+f(i). (i < K), g E card, then TD( W)(g) < X[,B+IIfIID(Ub) 

uihen TD(ub)(Na) =Xp, 2x < xp. So if 03w < f(p) for p < K then TD b)(g) < ?ITID(ub 
(provided that 2 ?< tp). 

(B) If g(t) = Xh(t)+f (t) (for t E I), h, f e ord', g E card' then TD(g) < X[p+11fjjDj + 
2"'I where i = sup{ TD+A (h): A : 0 mod D}. 

18(C) REMARK. See 7(A), (B); 18(A) will be really interesting if 8 is answered 
negatively but we use 18 for the induction in 26. 

19. MAIN LEMMA. Suppose 1 f 1D ? 2 > 211", A regular, If(s)I = g(s), g E card' 
then for somefilter D1 over I: 

(i) u(D) < u(D1) and D c DI, 
(ii) D1 is normal if D is normal, 
(i ii) TD I(g) 2 A 

PROOF. Clearly there isf * < Df, such that || f * | D = 2, and for each a < A there is 

fa <Df *, IfaAID = a. We define a filter D* extending D: its generators are inter- 
sections of a member of D with < u(D) set I- J where (3a < A) (3i, > a) 

(fp r J = fa r J). Clearly D* is closed under supersets and intersection of < u(D) 
sets. We prove it is nontrivial. So suppose J e D, Ji I i < a* < u(D) and ai < 2, 

7r < ,r< A for i<Xa*, r<A andfp5,, H1J=Dfc i r' and we have to prove 

Jfl fni<a* (I- Ji) 0 0. Suppose not, let J = Jo U (I-J) and J' = Ji- 
U<jj J' for i < a*. Then J' (i < ca*) form a partition of I and still , = D 

ja ; r X. So without loss of generality the Ji (i < a*) form a partition of I. 
Letf+ = Uj(fa, r Ji), using pi, (i < a*) we see, by 13(A), that 1If+ttD > r; as 

this holds for every r 11 f 11 D > 2.; but f+ < D f * by its definition as fa5 < D f * con- 
tradiction; so D* is nontrivial, u(D*) > p(D) (i.e., (i) holds). Let us prove (iii). For 
each i < A, let h(i) = {,B: {teI: fp(t) =-J(t)}o0 mod D*}, h(i) is bounded. 
(Otherwise as A is regular > 2"'1, there is A : 0 mod D* such that for A p's, 
A = {t:fp(t) = fi(t)}. Hence I - A e D* contradiction). So there are distinct ip < 

A such that r < i ip hi(i.), so {fj: j3 < A} exemplify TD*(g) > A by the 
remark to Definition 3 and asfi,(t) < f*(t) < f(t). 
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62 SAHARON SHELAH 

The only thing left to be proved is (ii), so assume D is normal. Let 

D+ = {A c I; there is a choice functionf on I - A, such that 
for every a f -'(a) = 0 mod D*}. 

D+ is nontrivial by 13(B). 
Now D* c D+ (for A E D* any choice functions on I - A exemplifies A E D+), 

D+ is 1u (D)-complete. [If ca < ,u(D), Ai E D+, fi exemplifies it, define f on I - 

ni<aAi by f(t) = f(t)(t), i(t) = mini: t 0 Ail, now for r < a(I) f-'(r) c 
Ui<aft1(r). As D* is 1u(D) complete, and for i < c, f-1 (r) = 0 mod D* clearly 
f-'(r) = 0 mod D* sof exemplifies niaAi E D+.] Also D+ is normal, for sup- 
pose A c I, A : 0 mod D+, f a choice function on A, but for every r < a(I), 

f 1 (r) = 0 mod D+, so there is a choice function fr on f-1 (r), so that for every 
3 < s, fr1(03) = 0 mod D*. Now define a choice function f+ on A: f+(t) = 

<f(t), ff (t,(t)>, where < , > is a pairing function on 3(I) such that B = {t E I: t 
closed under < =, ing>} e D. 

Now f+ clearly exemplifies A = 0 mod D*, contradiction provided we find a 
suitable pairing function < , >. However, any pairing function < K > satisfies 
this. Otherwise for every t E I - B, choose :(It), ft) e t, K,132> 0 t. As D is normal, 
Bq?D==.I-B B 0 mod D for some 11,B1 = {teI- B: 11(t) = 3l}?0 
mod D, hence for some 132, B2 = {t E B1: 32(t) = 1321 ? 0 mod D. So {t: <K3i' 132> 

E t} 0 D, contradiction. 
20. REMARK. (A) Instead of "2 regular," "cf 2 > 2""' was sufficient. 
(B) For anyf, D if we add to D the sets J, 11f ID+J > I1f 1D and closed under 

intersection of < ua(D), we get a filter Df, nontrivial, 1u(D)-complete, normal if D 

was normal. Is 1I f 1 D = 1I f 1I Df ? 

We remark: 
21. Claim. (A) cf 2 > IlI =: TD(2) < J],<. TD(p). 

(B) Similarly if g(s) = a< ga(s), cf A > IlI, ga (s) < g(s), ga(s) (aX<A) <D 

increasing then TD(g) < Ja<R TD(ga). 

(C) If cf c > Il1, jja 1 D = SUpP<a 111311D 

(D) If 1 < cf ca < u(D) then jail < sup {IlI3ID+A: 13 < c, A # 0 mod A}. 

(We can generalize (C) and (D) to function as in (B) for (A) and solve X/D = 

Y/C = B/A.) 
22. Claim (folk). (1) IIKIID(st) < 3(x) (= where i(,) is the Hanf number for 

L?+,,,) and Ia1cIID(st) < 3(Ix + Xl). 

(2) IIKIID(ub) 2 Ki. 

(3) If there are fa E X" (a < 3), a < 13 Pf < D (ub) fp then ? II ul,.D(ub) 
23. Conclusion. Suppose cf a < 1u(D), and (Vx < ta) XI"' < Na. 
(A) When 3 < ,u(D), TD(Xa+p) < Ka+p. 
(B) When 3 < Ma, TD(Xa+p) < Xa+11P11D < Na+Ha- 

(C) If r < Xa+p, 13 < p(D) then 1r1lID < Xa+P (hence hlIa+phID = Xa+p)- 

PROOF. (A) By induction on 13 for all the D's over I (which are 1u-complete), for 
a fixed I. (In fact, it suffices to do it for all D + A, A # 0 mod D.) 

Case I. 13 = 0 by 14(B). Let Ka = B{Nai: i < cf Xa}. axi increasing and con- 

tinuous, cai < ca; so by 17(B), TD+A(Kai) < Xalil < Xa, for A c I, A # 0 mod D, 
and 14(B) gives the conclusion. 
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Case II. 3 limit. As 3 < ,i(D), cf 3 < p(D), so the proof is as in Case I. 
Case III. 3 = r + 1. Clearly cf Xa?u = Xau > {II, SO 21(A) applies. 

(B) By 18(B), TD(Na+?) < Na+X11IjD; by 17(A), II/3!ID < Xa (in fact, this implies (A)). 
(C) By 23(A) and 19 (for w.l.o.g., i3 = 4 + 1, by 19, TD,(Na+?) 2 Na+C+l for 

some D1; contradiction by 23(A)). 
24. Notation. Let us define X4p(Na) by induction on 03: X0(Ka) = Ka, Xl(xa) = Xa+Ka 

[so when a < Ka, Xi(Xa) = xt;a]I, X+1(Na) = XiP(X(a)), and for limit 03 = s, X3(Xa) 
= Ur<d Nr(Ka) Note that cf X?+i(1a) = cf N(Ka): cf X3(Xa) = cf s (for limit t) 
and 3 < r => xi) < XrG; A = Xd(Xa) = = KA (U limit). 

25. First main conclusion. Suppose (i) Ka > 2"'; 
(ii) D a family of (i-complete) filters over I closed under Lemma 19, and I - 

A DeD = D + A ED; u > 40, u regular; 

(iii) For every D E D and x < Ka, TD(x) < Ma(; 
(iv) 3(*) is the first ordinal > a of cofinality u, 03(*) = X,(*) [so 03(*) = 

Sx1(xa)]; 
(v) cf Ka < P or cf Ka > III. 

Then for every D E D, 

(A) r < ,3(*) =: TD(xr) < 1XX(Xa(*)), lXTD < tXi(Xa(*))- 

(B) For r < u, TD(xr(Xa)) < x,(xa(*)) and 

A < xr(Ka) = TDWA < Nr(Na(*) )- 

(C) For r < A, I1Xr($a)I1D < xr({a(*)) and 

C < xr(Ka) 
= 11C I1D < Nr(Na(*))- 

26. REMARK. (A) The natural case is cf Ma < ,u, (VZ < Xa)X'11 < Ma as in 2.3 

so a (*) = a. 
(B) In 23(A), (B) instead of "(Vx < Ma) (xI"' < Ka)" we could assume 2"I' < 

(*)) and 

(VA) (I - A 0 D =: (Vx < Ka) [TD+A(x) < Ka])- 

PROOF OF 2.5. (A) follows from (B) (in fact (B) gives sharper bounds; use the 

monotonicity of TD(-), 11 - IID). 
(C) (B) we prove by induction on r (for all D E D). 

Case I. r = 0. Note x0(xa) = Ka, so (B) holds by assumption (iii) and 21(A) 

when cf Ka > IlI and 14(B) when cf Xa < 1i(D) (at least one occurs by (v)) and 

(C) holds by 19 and (B). 

Case II. r = C + 1. (B) second phrase; by 18(B); let xj(Xa) = X..; for A < x 

this is trivial by the induction hypothesis. For A = 
4)+x, t < x,, by 18(B), 

TD(W) < XrW(*)+D [where x,,(*) = X4'(xa(*))]. By induction hypothesis, 1IID < NVW 
so TD(j) <XK(*)+st;* = l(xK(*)) = C+l(Xa(*)) = Xr(Xa(*)) 

(B)first phrase: follows from the second by 14(B) or 21(A), as cf x(xa) = cf 

NJXa) is < u or > III, (for let C = s + n, s limit or zero, then cf N(Xa) = cf X3(Xa,) 
so it is cf s, which is < a < r < u, or cf Na which is < u or > III by 25(v). 

(C) secondphrase: by (B)'s second phrase; and 19 (as Xr(Xa) is a limit card). 

(C)first phrase: follows from (C) second phrase by 21(C), (D). 
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Case III. r limit. As r < u, cf Kr(Ka) = cf r < ,a; the second phrase of (B) and 
(C) follows by the induction hypothesis, the first phrase of (B) and (C) follows from 
the second; as in Case II. 

27(A). REMARK. There are quite a few a's such that IIaIID = a for all D E D 
(all R-complete). 

(i) a < a(D). 
(ii) (pII)+. 

(iii) oa+: if TD(K)= = Ka, I1D= > 0, so D is cf p-incomplete hence 21 
essentially holds. 

(iv) a = 2, cf2 < , (D), (Vx < 2)xIII < 2. 
(v) Kp(Ka) when TD(KX) < Kr(Ka), r < A, r + f3 =3. 
27 (B). REMARK. We can improve 25 by defining inductively h; :(*) 3(*) such 

that lirliD < h(r) for every D E D, r < :(*). 
28. NOTE. That always 

(A) 1la1u D a a, TD(2) ?2i; 
(B) if D is cf A-incomplete, Il2 ID? 2A+, TD(A) ? A+, so in many instances the 

results are best possible. 
Unfortunately 25 does not say anything for TD(Kx,(D)(Ko)). However if 

DMg (US, p) is nontrivial, we can continue the induction from the proof of 25 through 
p rather than just through a(D). 

29. Second main conclusion. Let D be a family of , = K-complete filters over 
I which are normal. Suppose also (i)-(v) from 25. We use lI's notation. 

For any g E ordI define g0 by g0(t) = Kg (t) (Xa) Let G = {If: f ?D fD for any 
D ED}. Then for anyge G, D ED, 

(A) TD(gO) < K11g11D (Kar(*) ). 

(B) f0 <D g => TD(f0) < K11grj (Ko(*)) when g > D 0. Otherwise TD(f0) < a(*). 

(C) 1l1II0D < K11g11D(Xa(*))- 

PROOF. We prove by induction on r for all D E D, that (A) + (B) + (C) holds 
when 1IgIID = r7 Remember that by 11(C) if D1 e D, for some A # 0 mod D1, 
for any D2, D + A c D2 E D, 1IgIID1 = 1IgIID2. Remember also that by 6(A) if D1 c 

D2 then TD1(g) < TD2(g). So during the proof we can replace D E D by any exten- 
sion (which is in D) as this only increases the left side of our inequalities, and 
does not change the right side. 

Case I. r = 0. Easy checking. 
Case II. {t E I: g(t) is a successor} # 0 mod D. Then w.l.o.g. g(t) = f (t) + I 

for every t. Clearlyf < g hence ii! ID < llgllD- So on f the induction hypothesis 
works and we can continue as in 25, Case II. 

Case III. g(t) is limit for every t. 
For (C): letJ <Dg. Let : = 11f II D. Then over some A : 0 mod Df, is constantly 

A; clearly i < r7 by induction llf0llD < KP(Ka(*)) < Kr(Ka(*)); and note that 
if f <D go (fi E ord') then for some fe G, f <ag, f5 <Df0; so clearly lIgolID < 

Xr(Xa(*)). Similarly (A) follows by the induction hypothesis. For (B) note that 
the number off <Dg, fe G is (up to =D) < jII ? 2"'F < K?a; so we shall have 

no problem too by (i) of 25. 

30. Conclusion. Suppose DMg(J, p) is not trivial, then, e.g., 
(A) IIPIID(st) < J(I) (remember D(st) is the filter generated by the closed un- 

bounded subsets of K). 
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(B) If tp is strong limit, 5 < tp then 28P < K*. 

(C) If Xp(Xo) is strong limit, 5 < tp then 2Xp(xo) < t(to). 
PROOF. By 15(A) we can in (B) and (C) replace 2xP, 2xp(0o) by TD(st)(tp), 

TD(st)(xp(xo)) resp. By 7(A), D(st) <RK DMg(5, p) hence by 6(B) we can replace 
D(st) by DMg (5, p). Now (A) follows by 11, (B) by 16 and (C) by 29. 

31. REMARK. If we have a nontrivial DMg(J, p) for a p, we can get one for pfn 
and more (see Gaifman [G]). Essentially, to get to P1 we need a model M with 
universe di > J5, JlJ = jJo, language < a, such that for any N -< M, otp(N n 
5) ? p => otp(N) 2 P1 (otp-order type). 

32. REMARK. In 29, the essential property of G is that fi < f2, f2 e G => f1 e G, 
and that for fe G, 11 f 11D is equal for all D E D, or even that for each fe G, D E D 
an ordinal r(f, D) and filter D(f ), D c D(f ) E D are attached, such that: D(f1) 
c D E D, f2 E G, fi < D f2 implies r(f1, D) < r(f2, D). This may be formulated 
as a game. 

33. LEMMA. (A) If (Vt E I)g(t) > 2"'1 or even TD(g) > 2II, where g E card' then 

1191D 2 TD(g)- 

{B) If TD(g) ?2i, i > 2"', 2 regular, D a filter over 1, then for some filter D1 
over I: 

(i) a(D) < a(D1) and D c D15 
(ii) D1 is normal if D is normal, 
(iii) there are fa E ord I such that a < /3< <2 fa < DI fp < D1 g- 
PROOF. (A) Suppose IIgIID < TD(g), let i = 1II|IIDI + 2"I' so some {If: i < i} 

exemplifies A+ < TD(g). Now clearly IlfiliD < I1l1D < i+, so we can assume I lliID 
is fixed. But necessarily for some i < j < (2"'I)+ ?<R (Vt)fi(t) < fj(t). (We can 
find a < (2"'I)+ such that: for every A r. a, JAI < III, there is fi such that : < a 
(Vr E A)(Vt e I) [(fr(t) > fa(t) =fr(t) > fp(t)) A fr(t) < fa(t) fr(t) < fp(t))]. 
For each t there is a finite A, cc a such that: for each appropriate A, fp(t) < 

fa(t) otherwise define inductively b such that fpj(t) > fa(t) so fp,(t) is decreas- 
ing, contradiction. Let A = UtAt, as above, then (Vt) fp(t) < fa(t)). But fi Dfj 
hence. <D fj hence IIfIID < IIfjIID, contradiction. 

(B) Like 19. 
34. Discussion. Can we eliminate Chang conjecture from the bound on 211'O"' 

(We concentrate on X = x1.) Let 

(*). for every fE wc')1@ {A E= IMg(2 w): 

otp(A) ? f(otp (A n wD} # 0 mod DMgQ, cv) 

(so this is a weakening of Chang conjecture). 
Now DMg(A, w1) nontrivial = (*)A = 2X1&(X?) < KA(K0) provided that xl1(xo) is 

strong limit. Note that if 2 is a Ramesy cardinal (*)x for many x < 2 but (*)A => 

V i L. 
But we can hope that a variant of Jensen's Marginalia will give, together with 

the above, an absolute bound. 
35. REMARK. Seeing this manuscript, Galvin shows: 
THEOREM. For every uncountable regular K the following statements are equivalent: 
(1) for every K=, If II D (st) < ?+, 
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(2) for every function F from the finite subsets of x+ to K, there is e < X such 
that for every a < X there is A c K+, {F(X): X c A finite} c a, otp A > a, 

(3) (*),+ (replacing oi1 by K). 
36. REMARK. We can improve Theorem 2.5, by defining a function h: ao(*) -- 

3(*), and proving I1r7ID < h(r) for r < 3(*), D E D. We can define h by induction, 
using the proof, with no problem. 
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