MODELS WITH FEW ISOMORPHIC EXPANSIONS

BY
A. LITMAN AND S. SHELAH ${ }^{+}$
ABSTRACT

We shall characterize the countable models M, with only countably many expansions by a one place predicate.

The theorem we shall prove here is:
Theorem 1. Let M be a countable model, then the following conditions are equivalent:
(P1) the number of $(M, P)(P \subseteq|M|)$ up to isomorphism is \boldsymbol{N}_{0}.
(P2) the number of $(M, P)(P \subseteq|M|)$ up to isomorphism is $<2^{\boldsymbol{N}_{1}}$.
(P3) there are finite models, N_{0}, N_{1} such that M is a reduction of a definable expansion of $N_{0}+\Sigma_{n<\omega} N_{1}$. (See Definition 0 for the definition of sum of models.)

The consideration of condition (P1) was suggested by Stavi [6], when investigating whether in a Fraenkel-Mostowski model (of set theory) the free Boolean algebra generated by the atoms is a set. He asked whether the number of $(M, P)(P \subseteq|M|)$ up to isomorphism can be $\boldsymbol{\kappa}_{1}$ and $\boldsymbol{N}_{1}<2^{\boldsymbol{\alpha}_{0}}$ - so the answer is negative.

Clearly if we replace one-place predicate by a two-place predicate, the number of (M, P) is always $2^{\boldsymbol{N}_{0}}$.

Problem. For a model M of cardinality λ, what can be $\mid\{(M, P) \mid \cong: P \subseteq$ $|\boldsymbol{M}|\} \mid$ and is there a characterization similar to Theorem 1 ?

Our method is somewhat similar to Shelah [4], and the result was proved by Shelah and announced in [5]. Then Litman shortened the proof by half using the same technique.

[^0]Definition 0. (A) Let $\left\{M_{i} \mid i \in I\right\}$ be an indexed family of models in the same language L such that

1) The models $\left\{M_{i} \mid i \in I\right\}$ have disjoint domains.
2) L contains no functions or constants.

We define $M=\Sigma_{i \in I} M_{i}$ where M is a model of the same language L, the domain of M is the union of the domains of $\left\{M_{i} \mid i \in I\right\}$ and for any atomic relation R, $M=R\left(a_{1}, \cdots, a_{n}\right)$ iff a_{1}, \cdots, a_{n} all belong to the same model, say M_{3}, and $M_{J}=R\left(a_{1}, \cdots a_{n}\right)$.
(B) For two models M_{1}, M_{2} define $M_{1}+M_{2}=\sum_{i \in\{1,2\}} M_{i}$.

Proof of Theorem 1. It is clear that $(\mathrm{P} 3) \Rightarrow(\mathrm{P} 1) \Rightarrow(\mathrm{P} 2)$, so frcm now on we shall assume (P 2), and eventually prove (P 3), by a series of observations.

Let $|M|$ be the universe of M, a, b, c, elements of $|M|, \bar{a}, \bar{b}, \bar{c}$ a finite sequence of such elements. Let L be the first-order language associated with M.

$$
\left.\operatorname{tp}\left(a_{1}, \cdots, a_{n}\right)=\left\{\varphi\left(x_{1}, \cdots, x_{n}\right)\right\} M \vDash \varphi\left(a_{1}, \cdots, a_{n}\right), \varphi \text { contains no parameters }\right\} .
$$

We shall not distinguich strictly between a sequence \bar{a} and its range.
Observation 1. Any expansion of M by finitely many individual constants satisfies conditions (P2).

The proof is trivial.
DEFINITION 1. $\left\langle a_{1}, a_{2}, \cdots, a_{n}\right\rangle \cong{ }_{n}\left\langle b_{1}, b_{2}, \cdots, b_{n}\right\rangle \quad$ iff $\quad\left\langle M, a_{1}, a_{2}, \cdots, a_{n}\right\rangle \cong$ $\left\langle M, b_{1}, b_{2}, \cdots, b_{n}\right\rangle$.

ObSERVATION 2. For every n, \cong_{n} has only finitely many equivalence classes.
Proof. If $\cong{ }_{1}$ has infinitely many equivalence classes, we clearly have $2^{\boldsymbol{N}_{0}}$ non-isomorphic expansions. Assume that the statement is true for $n-1$ and that \cong_{n} has infinitely many classes, then there is a $n-1$ tuple \bar{a} and an infinite $D \subset|M|$ so that for every pair of distinct members of $D d, d^{\prime}:\langle\bar{a}, d\rangle \nexists_{n}\left\langle\bar{a}, d^{\prime}\right\rangle$. Thus in the model $\langle M, \bar{a}\rangle \cong_{1}$ has infinitely many classes, contradiction.

Observation 3. The number of formulas $\varphi\left(x_{0}, \cdots, x_{n}\right) \in L$ up to equivalence in M is finite. M is homogeneous, and the theory of M is categorical in \aleph_{0}.

Proof. Simple consequence of Observation 2.
Remark. As $\operatorname{tp}(\bar{a})$ is equivalent in M to a single formula $\varphi(\bar{x})$, we may assume that $\operatorname{tp}(\bar{a})$ is a single formula.

The following fact will be used implicitly in this paper:

Observation 4. Let $\Sigma\left(x_{1}, \cdots, x_{n}\right)$ be a second-order formula in the language of M (i.e., its free second-order relations are atomic relations of M), then there is a first-order formula $\varphi\left(x_{1}, \cdots, x_{n}\right)$ so that $M \vDash \forall x_{1}, \cdots, x_{n}(\varphi \equiv \Sigma)$.

Proof. Set $Q=\left\{\operatorname{tp}\left(a_{1}, \cdots, a_{n}\right) \mid M \vDash \Sigma\left(a_{1}, \cdots, a_{n}\right)\right\} . Q$ is finite. Let $\varphi=$ $V_{\tau \in Q} \tau$. As M is homogeneous, φ is equivalent to Σ.

Observation 5. There is no formula $\varphi(x, y)$ (φ may contain parameters), so that $\varphi(x, y)$ defines a linear order on any infinite set.

Proof. Assume $\varphi(x, y)$ is a linear order on some infinite set. We can assume that $\varphi(x, y)$ contains no parameters (otherwise make them individual constants). Let τ be a countable order type. As M is the only model of $\operatorname{Th}(M)$ in \boldsymbol{N}_{0}, there is $A \subset M$ so that $\langle A, \varphi(x, y)\rangle \cong \tau$ (one has to write a diagram which is consistent with $\mathrm{Th}(M)$). As there are $2^{\boldsymbol{N}_{0}}$ countable order types, M has $2^{\boldsymbol{N}_{0}}$ expansions. Contradiction.

Definition 2. (A) A system is an infinite ordered set $\langle I,<\rangle$, and a finite sequence of functions $F_{1}, F_{2}, \cdots, F_{n}$ s.t. $F_{i}: I^{k_{i}} \rightarrow|M|$.
(B) Let $\langle I,<\rangle$ be an ordered set and $\bar{\alpha}=\left\langle\alpha_{1}, \cdots, \alpha_{n}\right\rangle$ a sequence of members of I. Define $\operatorname{atp}(\bar{\alpha})=\left\{x_{i}<x_{J} \mid \alpha_{i}<\alpha_{J}\right\} \cup\left\{x_{i}=x_{J} \mid \alpha_{i}=\alpha_{J}\right\}$ (atp $(\bar{\alpha})$ is the set of atomic relations satisfied by $\bar{\alpha}$).
(C) A system $\langle I,<\rangle, F_{1}, F_{2}, \cdots, F_{n}$ is m-homogeneous, if for any sequences $F_{i_{1}}, F_{i_{2}}, \cdots, F_{i_{m}} ; \bar{\alpha}_{1}, \bar{\alpha}_{2}, \cdots, \bar{\alpha}_{m} ; \bar{\beta}_{1}, \overline{\boldsymbol{\beta}}_{2}, \cdots, \bar{\beta}_{m}$

$$
\operatorname{tp}\left(F_{i_{1}}\left(\bar{\alpha}_{1}\right), F_{i_{2}}\left(\bar{\alpha}_{2}\right), \cdots, F_{i_{m}}\left(\bar{\alpha}_{m}\right)\right) \neq \operatorname{tp}\left(F_{i_{1}}\left(\bar{\beta}_{1}\right), F_{i_{2}}\left(\bar{\beta}_{2}\right), \cdots, F_{i_{m}}\left(\bar{\beta}_{m}\right)\right)
$$

implies $\operatorname{atp}\left(\bar{\alpha}_{1}, \bar{\alpha}_{2}, \cdots, \bar{\alpha}_{m}\right) \neq \operatorname{atp}\left(\bar{\beta}_{1}, \bar{\beta}_{2}, \cdots, \bar{\beta}_{m}\right)$.
(D) Two systems $\langle I,<\rangle, F_{1}, \cdots, F_{n}$ and $\left\langle I^{\prime},<\right\rangle, F_{1}^{\prime}, \cdots, F_{n}^{\prime}$ are m-similar, if F_{i} and F_{i}^{\prime} have the same number of places and for any sequences $i_{1}, i_{2}, \cdots, i_{m} \leqq n$; $\bar{\alpha}_{1}, \bar{\alpha}_{2}, \cdots \bar{\alpha}_{m} ; \bar{\beta}_{1}, \bar{\beta}_{2}, \cdots, \bar{\beta}_{m}$ so that $\bar{\alpha}_{i} \subset I$ and $\bar{\beta}_{i} \subset I^{\prime}$ if

$$
\operatorname{tp}\left(F_{i_{1}}\left(\bar{\alpha}_{1}\right), F_{i_{2}}\left(\bar{\alpha}_{2}\right), \cdots, F_{i_{m}}\left(\bar{\alpha}_{m}\right)\right) \neq \operatorname{tp}\left(F_{i 1}^{\prime}\left(\bar{\beta}_{1}\right), F_{i 2}^{\prime}\left(\bar{\beta}_{2}\right), \cdots, F_{i m}^{\prime}\left(\bar{\beta}_{m}\right)\right)
$$

then $\operatorname{atp}\left(\bar{\alpha}_{1}, \bar{\alpha}_{2}, \cdots, \bar{\alpha}_{m}\right) \neq \operatorname{atp}\left(\bar{\beta}_{1}, \bar{\beta}_{2}, \cdots, \bar{\beta}_{m}\right)$.
(It is clear that if any two systems are m-similar then both are m homogeneous.)

Observation 6. Let $\langle I,<\rangle, F_{1}, \cdots, F_{n}$ be a system, then for any $m<\omega$, there is an infinite $I^{\prime} \subset I$ so that the system $\left\langle I^{\prime},\langle \rangle, F_{1} \upharpoonright I^{\prime}, F_{2} \upharpoonright I^{\prime}, \cdots, F_{n} \upharpoonright I^{\prime}\right.$ is m-homogeneous.

Proof. By the Ramsey theorem [3] and Observation 2.
Observation 7. Let $\langle I,<\rangle, F_{1}, \cdots, F_{n}$ be an m-homogenous system and $\left\langle I^{*},\langle \rangle\right.$ any countable ordered set, then there are $F_{1}^{*}, \cdots, F_{n}^{*}$ such that the system $\left\langle I^{*},<\right\rangle, F_{1}^{*}, \cdots, F_{n}^{*}$ is m-similar to $\langle I,<\rangle, F_{1}, \cdots, F_{n}$.

Proof. One has to write a diagram which is consistent with $\mathrm{Th}(M)$. As M is the only model of $\operatorname{Th}(M)$ in $\boldsymbol{\kappa}_{0}$, this diagram is realized in M.

Definition 3. (A) "For almost all $x \ldots$..." will mean "For all x, except for finitely many, ..."
(B) For $a, b \in|M|$ define $E(a, b)=$ For almost all $d, \operatorname{tp}(a, d)=\operatorname{tp}(b, d))$.

Definition 4. Let $A, B \subset|M| . A$ and B are separable if there is a formula $\varphi(x)(\varphi$ may contain parameters) s.t. $a \in A \Rightarrow \varphi(a)$ and $b \in B \Rightarrow \sim \varphi(b)$.

Observation $8 . \quad E$ is an equivalence relation and has finitely many equivalence classes.

Proof. Clearly, E is an equivalence relation. Assume E has infinitely many classes. Let $\langle Q,<\rangle$ be the rationals. There is a system $\langle Q,<\rangle, a_{\alpha}, b_{\alpha, \beta, \gamma}$ for $\alpha, \beta, \gamma \in Q \quad$ s.t. for any $\quad \alpha \neq \beta, \quad \gamma \neq \delta ; \quad \operatorname{tp}\left(a_{\alpha}, b_{\alpha, \beta, \gamma}\right) \neq \operatorname{tp}\left(a_{\beta}, b_{\alpha, \beta, \gamma}\right) \quad$ and $b_{\alpha, \beta, y} \neq b_{\alpha, \beta . \delta}$. From Observations 6 and 7, we can assume that this system is 2-homogenous.

Claim. There is a system $\langle\omega,<\rangle, c_{i}, d_{i . j}, i, j \in \omega$, such that:
(1) This system is 2 -homogenous,
(2) $\operatorname{tp}\left(c_{1}, d_{1,0}\right) \neq \operatorname{tp}\left(c_{0}, d_{1,0}\right)$,
(3) For any $m, n, i, j, k \in \omega, n \neq m: d_{i, n} \neq d_{i, m}, \operatorname{tp}\left(c_{k}, d_{n, i}\right)=\operatorname{tp}\left(c_{k} d_{n, j}\right)$ and $\operatorname{tp}\left(d_{m, i}, d_{n, j}\right)=\operatorname{tp}\left(d_{m, i}, d_{n, k}\right)$.

Proof. Let $\alpha_{i}, i \in \omega$ be an increasing sequence of rationals, and for each $i \in \omega$ let $\beta_{i . k}, k \in \omega$ be an increasing sequence of rationals in the interval $\left(\alpha_{1}, \alpha_{i+1}\right)$. Define $c_{i}^{*}=a_{\alpha_{i},} b_{i, j}^{*}=b_{\alpha_{i}, \alpha_{i+1}, \beta_{i, j}}$. We have $\operatorname{tp}\left(c_{i}^{*}, b_{i, j}^{*}\right) \neq \operatorname{tp}\left(c_{i+1}^{*}, b_{i, j}^{*}\right)$.

Case 1. $\operatorname{tp}\left(c_{1}^{*}, b_{1,1}^{*}\right) \neq \operatorname{tp}\left(c_{0}^{*}, b_{1,1}^{*}\right)$. Set $c_{\mathrm{i}}=c_{2 i}^{*}, d_{1, j}=b_{2, i, j}^{*}$.
Case 2. $\operatorname{tp}\left(c_{2}^{*}, b_{1,1}^{*}\right) \neq \operatorname{tp}\left(c_{0}^{*}, b_{1,1}^{*}\right)$. Set $c_{i}=c_{2,}^{*}, d_{i, j}=b_{2, j-1, j}^{*}$. We leave the verification of clauses (1), (2), (3) of the claim to the reader.

Let $\tau=\operatorname{tp}\left(c_{\theta}, d_{0,()}\right)$.
Case 1. The sets $\left\{c_{i} \mid i \in \omega\right\},\left\{d_{i, j} \mid i, j \in \omega\right\}$ are separable, by a formula φ ($\varphi\left(c_{i}\right)$ and $\sim \varphi\left(d_{i, j}\right)$ for all i, j). Let $F: \omega \rightarrow \omega$ be any function satisfying $F(i)>\Sigma_{j<i} F(j)$, then there is $A \subset\left\{c_{i} \mid i<\omega\right\} \cup\left\{d_{i, j} \mid i, j<\omega\right\}$ such that

$$
\{\|\{d: d \in A, \sim \varphi(d), \tau(c, d)\}\|: c \in A \text { and } \varphi(c)\}=\operatorname{Range}(F)
$$

Clearly this is a contradiction to (P 2).
Case 2. The sets $\left\{c_{i}\right\}$ and $\left\{d_{i, j}\right\}$ are not separable. We can assume that the system $\langle\omega,<\rangle, a_{i}, b_{i, j}$ can be extended to a 2 -homogeneous system on $\langle\omega+1,<\rangle$ (otherwise we take another system by Observation 7). By Observation 5, $\operatorname{tp}\left(c_{0}, c_{\omega}\right)=\operatorname{tp}\left(c_{\omega}, c_{0}\right)$, otherwise $\operatorname{tp}\left(c_{0}, c_{\omega}\right)$ would order the set $\left\{c_{i} \mid i<\omega\right\}$. $\operatorname{tp}\left(c_{0}, c_{\omega}\right)=\operatorname{tp}\left(c_{0}, d_{\omega, 0}\right)$, or else $\left\{c_{i}\right\},\left\{d_{i, j}\right\}$ would be separable by a formula with the parameter c_{0}. For the same reasons we have

$$
\operatorname{tp}\left(c_{0}, c_{\omega}\right)=\operatorname{tp}\left(c_{\omega}, d_{0,0}\right)=\operatorname{tp}\left(d_{\omega, 0}, d_{0,0}\right)
$$

In conclusion, for any $x, y \in\left\{c_{i}\right\} \cup\left\{d_{i, j}\right\}$, if $\tau(x, y)$ then there exists an n s.t. $x, y \in\left\{c_{n}, d_{n, i} \mid i<\omega\right\}$. For any $A \subset\left\{c_{i}\right\} \cup\left\{d_{i, j}\right\}$ let $\psi_{A}(x, y)=(x, y \in A$ and $\tau(x, y)$ or $\tau(y, x))$ and let $\varphi_{A}=$ the transitive closure of ψ_{A}. Let E_{q} be any equivalence relation on ω, then it is possible to construct a set $A \subset\left\{c_{i}\right\} \cup\left\{d_{i, j}\right\}$ s.t. $\left\langle A, \varphi_{A}\right\rangle \cong\left\langle\omega, E_{q}\right\rangle$. Contradiction to (P2).

Observation 9. The relation " x is algebraic over y " is an equivalence relation on the non-algebraic elements of M.

Proof. Transitivity and reflexivity are trivial. So assume we have a algebraic over b, b not algebraic over a and a not algebraic. Let $N<\omega$ be such that for all $d \in|M|,\langle M, d\rangle$ has less than N algebraic elements (such an N exists by Observation 3). As $\operatorname{tp}(a)$ is not algebraic and E has finitely many classes, there is a sequence $a_{1}, a_{2}, \ldots, a_{N}$ such that $\operatorname{tp}\left(a_{i}\right)=\operatorname{tp}(a)$ and $E\left(a_{i}, a_{j}\right)$ for all $i, j \leqq N$. For almost all d we have $\operatorname{tp}\left(a_{i}, d\right)=\operatorname{tp}\left(a_{i}, d\right)$. As for infinitely many $d, \operatorname{tp}\left(a_{i}, d\right)=$ $\operatorname{tp}(a, b)$, then there is a d such that $\operatorname{tp}\left(a_{i}, d\right)=\operatorname{tp}(a, b) \forall i$. Thus, there are at least N algebraic elements over d. A contradiction.

Observation 10. If a is algebraic over $\langle b, c\rangle$ then either a is algebraic over b or a is algebraic over c.

Proof. Assume a is algebraic over $\langle b, c\rangle$ but not algebraic over any single one of them. By Observation 9 (in the models $\langle M, b\rangle$ and $\langle M, c\rangle$) b is algebraic over $\langle a, c\rangle$ and c algebraic over $\langle a, b\rangle$. As $\operatorname{tp}(a)$ is not algebraic, and b not algebraic over a, there is a system $\langle Q,<\rangle, a_{\alpha}, b_{\alpha, \beta}, c_{\alpha, \beta}$ s.t. $\operatorname{tp}\left(a_{\alpha}, b_{\alpha, \beta}, c_{\alpha, \beta}\right)=$ $\operatorname{tp}(a, b, c)$, and for $\gamma \neq \delta: a_{\gamma} \neq a_{\delta}$ and $b_{\alpha, \gamma} \neq b_{\alpha, \delta}$. By Observations 6,7 we can assume that this system is 3 -homogeneous. For every $\gamma \neq \delta, c_{\alpha, \gamma} \neq c_{\alpha, \delta}$, or else we have infinitely many elements algebraic over the pair $\left\langle a_{\alpha}, c_{\alpha, \delta}\right\rangle$. Set $W=$ $\left\{a_{\alpha}, b_{\alpha, \beta}, c_{\alpha, \beta} \mid \alpha, \beta \in Q\right\}, \varphi(x, y, z)=" x$ is algebraic over $\langle y, z\rangle$ and $x \neq y \neq z "$.

An easy check yields that for distinct $x, y, z \in W, \varphi(x, y, z)$ if $\exists \alpha, \beta, x, y, z \in$ $\left\{a_{\alpha}, b_{\alpha, \beta}, c_{\alpha, \beta}\right\}$ (in any other case, there will be infinitely many elements algebraic over the same pair). For $A \subset W$ define $\psi_{A}(x y)=" x, y \in A$ and $\exists z \in A$ $\varphi(x, y, z)$ ". Let Eq be any equivalence relation on ω, whose equivalence classes have an odd number of elements, then one can build $A \subset W$ s.t. $\left\langle A, \bar{\psi}_{A}(x, y)\right\rangle \cong$ $\langle\omega, \mathrm{Eq}\rangle$ where $\bar{\psi}_{A}$ is the transitive closure of ψ_{A}. Contradiction to (P2).

Observation 11. If $E(a, b)$ and d is not algebraic over a and b then $\operatorname{tp}(a, d)=\operatorname{tp}(b, d)$.

Proof. Trivial.

Observation 12. For any a, b, such that neither is algebraic over the other, $\operatorname{tp}(a, b)$ depends only on the E equivalence classes of a and b.

Proof. Let a^{\prime}, b^{\prime} be another pair s.t. neither is algebraic over the other and $E\left(a, a^{\prime}\right)$ and $E\left(b, b^{\prime}\right)$. If $a=a^{\prime}$ then $\operatorname{tp}(a, b)=\operatorname{tp}\left(a^{\prime}, b^{\prime}\right)$ by Observation 11. Otherwise, there is a d such that $E(b, d)$ and d not algebraic over a and a^{\prime} (the E class of b is infinite because b is not algebraic), so we have $\operatorname{tp}(a, b)=$ $\operatorname{tp}(a, d)=\operatorname{tp}\left(a^{\prime}, d\right)=\operatorname{tp}\left(a^{\prime}, b^{\prime}\right)$.

Definition 5. $\quad E^{a}(x, y)=$ "For almost all $z, \operatorname{tp}(a, x, z)=\operatorname{tp}(a, y, z)$ " (i.e. E^{a} is the formula E defined in the model $\langle M, a\rangle$).
Observation 13. For nonalgebraic elements a, b and for c nonalgebraic over $\langle a, b\rangle, E^{c}(a, b) \Leftrightarrow E(a, b)$.

Proof. Assume $E(a, b)$ and $\sim E^{c}(a, b)$, we may assume that a, b are not algebraic one over the other (or else take some d in the same E equivalence class which is not algebraic over a, b, then $\left.\sim E^{c}(d, b) \cup \sim E^{c}(d, a)\right)$. By Observation 12 , for any d, e which belong to the E equivalence class and are not algebraic one over the other, $\operatorname{tp}(a, b)=\operatorname{tp}(d, e)$. Thus there is a system $\langle Q,<\rangle$, $a_{\alpha}, c_{\alpha, \beta, \gamma}$ s.t. $\sim E^{c_{\alpha, \beta, \gamma}}\left(a_{\alpha}, a_{\beta}\right)$, and for $\gamma \neq \delta: a_{\gamma} \neq a_{8}$ and $c_{\alpha, \beta, \gamma} \neq c_{\alpha, \beta, \delta}$. Furthermore, we can assume that this system is 3 -homogeneous. Let e be any $c_{\kappa, \lambda, \mu}$. As E^{e} has finitely many classes, and by the 3 -homogeneity, all $a_{\sigma}, \sigma<\min \{\kappa, \lambda, \mu\}$, are E^{e} equivalent. Let $0<\alpha<\beta$, then for infinitely many $e, E^{e}\left(a_{11}, a_{\alpha}\right)$ and $\sim E^{e}\left(a_{0}, a_{\beta}\right)$ (one of the sets $\left\{c_{\beta, \beta+1, \gamma} \mid \gamma>\beta+1\right\}$ or $\left\{\left.c_{\frac{1}{2}(\alpha+\beta), \beta, \gamma} \right\rvert\, \gamma>\beta\right\}$ will be appropriate). Hence, in the model $\left\langle M, a_{0}\right\rangle, \sim E^{a_{0}}\left(a_{\alpha}, a_{\beta}\right)$ for $0<\alpha<\beta$, a contradiction to Observation 8.

Observation 14. For $\bar{a}=\left\langle a_{1}, a_{2}, \cdots, a_{n}\right\rangle$ s.t. no a_{i} is algebraic over the others, $\operatorname{tp}(\bar{a})$ depends only on the E equivalence classes of the a_{i}.

Proof. Let $\bar{a}^{\prime}=\left\langle a_{1}^{\prime}, \cdots, a_{n}^{\prime}\right\rangle$ such that no a_{i}^{\prime} is algebraic over the others and $E\left(a_{i}, a_{i}^{\prime}\right)$, we have to show that $\operatorname{tp}(\bar{a})=\operatorname{tp}\left(\bar{a}^{\prime}\right)$. Assume the theorem is true for $n-1$. Now if $a_{1}^{\prime}=a_{1}, \operatorname{tp}(\bar{a})=\operatorname{tp}\left(\vec{a}^{\prime}\right)$ by the induction hypothesis in the model $\left\langle M, a_{1}\right\rangle$ and by Observation 13; otherwise take d which is not algebraic over $\bar{a}, \bar{a}^{\prime}$ and $E\left(d, a_{1}\right)$. We have $\operatorname{tp}(\bar{a})=\operatorname{tp}\left(d, a_{2}, \cdots, a_{n}\right)=\operatorname{tp}\left(d, a_{2}^{\prime}, \cdots, a_{n}^{\prime}\right)=\operatorname{tp}\left(\bar{a}^{\prime}\right)$.

Definition 6. (A). Let K be the maximum cardinality of the equivalence classes " x algebraic over y ". A sequence \bar{a} is special if its length is K and its range is an equivalence class of " x algebraic over y ".
(B). \bar{Z} separates the two "specials" \bar{a}, \bar{b} if $\operatorname{tp}(\bar{a}, \bar{Z}) \neq \operatorname{tp}(\bar{b}, \bar{Z})$.
(C). Two "specials" \bar{a}, \bar{b} are separable if there is a \bar{Z} (not necessarily special) s.t. \bar{Z} separates \bar{a} and \bar{b}, and $\bar{Z} \wedge(\bar{a} \cup \bar{b})=\varnothing$.

Assumption. (W.L.O.G.) All the algebraic elements of M are individual constants.

Observation 15. There is a \bar{Z} which separates any pair of separable "specials".

Proof. Let $a_{i}, i<n$ be a sequence of elements s.t. no a_{i} is algebraic over the others, and each E class contains two elements of this sequence. For $i, j<n$ there is $\bar{Y}_{i, j}$ s.t. for any two "specials" \bar{a}_{i} which contains a_{i} and \bar{a}_{j} which contains a_{j}, if \bar{a}_{i}, \bar{a}_{i} are separable, then $\bar{Y}_{i,}$ separates them, and $\bar{Y}_{i, j} \wedge\left(\bar{a}_{i} \cup \bar{a}_{j}\right)=\varnothing$. We may assume that $\bar{Y}_{i, j}$ is algebraicly closed. Let \bar{s} be minimal s.t. $\bar{Y}_{i, j}=$ algebraic closure of \bar{s}, then $\operatorname{tp}\left(a_{i}, a_{j}, \bar{s}\right)$ contains the statement "The algebraic closure of \bar{s} separates all separable specials \bar{b}, \bar{c} s.t. \bar{b} contains a_{i} and \bar{c} contains a_{j} ". Thus by Observation $14 \bar{Y}_{i, j}$ separates all separable specials \bar{b}, \bar{c} s.t. \bar{b} contain an element which is E-equivalence to a_{i}, and \bar{c} contain an element which is E-equivalence to a_{j}. Set $\bar{Z}=\cup \bar{Y}_{i, j}$.

Definition 7. For any "specials" $\bar{a}, \bar{b}: E^{*}(\bar{a}, \bar{b})=" \bar{a}, \bar{b}$ are not separable".
Observation 16. $\quad E^{*}$ is an equivalence relation on the special sequence, that has finitely many classes.

Proof. By Observation $15 E^{*}$ has finitely many classes. Thus all we have to show is that E^{*} is transitive. Assume $E^{*}(\bar{a}, \bar{b}), E^{*}(\bar{b}, \bar{c})$. It is sufficient to find an \bar{x} s.t. $\operatorname{tp}(\bar{x})=\operatorname{tp}(\bar{Z})(\bar{Z}$ of Observation 15) and \bar{x} does not separate \bar{a} and \bar{c}. Since \bar{Z} contains no algebraic elements, by application of Observation 14 there is \bar{x}, $\operatorname{tp}(\bar{x})=\operatorname{tp}(\bar{Z})$ and $\bar{x} \wedge(\bar{a} \cup \bar{b} \cup \bar{c})=\varnothing$. As \bar{x} does not separate the pair $\langle\bar{a}, \bar{b}\rangle$ and $\langle\bar{b}, \bar{c}\rangle$, it does not separate the pair $\langle\bar{a}, \bar{c}\rangle$.

ObSERVATION 17. Let $\bar{a}_{1}, \bar{a}_{2}, \cdots, \bar{a}_{n}$ be a sequence of pairwise disjoint 'specials", then $\operatorname{tp}\left(\bar{a}_{1}, \cdots, \bar{a}_{n}\right)$ depends only on the E^{*} equivalence classes of the \bar{a}_{i}.

Proof. Let $\bar{b}_{1}, \cdots, \bar{b}_{n}$ be another sequence of pairwise disjoint "specials" and $E^{*}\left(\bar{a}_{i}, \bar{b}_{i}\right)$. If for all $i \geqq 2 \bar{a}_{i}=\bar{b}_{i}$ then by definition of $E^{*} \operatorname{tp}\left(\bar{a}_{1}, \cdots, \bar{a}_{n}\right)=$ $\operatorname{tp}\left(\bar{b}_{1}, \cdots, \bar{b}_{n}\right)$, otherwise we can find a sequence of interpolants between $\left\langle\bar{a}_{1}, \cdots, \bar{a}_{n}\right\rangle$ and $\left\langle\bar{b}_{1}, \cdots, \bar{b}_{n}\right\rangle$.

Theorem. M satisfies (P3).
Proof. First let us assume for simplicity that M contains no algebraic elements, and there is one E^{*}-equivalence class e s.t. any special $\left\langle a_{1}, \cdots, a_{n}\right\rangle$ has a permutation $\left\langle b_{1}, \cdots, b_{n}\right\rangle$ which belongs to e. Choose any $\left\langle b_{1}, \cdots, b_{n}\right\rangle \in e$. Define the model N_{1} by $N_{1}=\left\langle\left\{b_{1}, \cdots, b_{n}\right\}, \equiv, R_{i}\right\rangle i \leqq n$ where:

1) $b_{i} \equiv b_{J}$ for any i, J.
2) $R_{i}\left(b_{J}\right)$ iff $i=J$.

Clearly M is isomorphic to a reduct of a definable expansion of $\Sigma_{i<\omega} N_{1}$. If more than one equivalence class of E^{*} is needed, we get M a definable expansion of $\sum_{j=1}^{k}\left(\Sigma_{i<\omega} N_{J}\right) \cong \Sigma_{i<\omega} \bar{N}$ where $\bar{N}=N_{1}+N_{2}+\cdots+N_{k}$. If there are algebraic elements, they constitute N_{0}.

References

[^1]1. P. Erdos and R. Rado, Intersection theorems for systems of sets, J. London Math. Soc. 44
2. H. J. Keisler, Infinitary Languages, North-Holland Publ. Co., Amsterdam, 1971.
3. F. D. Ramsey, On a problem of formal logic, Proc. London Math. Soc. 30 (1929), 338-384.
4. S. Shelah, There are just four second-order quantifiers, Israel J. Math. 15 (1973), 282-300.
5. S. Shelah, Various results in mathematical logic, Notices Amer. Math. Soc. 22 (1975), A-23.
6. J. Stavi, Free complete Boolean algebras and first order structures, Notices Amer. Math. Soc. 22

[^0]: ${ }^{+}$The second author is thankful for NSF Grant 43901, by which he was partially supported.
 Received April 30, 1975 and in revised form November 29, 1976.

[^1]: (1969), 467-474. (1975), A-326.

 Institute of Mathematics
The Hebrew University of Jerusalem
Jerusalem, Israel

 AND
 Department of Mathematics
 Stanford University
 Stanford, California, USA

