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THE JOURNAL OF SYMBOLIC LOGIC 

Volume 65. Number 1. March 2000 

ON INVERSE y-SYSTEMS AND THE NUMBER OF L,;-EQUIVALENT, 
NON-ISOMORPHIC MODELS FOR). SINGULAR 

SAHARON SHELAH AND PAULI VAISANEN 

Abstract. Suppose i is a singular cardinal of uncountable cofinality /c. For a model Xff of cardinality 

2. let No(X) denote the number of isomorphism types of models XV of cardinality 2 which are Lo2- 

equivalent to X(. In [7] Shelah considered inverse /c-systems a? of abelian groups and their certain kind 

of quotient limits Gr(O)/ Fact(Q). In particular Shelah proved in [7, Fact 3.10] that for every cardinal /i 

there exists an inverse Kc-system a? such that a? consists of abelian groups having cardinality at most AuK 

and card(Gr(O)/ Fact(O)) = u. Later in [8. Theorem 3.3] Shelah showed a strict connection between 

inverse Kc-systems and possible values of No (under the assumption that O' < i for every 0 < 2): if a is an 

inverse Kc-systein of abelian groups having cardinality < At then there is a model Xf such that card(X) = A 

and No(w') = card(Gr(O)/ Fact(O)). The following was an immediate consequence (when O' < A for 

every 0 < A): for every nonzero u < A or /i = 26 there is a model XX, of cardinality A with No(4,/) U. 

In this paper we show: for every nonzerop < A' there is an inverse K-system v of abelian groups having 

cardinality < A such that card(Gr(O)/ Fact(O)) = p (under the assumptions 2' < A and 0<' < 2. for all 

6) < A when A > 2). with the obvious new consequence concerning the possible value of No. Specifically, 

the case No(,X) = S is possible when 0' < A for every 0 < 2. 

?1. Introduction. Suppose). is a cardinal. For a model X we let card(X) denote 
the cardinality of the universe of of'. When X and Xr are models of the same 
vocabulary and they satisfy the same sentences of the infinitary language Loo,, we 
write X =-, r. For any model X of cardinality i we define No(X) to be the 
cardinality of the set 

{ ./r I card(X4,) =iand X-=00), X } 

where A //k is the equivalence class of AX under the isomorphism relation. Our 
principal purpose is to study the possible values of No(X) for models X of singular 
cardinality with uncountable cofinality. 

When X is countable, No(X) = 1 by [4]. This result extends to structures of 
cardinality i when i is a singular cardinal of countable cofinality [1]. 

If V = L, i is an uncountable regular cardinal which is not weakly compact, and 
X is a model of cardinality ), then No(X) has either the value 1 or 22. For -= 
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ON INVERSE y-SYSTEMS ... 273 

this result was first proved in [2]. Later in [5] Shelah extended this result to all other 
regular non-weakly compact cardinals. The possibility No(X) = to is consistent 
with ZFC+GCH in case). = 1, as remarked in [5]. The values No(X) Ec w {O. 1 } 
are proved to be consistent with ZFC+GCH in the forthcoming paper of the authors 
[11] (number 646 in Shelah's publications). 

The case X has cardinality of a weakly compact cardinal is dealt with in [6] by 
Shelah. The result is that for i' weakly compact there is for every 1 < ,u < i a 
model A, such that No (4W) = u. There is in preparation by the authors a paper 
where the question for i' weakly compact is revisited. 

The case X is of singular cardinality A with uncountable cofinality i' was first 
treated in [7], where the relations of X have infinitely many places. Later in 
[8] Shelah improved the result by showing that if OK < i for every 0 < i and 
o < u < i then No(X) = u is possible for a model X having cardinality i 

and relations of finitely many places only The main idea in those papers was to 
transform the problem of possible values of No(X) into a question concerning 
possible cardinalities of "quotient limit" Gr(.W)/ Fact(vW) of an inverse system v 

of groups [8, Theorem 3.3]: 

THEOREM 1 (A cardinal with i > cf()) =K> no). If OK8 < i for every 0 < i and 
v is an inverse i-system of abelian groups having cardinality < A, then there is a 
model X of cardinality A (with relations havingfinitely many places only) such that 

No(X) = card(Gr(Q)/ Fact(v)). 

Actually the groups in [8, Theorem 3.3] are not limited to be abelian. However, 
abelian groups suffice for the present purposes. 

The recent paper fills a gap left open since the paper [8]. We present a uniform way 
to construct inverse ic-system of abelian groups having a quotient limit of desired 
cardinality. The most important new case is that the cardinality of a quotient limit 
can be i for some inverse system (in other cases, where the result below can be 
applied, the Singular Cardinal Hypothesis fails). The result of this paper is: 

THEOREM 2 (A cardinal with ) > cf(A) = K > No). For every nonzero ,u < A there 
is an inverse ic-system = (Gi, hi j i < j < r,) of abelian groups satisfying that 
card(G1) < ifor every i < K and 

card(Gr ()/ Fact(v)) = u. 

The same conclusion holds also for the values A < u < AK under the assumption that 
2K < Aand0<'` < for every 0 < A. 

So the general method used here to find new possibilities for the values of No (X) 
is the same as in [8]. As an immediate consequence of the last theorem we get: 

THEOREM 3. Suppose A is a singular cardinal of uncountable cofinality S. For each 
nonzero u < AK there is a model X (with relations havingfinitely many places only) 
satisfying card(X) 2 A and No(X) = u, provided that 0 K < A for every 0 < A. 

We give all necessary definitions concerning inverse ec-systems v of abelian groups 
and their special kind of quotient limits Gr(Q)/ Fact(v) in the next section. 
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274 SAHARON SHELAH AND PAULI VAISANEN 

?2. Preliminaries. 

DEFINITION 2.1. Suppose y is a limit ordinal and for every i < j < y, Gi is a group 
and hij is a homomorphism from Gj into Gi. The family v (Gi, hij I i < j < y 
is called an inverse y-system when the equation hij o hjk hi.k holds for every 
i < j < k < y. As in [7] we assume that all the groups Gi, i < y, are additive 
abelian groups. 

To simplify our notation we make an agreement that the letters i, j, k, and I 
always denote ordinals smaller than y. Hence "for all i < j" means "for all ordinals 

and j with i < j < y" and so on. 
The main objects of our study are the following two sets: 

Gr(0)-{ (a'ij i < j < y) a'i c Gi and for all k > j, 

ask = a i + hij(a k)}; 

Fact(v) {(a"' I i < y) for somejy c UGk, a1 2 h ijQV) 

We consider Gr(Q) and Fact(sv) as additive abelian groups where the group 
operation + and the unit element 0 are pointwise defined. The factor group 
Gr(Q)/1Fact(Q) is well-defined since Fact(v) C Gr(Q) by the requirements 
hij o hjk = hik for all i < j < k. For any inverse y-system A, the group 
Gr(.)/ Fact(v) is called the quotient limit of A. 

DEFINITION 2.2. We let y * y be the set { (i, j) E y x y I i < j }. For every subset 
I of y * y we define 

I1st {< y I(i,j)I forsome j< y} 

and for each i E IlSt, 

INi ={ < y I (ij) E I}. 

We also say that 

* I is cobounded if y 1lSt and y -. I [i], for all i c I1St are bounded subsets of 

* I is coherent if I st is unbounded in y and for every i c I JSt, I [i] = I St (i + 1); 
* I is eventually coherent if it is unbounded and for every i E IlSt Il St \ I[i] is 

a bounded subset of y. 

REMARK. Suppose I is an eventually coherent subset of y * y and S is a subset 
of I st. If card(S) < cf(y), then Ilst - (nieS I[i]) is a bounded subset of y. If S is 
unbounded in y, then I n (S x S) is an eventually coherent subset of I. 

In [8, Claim 1. 12] Shelah proved (note the remark given after the following lemma) 
that if two sequences a and b from Gr(Q) agree on a coherent set of indices, then 
a _ b mod Fact(v). The following slight improvement of this condition has an 
essential role in the proof of Theorem 2. 

LEMMA 2.3. Suppose v is an inverse y-system, and a, b c Gr (). Then a b 
mod Fact(v) holds if there is an eventually coherent subset I of y * y such that 
a"J - b'i for all (i, j) C I. 
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ON INVERSE y-SYSTEMS ... 275 

PROOF. We shall need an eventually coherent subset J of I having the property 
that (J[i] I i C Jist) is a decreasing chain of end segments of Pst. Let S be an 
unbounded subset of I having the order type cf(y). Define a subset J of I by 
jlst = Sandforallj e S, 

J[j] = s n n (I~iii]-(i* + 1)), 
iESn(]i+i) 

where i* is the supremum of the bounded subset P1st - I[i] of y. The set J is 
well-defined since I is eventually coherent and card(S n (j + 1)) < cf(y) for all 
j < y. Now J is also eventually coherent, and furthermore, for all i C Jist, 
J[i] = S -, min(J[i]) and for all j E Pst ,. i, min(J[i]) < min(J[j]). 

Define for every i < y, i' to be min(Jlst -, (i + 1)) and i" = min(J[i']). Then 
the following are satisfied for all i < j: 

* i<i' < i", j < j' < j", i' < j1', i" < j", and also' < j"; 
* j" 1 st and (i',i"/) I(j'j)(' " 

Since a and b are in Gr(sRk) we have 

a'-.= a "J + hij (a 

b"i = b"i + hij (bj'j). 

Therefore the following equations hold: 

(A) a'1. - b" -i (a""ill - b"'.j) - (hij(ai"') - hi j(b i) 

= (a' - b"'i) - hij(ai - b"'). 

Because of i < i' < j" we also have that 

a =a'' + hi, (aij ), 

b il = b" + hij,(b lil). 

Since (i', j") c I, a" - b' 'i holds. Hence we get 

(B) a"j" b'_ ' = ai'i' - b''. 

Moreover, i < i' < i" yields 

a"ii = ai"' + hi (a' i'"), 

b""' = bit-' + hij, (biX i//) 

Now (i', i") e I implies that a"," = b"m'', and consequently 

ai i' - b"' = a""' - b"i'. 

This equation together with (A) and (B) implies that for all i < j 

ai _ bin (aii bii hij (aili -bjs ,j 

So the sequence y = ( ai" -bii" I i < y) c fJi<y G exemplifies that a- b e 

Fact(Q), and we have a b mod Fact(s&). -A 

This content downloaded from 195.34.79.158 on Tue, 17 Jun 2014 14:16:36 PM
All use subject to JSTOR Terms and Conditions

Sh:644

http://www.jstor.org/page/info/about/policies/terms.jsp


276 SAHARON SHELAH AND PAULI VAISANEN 

REMARK. In [8, Claim 1.12] the groups of an inverse system v need not to be 
abelian groups. Hence instead of the factor group Gr(sV)/ Fact(vW) a partition 
Gr(sv)/v with a special kind of equivalence relation 5 were considered there. 
However, it is straightforward to prove, by means of the preceding proof, also the 
more general case of Lemma 2.3 where "equivalent modulo Fact(v)" is replaced 
by a. 

In the next section we shall need a notion of a tree, so we shortly describe our 
notation. 

DEFINITION 2.4. Suppose T = (T, <) is a tree of height y. For every i < y, T1 is 
the ith level of the tree. When i < j < y and q E Tj, then q [i denotes the unique 
element v c Tj for which v < q holds. For each i < y and v E Ti, T1[v] is the set 
{ C E Tj I v < , }. The set of all y-branches of T, i.e., the set 

{t E Ti |for all i < j, t (i) < t (j) } 

is denoted by Br,(T). 

?3. The inverse y-system of free R-modules. In this section we define special kind 
of inverse y -systems TR and prove a result concerning cardinalities of their quotient 
limit Gr(.WR)/ Fact(sRT) (Conclusion 3.12). A direct consequence of the result will 
be Theorem 2. 

DEFINITION 3.1. Suppose y is a limit ordinal, R is a ring, and T is a tree of height 
y. We define an inverse y-system _,T (Gi, hij I i < j < y ) by the following 
stipulations: 

(a) for each i < y, Gi is the R-module freely generated by 

f XI'd Iv c T1 andi< I< y'}; 

(b) for every i < j < y, hi j is the homomorphism from Gj into Gi determined 
by the values 

hi.j(xql) = Xq[i.j - Xq ij, 

for all q c T. and I > j. (It is easy to check that the equations hi k = hi, o hj k 
are satisfied for all i < j < k.) 

We consider Gr(sT), Fact(sT), and Gr(VT)/ Fact(s^R) as R-modules where the 
operations +, ., and the unit element 0 for addition are pointwise defined. 

For each t c Bra, (T), we define t to be the sequence ( x, (i)j I i < j < y ). Directly 
by the definitions of Gi and hi , t belongs to Gr(QWRT) for every t E Br, (T). We let 

(t CEBr,,(T) 
t)R be the submodule of Gr(RT) generated by the elements t, t c Br, (T). 

When Bra,(T) is empty (t)E Br,(T) is the trivial submodule {0}. 

REMARK. Each Gi is nonempty when T has height y. Hence Hi<, Gi is nonempty, 
and also 

Fact(4IRT) 
= { _ hi j(yj) I i < j < y ) | Y E tI 

G. 
} 
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ON INVERSE y-SYSTEMS ... 277 

is nonempty. So Gr(sT) D Fact(sl1 is nonempty for every ring R and tree T of 
height y. 

Observe also that the inverse y-system SIT is the same as used in [7, Claim 3.8] 
when R is the trivial ring {O, 1 } and T consists of ,u many disjoint y-branches. So 
the proof given in this section offers an alternative proof for [7, Claim 3.8], and 
even more information, namely that card(Gr(s4T)/ Fact(sT)) must be exactly ,u 
not only > ju. 

DEFINITION 3.2. Suppose a E Gr(s4T) and i < j < y. By the definition of Gi and 
the requirement a" iE Gi, we define a'1 for v E Ti and I > i, to be the coefficients 
from R (with only finitely many of them nonzero) which satisfy the equation 

aii=E aij X, 
I>i 
ET7 

The finite set 

{(V, I) (E Ti X (y -, (i + 1)) | 0,l 

is called the support of a'1, and it is denoted by supp(a"i). 
Suppose S is a subset of y, e E Gi, and e,1l C R for every v E Ti and I > i are 

elements such that 

e = e,, x,,,. 
vE T 

l>i 

Then we write e [S for the following element of Gi: 

E e,1, x 1. 
v) C Ti 

IES-,(i+l) 

The following simple lemma has an important corollary 
LEMMA 3.3. 

(a) The restriction hi.J (e) [j equals Ofor every i < j and e E G/. 
(b) For every a E Fact(SIT) 0 {O}, there are i < j < y such that ai- ,i j O. 

PROOF. 

(a) Straightforwardly by the definitions of Gj and hi . 
(b) By the definition of Fact(sRT), let j E Hl<, Gi be such that for all i < j, 

a'1 - y_ hi j(1i). In addition to that let y11,, c R, for i < y, v c Ti and I > i, be 
such that 

Y = -ylxl 
VETS iC T, 

1>i 

Since a 7 0 there must be i < y with j3' : 0. Define I to be 

min{ 1> i I y', :& 0 for some v E Ti } + 1. 

Then jW [j is nonzero and because hi (ji) [j = 0, we have 

a" ij = yi j - hi(j(y) j =z 5' L o. 
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278 SAHARON SHELAH AND PAULI VAISANEN 

COROLLARY 3.4. The elements t, t c Bry (T), are independent over Fact(RT), i.e., 

(tR;n Fact('WR T) = f01. 

Hence sT satisfies 

card(Gr(s4R)/ Fact(s4R)) > card(K(t)BR('))- 

PROOF. Directly by the definition of t, tiJ Xt(i),j and hence t"J [j = 0, for all 
t c Br2,(T) and i < j. So for any nonzero a = ZI<n< d<n tm, where n < o, 
den C R -, {0}, and tm E Br2,(T), the restrictions ai' [j are equal to 0 for all i < j. 
So by the preceding lemma a can not be in Fact(SIRT). 

Next we derive equations of weighty significance. 
LEMMA 3.5. Suppose b e Gr(RT) and i < j < k < y. Then the following 

equations are satisfiedfor all v E Ti: 

(A) bU- bli when i <I< j; 

(B) bU - b- i - E bjk. 

qETj[I'] 
I>j 

(C) b -ik = b~i + E bjk when I > j. 
qCETj1I] 

PROOF. By dividing the sum into groups we get that 

b"- - bij *, 
l>i 

vETj 

=vCTb i~lj~xb>i - x,, + b5. .x + b>XU). 
vwETj i<l<j l>j 

Similarly the following equation is satisfied, 

bik z~z U b ( b.~ xv., + b, Xv,,i + ,: bi,, XI", ). 
v ETi i<l<.j l>j 

From the definition of hij, we may infer that 

hi j (b Jsk = bj,j k hijy (xl ) 
ijETj 
l>j 

- h ai lk * (x^1 XII - Xq1 rij) 

E Tj 
l>j 

qCT, qETj 
l>j l>j 

=E (E E b,7jlk )xvl -( baj" ) xv~yj 
,CE T I>j qETj [V] qCETj I] 

I>j 
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ON INVERSE y-SYSTEMS ... 279 

So the equations (A), (B), and (C) for all i < j < k follow by comparing the 
coefficients of each generator xvl in the equation bik b'i' + hi j (b k). 

LEMMA 3.6. Suppose a E Gr(4R). 

(a) For all i < j < k, aiifj aik j 
(b) (cf(y) > No). For every i < y, the union Ui<j<y supp(a"i [J) is of finite 

cardinality (where supp(ai'j [J) = supp(a'I) n (Tj x j) of course). 
(c) (cf(y) > NO). There is b e Gr(sIRk) satisfying the following conditions: 

* a b mod Fact(RR), 
* I { (i,j) e y * y I b'"1j O} is cobounded (in fact llst = y), and 
* for every (i, j) E I, b" - b" [{j}. 

PROOF. 
(a) The claim holds directly by Lemma 3.5 (A). 
(b) Suppose the union is infinite. Since cf(y) > No there is some k < y for which 

already Uj<k supp(ai'I [j) is infinite. By (a), supp(a"I [J) C supp(aik) for each 
j < k. Consequently Uj<k supp(ai" [j) C supp(aik) contrary to the finiteness of 

supp(a i.k). 

(c) By (a) and (b) there must be for every i < y a bound i* E y -- (i + 1) such 
that for every]j > i*, ai 7* = a" [j. Define an element c E Fact(WRT) by 

cij = aii'* - hi* j(ajJ* j), 

for all i < j. Let b be a - c. Then a b mod Fact(aRT) and for every i < y and 
j > i* 

b' -j a"i - c',j 

- a- K(y j j) + a"j j - aii* 1i* + hi j (aii [j*) 

- a"i [ (y j j) + hij (aj * [j*). 

It follows from Lemma 3.3 (a) that b"i j - 0 for all i < y and j > i*, and thus I 
is cobounded. 

Now suppose, contrary to the last claim in (c), that b>' + 0 for some i < y, 

j1 i> , v e Ti,andl j. Letkbemax{i*j*,j*,l+1}. Thenbothbik [kandbjk[k 
are 0. By Lemma 3.5 (C) the following equation holds: 

b3 b= - Ubik- b"' 

q C Tj[IV] 

Since b"i : 0 and I < k implies b = the sum 0ET Since 
-J thju ~ [v] b,,l must be nonzero. So 

there is q e Tj[v] with bijk :h 0. This contradicts the facts I < k and bjk [k equals 
0. - 

LEMMA 3.7. Suppose b e Gr(.WRT) and I is a subset of 

{ (i, j) e y*y I b"[{} - b"j }. 
Then for all (i, j) e I, v E T1, and k I[i]i n I [j], 

b'j ~= E bi hT[ bih 

q GTj IV] 
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280 SAHARON SHELAH AND PAULI VAISANEN 

PROOF. Since (i, k) and (j, k) are in I, both b ik and bijZk are equal to 0 for 
all q E Tj when I + k. Hence Lemma 3.5 (B) can be reduced to the form 
b jj- = b"' . Now (i, j) E I guarantees that b,'' = 0. Thus the reduced EPvi v1ljkv.k 

form together with Lemma 3.5 (C) (applied for I = k) yield b'jA = bk .k 
V.J v,k' 

LEMMA 3.8. Suppose b is an element of Gr(sRT). 
(a) If b is not in Fact(sRk) and I is an eventually coherent subset of y * y such that 

bh'' = bh i{j} for all (i, j) E I, then there is an eventually coherent subset J of 
I with b'd - b" j {j} I 0 whenever (i, j) E J. 

(b) (cf(y) > Ro). If J is an eventually coherent subset of y * y such that b'i 
bh .{i f} j t Ofor all (i, j) E J, then there are a bound n* < o and an eventually 
coherent subset K of J such that card(supp(b' i)) < n* for all (i, j) E K. 

PROOF. 

(a) Since b # 0 mod Fact(VRT) it follows by Lemma 2.3 that there is no subset 
of { (i, j) E I b'i - 0 } which would be eventually coherent. Hence there is an 
unbounded subset S of jlst such that for each i E S there is ji c I[i] with b"j' 
nonzero. Fix any i E S. Since b' -j= b'1ji ji } t 0, let vi be an element of T, with 
b'11. : 0. By Lemma 3.7, b - b 0 for all k E I[i] n I[ji]. Because I was 
eventually coherent, we have shown that J = I n (S x S) is an eventually coherent 
set as wanted in the claim. 

(b) First of all we claim that for each i E JlSt the union UQjcJj] supp(b'') is of 
finite cardinality. Observe that for every (i, j) E J, 

supp(b'1) - supp(b"') n (T, x {j}). 
Assume, contrary to this subclaim, that i E JlSt (j, J m < o ) is an increasing 

sequence of ordinals in J[i], and { V,1? I m < o } is a set of distinct elements from 

Tj such that b,,J'in nonzero for every m < c. Since J is eventually coherent and y 
is of uncountable cofinality let k < y be the minimal element in J[i] n n< J[j,7j. 
Now for each m < o, the pairs (i, j..), (i, k), and (jo,, k) are in J, and by Lemma 

3.7, the equation b, ,;J;"n = bik i 0 holds. So the infinite set { (Vil k) I m < o } is 

a subset of supp(b ik), a contradiction. 
It follows from the subclaim that for each i E JIst, the finite ordinal 

ni=card( U supp(bi)) + 1 

JeJ[i] 

satisfies card(supp(b"i)) < ni for all j E J[i]. Since Jlst is uncountable, there are 
n* < o and an unbounded subset S of JlSt such that ni = n* for all i E S. So n* 
and the set K = J n (S x S) meet the requirements of the claim. -1 

LEMMA 3.9 (cf(y) > card(R)). Suppose b is in Gr(sQRT) and I is an eventually 
coherent subset of 

{(i, j) E y * y b-[i {j}- = b''.i O }. 

Then there are d E R, t E Br,, (T), and an eventually coherent subset J of I for which 

bt(Ji). = d #0 whenever (i, j) c J. 
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PROOF. We define by induction on ae < cf(y) the following objects: 
* an increasing sequence (i,> a < cf(y)) of ordinals in jlst with limit y; 
* an increasing sequence (v, ao < cf((y) ) HFa<df(o) Tin; 
* subsets K, of I [i,>] such that I st -. K, are bounded in y; 
* elements dc, E R -. {O} such that for every k E Kc,, bik - d 

This suffices since card(R) < cf(y) implies that there are d E R and H C cf(y) 
unbounded in cf(y) such that d, = d for every ac E H. Moreover, the claim is 
satisfied by t E Br),(T) and J C I defined as follows. For every i < y, t(i) = ve [i, 
whereP = min{ c < cf(y) I i? > i }, and J= UO CH ({in,} X (S n Ken)), where S 
is { ic, I a E H}. 

Let ( y, I a < cf(y) ) be an increasing sequence with limit y. Define 

i,> min((I'st n nK:) ye 

flca 

and 

j min I'st n I [ice] nn nI[i:]), 
fl<ce 

where both nf<, K: and nffl<, I [i1] are equal to y when a = 0. This pair (ic, j) is 

well-defined since I is eventually coherent, ar < cf(y), and when ar > 0, 1st \ K: 
is bounded for each /3 < ae by the induction hypothesis. 

If a = 0, then (io, j) E I guarantees that bio [ {j} = b'0?' i7 0. Hence we can 
find vo E TiO with bio{ 7 0. 

When ae > 0 we define elements i#p E Tia [vfl] for each ,6 < ae as follows. Fix 
, a < or. Since ic, E Ke we get by the induction hypothesis that b"<' = dc :4 0. 
Furthermore (ifi, ij,) E I (because Kfl C I[ifl]), (ip, j) E I, and (i,, j) E I together 
with Lemma 3.7 yield 

E baQ'j = b,'i.' :+ O. 

AE Tic [v 1S] 

Therefore we can find af cz Tia [vfl] for which b, la 1 0. 
If ar > 0 is a successor ordinal define v, to be ,>-1 . When ar is a limit ordinal, 

the finiteness of the support supp(b'a i) ensures that there are vc, E Tia and an 
unbounded subset H of ar such that lp, = v, for all /3' E H. By the induction 
hypothesis vat < vp, for all /3 < /3' < oz. Hence van < vi, < Id, = vC, holds for every 
,B< oz and ,B' = min (H -- Pf). Let d,> be b'af. By Lemma 3.7, every k E 

I[iJ,] n I[j] satisfies that bia k 

b / do. Hence i,, v,, and d,c together with the set K, = I[ic,] n I[j] meet the 
requirements given at the beginning of the proof. - 

COROLLARY 3.10 (cf(y) > NO). If Br,,(T) is empty, then Gr(sIRT) = Fact(sR4). 

PROOF. Suppose a E Gr(sRT) \. Fact(IR). By Lemma 3.6 (c) together with 
Lemma 3.8 (a) there is b E Gr(sRT) such that a _ b mod Fact(GVRT) and the set 

(ij) E y*y I b --f Jj= b'i 7 0} 
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is eventually coherent. By Lemma 3.9 there is a y-branch through the tree T, i.e., 

Br,, (T) :4 0. Observe that the assumption card(R) < cf(y) is not needed, as can be 
seen from the proof of Lemma 3.9. -d 

LEMMA 3. 1 1 (cf (y) > max{ No, card (R) }). The elemen ts t, t E Br,, (T), generate 
Gr(sIRT) modulo Fact(sIRT). 

PROOF. We show that for every a E Gr(skR) with a V Fact(sGR4) we can find 
n < , dc., dc E R -. {O} and t1, ..., e Bry(T) satisfying 

(A) a _ din t,, mod Fact(SRT). 
IKm <n 

Suppose a E Gr(GR) \. Fact(IR). By Lemma 3.6 (c) and Lemma 3.8 (a) let b be 
an element of Gr(skRT) and I, an eventually coherent subset of y * y such that a- b 
mod Fact(sIRT) and for each (i, j) e II, b "i = b "i [f j} I4 0. Furthermore, we may 
assume by Lemma 3.8 (b) that n* <,o is a bound for which card(supp(b"'J)) < n* 
hold for all (i, j) e II. 

By Lemma 3.9 there are d1 e R, t1 e Bry (T), and an eventually coherent set 
J1 C I, having the property that b" c / di :4 0 whenever (i, j) E J1. Since 

d* t1 E Gr(4RT), the sequence c = b - di t1 is in Gr(sRT). If c is in Fact(sIRT), 
then b -di xStI mod Fact(sIRT), and because of a _ b mod Fact(sGRT), also 
(A) holds for n = 1. 

Suppose 1 < n < o and objects d,,, e R -. {0}, t,7, e Br2,(T), and Jn" C J1 for 
m < n are already defined. Assume also that these objects satisfy the following 
conditions: 

(1) J,71, D J, for all l < m' < m < n; 
(2) for all l < m' < m < n and i c (Jn) St, t ...(i) W t,1(i); 

(3) for every I < m < n and (i, j) e Jm, b (i)j d,724 0; 

(4) c = b -Z<m1<n din tin V Fact(SIRT). 

Clearly c" -J ciJ [{j} and card(supp(c"i)) < card(supp(b" -)) < nfor all (i, j) e 
Jn. Again by Lemma 3.8 (a), there is an eventually coherent set In+h C Jn such 
that for each (i, j) e In+,, c"i 7 0. Moreover, by Lemma 3.9, there are dn+l e R. 
t e+ I Bry (T), and an eventually coherent set J+ I C { (i, j) e In + IC 
dn+l 7O}. 

The properties (2), (3) and (4) above imply that c,()1 - bti - d 0n = for 

every m < n and (i, j) E Jn. On the other hand, C 1J( is nonzero for each 
tn+1 W),J 

(i, j) e Jn+,. Thus tn+l(i) can not be in { t,.1(i) 1 I < m < n } if i E (Jn+l)st 
So for all (i, j) E Jn+,, Xt,+l(i) j {Xt,(i)j 1 < m < n}, and consequently 
bti i( =C1iii (i) j.1 Thus also Jn+,, tn+1, and dn+1 satisfy the properties (1), (2), 
and (3) (but not necessarily (4)). 

We claim that there must be n < n* such that 

(B) b - E drn * tm E Fact(-4RT). 
I<m<n 
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Assume, contrary to this subclaim, that the process introduced above has been 
carried out n* many times and objects Jr, tin, dm for i < m < n* are defined. 
In addition to that suppose they satisfy the conditions (1), (2), and (3). Define 

i= min((Jn*) lst) and j = min(J,* [i]). Then for every m < n*, (i, j) E Jn yields 
b - d)" :4 0. This contradicts the condition card(supp(b'1J)) < n*, since the 

set { (t2(i), I) m < n* } C supp(b'1) is of cardinality n*. 
Now suppose n < o is a finite ordinal satisfying (B). Then b ElZ<n<n dIn tin 

mod Fact(slR ), and because a _ b mod Fact(s4R ) also (A) is satisfied. 

CONCLUSION 3.12. For any ordinal y of uncountable cofinality, ring R with 

card(R) < cf(y), 

and tree T of height y, the inverse y-system @T - (Gi, hi I1 i < j < y ) has the 
properties that 

card(G) = maxfcard(y), card(Ti), card(R)} 

for all i < y, and 

card(Gr(aRT )/Fact (sIRT)) = card( (t),Er, T). 

PROOF OF THEOREM 2. Remember that A and K were cardinals with No < K 

cf(A) < A. We wanted to study possible cardinalities ,u of the quotient limit 
Gr(V)/ Fact(s?), where _? is an inverse ec-system consisting of abelian groups 
having cardinality < A. Now Conclusion 3.12 gives a complete solution to this 
problem because of A > cf(A) = = cf(r,) > No. Namely, in order to meet the 
requirements card(G1) < A for all i < s, it is needed only to ensure that R and 
the ith level of T are small enough. On the other hand, a suitable choice of R and 
T yields any desired value for =u card(Gr(-VRT)/ Fact(-kRT)). We briefly describe 
methods to choose suitable R and T for every nonzero 1u < A'. 

For any R, card(Gr(_VRT)/ Fact(-VRT)) equals 1 when Br, (T) is empty. So u = 1 
is possible since obviously there exists a tree of height s without r,-branches and 
having levels of cardinality < A when A singular of cofinality a'. Also all the 
finite values ,u > 1 are possible by taking T with only one r,-branch and R with 
card(R) = u. 

Furthermore the case of infinite ,u < A is satisfied by any R with card(R) < 

minfi', ,u} and T with exactly pu many s,-branches. The value u = A is possible for 
any R with card(R) < r, because a suitable tree can be constructed, for example, as 
follows. Let ( Ai t i < s ) be an increasing sequence of ordinals < A with limit A 
Then the tree 

T { t [a a < es, t E I Ai, and t(i) is nonzero only for finitely many i < s, 

ordered by inclusion, satisfies card(Br,c(T)) = A and card(Ti) = Ai < A for each 
i< K. 

Also the cardinalities pu of the quotient limit, when < ,u < A`3, are possible for 
any ring of cardinality < a'. Existence of a suitable tree is proved for example in 
[9, Fact 10] under the assumption that 2`8 < A and 0'` < A for every 0 < A (other 
sources for a proof are given in [10, Analytical Guide ?10]). -1 
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