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ON THE STRONG EQUALITY BETWEEN

SUPERCOMPACTNESS AND STRONG COMPACTNESS

ARTHUR W. APTER AND SAHARON SHELAH

Abstract. We show that supercompactness and strong compactness can be
equivalent even as properties of pairs of regular cardinals. Specifically, we show
that if V |= ZFC + GCH is a given model (which in interesting cases contains
instances of supercompactness), then there is some cardinal and cofinality
preserving generic extension V [G] |= ZFC + GCH in which, (a) (preservation)
for κ ≤ λ regular, if V |= “κ is λ supercompact”, then V [G] |= “κ is λ
supercompact” and so that, (b) (equivalence) for κ ≤ λ regular, V [G] |= “κ is
λ strongly compact” iff V [G] |= “κ is λ supercompact”, except possibly if κ is
a measurable limit of cardinals which are λ supercompact.

0. Introduction and Preliminaries

It is a well known fact that the notion of strongly compact cardinal represents
a singularity in the hierarchy of large cardinals. The work of Magidor [Ma1] shows
that the least strongly compact cardinal and the least supercompact cardinal can
coincide, but also, the least strongly compact cardinal and the least measurable
cardinal can coincide. The work of Kimchi and Magidor [KiM] generalizes this,
showing that the class of strongly compact cardinals and the class of supercompact
cardinals can coincide (except by results of Menas [Me] and [A] at certain measur-
able limits of supercompact cardinals), and the first n strongly compact cardinals
(for n a natural number) and the first n measurable cardinals can coincide. Thus,
the precise identity of certain members of the class of strongly compact cardinals
cannot be ascertained vis à vis the class of measurable cardinals or the class of
supercompact cardinals.

An interesting aspect of the proofs of both [Ma1] and [KiM] is that in each result,
all “bad” instances of strong compactness are not obliterated. Specifically, in each
model, since the strategy employed in destroying strongly compact cardinals which
aren’t also supercompact is to make them non-strongly compact after a certain point
either by adding a Prikry sequence or a non-reflecting stationary set of ordinals of
the appropriate cofinality, there may be cardinals κ and λ so that κ is λ strongly
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104 ARTHUR W. APTER AND SAHARON SHELAH

compact yet κ isn’t λ supercompact. Thus, whereas it was proven by Kimchi
and Magidor that the classes of strongly compact and supercompact cardinals can
coincide (with the exceptions noted above), it was not known whether a “local”
version of this were possible, i.e., if it were possible to obtain a model in which, for
the class of pairs (κ, λ), κ is λ strongly compact iff κ is λ supercompact. This is
more delicate.

The purpose of this paper is to answer the above question in the affirmative.
Specifically, we prove the following

Theorem. Suppose V |= ZFC + GCH is a given model (which in interesting cases
contains instances of supercompactness). There is then some cardinal and cofinality
preserving generic extension V [G] |= ZFC + GCH in which:

(a) (Preservation) For κ ≤ λ regular, if V |= “κ is λ supercompact”, then V [G] |=
“κ is λ supercompact”. The converse implication holds except possibly when κ =
sup{δ < κ : δ is λ supercompact}.

(b) (Equivalence) For κ ≤ λ regular, V [G] |= “κ is λ strongly compact” iff
V [G] |= “κ is λ supercompact”, except possibly if κ is a measurable limit of cardinals
which are λ supercompact.

Note that the limitation given in (b) above is reasonable, since trivially, if κ is
measurable, κ < λ, and κ = sup{δ < κ : δ is either λ supercompact or λ strongly
compact}, then κ is λ strongly compact. Further, it is a theorem of Menas [Me]
that under GCH, for κ the first, second, third, or αth for α < κ measurable limit
of cardinals which are κ+ strongly compact or κ+ supercompact, κ is κ+ strongly
compact yet κ isn’t κ+ supercompact. Thus, if there are sufficiently large cardinals
in the universe, it will never be possible to have a complete coincidence between the
notions of κ being λ strongly compact and κ being λ supercompact for λ a regular
cardinal.

Note that in the statement of our Theorem, we do not mention what happens if
λ > κ is a singular cardinal. This is since the behavior when λ > κ is a singular
cardinal is provable in ZFC + GCH (which implies any limit cardinal is a strong
limit cardinal). Specifically, if λ > κ is so that cof(λ) < κ, then by a theorem of
Magidor [Ma3], κ is λ supercompact iff κ is λ+ supercompact, so automatically, by
clause (a) of our Theorem, λ supercompactness is preserved between V and V [G].
Also, if λ > κ is so that cof(λ) < κ, then by a theorem of Solovay [SRK], κ is λ
strongly compact iff κ is λ+ strongly compact, so by clause (b) of our Theorem, it
can never be the case that V [G] |= “κ is λ strongly compact” unless V [G] |= “κ is
λ supercompact” as well. Further, if λ > κ is so that λ > cof(λ) ≥ κ, then it is not
too difficult to see (and will be shown in Section 2) that if κ is λ′ strongly compact
or λ′ supercompact for all λ′ < λ, then κ is λ strongly compact, and there is no
reason to believe κ must be λ supercompact. In fact, it is a theorem of Magidor
[Ma4] (irrespective of GCH) that if µ is a supercompact cardinal, there will always
be many cardinals κ, λ < µ so that λ > κ is a singular cardinal of cofinality ≥ κ, κ is
λ strongly compact, κ is λ′ supercompact for all λ′ < λ, yet κ isn’t λ supercompact.
Thus, there can never be a complete coincidence between the notions of κ being
λ strongly compact and κ being λ supercompact if λ > κ is an arbitrary cardinal,
assuming there are supercompact cardinals in the universe.

The structure of this paper is as follows. Section 0 contains our introductory
comments and preliminary material concerning notation, terminology, etc. Section
1 defines and discusses the basic properties of the forcing notion used in the iteration
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SUPERCOMPACTNESS AND STRONG COMPACTNESS 105

we employ to construct our final model. Section 2 gives a complete statement and
proof of the theorem of Magidor mentioned in the above paragraph and proves our
Theorem in the case for which there is one supercompact cardinal κ in the universe
which contains no strongly inaccessible cardinals above it. Section 3 shows how the
ideas of Section 2 can be used to prove the Theorem in the general case. Section 4
contains our concluding remarks.

Before beginning the material of Section 1, we briefly mention some preliminary
information. Essentially, our notation and terminology are standard, and when this
is not the case, this will be clearly noted. We take this opportunity to mention we
will be assuming GCH throughout the course of this paper. For α < β ordinals,
[α, β], [α, β), (α, β], and (α, β) are as in standard interval notation. If f is the
characteristic function of a set x ⊆ α, then x = {β : f(β) = 1}.

When forcing, q ≥ p will mean that q is stronger than p. For P a partial ordering,
ϕ a formula in the forcing language with respect to P , and p ∈ P , p‖ϕ will mean p
decides ϕ. For G V -generic over P , we will use both V [G] and V P to indicate the
universe obtained by forcing with P . If x ∈ V [G], then ẋ will be a term in V for x.
We may, from time to time, confuse terms with the sets they denote and write x
when we actually mean ẋ, especially when x is some variant of the generic set G.

If κ is a cardinal, then for P a partial ordering, P is (κ,∞)-distributive if for
any sequence 〈Dα : α < κ〉 of dense open subsets of P , D =

⋂
α<κ

Dα is a dense

open subset of P . P is κ-closed if given a sequence 〈pα : α < κ〉 of elements of P
so that β < γ < κ implies pβ ≤ pγ (an increasing chain of length κ), then there
is some p ∈ P (an upper bound to this chain) so that pα ≤ p for all α < κ. P
is < κ-closed if P is δ-closed for all cardinals δ < κ. P is κ-directed closed if for
every cardinal δ < κ and every directed set 〈pα : α < δ〉 of elements of P (where
〈pα : α < δ〉 is directed if for every two distinct elements pρ, pν ∈ 〈pα : α < δ〉,
pρ and pν have a common upper bound) there is an upper bound p ∈ P . P is
κ-strategically closed if in the two person game in which the players construct an
increasing sequence 〈pα : α ≤ κ〉, where player I plays odd stages and player II
plays even and limit stages, then player II has a strategy which ensures the game
can always be continued. P is < κ-strategically closed if P is δ-strategically closed
for all cardinals δ < κ. P is ≺ κ-strategically closed if in the two person game
in which the players construct an increasing sequence 〈pα : α < κ〉, where player
I plays odd stages and player II plays even and limit stages, then player II has a
strategy which ensures the game can always be continued. Note that trivially, if
P is κ-closed, then P is κ-strategically closed and ≺ κ+-strategically closed. The
converse of both of these facts is false.

For κ a regular cardinal, two partial orderings to which we will refer quite a
bit are the standard partial orderings Q0

κ for adding a Cohen subset to κ+ using
conditions having support κ and Q1

κ for adding κ+ many Cohen subsets to κ using
conditions having support < κ. The basic properties and explicit definitions of
these partial orderings may be found in [J].

Finally, we mention that we are assuming complete familiarity with the notions of
strong compactness and supercompactness. Interested readers may consult [SRK]
or [KaM] for further details. We note only that all elementary embeddings witness-
ing the λ supercompactness of κ are presumed to come from some fine, κ-complete,
normal ultrafilter U over Pκ(λ) = {x ⊆ λ : |x| < κ}. Also, where appropriate, all
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106 ARTHUR W. APTER AND SAHARON SHELAH

ultrapowers via a supercompact ultrafilter over Pκ(λ) will be confused with their
transitive isomorphs.

1. The Forcing Conditions

In this section, we describe and prove the basic properties of the forcing condi-
tions we shall use in our later iteration. Let δ < λ, λ ≥ ℵ1 be regular cardinals in
our ground model V .

We define three notions of forcing. Our first notion of forcing P 0
δ,λ is just the

standard notion of forcing for adding a non-reflecting stationary set of ordinals of
cofinality δ to λ+. Specifically, P 0

δ,λ = {p : For some α < λ+, p : α → {0, 1}
is a characteristic function of Sp, a subset of α not stationary at its supremum
nor having any initial segment which is stationary at its supremum, so that β ∈ Sp
implies β > δ and cof(β) = δ}, ordered by q ≥ p iff q ⊇ p and Sp = Sq∩sup(Sp), i.e.,
Sq is an end extension of Sp. It is well-known that forG V -generic over P 0

δ,λ (see [Bu]

or [KiM]), in V [G], a non-reflecting stationary set S = S[G] =
⋃
{Sp : p ∈ G} ⊆ λ+

of ordinals of cofinality δ has been introduced, the bounded subsets of λ+ are the
same as those in V , and cardinals, cofinalities, and GCH have been preserved. It
is also virtually immediate that P 0

δ,λ is δ-directed closed.

Work now in V1 = V P
0
δ,λ , letting Ṡ be a term always forced to denote the above

set S. P 2
δ,λ[S] is the standard notion of forcing for introducing a club set C which

is disjoint to S (and therefore makes S non-stationary). Specifically, P 2
δ,λ[S] = {p :

For some successor ordinal α < λ+, p : α→ {0, 1} is a characteristic function of Cp,
a club subset of α, so that Cp ∩S = ∅}, ordered by q ≥ p iff Cq is an end extension
of Cp. It is again well-known (see [MS]) that for H V1-generic over P 2

δ,λ[S], a club

set C = C[H] =
⋃
{Cp : p ∈ H} ⊆ λ+ which is disjoint to S has been introduced,

the bounded subsets of λ+ are the same as those in V1, and cardinals, cofinalities,
and GCH have been preserved.

Before defining in V1 the partial ordering P 1
δ,λ[S] which will be used to destroy

strong compactness, we first prove two preliminary lemmas.

Lemma 1. ‖– P 0
δ,λ

“♣(Ṡ)”, i.e., V1 |= “There is a sequence 〈xα : α ∈ S〉 so that for

each α ∈ S, xα ⊆ α is cofinal in α, and for any A ∈ [λ+]
λ+

, {α ∈ S : xα ⊆ A} is
stationary”.

Proof of Lemma 1. Since V |= GCH and V and V1 contain the same bounded
subsets of λ+, we can let 〈yα : α < λ+〉 ∈ V be a listing of all elements x ∈
([λ+]

δ
)
V

= ([λ+]
δ
)
V1

so that each x ∈ [λ+]
δ

appears on this list λ+ times at

ordinals of cofinality δ, i.e., for any x ∈ [λ+]
δ
, λ+ = sup{α < λ+ : cof(α) = δ and

yα = x}. This then allows us to define 〈xα : α ∈ S〉 by letting xα be yβ for the
least β ∈ S− (α+ 1) so that yβ ⊆ α and yβ is unbounded in α. By genericity, each
xα is well-defined.

Now let p ∈ P 0
δ,λ be so that p‖– “Ȧ ∈ [λ+]

λ+

and K̇ ⊆ λ+ is club”. We show

that for some r ≥ p and some ζ < λ+, r‖– “ζ ∈ K̇ ∩ Ṡ and ẋζ ⊆ Ȧ”. To do
this, we inductively define an increasing sequence 〈pα : α < δ〉 of elements of P 0

δ,λ

and increasing sequences 〈βα : α < δ〉 and 〈γα : α < δ〉 of ordinals < λ+ so that
β0 ≤ γ0 ≤ β1 ≤ γ1 ≤ · · · ≤ βα ≤ γα ≤ · · · (α < δ). We begin by letting p0 = p
and β0 = γ0 = 0. For η = α + 1 < δ a successor, let pη ≥ pα and βη ≤ γη,
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SUPERCOMPACTNESS AND STRONG COMPACTNESS 107

βη ≥max(βα, γα, sup(dom(pα))) + 1 be so that pη‖– “βη ∈ Ȧ and γη ∈ K̇”. For
ρ < δ a limit, let pρ =

⋃
α<ρ

pα, βρ =
⋃
α<ρ

βα, and γρ =
⋃
α<ρ

γα. Note that since

ρ < δ, pρ is well-defined, and since δ < λ+, βρ, γρ < λ+. Also, by construction,⋃
α<δ

βα =
⋃
α<δ

γα =
⋃
α<δ

sup(dom(pα)) < λ+. Call ζ this common sup. We thus have

that q =
⋃
α<δ

pα∪{ζ} is a well-defined condition, so that q‖– “{βα : α ∈ δ−{0}} ⊆ Ȧ

and ζ ∈ K̇ ∩ Ṡ”.
To complete the proof of Lemma 1, we know that as 〈βα : α ∈ δ−{0}〉 ∈ V and

as each y ∈ 〈yα : α < λ+〉 must appear λ+ times at ordinals of cofinality δ, we can
find some η ∈ (ζ, λ+) so that cof(η) = δ and 〈βα : α ∈ δ − {0}〉 = yη. If we let

r ≥ q be so that r‖– “Ṡ ∩ [ζ, η] = {ζ, η}”, then r‖– “ẋζ = yη = 〈βα : α ∈ δ − {0}〉”.
This proves Lemma 1. � Lemma 1

We fix now in V1 a ♣(S) sequence X = 〈xα : α ∈ S〉.

Lemma 2. Let S′ be an initial segment of S so that S′ is not stationary at its
supremum nor has any initial segment which is stationary at its supremum. There
is then a sequence 〈yα : α ∈ S′〉 so that for every α ∈ S′, yα ⊆ xα, xα − yα is
bounded in α, and if α1 6= α2 ∈ S′, then yα1 ∩ yα2 = ∅.

Proof of Lemma 2. We define by induction on α ≤ α0 = supS′ + 1 a function hα
so that dom(hα) = S′ ∩ α, hα(β) < β, and 〈xβ − hα(β) : β ∈ S′ ∩ α〉 is pairwise
disjoint. The sequence 〈xβ − hα0(β) : β ∈ S′〉 will be our desired sequence.

If α = 0, then we take hα to be the empty function. If α = β + 1 and β 6∈ S′,
then we take hα = hβ . If α = β + 1 and β ∈ S′, then we notice that since each
xγ ∈ X has order type δ and is cofinal in γ, for all γ ∈ S′ ∩ β, xβ ∩ γ is bounded
in γ. This allows us to define a function hα having domain S′ ∩ α by hα(β) = 0,
and for γ ∈ S′ ∩ β, hα(γ) = min({ρ : ρ < γ, ρ ≥ hβ(γ), and xβ ∩ γ ⊆ ρ}).
By the next to last sentence and the induction hypothesis on hβ, hα(γ) < γ.
And, if γ1 < γ2 ∈ S′ ∩ α, then if γ2 < β, (xγ1 − hα(γ1)) ∩ (xγ2 − hα(γ2)) ⊆
(xγ1 − hβ(γ1)) ∩ (xγ2 − hβ(γ2)) = ∅ by the induction hypothesis on hβ. If γ2 = β,
then (xγ1 − hα(γ1)) ∩ (xγ2 − hα(γ2)) = (xγ1 − hα(γ1)) ∩ xγ2 = ∅ by the definition
of hα(γ1). The sequence 〈xγ − hα(γ) : γ ∈ S′ ∩ α〉 is thus as desired.

If α is a limit ordinal, then as S′ is non-stationary at its supremum nor has
any initial segment which is stationary at its supremum, we can let 〈βγ : γ <
cof(α)〉 be a strictly increasing, continuous sequence having sup α so that for all
γ < cof(α), βγ 6∈ S′. Thus, if ρ ∈ S′ ∩ α, then {βγ : βγ < ρ} is bounded in
ρ, meaning we can find some largest γ so that βγ < ρ. It is also the case that
ρ < βγ+1. This allows us to define hα(ρ) = max({hβγ+1(ρ), βγ}) for the γ just
described. It is still the case that hα(ρ) < ρ. And, if ρ1, ρ2 ∈ (βγ , βγ+1), then
(xρ1 − hα(ρ1)) ∩ (xρ2 − hα(ρ2)) ⊆ (xρ1 − hβγ+1(ρ1)) ∩ (xρ2 − hβγ+1(ρ2)) = ∅ by
the definition of hβγ+1. If ρ1 ∈ (βγ , βγ+1), ρ2 ∈ (βσ, βσ+1) with γ < σ, then
(xρ1−hα(ρ1))∩(xρ2 −hα(ρ2)) ⊆ xρ1 ∩(xρ2 −βσ) ⊆ ρ1−βσ ⊆ ρ1−βγ+1 = ∅. Thus,
the sequence 〈xρ − hα(ρ) : ρ ∈ S′ ∩ α〉 is again as desired. This proves Lemma 2.

� Lemma 2

At this point, we are in a position to define in V1 the partial ordering P 1
δ,λ[S]

which will be used to destroy strong compactness. P 1
δ,λ[S] is now the set of all

4-tuples 〈w,α, r̄, Z〉 satisfying the following properties.
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108 ARTHUR W. APTER AND SAHARON SHELAH

1. w ∈ [λ+]<λ.
2. α < λ.
3. r̄ = 〈ri : i ∈ w〉 is a sequence of functions from α to {0, 1}, i.e., a sequence of

subsets of α.
4. Z ⊆ {xβ : β ∈ S} is a set so that if z ∈ Z, then for some y ∈ [w]

δ
, y ⊆ z and

z − y is bounded in the β so that z = xβ .

Note that the definition of Z implies |Z| < λ.
The ordering on P 1

δ,λ[S] is given by 〈w1, α1, r̄1, Z1〉 ≤ 〈w2, α2, r̄2, Z2〉 iff the
following hold.

1. w1 ⊆ w2.
2. α1 ≤ α2.
3. If i ∈ w1, then r1

i ⊆ r2
i .

4. Z1 ⊆ Z2.

5. If z ∈ Z1 ∩ [w1]
δ

and α1 ≤ α < α2, then

|{i ∈ z : r2
i (α) = 0}| = |{i ∈ z : r2

i (α) = 1}| = δ.

If W = 〈〈wβ , αβ , r̄β , Zβ〉β<γ<δ〉 is a directed set of elements of P 1
δ,λ[S], then since

by the regularity of δ any δ sequence from
⋃
β<γ

wβ must contain a δ sequence from

wβ for some β < γ, it can easily be verified that 〈
⋃
β<γ

wβ ,
⋃
β<γ

αβ ,
⋃
β<γ

r̄β ,
⋃
β<γ

Zβ〉

is an upper bound for each element of W . (Here, if r̄β = 〈rβi : i ∈ wβ〉, then

ri ∈
⋃
β<γ

r̄β if i ∈
⋃
β<γ

wβ and ri =
⋃
β<γ

rβi , taking rβi = ∅ if i 6∈ wβ .) This means

P 1
δ,λ[S] is δ-directed closed.
At this point, a few intuitive remarks are in order. If κ is λ strongly compact

for λ ≥ κ regular, then it must be the case (see [SRK]) that λ carries a κ-additive
uniform ultrafilter. If δ < κ < λ, the forcing P 1

δ,λ[S] has specifically been designed
to destroy this fact. It has been designed, however, to destroy the λ strong com-
pactness of κ “as lightly as possible”, making little damage. In the case of the
argument of [KiM], the non-reflecting stationary set S is added directly to λ in
order to kill the λ strong compactness of κ. In our situation, the non-reflecting
stationary set S, having been added to λ+ and not to λ, does not kill the λ strong
compactness of κ by itself. The additional forcing P 1

δ,λ[S] is necessary to do the

job. The forcing P 1
δ,λ[S], however, has been designed so that if necessary, we can

resurrect the λ supercompactness of κ by forcing further with P 2
δ,λ[S].

Lemma 3. V
P 1
δ,λ[S]

1 |= “κ is not λ strongly compact” if δ < κ < λ.

Remark. Since we will only be concerned in general with the case when κ is strongly
inaccessible and δ < κ < λ, we assume without loss of generality that this is the
case throughout the rest of the paper.

Proof of Lemma 3. Assume to the contrary that V
P 1
δ,λ[S]

1 |= “κ is λ strongly com-

pact”, and by our earlier remarks, let p‖– “Ḋ is a κ-additive uniform ultrafilter over
λ”. We show that p can be extended to a condition q so that for some ordinal
αq < λ and some δ sequence 〈si : i < δ〉 of D measure 1 sets, q‖– “

⋂
i<δ

ṡi ⊆ αq”, an

immediate contradiction.
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SUPERCOMPACTNESS AND STRONG COMPACTNESS 109

We use a ∆-system argument to establish this. First, for G1 V1-generic over
P 1
δ,λ[S] and i < λ+, let r∗i =

⋃
{rpi : ∃p = 〈wp, αp, r̄p, Zp〉 ∈ G1[rpi ∈ r̄p]}. It is

the case that ‖– P 1
δ,λ[S]“ṙ

∗
i : λ → {0, 1} is a function whose domain is all of λ”.

To see this, for p = 〈wp, αp, r̄p, Zp〉, since |Zp| < λ, wp ∈ [λ+]
<λ

, and z ∈ Zp

implies z ∈ [λ+]
δ
, the condition q = 〈wq , αq, r̄q, Zq〉 given by αq = αp, Zq = Zp,

wq = wp ∪
⋃
{z : z ∈ Zp}, and r̄q = 〈r′i : i ∈ wq〉 defined by r′i = ri if i ∈ wp and r′i

is the empty function if i ∈ wq−wp is a well-defined condition. (This just means we
may as well assume that for p = 〈wp, αp, r̄p, Zp〉, z ∈ Zp implies z ⊆ wp.) Further,
since |Zq| < λ,

⋃
{β : ∃z ∈ Zq[z = xβ ]} = γ < λ+. Therefore, if γ′ ∈ (γ, λ+) and

S′ ⊆ γ′ is so that supS′ = γ′ and S′ is an initial segment of S so that S′ is not
stationary at its supremum nor has any initial segment which is stationary at its
supremum, then by Lemma 2, there is a sequence 〈yβ : β ∈ S′〉 so that for every
β ∈ S′, yβ ⊆ xβ , xβ − yβ is bounded in β, and if β1 6= β2 ∈ S′, then yβ1 ∩ yβ2 = ∅.
This means that if z ∈ Zq and z = xβ for some β, then yβ ⊆ w.

Choose now for β ∈ S′ sets y1
β and y2

β so that yβ = y1
β ∪ y2

β , y1
β ∩ y2

β = ∅, and

|y1
β| = |y2

β| = δ. If ρ ∈ (αq, λ), then for each β so that xβ ∈ Zq and for each r′i ∈ r̄q
such that i ∈ yβ , we can extend r′i to r′′i : ρ→ {0, 1} by letting r′′i |αq = r′i|αq, and
for α ∈ [αq, ρ), r′′i (α) = 0 if i ∈ y1

β and r′′i (α) = 1 if i ∈ y2
β. For i ∈ wq so that

there is no β with xβ ∈ Zq and i ∈ yβ, we extend r′i to r′′i : ρ → {0, 1} by letting
r′′i |αq = r′i|αq, and for α ∈ [αq, ρ), r′′i (α) = 0. If we let s̄ = 〈r′′i : i ∈ wq〉, then
t = 〈wq, ρ, s̄, Zq〉 can be verified to be such that t is well-defined and t ≥ q ≥ p.
We have therefore shown by density that ‖– P 1

δ,λ[S]“ṙ
∗
i → {0, 1} is a function whose

domain is all of λ”. Thus, we can let r`i = {α < λ : r∗i (α) = `} for ` ∈ {0, 1}.
For each i < λ+, pick pi = 〈wpi , αpi , r̄pi , Zpi〉 ≥ p so that pi‖– “ṙ

`(i)
i ∈ Ḋ” for

some `(i) ∈ {0, 1}. This is possible since ‖– P 1
δ,λ[S]“For each i < λ+, ṙ0

i ∪ ṙ1
i = λ”.

Without loss of generality, by extending pi if necessary, we can assume that i ∈
wpi . Thus, since each wpi ∈ [λ+]<λ, we can find some stationary A ⊆ {i < λ+ :
cof(i) = λ} so that {wpi : i ∈ A} forms a ∆-system, i.e., so that for i 6= j ∈ A,
wpi∩wpj is some constant value w which is an initial segment of both. (Note we can
assume that for i ∈ A, wi ∩ i = w, and for some fixed `(∗) ∈ {0, 1}, for every i ∈ A,

pi‖– “ṙ
`(∗)
i ∈ Ḋ”.) Also, by clause 4) of the definition of the forcing, |Zpi | < λ for

each i < λ+. Therefore, Zpi ∈ [[λ+]δ]<λ, so as |[λ+]δ| = λ+ by GCH, the same sort
of ∆-system argument allows us to assume in addition that for all i ∈ A, Zpi∩P(w)
is some constant value Z. Further, since each αpi < λ, we can assume that αpi

is some constant α0 for i ∈ A. Then, since any r̄pi = 〈rj : j ∈ wpi 〉 for i ∈ A is
composed of a sequence of functions from α0 to 2, α0 < λ, and |w| < λ, GCH allows
us to conclude that for i 6= j ∈ A, r̄pi |w = r̄pj |w. And, since i ∈ wpi , we know
that we can also assume (by thinning A if necessary) that B = {sup(wpi ) : i ∈ A}
is so that i < j ∈ A implies i ≤ sup(wpi) < min(wpj − w) ≤ sup(wpj ). We know
in addition by the choice of X = 〈xβ : β ∈ S〉 that for some γ ∈ S, xγ ⊆ A. Let
xγ = {iβ : β < δ}.

We are now in a position to define the condition q referred to earlier. We proceed
by defining each of the four coordinates of q. First, let wq =

⋃
β<δ

wpiβ . As λ and

λ+ are regular, δ < λ, and each wpiβ ∈ [λ+]<λ, wq is well-defined and in [λ+]
<λ

.

Second, let αq = α0. Third, let r̄q = 〈rqi : i ∈ wq〉 be defined by rqi = r
piβ
i if

i ∈ wpiβ . The property of the ∆-system that i 6= j ∈ A implies r̄pi |w = r̄pj |w tells
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us r̄q is well defined. Finally, to define Zq, let Zq =
⋃
β<δ

Ziβ ∪{{iβ : β < δ}}. By the

last three sentences in the preceding paragraph and our construction, {iβ : β < δ}
generates a new set which can be included in Zq, and Zq is well-defined.

We claim now that q ≥ p is so that q‖– “
⋂
β<δ

ṙ
`(∗)
iβ
⊆ αq”. To see this, assume

the claim fails. This means that for some q1 ≥ q and some αq ≤ η < λ, q1‖– “η ∈⋂
β<δ

ṙ
`(∗)
iβ

”. Without loss of generality, since q1 can always be extended if necessary,

we can assume that η < αq
1

. But then, by the definition of ≤, for δ many β < δ,

q1‖– “η /∈ ṙ
`(∗)
iβ

”, an immediate contradiction. Thus, q‖– “
⋂
β<δ

ṙ
`(∗)
iβ
⊆ αq”, which,

since δ < κ, contradicts that q‖– “
⋂
β<δ

ṙ
`(∗)
iβ
∈ Ḋ and Ḋ is a κ-additive uniform

ultrafilter over λ”. This proves Lemma 3. � Lemma 3

Recall we mentioned prior to the proof of Lemma 3 that P 1
δ,λ[S] is designed

so that a further forcing with P 2
δ,λ[S] will resurrect the λ supercompactness of κ,

assuming the correct iteration has been done. That this is so will be shown in the
next section. In the meantime, we give an idea of why this will happen by showing
that the forcing P 0

δ,λ ∗ (P 1
δ,λ[Ṡ] × P 2

δ,λ[Ṡ]) is rather nice. Specifically, we have the
following lemma.

Lemma 4. P 0
δ,λ ∗ (P 1

δ,λ[Ṡ]× P 2
δ,λ[Ṡ]) is equivalent to Q0

λ ∗ Q̇1
λ.

Proof of Lemma 4. Let G be V -generic over P 0
δ,λ ∗ (P 1

δ,λ[Ṡ] × P 2
δ,λ[Ṡ]), with G0

δ,λ,

G1
δ,λ, and G2

δ,λ the projections onto P 0
δ,λ, P 1

δ,λ[S], and P 2
δ,λ[S] respectively. Each

Giδ,λ is appropriately generic. So, since P 1
δ,λ[S] × P 2

δ,λ[S] is a product in V [G0
δ,λ],

we can rewrite the forcing in V [G0
δ,λ] as P 2

δ,λ[S] × P 1
δ,λ[S] and rewrite V [G] as

V [G0
δ,λ][G2

δ,λ][G1
δ,λ].

It is well-known (see [MS]) that the forcing P 0
δ,λ∗P 2

δ,λ[Ṡ] is equivalent to Q0
λ. That

this is so can be seen from the fact that P 0
δ,λ ∗P 2

δ,λ[Ṡ] is non-trivial, has cardinality

λ+, and is such that D = {〈p, q〉 ∈ P 0
δ,λ ∗P 2

δ,λ[Ṡ] : For some α, dom(p) = dom(q) =

α+ 1, p‖– “α /∈ Ṡ”, and q‖– “α ∈ Ċ”} is dense in P 0
δ,λ ∗P 2

δ,λ[Ṡ] and is λ-closed. This

easily implies the desired equivalence. Thus, V and V [G0
δ,λ][G2

δ,λ] have the same
cardinals and cofinalities, and the proof of Lemma 4 will be complete once we show
that in V [G0

δ,λ][G2
δ,λ], P 1

δ,λ[S] is equivalent to Q1
λ.

To this end, working in V [G0
δ,λ][G2

δ,λ], we first note that as S ⊆ λ+ is now a non-
stationary set all of whose initial segments are non-stationary, by Lemma 2, for the
sequence 〈xβ : β ∈ S〉, there must be a sequence 〈yβ : β ∈ S〉 so that for every
β ∈ S, yβ ⊆ xβ , xβ − yβ is bounded in β, and if β1 6= β2 ∈ S, then yβ1 ∩ yβ2 = ∅.
Given this fact, it is easy to observe that P 1 = {〈w,α, r̄, Z〉 ∈ P 1

δ,λ[S] : For every

β ∈ S, either yβ ⊆ w or yβ ∩ w = ∅} is dense in P 1
δ,λ[S]. To show this, given

〈w,α, r̄, Z〉 ∈ P 1
δ,λ[S], r̄ = 〈ri : i ∈ w〉, let Yw = {y ∈ 〈yβ : β ∈ S〉 : y ∩ w 6= ∅}. As

|w| < λ and yβ1 ∩ yβ2 = ∅ for β1 6= β2 ∈ S, |Yw| < λ. Hence, as |y| = δ < λ for
y ∈ Yw, |w′| < λ for w′ = w∪ (

⋃
Yw). This means 〈w′, α, r̄′, Z〉 for r̄′ = 〈r′i : i ∈ w′〉

defined by r′i = ri if i ∈ w and r′i is the empty function if i ∈ w′ − w is a well-
defined condition extending 〈w,α, r̄, Z〉. Thus, P 1 is dense in P 1

δ,λ[S], so to analyze

the forcing properties of P 1
δ,λ[S], it suffices to analyze the forcing properties of P 1.
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For β ∈ S, let Qβ = {〈w,α, r̄, Z〉 ∈ P 1 : w = yβ}, and let Q′ = {〈w,α, r̄, Z〉 ∈
P 1 : w ⊆ λ+ −

⋃
β∈S

yβ}. Let Q′′ be those elements of
∏
β∈S

Qβ × Q′ of support

< λ under the product ordering. Adopting the notation of Lemma 3, given p =
〈〈qβ : β ∈ A〉, q〉 ∈ Q′′ where A ⊆ S and |A| < λ, as |A| < λ and λ is regular,
α = sup{αqβ : β ∈ A} ∪ αq < λ, so without loss of generality, each qβ and q
can be extended to conditions q′β and q′ so that α occurs in q′β and q′. This

means Q = {p = 〈qβ : β < γ < λ〉 ∈ Q′′ : αqβ = αqβ′ for β and β′ different
coordinates of p} is dense in Q′′, so Q and Q′′ are forcing equivalent. Then, for
p = 〈〈qβ : β ∈ A〉, q〉 ∈ Q where A ⊆ S and |A| < λ, as wqβ1 ∩ wqβ2 = ∅ for
β1 6= β2 ∈ A (yβ1 ∩ yβ2 = ∅), wqβ1 ∩ wq = ∅, αqβ1 = αqβ2 = αq for β1 6= β2 ∈ A,
the domains of any two r̄qβ1 , r̄qβ2 are disjoint for β1 6= β2 ∈ A, Zqβ1 ∩Zqβ2 = ∅ for
β1 6= β2 ∈ A, the domains of r̄qβ and r̄q are disjoint for β ∈ A, and Zqβ ∩Zq = ∅ for
β ∈ A, the function F (p) = 〈

⋃
β∈A

wqβ ∪wq , α,
⋃
β∈A

r̄qβ ∪ r̄q ,
⋃
β∈A

Zqβ ∪Zq〉 can easily be

seen to yield an isomorphism between Q and P 1. Thus, over V [G0
δ,λ][G2

δ,λ], forcing

with P 1, P 1
δ,λ[S], Q, and Q′′ are all equivalent.

We examine now in more detail the exact nature of Q′′. For β ∈ S, GCH shows
|Qβ| = λ. It quickly follows from the definition of Qβ that Qβ is < λ-closed, so
Qβ is forcing equivalent to adding a Cohen subset to λ. Since the definitions of
P 1
δ,λ[S] and P 1 ensure that for 〈w,α, r̄, Z〉 ∈ Q′, Z = ∅ (for every β ∈ S, w∩yβ = ∅,
yβ ⊆ xβ , and xβ−yβ is bounded in δ), Q′ can easily be seen to be a re-representation
of the Cohen forcing where instead of working with functions whose domains have
cardinality < λ and are subsets of λ× λ+, we work with functions whose domains
have cardinality < λ and are subsets of λ×(λ+−

⋃
β∈S

yβ). Thus, Q′′ is isomorphic to

a Cohen forcing using functions having domains of cardinality < λ which adds λ+

many Cohen subsets to λ. By the last sentence of the last paragraph, this means
that over V [G0

δ,λ][G2
δ,λ], the forcings P 1

δ,λ[S] and Q1
λ are equivalent. This proves

Lemma 4. � Lemma 4

As we noted in the proof of Lemma 4, without the last coordinate Zp of a
condition p ∈ P 1

δ,λ[S] and the associated condition on the ordering, P 1
δ,λ[S] is just

a re-representation of Q1
λ. This last coordinate and change in the ordering are

necessary to destroy the λ strong compactness of κ when forcing with P 1
δ,λ[S].

Once the fact S is stationary has been destroyed by forcing with P 2
δ,λ[S], Lemma

4 shows that this last coordinate Zp of a condition p ∈ P 1
δ,λ[S] and change in the

ordering in a sense become irrelevant.
It is clear from Lemma 4 that P 0

δ,λ∗(P 1
δ,λ[Ṡ]×P 2

δ,λ[Ṡ]), being equivalent toQ0
λ∗Q̇1

λ,
preserves GCH, cardinals, and cofinalities, and has a dense subset which is < λ-
closed and satisfies λ++-c.c. Our next lemma shows that the forcing P 0

δ,λ ∗ P 1
δ,λ[Ṡ]

is also rather nice.

Lemma 5. P 0
δ,λ ∗P 1

δ,λ[Ṡ] preserves GCH, cardinals, and cofinalities, is < λ-strate-

gically closed, and is λ++-c.c.

Proof of Lemma 5. Let G′ = G0
δ,λ ∗ G1

δ,λ be V -generic over P 0
δ,λ ∗ P 1

δ,λ[Ṡ], and let

G2
δ,λ be V [G′]-generic over P 2

δ,λ[S]. Thus, G′ ∗ G2
δ,λ = G is V -generic over P 0

δ,λ ∗
(P 1
δ,λ[Ṡ] ∗ P 2

δ,λ[Ṡ]) = P 0
δ,λ ∗ (P 1

δ,λ[Ṡ] × P 2
δ,λ[Ṡ]). By Lemma 4, V [G] |= GCH and
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has the same cardinals and cofinalities as V , so since V [G′] ⊆ V [G], forcing with

P 0
δ,λ ∗ P 1

δ,λ[Ṡ] over V preserves GCH, cardinals, and cofinalities.

We next show the < λ-strategic closure of P 0
δ,λ ∗ P 1

δ,λ[Ṡ]. We first note that

as (P 0
δ,λ ∗ P 1

δ,λ[Ṡ]) ∗ P 2
δ,λ[Ṡ] = P 0

δ,λ ∗ (P 1
δ,λ[Ṡ] ∗ P 2

δ,λ[Ṡ]) has by Lemma 4 a dense
subset which is < λ-closed, the desired fact follows from the more general fact
that if P ∗ Q̇ is a partial ordering with a dense subset R so that R is < λ-closed,
then P is < λ-strategically closed. To show this more general fact, let γ < λ be
a cardinal. Suppose I and II play to build an increasing chain of elements of P ,
with 〈pβ : β ≤ α + 1〉 enumerating all plays by I and II through an odd stage
α + 1 and 〈q̇β : β < α + 1 and β is even or a limit ordinal〉 enumerating a set
of auxiliary plays by II which have been chosen so that 〈〈pβ , q̇β〉 : β < α + 1
and β is even or a limit ordinal〉 enumerates an increasing chain of elements of

the dense subset R ⊆ P ∗ Q̇. At stage α + 2, II chooses 〈pα+2, q̇α+2〉 so that
〈pα+2, q̇α+2〉 ∈ R and so that 〈pα+2, q̇α+2〉 ≥ 〈pα+1, q̇α〉; this makes sense, since

inductively, 〈pα, q̇α〉 ∈ R ⊆ P ∗ Q̇, so as I has chosen pα+1 ≥ pα, 〈pα+1, q̇α〉 ∈ P ∗ Q̇.
By the < λ-closure of R, at any limit stage η ≤ γ, II can choose 〈pη, q̇η〉 so that
〈pη, q̇η〉 is an upper bound to 〈〈pβ , q̇β〉 : β < η and β is even or a limit ordinal〉.
The preceding yields a winning strategy for II, so P is < λ-strategically closed.

Finally, to show P 0
δ,λ ∗ P 1

δ,λ[Ṡ] is λ++-c.c., we simply note that this follows from

the general fact about iterated forcing (see [Ba]) that if P ∗ Q̇ satisfies λ++-c.c.,

then P satisfies λ++-c.c. (Here, P = P 0
δ,λ ∗ P 1

δ,λ[Ṡ] and Q = P 2
δ,λ[Ṡ].) This proves

Lemma 5. � Lemma 5

We remark that ‖– P 0
δ,λ

“P 1
δ,λ[Ṡ] is λ+-c.c.”, for if A = 〈pα : α < λ+〉 were a size

λ+ antichain of elements of P 1
δ,λ[S] in V [G0

δ,λ], then as V [G0
δ,λ] and V [G0

δ,λ][G2
δ,λ]

have the same cardinals, A would be a size λ+ antichain of elements of P 1
δ,λ[S] in

V [G0
δ,λ][G2

δ,λ]. By Lemma 4, in this model, a dense subset of P 1
δ,λ[S] is isomorphic

to Q1
λ, which has the same definition in either V [G0

δ,λ] or V [G0
δ,λ][G2

δ,λ] (since P 0
δ,λ

is λ-strategically closed and P 0
δ,λ ∗ P 2

δ,λ[Ṡ] is λ-closed) and so is λ+-c.c. in either
model.

We conclude this section with a lemma which will be used later in showing that
it is possible to extend certain elementary embeddings witnessing the appropriate
degree of supercompactness.

Lemma 6. For V1 = V P
0
δ,λ , the models V

P 1
δ,λ[S]×P 2

δ,λ[S]

1 and V
P 1
δ,λ[S]

1 contain the
same λ sequences of elements of V1.

Proof of Lemma 6. By Lemma 4, since P 0
δ,λ ∗P 2

δ,λ[Ṡ] is equivalent to the forcing Q0
λ

and V ⊆ V P
0
δ,λ ⊆ V P

0
δ,λ∗P 2

δ,λ[Ṡ], the models V , V P
0
δ,λ , and V P

0
δ,λ∗P 2

δ,λ[Ṡ] all contain
the same λ sequences of elements of V . Thus, since a λ sequence of elements of

V1 = V P
0
δ,λ can be represented by a V -term which is actually a function h : λ→ V ,

it immediately follows that V P
0
δ,λ and V P

0
δ,λ∗P

2
δ,λ[Ṡ] contain the same λ sequences of

elements of V P
0
δ,λ .

Now let f : λ→ V1 be so that f ∈ (V P
0
δ,λ∗P

2
δ,λ[Ṡ])P

1
δ,λ [S] = V

P 1
δ,λ[S]×P 2

δ,λ[S]

1 , and let

g : λ→ V1, g ∈ V P 0
δ,λ∗P

2
δ,λ[Ṡ] be a term for f . By the previous paragraph, g ∈ V P 0

δ,λ .

Since Lemma 4 shows that P 1
δ,λ[S] is λ+-c.c. in V P

0
δ,λ∗P 2

δ,λ[Ṡ], for each α < λ, the

antichain Aα defined in V P
0
δ,λ∗P

2
δ,λ[Ṡ] by {p ∈ P 1

δ,λ[S] : p decides a value for g(α)} is
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so that V P
0
δ,λ∗P

2
δ,λ[Ṡ] |= “|Aα| ≤ λ”. Hence, by the preceding paragraph, since Aα

is a set of elements of V P
0
δ,λ , Aα ∈ V P

0
δ,λ for each α < λ. Therefore, again by the

preceding paragraph, the sequence 〈Aα : α < λ〉 ∈ V P 0
δ,λ . This just means that the

term g ∈ V P 0
δ,λ can be evaluated in V

P 1
δ,λ[S]

1 , i.e., f ∈ V P
1
δ,λ[S]

1 . This proves Lemma
6. � Lemma 6

2. The Case of One Supercompact Cardinal

with No Larger Inaccessibles

In this section, we give a proof of our Theorem, starting from a model V for
“ZFC + GCH + There is one supercompact cardinal κ and no λ > κ is inaccessi-
ble”. Before defining the forcing conditions used in the proof of this version of our
Theorem, we first give a proof of the theorem of Magidor mentioned in Section 0
which shows that if there is a supercompact cardinal, then there always must be
cardinals δ < λ so that δ is λ strongly compact yet δ isn’t λ supercompact.

Lemma 7 (Magidor [Ma4]). Suppose κ is a supercompact cardinal. Then B =
{δ < κ : δ is λδ strongly compact for λδ the least singular strong limit cardinal > δ
of cofinality δ, δ is not λδ supercompact, yet δ is α supercompact for all α < λδ} is
unbounded in κ.

Proof of Lemma 7. Let λκ > κ be the least singular strong limit cardinal of co-
finality κ, and let j : V → M be an elementary embedding witnessing the λκ
supercompactness of κ with j(κ) minimal. As j(κ) is least, M |= “κ is not λκ
supercompact”. As Mλκ ⊆ M and λκ is a strong limit cardinal, M |= “κ is α
supercompact for all α < κ”.

Let µ ∈ V be a κ-additive measure over κ, and let 〈λα : α < λκ〉 be a sequence
of cardinals cofinal in λκ in both V and M . As Mλκ ⊆M and λκ is a strong limit
cardinal, µ ∈ M . Also, as M |= “κ is α supercompact for all α < λκ”, the closure
properties of M allow us to find a sequence 〈µα : α < κ〉 ∈M so that M |= “µα is
a fine, normal, κ-additive ultrafilter over Pκ(λα)”. Thus, we can define in M the
collection µ∗ of subsets of Pκ(λκ) by A ∈ µ∗ iff {α < κ: A|λα ∈ µα} ∈ µ, where for
A ⊆ Pκ(λκ), A|λα = {p∩Pκ(λα) : p ∈ A}. It is easily checked that µ∗ defines in M
a κ-additive fine ultrafilter over Pκ(λκ). Thus, M |= “κ is α supercompact for all
α < λκ, κ is not λκ supercompact, yet κ is λκ strongly compact”, so by reflection,
the set B of the hypothesis is unbounded in κ. This proves Lemma 7. � Lemma 7

We note that the proof of Lemma 7 goes through if λδ becomes the least singular
strong limit cardinal > δ of cofinality δ+, of cofinality δ++, etc. To see this, observe
that the closure properties of M and the strong compactness of κ ensure that κ+,
κ++, etc. each carry κ-additive measures µκ+ , µκ++ , etc. which are elements of
M . These measures may then be used in place of the µ of Lemma 7 to define the
strongly compact measure µ∗ over Pκ(λκ).

We return now to the proof of our Theorem. Let δ̄ = 〈δα : α ≤ κ〉 enumerate
the inaccessibles ≤ κ, with δκ = κ. Note that since we are in the simple case in
which κ is the only supercompact cardinal in the universe and has no inaccessibles
above it, we can assume each δα isn’t δα+1 supercompact and for the least regular
cardinal λα ≥ δα so that V |= “δα isn’t λα supercompact”, λα < δα+1. (If δ were
the least cardinal so that δ is < β supercompact for β the least inaccessible > δ yet
δ isn’t β supercompact, then Vβ would provide the desired model.)
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We are now in a position to define the partial ordering P used in the proof of the
Theorem. We define a κ stage Easton support iteration Pκ = 〈〈Pα, Q̇α〉 : α < κ〉,
and then define P = Pκ+1 = Pκ∗Q̇κ for a certain class partial ordering Qκ definable
in V Pκ . The definition is as follows:

1. P0 is trivial.
2. Assuming Pα has been defined for α < κ, Pα+1 = Pα ∗ Q̇α, with Q̇α a term

for the full support iteration 〈P 0
ω,λ ∗ (P 1

ω,λ[Ṡλ]× P 2
ω,λ[Ṡλ]) : δ+

α ≤ λ < λα and

λ is regular〉 ∗ 〈P 0
ω,λα

∗ P 1
ω,λα

[Ṡλα ]〉, where Ṡλ is a term for the non-reflecting

stationary subset of λ+ introduced by P 0
ω,λ for λ < λα and Ṡλα is a term for

the non-reflecting stationary subset of λ+
α introduced by P 0

ω,λα
.

3. Q̇κ is a term for the Easton support iteration of 〈P 0
ω,λ ∗ (P 1

ω,λ[Ṡλ]×P 2
ω,λ[Ṡλ]) :

λ > κ is a regular cardinal〉, where as before, Ṡλ is a term for the non-reflecting
stationary subset of λ+ introduced by P 0

ω,λ.

The intuitive motivation behind the above definition is that below κ at any inac-
cessible, we must first destroy and then resurrect all “good” instances of strong
compactness, i.e., those which also witness supercompactness, but then destroy
the least regular “bad” instance of strong compactness, thus destroying all “bad”
instances of strong compactness beyond the least “bad” instance. Since κ is super-
compact, it has no “bad” instances of strong compactness, so all instances of κ’s
supercompactness are destroyed and then resurrected.

Lemma 8. For G a V -generic class over P , V and V [G] have the same cardinals
and cofinalities, and V [G] |= ZFC + GCH.

Proof of Lemma 8. Write G = Gκ ∗H, where Gκ is V -generic over Pκ, and H is a
V [Gκ]-generic class over Qκ. We show V [Gκ][H] |= ZFC, and by assuming for the
time being that V [Gκ] |= GCH and has the same cardinals and cofinalities as V ,
we show V [Gκ][H] |= GCH and has the same cardinals and cofinalities as V [Gκ]
(and hence as V ).

To do this, note that Qκ is equivalent in V [Gκ] = V1 to the Easton support

iteration of 〈Q0
λ ∗ Q̇1

λ : λ > κ is a regular cardinal〉, so we assume without loss of
generality that Qκ is in fact this ordering. Note also that as we are assuming κ has
no inaccessibles above it, Qκ is in fact equivalent to the Easton support iteration
of 〈Q0

λ ∗ Q̇1
λ : λ > κ is a successor cardinal〉. We first show inductively that for any

successor cardinal δ+ > κ, forcing over V1 with the iteration of 〈Q0
λ ∗ Q̇1

λ : κ < λ <
δ+ and λ is a successor cardinal〉 preserves cardinals, cofinalities, and GCH. If δ
is regular (meaning δ is a successor cardinal since κ has no inaccessibles above it),

then this iteration can be written as Q<δ ∗ (Q̇0
δ ∗ Q̇1

δ), where Q<δ is the iteration of

〈Q0
λ ∗ Q̇1

λ : κ < λ < δ and λ is a successor cardinal〉. By induction, forcing over V1

with Q<δ preserves cardinals, cofinalities, and GCH, so since forcing over V Q<δ1 with

Q̇0
δ ∗ Q̇1

δ will preserve GCH and the cardinals and cofinalities of V Q<δ1 , forcing over

V1 with Q<δ ∗ (Q̇0
δ ∗ Q̇1

δ) preserves cardinals, cofinalities, and GCH. If δ is singular,

let γ < δ be a cardinal in V1, and write the iteration of 〈Q0
λ ∗ Q̇1

λ : κ < λ < δ+ and

λ is a successor cardinal〉 as Q<γ+ ∗ Q̇≥γ+

, where Q<γ+ is as above and Q̇≥γ
+

is a

term in V1 for the rest of the iteration; if γ < κ, then Q<γ+ is trivial and Q̇≥γ
+

is

a term for the whole iteration. By induction, V
Q<γ+

1 |= “γ is a cardinal, 2γ = γ+,

and cof(γ) = cofV1(γ)”, so as V
Q<γ+

1 |= “Q≥γ
+

is γ-closed”, V
Q<γ+∗Q̇≥γ

+

1 |= “γ is
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a cardinal, 2γ = γ+, and cof(γ) = cofV1(γ)” , i.e., GCH, cardinals, and cofinalities

below δ are preserved when forcing over V1 with Q<γ+ ∗ Q̇≥γ+

. In addition, since

the last sentence shows any f : γ → δ or f : γ → δ+, f ∈ V Q<γ+∗Q̇≥γ
+

, is

so that f ∈ V
Q<γ+

1 for arbitrary γ < δ, the fact V
Q<γ+

1 and V1 have the same

cardinals and cofinalities, together with the fact V
Q<γ+∗Q̇≥γ

+

1 |= “δ is a singular

limit of cardinals satisfying GCH” yields that forcing over V1 with Q<γ+ ∗ Q̇≥γ+

preserves δ is a singular cardinal of the same cofinality as in V1, 2δ = δ+, and δ+ is

a regular cardinal. Finally, as GCH in V1 tells us |Q<γ+ ∗ Q̇≥γ+ | = δ+, forcing with

Q<γ+ ∗ Q̇≥γ+

over V1 preserves cardinals and cofinalities ≥ δ++ and GCH ≥ δ+.
It is now easy to show V2 = V [Gκ][H] |= ZFC + GCH and has the same cardinals

and cofinalities as V [Gκ] = V1. To show V2 |= GCH and has the same cardinals

and cofinalities as V1, let γ again be a cardinal in V1, and write Qκ = Q<γ+ ∗ Q̇,

where Q̇ is a term in V1 for the rest of Qκ. As before, V
Q<γ+

1 |= “2γ = γ+

and cof(γ) = cofV1(γ)”, so since V
Q<γ+

1 |= “Q is γ-closed”, V2 |= “2γ = γ+ and

cof(γ) = cofV1(γ)”, i.e., by the arbitrariness of γ, V2 |= GCH, and all cardinals of
V1 are cardinals of the same cofinality in V2. Finally, as all functions f : γ → δ,

δ ∈ V1 some ordinal, f ∈ V2 are so that f ∈ V Q<γ+

1 by the last sentence, it is the
case V2 |= Power Set, and since V2 |= AC and Qκ is an Easton support iteration,
by the usual arguments, the aforementioned fact implies V2 |= Replacement. Thus,
V2 |= ZFC.

It remains to show that V [Gκ] |= GCH and has the same cardinals and cofinalities
as V . To do this, we first note that Easton support iterations of δ-strategically
closed partial orderings are δ-strategically closed for δ any regular cardinal. The
proof is via induction. If R1 is δ-strategically closed and ‖– R1

“Ṙ2 is δ-strategically
closed”, then let p ∈ R1 be so that p‖– “ġ is a strategy for player II ensuring that

the game which produces an increasing chain of elements of Ṙ2 of length δ can
always be continued for α ≤ δ”. If II begins by picking r0 = 〈p0, q̇0〉 ∈ R1 ∗ Ṙ2 so
that p0 ≥ p has been chosen according to the strategy f for R1 and p0‖– “q̇0 has
been chosen according to ġ”, and at even stages α + 2 picks rα+2 = 〈pα+2, q̇α+2〉
so that pα+2 has been chosen according to f and is so that pα+2‖– “q̇α+2 has been
chosen according to ġ”, then at limit stages λ ≤ δ, the chain r0 = 〈p0, q̇0〉 ≤ r1 =
〈p1, q̇1〉 ≤ · · · ≤ rα = 〈pα, q̇α〉 ≤ · · · (α < λ) is so that II can find an upper bound
pλ for 〈pα : α < λ〉 using f . By construction, pλ‖– “〈q̇α : α < λ〉 is so that at
limit and even stages, II has played according to ġ”, so for some q̇λ, pλ‖– “q̇λ is an
upper bound to 〈q̇α : α < λ〉”, meaning the condition 〈pλ, q̇λ〉 is as desired. These
methods, together with the usual proof at limit stages (see [Ba, Theorem 2.5]) that
the Easton support iteration of δ-closed partial orderings is δ-closed, yield that δ-
strategic closure is preserved at limit stages of all of our Easton support iterations
of δ-strategically closed partial orderings. In addition, the ideas of this paragraph
will also show that Easton support iterations of ≺ δ+-strategically closed partial
orderings are ≺ δ+-strategically closed for δ any regular cardinal.

For α < κ and Pα+1 = Pα ∗ Q̇α, since λα < δα+1, the definition of Qα in V Pα

implies V Pα |= “|Qα| < δα+1”. This fact, together with Lemma 5 and the definition
of Qα in V Pα , now yields the proof that V Pα+1 |= GCH and has the same cardinals
and cofinalities as V is virtually identical to the proof given in the first part of this
lemma that V2 |= GCH and has the same cardinals and cofinalities as V1, replacing
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γ-closure with γ-strategic closure, which also implies that the forcing adds no new
functions from γ to the ground model.

If λ is a limit ordinal so that λ̄ = sup({δα : α < λ}) is singular, then, again, the
proof that V Pλ |= GCH and has the same cardinals and cofinalities as V is virtually
the same as the just referred to proof of the first part of this lemma for virtually
identical reasons as in the previous sentence, keeping in mind that since |Pα| < δα
inductively for α < λ, |Pλ| = λ̄+. If λ ≤ κ is a limit ordinal so that λ̄ = λ, then

for cardinals γ ≤ λ, the proof that V Pλ |= “γ is a cardinal and cof(γ) = cofV (γ)”
is once more as before, as is the proof that V Pλ |= “2γ = γ+” for γ < λ. As again

|Pa| < δα < λ for α < λ, |Pλ| = λ, so V Pλ |= “γ is a cardinal, cof(γ) = cofV (γ), and
2γ = γ+” for γ ≥ λ a cardinal. Thus, V [Gκ] |= GCH and has the same cardinals
and cofinalities as V. This proves Lemma 8. � Lemma 8

We now show that the intuitive motivation for the definition of P as set forth in
the paragraph immediately preceding the statement of Lemma 8 actually works.

Lemma 9. If δ < γ and V |= “δ is γ supercompact and γ is regular”, then for G
V -generic over P , V [G] |= “δ is γ supercompact”.

Proof of Lemma 9. Let j : V → M be an elementary embedding witnessing the γ
supercompactness of δ so that M |= “δ is not γ supercompact”. For the α0 so that

δ = δα0 , let P = Pα0∗Q̇′α0
∗Ṫα0∗Ṙ, where Q̇′α0

is a term for the full support iteration

of 〈P 0
ω,λ ∗ (P 1

ω,λ[Ṡλ]×P 2
ω,λ[Ṡλ]) : δ+ ≤ λ ≤ γ and λ is regular〉, Ṫα0 is a term for the

rest of Qα0 , and Ṙ is a term for the rest of P . We show that V Pα0∗Q̇
′
α0 |= “δ is γ

supercompact”. This will suffice, since ‖– Pα0∗Q̇′α
“Ṫα0 ∗ Ṙ is γ-strategically closed”,

so as the regularity of γ and GCH in V Pα0∗Q̇
′
α0 imply V Pα0∗Q̇

′
α0 |= “|[γ]<δ| = γ”,

if V Pα0∗Q̇
′
α0 |= “δ is γ supercompact”, then V Pα0∗Q̇

′
α0
∗Ṫα0∗Ṙ = V P |= “δ is γ

supercompact via any ultrafilter U ∈ V Pα0∗Q̇
′
α0 ”.

To this end, we first note we will actually show that for Gα0∗G′α0
the portion of G

V -generic over Pα0 ∗ Q̇′α0
, the embedding j extends to k : V [Gα0 ∗G′α0

]→M [H] for
some H ⊆ j(P ). As 〈j(α) : α < γ〉 ∈M , this will be enough to allow the definition
of the ultrafilter x ∈ U iff 〈j(α) : α < γ〉 ∈ k(x) to be given in V [Gα0 ∗G′α0

].
We construct H in stages. In M , as δ = δα0 is the critical point of j,

j(Pα0 ∗ Q̇′α0
) = Pα0 ∗ Ṙ′α0

∗ Ṙ′′α0
∗ Ṙ′′′α0

,

where Ṙ′α0
will be a term for the full support iteration of 〈P 0

ω,λ ∗ (P 1
ω,λ[Ṡλ] ×

P 2
ω,λ[Ṡλ]) : δ+ ≤ λ < γ and λ is regular〉 ∗ 〈P 0

ω,γ ∗P 1
ω,γ [Ṡγ ]〉 (note that as Mγ ⊆M ,

GCH implies that M |= “δ is λ supercompact” if λ < γ is regular, so since M |= “δ

is not γ supercompact”, Ṙ′α0
is indeed as just stated), Ṙ′′α0

will be a term for

the rest of the portion of j(Pα0) defined below j(δ), and Ṙ′′′α0
will be a term for

j(Q̇′α0
). This will allow us to define H as Hα0 ∗H ′α0

∗H ′′α0
∗H ′′′α0

. Factoring G′α0
as

〈G0
ω,λ ∗ (G1

ω,λ ×G2
ω,λ) : δ+ ≤ λ ≤ γ and λ is regular〉, we let Hα0 = Gα0 and

H ′α0
= 〈G0

ω,λ ∗ (G1
ω,λ ×G2

ω,λ) : δ+ ≤ λ < γ and λ is regular 〉 ∗ 〈G0
ω,γ ∗G1

ω,γ〉.
Thus, H ′α0

is the same as G′α0
, except, since M |= “δ is not γ supercompact”, we

omit the generic object G2
ω,γ .

To construct H ′′α0
, we first note that the definition of P ensures |Pα0 | = δ and,

since δ is necessarily Mahlo, Pα0 is δ-c.c. As V [Gα0 ] and M [Gα0 ] are both models
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of GCH, the definition of R′α0
in M [Hα0 ], Lemmas 4, 5, and 8, and the remark

immediately following Lemma 5 then ensure that M [Hα0 ] |= “The portion of R′α0

below γ is γ+-c.c. and the portion of R′α0
at γ is a γ-strategically closed partial

ordering followed by a γ+-c.c. partial ordering”. Since Mγ ⊆ M implies (γ+)
V

=

(γ+)
M

and Pα0 is δ-c.c., Lemma 6.4 of [Ba] shows V [Gα0 ] satisfies these facts as
well. This means applying the argument of Lemma 6.4 of [Ba] twice, in concert
with an application of the fact that a portion of R′α0

at γ is γ-strategically closed,
shows M [Hα0 ∗ H ′α0

] = M [Gα0 ∗ H ′α0
] is closed under γ sequences with respect

to V [Gα0 ∗ H ′α0
], i.e., if f : γ → M [Hα0 ∗ H ′α0

], f ∈ V [Gα0 ∗ H ′α0
], then f ∈

M [Hα0 ∗H ′α0
]. Therefore, as M [Hα0 ∗H ′α0

] |= “R′′α0
is both γ-strategically closed

and ≺ γ+-strategically closed”, these facts are true in V [Gα0 ∗H ′α0
] as well.

Observe now that GCH allows us to assume γ+ < j(δ) < j(δ+) < γ++. Since
M [Hα0 ∗ H ′α0

] |= “|R′′a0
| = j(δ) and |P(R′′α0

)| = j(δ+)” (this last fact follows
from GCH in M [Hα0 ∗ H ′α0

]), in V [Gα0 ∗ H ′α0
], we can let 〈Dα : α < γ+〉 be

an enumeration of the dense open subsets of R′′α0
present in M [Hα0 ∗ H ′α0

]. The
≺ γ+-strategic closure of R′′α0

in both M [Hα0 ∗H ′α0
] and V [Gα0 ∗H ′α0

] now allows
us to meet all of these dense subsets as follows. Work in V [Gα0 ∗H ′α0

]. Player I
picks pα ∈ Dα extending sup(〈qβ : β < α〉) (initially, q−1 is the trivial condition),
and player II responds by picking qα ≥ pα (so qα ∈ Dα). By the ≺ γ+-strategic
closure of R′′α0

in V [Gα0 ∗H ′α0
], player II has a winning strategy for this game, so

〈qα : α < γ+〉 can be taken as an increasing sequence of conditions with qα ∈ Dα for
α < γ+. Clearly, H ′′α0

= {p ∈ R′′α0
: ∃α < γ+[qα ≥ p]} is our M [Hα0 ∗H ′α0

]-generic
object over R′′α0

which has been constructed in V [Gα0 ∗ H ′α0
] ⊆ V [Gα0 ∗ G′α0

], so
H ′′α0

∈ V [Gα0 ∗G′α0
].

To construct H ′′′α0
, we note first that, as in our remarks in Lemma 8, since γ

must be below the least inaccessible > δ and γ is regular, γ = σ+ for some σ.
This allows us to write in V [Gα0 ] Q′α0

= Q′′α0
∗ Q̇′′′α0

, where Q′′a0
is the full support

iteration of 〈P 0
ω,λ ∗ (P 1

ω,λ[Ṡλ] × P 2
ω,λ[Ṡλ] : δ+ ≤ λ ≤ σ and λ is regular〉 and

Q̇′′′α0
is a term for P 0

ω,γ ∗ (P 1
ω,γ [Ṡγ ] × P 2

ω,γ [Ṡγ ]). This factorization of Q′α0
induces

through j in M [Hα0 ∗ H ′α0
∗ H ′′α0

] a factorization of R′′′α0
into R4

a0
∗ Ṙ5

α0
= 〈the

full support iteration of 〈P 0
ω,λ ∗ (P 1

ω,λ[Ṡλ] × P 2
ω,λ[Ṡλ]) : j(δ+) ≤ λ ≤ j(σ) and λ is

regular〉 ∗ 〈Ṗ 0
ω,j(γ) ∗ (P 1

ω,j(γ)[Ṡj(γ)]× P 2
ω,j(γ)[Ṡj(γ)])〉.

Work now in V [Gα0 ∗ H ′α0
]. In M [Hα0 ∗ H ′α0

], as previously noted, R′′α0
is γ-

strategically closed. Since M [Hα0 ∗ H ′α0
] has already been observed to be closed

under γ sequences with respect to V [Gα0∗H ′a0
], and since any γ sequence of elements

of M [Hα0 ∗H ′α0
∗ H ′′α0

] can be represented, in M [Hα0 ∗H ′α0
], by a term which is

actually a function f : γ → M [Hα0 ∗ H ′α0
], M [Hα0 ∗ H ′α0

∗ H ′′α0
] is closed under

γ sequences with respect to V [Gα0 ∗ H ′α0
], i.e., if f : γ → M [Hα0 ∗ H ′α0

∗ H ′′α0
],

f ∈ V [Gα0 ∗H ′α0
], then f ∈M [Hα0 ∗H ′α0

∗H ′′α0
].

Factor (in V [Gα0 ∗G′α0
]) G′α0

as G′′α0
∗G′′′α0

, with G′′α0
= 〈G0

ω,λ ∗ (G1
ω,λ ×G2

ω,λ) :

δ+ ≤ λ ≤ σ and λ is regular〉 and G′′′α0
= G0

ω,γ ∗ (G1
ω,γ × G2

ω,γ), where G′′α0
is

the projection of G′α0
onto Q′′α0

and G′′′α0
is the projection of G′α0

onto Q′′′α0
. By

our definitions, Q′′α0
∈ V [Gα0 ] and G′′α0

∈ V [Gα0 ∗ H ′α0
]. Also, our construc-

tion to this point guarantees that in V [Gα0 ∗H ′α0
], the embedding j extends to j∗:

V [Gα0 ]→M [Hα0 ∗H ′α0
∗H ′′α0

]. Thus, as GCH in V [Gα0 ∗H ′α0
] implies V [Gα0 ∗H ′α0

]
|= “|Q′′α0

| = |G′′α0
| = γ”, the last paragraph implies {j∗(p) : p ∈ G′′α0

} ∈
M [Hα0 ∗H ′α0

∗H ′′α0
]. Since {j∗(p) : p ∈ G′′α0

} ⊆ R4
α0

, M [Hα0 ∗H ′α0
∗H ′′α0

] |= “R4
α0
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is equivalent to a j∗(δ) = j(δ)-directed closed partial ordering”, and j(δ) > γ,
q = sup{j∗(p) : p ∈ G′′α0

} can be taken as a condition in R4
α0

.

Note that GCH in M [Hα0 ∗H ′α0
∗H ′′α0

] implies M [Hα0 ∗H ′α0
∗H ′′α0

] |= “|R4
α0
| =

j(γ)”, and by choice of j : V →M , V [Gα0∗H ′α0
] |= “|j(γ)| = γ+ and |j(γ+)| = γ+”.

Hence, as the number of dense open subsets of R4
α0

in M [Hα0 ∗ H ′α0
∗ H ′′α0

] is

(2j(γ))M[Ha0∗H
′
a0
∗H′′α0

] = (j(γ)+)M[Hα0∗H
′
α0
∗H′′α0

] which has cardinality (γ+)V =

(γ+)V [Gα0∗H
′
α0

], we can let 〈Dα : α < γ+〉 ∈ V [Gα0 ∗H ′α0
] enumerate all dense open

subsets of R4
α0

in M [Hα0 ∗H ′α0
∗H ′′α0

]. The γ-closure of R4
α0

in M [Hα0 ∗H ′α0
∗H ′′α0

]
and hence in V [Gα0 ∗H ′α0

] now allows an M [Ha0 ∗H ′α0
∗H ′′α0

]-generic object H4
α0

over R4
α0

containing q to be constructed in the standard way in V [Gα0 ∗ H ′α0
];

namely let q0 ∈ D0 be so that q0 ≥ q, and at stage α < γ+, by the γ-closure of
R4
α0

in V [Gα0 ∗H ′α0
], let qα ∈ Dα be so that qα ≥ sup(〈qβ : β < α〉). As before,

H4
α0

= {p ∈ R4
α0

: ∃α < γ+[qα ≥ p]} ∈ V [Gα0 ∗H ′α0
] ⊆ V [Gα0 ∗G′α0

] is clearly our
desired generic object.

By the above construction, in V [Gα0 ∗ G′α0
], the embedding j∗ : V [Gα0 ] →

M [Hα0 ∗ H ′α0
∗ H ′′α0

] extends to an embedding j∗∗ : V [Gα0 ∗ G′′α0
] → M [Hα0 ∗

H ′α0
∗ H ′′α0

∗ H4
α0

]. We will be done once we have constructed in V [Gα0 ∗ G′α0
]

the appropriate generic object for R5
α0

= P 0
ω,j(γ) ∗ (P 1

ω,j(γ)[Ṡj(γ)]×P 2
ω,j(γ)[Ṡj(γ)]) =

(P 0
ω,j(γ) ∗ P 2

ω,j(γ)[Ṡj(γ)]) ∗ P 1
ω,j(γ)[Ṡj(γ)]. To do this, first rewrite G′′′α0

as (G0
ω,γ ∗

G2
ω,γ) ∗ G1

ω,γ . By the nature of the forcings, G0
ω,γ ∗ G2

ω,γ is V [Gα0 ∗ G′′α0
]-generic

over a partial ordering which is (γ,∞)-distributive. Thus, by a general fact about
transference of generics via elementary embeddings (folklore; see [C, Section 1.2,
Fact 2, pp. 5-6]), since j∗∗ : V [Gα0 ∗G′′α0

]→ M [Hα0 ∗H ′α0
∗H ′′α0

∗H4
α0

] is so that
every element of M [Hα0 ∗H ′α0

∗H ′′α0
∗H4

α0
] can be written j∗∗(F )(a) with dom(F )

having cardinality γ, j∗∗′′G0
ω,γ ∗G2

ω,γ generates an M [Hα0 ∗H ′α0
∗H ′′α0

∗H4
α0

]-generic

set H5
α0

.

It remains to construct H6
α0

, our M [Hα0 ∗ H ′α0
∗ H ′′α0

∗ H4
α0
∗ H5

α0
]-generic ob-

ject over P 1
ω,j(γ)[Sj(γ)]. To do this, first note that H4

α0
(which was constructed in

V [Gα0 ∗ H ′α0
]) is M [Hα0 ∗ H ′α0

∗ H ′′α0
]-generic over R4

α0
, a partial ordering which

in M [Hα0 ∗H ′α0
∗H ′′α0

] is j(δ)-closed. Since j(δ) > γ and M [Hα0 ∗H ′α0
∗ H ′′α0

] is
closed under γ sequences with respect to V [Gα0 ∗H ′α0

], we can apply earlier rea-

soning to infer M [Hα0 ∗H ′α0
∗H ′′α0

∗H4
α0

] is closed under γ sequences with respect
to V [Gα0 ∗H ′α0

], i.e., if f : γ →M [Hα0 ∗H ′α0
∗H ′′α0

∗H4
α0

], f ∈ V [Gα0 ∗H ′α0
], then

f ∈M [Hα0 ∗H ′α0
∗H ′′α0

∗H4
α0

].

Choose in V [Gα0 ∗G′α0
] an enumeration 〈pα : α < γ+〉 of G1

ω,γ . Working now in

V [Gα0 ∗ G′α0
], let f be an isomorphism between (a dense subset of) P 1

ω,γ [Sγ ] and

Q1
γ . This gives us a sequence 〈f(pα) : α < γ+〉 of γ+ many compatible elements

of Q1
γ . Letting p′α = f(pα), we may hence assume that I = 〈p′α : α < γ+〉 is an

appropriately generic object for Q1
γ . By Lemma 6, V [Gα0∗G′′α0

∗G0
ω,γ∗G1

ω,γ∗G2
ω,γ ] =

V [Gα0 ∗ G′α0
] and V [Gα0 ∗ G′′α0

∗ G0
ω,γ ∗ G1

ω,γ ] = V [Gα0 ∗ H ′α0
] have the same γ

sequences of elements of V [Gα0 ∗ G′′α0
] and hence of V [Gα0 ∗ H ′α0

]. Thus, any γ
sequence of elements of M [Hα0 ∗H ′α0

∗H ′′α0
∗H4

α0
] present in V [Gα0 ∗G′α0

] is actually

an element of V [Gα0 ∗H ′α0
] (so M [Hα0 ∗H ′α0

∗H ′′α0
∗H4

α0
] is really closed under γ

sequences with respect to V [Gα0 ∗G′α0
]).

For α ∈ (γ, γ+) and p ∈ Q1
γ , let p|α = {〈〈ρ, σ〉, η〉 ∈ Q1

γ : σ < α} and I|α =

{p|α : p ∈ I}. Clearly V [Gα0 ∗G′α0
] |= “|I|α| = γ for all α ∈ (γ, γ+)”. Thus, since
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Q1
j(γ) ∈M [Hα0 ∗H ′α0

∗H ′′α0
∗H4

α0
] and M [Hα0 ∗H ′α0

∗H ′′α0
∗H4

α0
] |= “Q1

j(γ) is j(γ)-

directed closed”, the facts M [Hα0 ∗H ′α0
∗H ′′α0

∗H4
α0

] is closed under γ sequences with
respect to V [Gα0 ∗G′α0

] and I is compatible imply that qα =
⋃
{j∗∗(p) : p ∈ I|α}

for α ∈ (γ, γ+) is well-defined and is an element of Q1
j(γ). Further, if 〈ρ, σ〉 ∈

dom(qα)−dom(
⋃
β<α

qβ) (
⋃
β<α

qβ ∈ Q1
j(γ) as M [Hα0 ∗H ′α0

∗H ′′α0
∗H4

α0
] is closed under γ

sequences with respect to V [Gα0 ∗G′α0
]), then σ ∈ [

⋃
β<α

j(β), j(α)). (If σ <
⋃
β<α

j(β),

then let β be minimal so that σ < j(β), and let ρ and σ be so that 〈ρ, σ〉 ∈ dom(qα).
It must thus be the case that for some p ∈ I|α, 〈ρ, σ〉 ∈ dom(j∗∗(p)). Since
by elementarity and the definitions of I|β and I|α, for p|β = q ∈ I|β, j∗∗(q) =
j∗∗(p)|j(β) = j∗∗(p|β), it must be the case that 〈ρ, σ〉 ∈ dom(j∗∗(q)). This means
〈ρ, σ〉 ∈ dom(qβ), a contradiction.)

We now define an M [Hα0 ∗ H ′α0
∗ H ′′α0

∗ H4
α0
∗ H5

α0
]-generic object H6,0

α0
over

Q1
j(γ) so that p ∈ f ′′G1

ω,γ implies j∗∗(p) ∈ H6,0
α0

. First, for β ∈ (j(γ), j(γ+)), let

Q1,β
j(γ) ∈M [Hα0 ∗H ′α0

∗H ′′α0
∗H4

α0
] be the forcing for adding β many Cohen subsets to

j(γ), i.e., Q1,β
j(γ) = {g : j(γ)× β → {0, 1} : g is a function so that |dom(g)| < j(γ)},

ordered by inclusion. Next, note that since M [Hα0 ∗H ′α0
∗H ′′α0

∗H4
α0
∗H5

α0
] |= GCH,

M [Hα0 ∗H ′α0
∗H ′′α0

∗H4
α0
∗H5

α0
] |= “Q1

j(γ) is j(γ+)-c.c. and Q1
j(γ) has j(γ+) many

maximal antichains”. This means that if A ∈M [Hα0 ∗H ′α0
∗H ′′α0

∗H4
α0
∗H5

α0
] is a

maximal antichain of Q1
j(γ), then A ⊆ Q1,β

j(γ) for some β ∈ (j(γ), j(γ+)). Also, since

V ⊆ V [Gα0 ∗G′′α0
] ⊆ V [Gα0 ∗H ′α0

] ⊆ V [Gα0 ∗G′α0
] are all models of GCH containing

the same cardinals and cofinalities, V [Gα0 ∗G′α0
] |= “|j(γ+)| = γ+”. The preceding

thus means we can let 〈Aα : α < γ+〉 ∈ V [Gα0 ∗ G′α0
] be an enumeration of the

maximal antichains of Q1
j(γ) present in M [Hα0 ∗H ′α0

∗H ′′α0
∗H4

α0
∗H5

α0
].

Working in V [Gα0 ∗G′α0
], we define now an increasing sequence 〈rα : α ∈ (γ, γ+)〉

of elements of Q1
j(γ) so that ∀α < γ+[rα ≥ qα and rα ∈ Q

1,j(α)
j(γ) ] and so that

∀A ∈ 〈Aα : α ∈ (γ, γ+)〉∃β ∈ (γ, γ+)∃r ∈ A[rβ ≥ r]. Assuming we have such
a sequence, H6,0

α0
= {p ∈ Q1

j(γ) : ∃r ∈ 〈rα : α ∈ (γ, γ+)〉[r ≥ p]} is our desired

generic object. To define 〈rα : α ∈ (γ, γ+)〉, if α is a limit, we let rα =
⋃
β<α

rβ . By

the facts 〈qβ : β ∈ (γ, γ+)〉 is (strictly) increasing and M [Hα0 ∗H ′α0
∗H ′′α0

∗H4
α0

]
is closed under γ sequences with respect to V [Gα0 ∗ G′α0

], this definition is valid.
Assuming now rα has been defined and we wish to define rα+1, let 〈Bβ : β < η ≤ γ〉
be the subsequence of 〈Aβ : β ≤ α + 1〉 containing each antichain A so that

A ⊆ Q
1,j(α+1)
j(γ) . Since qα, rα ∈ Q1,j(α)

j(γ) , qα+1 ∈ Q1,j(α+1)
j(γ) , and j(α) < j(α + 1), the

condition r′α+1 = rα ∪ qα+1 is well-defined, as by our earlier observations, any new
elements of dom(qα+1) won’t be present in either dom(qα) or dom(rα). We can
thus, using the fact M [Hα0 ∗ H ′α0

∗ H ′′α0
∗ H4

α0
] is closed under γ sequences with

respect to V [Gα0 ∗G′α0
], define by induction an increasing sequence 〈sβ : β < η〉 so

that s0 ≥ r′α+1, sρ =
⋃
β<ρ

sβ if ρ is a limit, and sβ+1 ≥ sβ is so that sβ+1 extends

some element of Bβ. The just mentioned closure fact implies rα+1 =
⋃
β<η

sβ is a

well-defined condition.
In order to show H6,0

α0
is M [Hα0 ∗H ′α0

∗H ′′α0
∗H4

α0
∗H5

α0
]-generic over Q1

j(γ), we

must show that ∀A ∈ 〈Aα : α ∈ (γ, γ+)〉∃β ∈ (γ, γ+)∃r ∈ A[rβ ≥ r]. To do this, we
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first note that 〈j(α) : α < γ+〉 is unbounded in j(γ+). To see this, if β < j(γ+) is
an ordinal, then for some g : γ →M representing β, we can assume that for λ < γ,
g(λ) < γ+. Thus, by the regularity of γ+ in V , β0 =

⋃
λ<γ

g(λ) < γ+, and j(β0) > β.

This means by our earlier remarks that if A ∈ 〈Aα : α < γ+〉, A = Aρ, then we

can let β ∈ (γ, γ+) be so that A ⊆ Q
1,j(β)
j(γ) . By construction, for η > max(β, ρ),

there is some r ∈ A so that rη ≥ r. Finally, since any p ∈ Q1
γ is so that for some

α ∈ (γ, γ+), p = p|α, H6,0
α0

is so that if p ∈ f ′′G1
ω,γ , then j∗∗(p) ∈ H6,0

α0
.

Note now that our earlier work ensures j∗∗ extends to

j∗∗∗ : V [Gα0 ∗G′′α0
∗G0

ω,γ ∗G2
ω,γ ]→M [Hα0 ∗H ′α0

∗H ′′α0
∗H4

α0
∗H5

α0
].

By Lemma 4, the isomorphism f is definable over V [Gα0 ∗ G′′α0
∗ G0

ω,γ ∗ G2
ω,γ ].

This means the notions j∗∗∗(f) and j∗∗∗(f−1) make sense, so j∗∗∗(f) is a definable
isomorphism over M [Hα0 ∗ H ′α0

∗ H ′′α0
∗ H4

α0
∗ H5

α0
] between (a dense subset of)

P 1
ω,j(γ)[Sj(γ)] and Q1

j(γ), and j∗∗∗(f−1) is its inverse. If H6
α0

= {j∗∗∗(f−1)(p) : p ∈
H6,0
α0
}, then it is now easy to verify that H6

α0
is an M [Hα0 ∗H ′α0

∗H ′′α0
∗H4

α0
∗H5

α0
]-

generic object over (a dense subset of) P 1
ω,j(γ)[Sj(γ)], so that p ∈ (a dense subset

of) P 1
ω,γ [Sγ ] implies j∗∗∗(p) ∈ H6

α0
. Therefore, for H ′′′ = H4

α0
∗ H5

α0
∗ H6

α0
and

H = Hα0 ∗H ′α0
∗H ′′α0

∗H ′′′α0
, j : V → M extends to k : V [Gα0 ∗G′α0

]→ M [H], so
V [G] |= “δ is γ supercompact” if γ is regular. This proves Lemma 9. � Lemma 9

Lemma 10. For γ regular, V [G] |= “δ is γ strongly compact iff δ is γ supercom-
pact”.

Proof of Lemma 10. Assume towards a contradiction that the lemma is false, and
let δ < γ be so that V [G] |= “δ is γ strongly compact, δ isn’t γ supercompact, γ
is regular, and γ is the least such cardinal”. As before, let δ = δα, i.e., δ is the
αth inaccessible cardinal. If V |= “δα is γ supercompact”, then Lemma 9 implies
V [G] |= “δα is γ supercompact”, so it must be the case that V |= “δα isn’t γ
supercompact”. We therefore have λα ≤ γ for λα the least regular cardinal so that
V |= “δα isn’t λα supercompact”.

In the manner of Lemma 9, write P = Pα ∗ Q̇α ∗ Q̇′α, where Pα is the iteration

through stage α, Q̇α is a term for the full support iteration of 〈P 0
ω,λ ∗ (P 1

ω,λ[Ṡλ] ×
P 2
ω,λ[Ṡλ]) : δ+ ≤ λ < λα and λ is regular〉 ∗ 〈Ṗ 0

ω,λα
∗ P 1

ω,λα
[Ṡλα ]〉, and Q̇′α is a

term for the rest of P . By our previous results, V Pα∗Q̇α |= “δα isn’t λα strongly

compact”, and ‖– Pα∗Q̇α“Q̇′α is δα+1-strategically closed” (where δα+1 is the least

inaccessible > δα). It must thus be the case that V Pα∗Q̇α∗Q̇
′
α = V P |= “δα isn’t λα

strongly compact”, so of course, as λα ≤ γ, V [G] |= “δa isn’t γ strongly compact”.
This proves Lemma 10. � Lemma 10

Lemma 11. For γ regular, V [G] |= “δ is γ supercompact” iff V |= “δ is γ super-
compact”.

Proof of Lemma 11. By Lemma 9, if V |= “δ is γ supercompact and γ is regular”,
then V [G] |= “δ is γ supercompact”. If V [G] |= “δ is γ supercompact and γ is
regular” but V |= “δ is not γ supercompact”, then as in Lemma 10, for the α so
that δ = δα, λα ≤ γ for λα the least regular cardinal so that V |= “δα isn’t λα
supercompact”. The proof of Lemma 10 then immediately yields that V [G] |= “δα
isn’t λα ≤ γ strongly compact”. This proves Lemma 11. � Lemma 11

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

Sh:495



SUPERCOMPACTNESS AND STRONG COMPACTNESS 121

The proof of Lemma 11 completes the proof of our Theorem in the case when κ
is the unique supercompact cardinal in the universe and has no inaccessibles above
it. This guarantees the Theorem to hold non-trivially. � Theorem

3. The General Case

We will now prove our Theorem under the assumption that there may be more
than one supercompact cardinal in the universe (including a proper class of super-
compact cardinals) and that the large cardinal structure above any given supercom-
pact can be rather complicated, including possibly many inaccessibles, measurables,
etc. Before defining the forcing conditions, a few intuitive remarks are in order.
We will proceed using the same general paradigm as in the last section, namely
iterating the forcings of Section 1 using Easton supports so as to destroy those
“bad” instances of strong compactness which can be destroyed and so as to res-
urrect and preserve all instances of supercompactness. For each inaccessible δi, a
certain coding ordinal θi < δi will be chosen when possible which we will use to de-
fine P 0

θi,λ
, P 1

θi,λ
[Sθi,λ], and P 2

θi,λ
[Sθi,λ], where Sθi,λ is the non-reflecting stationary

set of ordinals of cofinality θi added to λ+ by P 0
θi,λ

. We will need to have different
values of θi, instead of having θi = ω as in the last section, so as to destroy the λ
strong compactness of some δ and yet preserve the λ supercompactness of a δ′ 6= δ
when necessary. When θi can’t be defined, we won’t necessarily be able to destroy
the λ strong compactness of δi, although we will be able to preserve the λ super-
compactness of δi if appropriate. This will happen when instances of the results of
[Me] and [A] occur, i.e., when there are certain limits of supercompactness.

Getting specific, let 〈δi : i ∈ Ord〉 enumerate the inaccessibles of V |= GCH, and
let λi > δi be the least regular cardinal so that V |= “δi isn’t λi supercompact” if
such a λi exists. If no such λi exists, i.e., if δi is supercompact, then let λi = Ω,
where we think of Ω as some giant “ordinal” larger than any α ∈ Ord. If possible,
choose θi < δi as the least regular cardinal so that θi < δj < δi implies λj < δi
(whenever j < i). Note that θi is undefined for δi iff δi is a limit of cardinals which
are < δi supercompact, because for j < i, if δj is < δi supercompact, then λj ≥ δi.

We define now a class Easton support iteration P = 〈〈Pα, Q̇α〉 : α ∈ Ord〉 as

follows: 1. P0 is trivial. 2. Assuming Pα has been defined, Pα+1 = Pα ∗ Q̇α,
where Q̇α is a term for the trivial partial ordering unless α is regular and for some
inaccessible δ = δi < α with θi defined, either δi is α supercompact or α = λi. Under
these circumstances Q̇α is a term for (

∏
{i<α:δiis α supercompact}

(P 0
θi,α
∗ P 2

θi,α
[Ṡθi,α]) ∗∏

{i<α:δi is α supercompact}
P 1
θi,α

[Ṡθi,α]) × (
∏

{i<α:α=λi}
P 0
θi,α
∗

∏
{i<α:α=λi}

P 1
θi,α

[Ṡθi,α]) =

(Ṗ 0
α ∗ Ṗ 1

α) × (Ṗ 2
α ∗ Ṗ 3

α), with the proviso that elements of Ṗ 0
α and Ṗ 2

α will have

full support, and elements of Ṗ 1
α and Ṗ 3

α will have support < α. Note that unless

|{i < α : δi is < α supercompact}| = α, the elements of Ṗ iα will have full support
for i = 0, 1, 2, 3.

The following lemma is the natural analogue to Lemma 8.

Lemma 12. For G a V -generic class over P , V and V [G] have the same cardinals
and cofinalities, and V [G] |= ZFC + GCH.

Proof of Lemma 12. We show inductively that for any α, V and V Pα have the
same cardinals and cofinalities, and V Pα |= GCH. This will suffice to show V [G] |=
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GCH and has the same cardinals and cofinalities as V , since if Ṙ is a term so that
Pα ∗ Ṙ = P , then ‖– Pα “The iteration Ṙ is < α-strategically closed”, meaning

V Pα∗Ṙ and V Pα have the same cardinals and cofinalities ≤ α and GCH holds in
both of these models for cardinals < α.

Assume now V and V Pα have the same cardinals and cofinalities, and V Pα |=
GCH. We show V and V Pα+1 = V Pα∗Q̇α have the same cardinals and cofinal-
ities, and V Pα+1 |= GCH. If Q̇α is a term for the trivial partial ordering, this

is clearly the case, so we assume Q̇α is not a term for the trivial partial order-
ing. Let Q̇′α be a term for (Ṗ 0

α ∗ Ṗ 1
α) × (

∏
{i<α:α=λi}

(Ṗ 0
θi,α
∗ P 2

θi,α
[Ṡθi,α]) ∗ Ṗ 3

α) =

(Ṗ 0
α ∗ Ṗ 1

α) × (Ṗ 4
α ∗ Ṗ 3

α), where as earlier, the elements of Ṗ 0
α and Ṗ 4

α will have

full support, and the elements of Ṗ 1
α and Ṗ 3

α will have support < α. We are

now able to rewrite Q̇′α as (
∏

{i<α:δi is α supercompactor α=λi}
(P 0
θi,α
∗ P 2

θi,α
[Ṡθi,α])) ∗

(
∏

{i<α:δi is α supercompactor α=λi}
P 1
θi,α

[Ṡθi,α]) = Ṗ 5
α ∗ Ṗ 6

α, where the elements of Ṗ 5
α

will have full support, and the elements of Ṗ 6
α will have support < α. By Lemma 4,

in V Pα , each P 0
θi,α
∗(P 1

θi,α
[Ṡθi,α]×P 2

θi,α
[Ṡθi,α]) is equivalent toQ0

α∗Q̇1
α. We therefore

have that in V Pα , Q′α is equivalent to (
∏
β<γ

Q0
α) ∗ (

∏
β<γ

Q̇1
α), where γ = |{i < α : δi is

α supercompact or α = λi}| (γ is a cardinal in both V and V Pα by induction), i.e.,
the full support product of γ copies of Q0

α followed by the < α support product of
γ copies of Q1

α. Since γ ≤ α,
∏
β<γ

Q0
α is isomorphic to the usual ordering for adding

γ many Cohen subsets to α+ using conditions of support < α+, and since
∏
β<γ

Q1
α is

composed of elements having support < α,
∏
β<γ

Q1
α is isomorphic to a single partial

ordering for adding α+ many Cohen subsets to α using conditions of support < α.

Hence, V Pα∗Q̇
′
α and V Pα have the same cardinals and cofinalities, and V Pα∗Q̇

′
α |=

GCH, so V Pα∗Q̇
′
α and V have the same cardinals and cofinalities. And, for Gα

the projection of G onto Pα, if H is V [Gα]-generic over Q′α, for any i < α so that
α = λi, we can omit the portion of H generic over P 2

θi,α
[Sθi,α] and thus obtain a

V [Gα]-generic object H ′ for Qα. Since V ⊆ V [Gα][H ′] ⊆ V [Gα][H], as in Lemma

5, it must therefore be the case that V, V Pα∗Q̇α = V Pα+1 , and V Pα∗Q̇
′
α all have the

same cardinals and cofinalities and satisfy GCH.
To complete the proof of Lemma 12, if now α is a limit ordinal, the proof that

V and V Pα have the same cardinals and cofinalities and V Pα |= GCH is the same
as the proof given in the last paragraph of Lemma 8, since the iteration still has
enough strategic closure and can easily be seen by GCH to be so that for any β < α,
|Pβ | < α. And, since for any α, ‖– Pα“Q̇α is < α-strategically closed”, all functions

f : γ → β for γ < α and β any ordinal in V [G] are so that f ∈ V Pα . Thus, since
P is an Easton support iteration, as in Lemma 8, V [G] satisfies Power Set and
Replacement. This proves Lemma 12. � Lemma 12

We remark that if we rewrite Q̇α as (Ṗ 0
α × Ṗ 2

α) ∗ (Ṗ 1
α × Ṗ 3

α), then the ideas used
in the proof of Lemma 12 combined with an argument analogous to the one in
the remark following the proof of Lemma 5 show ‖– Pα∗(Ṗ 0

α×Ṗ 2
α)“Ṗ

1
α × Ṗ 3

α is α+-

c.c.” Also, by their definitions, ‖– Pα“Ṗ 0
α × Ṗ 2

α is α-strategically closed”. These
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observations will be used in the proof of the following lemma, which is the natural
analogue to Lemma 9.

Lemma 13. If δ < γ and V |= “δ is γ supercompact and γ is regular”, then for G
V -generic over P , V [G] |= “δ is γ supercompact”.

Proof of Lemma 13. We mimic the proof of Lemma 9. Let j : V → M be an
elementary embedding witnessing the γ supercompactness of δ so that M |= “δ is
not γ supercompact”, and let α0 be so that δ = δα0 .

Let P = Pδ ∗ Q̇′δ ∗ Ṙ, where Pδ is the iteration through stage δ, Q̇′δ is a term

for the iteration 〈〈Pα/Pδ, Q̇α〉 : δ ≤ α ≤ γ〉, and Ṙ is a term for the rest of P . As

before, since ‖– Pδ∗Q̇′δ“Ṙ is γ-strategically closed”, the regularity of γ and GCH in

V Pδ∗Q̇
′
δ mean it suffices to show V Pδ∗Q̇

′
δ |= “δ is γ supercompact”.

We will again show that j : V →M extends to k : V [Gδ ∗G′δ]→M [H] for some

H ⊆ j(P ). In M , j(Pδ ∗ Q̇′δ) = Pδ ∗ Ṙ′δ ∗ Ṙ′′δ ∗ Ṙ′′′δ , where Ṙ′δ will be a term for

the iteration (as defined in MPδ ) 〈〈Pα/Pδ, Q̇α〉 : δ ≤ α ≤ γ〉, Ṙ′′δ will be a term

for the iteration (as defined in MPδ∗Ṙ′δ ) 〈〈Pα/Pγ+1, Q̇α〉 : γ + 1 ≤ α < j(δ)〉, and

Ṙ′′′δ will be a term for the iteration (as defined in MPδ∗Ṙ′δ∗Ṙ
′′
δ ) 〈〈Pα/Pj(δ), Q̇α〉 :

j(δ) ≤ α ≤ j(γ)〉. By the facts that GCH holds in both V and M , Mγ ⊆ M , and

M |= “δ is < γ supercompact but δ is not γ supercompact”, Ṙ′δ will actually be a

term for the iteration 〈〈Pα/Pδ, Q̇α〉: δ ≤ α < γ〉 ∗ 〈(Ṗ 0
γ ∗ Ṗ 1

γ ) × (Ṗ 2
γ ∗ Ṗ 3

γ )〉, where

the term for the iteration 〈〈Pα/Pδ, Q̇α〉 : δ ≤ α < γ〉 is the same as in V , any term

of the form (Ṗ 0
θi,γ
∗ P 2

θi,γ
[Ṡθi,γ ]) ∗ P 1

θi,γ
[Ṡθi,γ ] appearing in Ṙ′δ (more specifically,

in Ṗ 0
γ ∗ Ṗ 1

γ ) is identical to one appearing in Q̇′δ, and if Ṗ 0
θi,γ
∗ P 1

θi,γ
[Ṡθi,γ ] appears

in Ṙ′δ (more specifically, in Ṗ 2
γ ∗ Ṗ 3

γ ), then either it appears as an identical term

in Q̇′δ, or (as is the case, e.g., when i = α0 and θi is defined) it appears as the

term (Ṗ 0
θi,γ
∗ P 2

θi,γ
[Ṡθi,γ ]) ∗ P 1

θi,γ
[Ṡθi,γ ] in Q̇′δ. This allows us to define Hδ = Gδ,

where Gδ is the portion of G V -generic over Pδ, and H ′δ = K ∗K ′, where K is the

projection of G onto 〈〈Pα/Pδ, Q̇α〉: δ ≤ α < γ〉 and K ′ is the projection of G onto

(P 0
γ ∗ Ṗ 1

γ )× (P 2
γ ∗ Ṗ 3

γ ) as defined in M .
To construct the next portion of the generic object H ′′δ , note that as in Lemma

9, the definition of Pδ ensures |Pδ| = δ and Pδ is δ-c.c. Thus, as before, GCH in

V [Gδ] and M [Gδ], the definition of Ṙ′δ, the fact Mγ ⊆ M , and some applications
of Lemma 6.4 of [Ba] allow us to conclude that M [Hδ ∗H ′δ] = M [Gδ ∗H ′δ] is closed
under γ sequences with respect to V [Gδ ∗ H ′δ]. Thus, any partial ordering which
is ≺ γ+-strategically closed in M [Hδ ∗H ′δ] is actually ≺ γ+-strategically closed in
V [Gδ ∗H ′δ].

Observe now that if 〈Tα : α < η〉 is so that each Tα is ≺ ρ+-strategically closed
for some cardinal ρ, then

∏
α<η

Tα is also ≺ ρ+-strategically closed, for if 〈fα : α < η〉

is so that each fα is a winning strategy for player II for Tα, then
∏
α<η

fα, i.e., pick

the αth coordinate according to fα, is a winning strategy for player II for
∏
α<η

Tα.

This observation easily implies ‖– Pδ∗Ṙ′δ“Ṙ
′′

δ is ≺ γ+-strategically closed” in either

V [Gδ ∗H ′δ] or M [Hδ ∗H ′δ]. The definition of the iteration R′′δ then allows us, as in
Lemma 9, to construct in V [Gδ ∗H ′δ] ⊆ V [Gδ ∗G′δ] an M [Hδ ∗H ′δ]-generic object
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H ′′δ over R′′δ . As in Lemma 9, M [Hδ ∗H ′δ ∗ H ′′δ ] is closed under γ sequences with
respect to V [Gδ ∗H ′δ].

Write Ṙ′′′δ as Ṙ4
δ ∗ Ṙ5

δ, where Ṙ4
δ is a term for the iteration 〈〈Pα/Pj(δ), Q̇α〉 :

j(δ) ≤ α < j(γ)〉 and Ṙ5
δ is a term for Q̇j(γ). Also, write in V Q̇′δ = Q̇′′δ ∗ Q̇′′′δ ,

where Q̇′′δ is a term for the iteration 〈〈Pα/Pδ, Q̇α〉 : δ ≤ α < γ〉 and Q̇′′′δ is a term

for Q̇γ , and let G′δ = G′′δ ∗ G′′′δ be the corresponding factorization of G′δ. For any

non-trivial term Q̇α = (Ṗ 0
α ∗ Ṗ 1

α) × (Ṗ 2
α ∗ Ṗ 3

α) appearing in Ṙ4
δ , Lemma 4 and the

fact that elements of Ṗ 0
α will have full support and elements of Ṗ 1

α will have support

< α imply that in M , for T = Pδ ∗ Ṙ′δ ∗ Ṙ′′δ ∗ 〈〈Pβ/Pj(δ), Q̇β〉 : j(δ) ≤ β < α〉, ‖– T
“(a dense subset of) Ṗ 0

α ∗ Ṗ 1
α is γ+-directed closed”. Further, if α ∈ [j(δ), j(γ)] is

so that for some i, α = λi, then it must be the case that j(δ) < δi, for if δi ≤ j(δ),
then by a theorem of Magidor [Ma2], since M |= “δi is < j(δ) supercompact and
j(δ) is j(γ) supercompact”, M |= “δi is j(γ) supercompact”, a contradiction to the
fact M |= “α = λi < j(γ)”. Hence, by the definition of θi, it must be the case

that j(δ) ≤ θi, i.e., since j(δ) > γ, θi > γ. This means ‖– T “Ṗ 0
θi,α

and P 1
θi,α

[Ṡθi,α]

are γ+-directed closed”, so as elements of Ṗ 2
α will have full support and elements of

Ṗ 3
α will have support < α, ‖– T “Ṗ 2

α ∗ Ṗ 3
α is γ+-directed closed”, i.e., ‖– T “(A dense

subset of) (Ṗ 0
α ∗ Ṗ 1

α) × (Ṗ 2
α ∗ Ṗ 3

α) is γ+-directed closed”. Thus, in M , ‖– Pδ∗Ṙ′δ∗Ṙ′′δ
“(A dense subset of) Ṙ4

δ is γ+-directed closed”. Therefore, using the extension of
j, j∗ : V [Gδ] → M [Hδ ∗ H ′δ ∗ H ′′δ ] which we have produced in V [Gδ ∗ H ′δ], the
fact that GCH in M [Hδ ∗H ′δ ∗H ′′δ ] implies M [Hδ ∗H ′δ ∗H ′′δ ] |= “|R4

δ | = j(γ) and

2j(γ) = j(γ+)”, V [Gδ ∗H ′δ] |= “|j(γ+)| = (γ+)V = γ+”, and the closure properties
of M [Hδ ∗H ′δ ∗H ′′δ ], we can produce in V [Gδ ∗H ′δ] as in Lemma 9 an upper bound
q for {j∗(p) : p ∈ G′′δ} and an M [Hδ ∗H ′δ ∗H ′′δ ]-generic object H4

δ for R4
δ so that

q ∈ H4
δ . Again, as in Lemma 9, M [Hδ ∗H ′δ ∗H ′′δ ∗H4

δ ] is closed under γ-sequences
with respect to V [Gδ ∗ H ′δ]. Therefore, by the remarks after the proof of Lemma
12 and the proof of Lemma 6, M [Hδ ∗H ′δ ∗H ′′δ ∗H4

δ ] is closed under γ-sequences
with respect to V [Gδ ∗G′δ].

Rewrite Ṙ5
δ as

(
∏

{i<j(γ):δi is j(γ) supercompact}
(Ṗ 0
θi,j(γ) ∗ P 2

θi,j(γ)[Ṡθi,j(γ)])

×
∏

{i<j(γ):j(γ)=λi}
Ṗ 0
θi,j(γ))

∗ (
∏

{i<j(γ):δi is j(γ) supercompactor j(γ)=λi}
Ṗ 1
θi,j(γ)[Ṡθi,j(γ)])

= Ṙ6
δ ∗ Ṙ7

δ ,

where all elements of Ṙ6
δ will have full support, and all elements of Ṙ7

δ will have
support < j(γ). By our earlier observation that products of (appropriately) strate-
gically closed partial orderings retain the same amount of strategic closure, it
is clearly the case that Q∗γ , the portion of Qγ corresponding to R6

δ , i.e., Q∗γ =∏
{i<γ:δi is γ supercompact}

(P 0
θi,γ
∗ P 2

θi,γ
[Ṡθi,γ ]) ×

∏
{i<γ:γ=λi}

P 0
θi,γ

, is γ-strategically

closed and therefore is (γ,∞)-distributive. Hence, as we again have that in
V [Gδ ∗ H ′δ], j∗ extends to j∗∗ : V [Gδ ∗ G′′δ ] → M [Hδ ∗ H ′δ ∗ H ′′δ ∗ H4

δ ], we can
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use j∗∗ as in the proof of Lemma 9 to transfer G4
δ, the projection of G′′′δ onto Q∗γ ,

via the general transference principle given in [C], Section 1.2, Fact 2, pp. 5-6, to
an M [Hδ ∗H ′δ ∗H ′′δ ∗H4

δ ]-generic object H5
δ over R6

δ .
By its construction, since p ∈ G4

δ implies j∗∗(p) ∈ H5
δ , j∗∗ extends in V [Gδ ∗

G′δ] to j∗∗∗ : V [Gδ ∗ G′′δ ∗ G4
δ ] → M [Hδ ∗ H ′δ ∗ H ′′δ ∗ H4

δ ∗ H5
δ ]. And, since R6

δ

is γ-strategically closed, M [Hδ ∗ H ′δ ∗ H ′′δ ∗ H4
δ ∗ H5

δ ] and M [Hδ ∗ H ′δ ∗ H ′′δ ∗ H4
δ ]

contain the same γ sequences of elements of M [Hδ ∗ H ′δ ∗ H ′′δ ∗ H4
δ ] with respect

to V [Gδ ∗G′δ]. As any γ sequence of elements of M [Hδ ∗H ′δ ∗H ′′δ ∗H4
δ ∗H5

δ ] can
be represented, in M [Hδ ∗H ′δ ∗ H ′′δ ∗ H4

δ ], by a term which is actually a function
f : γ → M [Hδ ∗ H ′δ ∗ H ′′δ ∗ H4

δ ], and as M [Hδ ∗ H ′δ ∗ H ′′δ ∗ H4
δ ] is closed under γ

sequences with respect to V [Gδ ∗G′δ], M [Hδ ∗H ′δ ∗H ′′δ ∗H4
δ ∗H5

δ ] is closed under
γ sequences with respect to V [Gδ ∗G′δ].

It remains to construct the M [Hδ ∗H ′δ ∗H ′′δ ∗H4
δ ∗H5

δ ]-generic object H6
δ over R7

δ .
To do this, takeQ∗∗γ to be the portion of Qγ corresponding to R7

δ , i.e., Q∗∗γ is the < γ

support product
∏

{i<γ:δi is γ supercompactor γ=λi}
P 1
θi,γ

[Sθi,γ ], with G5
δ the projection

of G′′′δ onto Q∗∗γ . Next, for the purpose of the remainder of the proof of this lemma,

if p ∈ R6
δ and i < j(γ) is an ordinal, say that i ∈ support(p) iff for some non-trivial

component p̄ of p, p̄ ∈ P 0
θi,j(γ). Analogously, it is clear what i ∈ support(p) for

p ∈ R7
δ means. Now, let A = {i < j(γ) : For some p ∈ j∗∗′′G4

δ, i ∈ support(p)},
and let B = {i < j(γ) : For some q ∈ R7

δ , i ∈ support(q) but i 6∈ support(p)
for any p ∈ j∗∗′′G4

δ}. Write A = A0 ∪ A1, where A0 = {i ∈ A : j(γ) = λi} and
A1 = {i ∈ A : j(γ) 6= λi}. Note that since H5

δ = {q ∈ R6
δ : ∃p ∈ j∗∗′′G4

δ[q ≤ p]},
A,A0, A1, B ∈M [Hδ ∗H ′δ ∗H ′′δ ∗H4

δ ∗H5
δ ].

If i ∈ A1, then by the genericity of H5
δ , P 1

θi,j(γ)[Sθi,j(γ)] contains a dense sub-

ordering P ∗i given by Lemma 4 which is isomorphic to Q1
j(γ). Hence, we can infer

that the (< j(γ) support) product
∏
i∈A1

P ∗i is dense in the (< j(γ) support) product∏
i∈A1

P 1
θi,j(γ)[Sθi,j(γ)]. We thus without loss of generality consider

∏
i∈A1

P ∗i instead

of
∏
i∈A1

P 1
θi,j(γ)[Sθi,j(γ)]. Further, if i ∈ A0, then since j(γ) = λi, by our earlier

remarks, θi > γ. This means P 1
θi,j(γ)[Sθi,j(γ)] is γ+-directed closed.

As we observed in the proof of Lemma 4, for any i ∈ A and any 〈wi, αi, r̄i, Zi〉 ∈
P 1
θi,j(γ)[Sθi,j(γ)], the first three coordinates 〈wi, αi, r̄i〉 are a re-representation of an

element of Q1
j(γ). Since the < j(γ) support product of j(γ) many copies of Q1

j(γ) is

isomorphic to Q1
j(γ), for any condition

p = 〈〈wi, αi, r̄i, Zi〉i<`0<j(γ), 〈wi, αi, r̄i, Zi〉i<`1<j(γ)〉

∈
∏
i∈A0

P 1
θi,j(γ)[Sθi,j(γ)]×

∏
i∈A1

P ∗i ,

we can in a unique and canonical way write p as 〈p̄, Z̄〉, where p̄ ∈ Q1
j(γ) and

Z̄ = 〈〈Zi : i < `0 < j(γ)〉, 〈Zi : i < `1 < j(γ)〉〉. Further, this rearrangement
can be taken so as to preserve the order relation on

∏
i∈A0

P 1
θi,j(γ)[Sθi,j(γ)]×

∏
i∈A1

P ∗i .

Therefore, since our remarks in the last paragraph imply
∏
i∈A0

P 1
θi,j(γ)[Sθi,j(γ)] ×∏

i∈A1

P ∗i is γ+-directed closed, the fact that M [Hδ ∗ H ′δ ∗ H ′′δ ∗ H4
δ ∗ H5

δ ] is closed

under γ sequences with respect to V [Gδ ∗G′δ] means that we can in essence ignore
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each sequence Z̄ as above and apply the arguments used in Lemma 9 to construct
the generic object for Q1

j(γ) to construct an M [Hδ ∗H ′δ∗H ′′δ ∗H4
δ ∗H5

δ ]-generic object

H6,0
δ for

∏
i∈A0

P 1
θi,j(γ)[Sθi,j(γ)]×

∏
i∈A1

P ∗i . As before, since
∏
i∈A0

P 1
θi,j(γ)[Sθi,j(γ)]×

∏
i∈A1

P ∗i

is γ+-directed closed, M [Hδ ∗H ′δ ∗H ′′δ ∗H4
δ ∗H5

δ ∗H
6,0
δ ] is closed under γ sequences

with respect to V [Gδ ∗G′δ].
By our remarks following the proof of Lemma 12 and the ideas used in the remark

following the proof of Lemma 5,
∏
i∈B

P 1
θi,j(γ)[Sθi,j(γ)] is j(γ+)-c.c. in M [Hδ ∗H ′δ ∗

H ′′δ ∗H4
δ ∗H5

δ ] and M [Hδ ∗H ′δ ∗H ′′δ ∗H4
δ ∗H5

δ ∗H
6,0
δ ]. Since

∏
i∈B

P 1
θi,j(γ)[Sθi,j(γ)] is a

< j(γ) support product and P 1
θi,j(γ)[Sθi,j(γ)] has cardinality j(γ+) in M [Hδ ∗H ′δ ∗

H ′′δ ∗H4
δ ∗H5

δ ∗H
6,0
δ ] for any i < j(γ),

∏
i∈B

P 1
θi,j(γ)[Sθi,j(γ)] has cardinality j(γ+) in

M [Hδ ∗H ′δ ∗H ′′δ ∗H4
δ ∗H5

δ ∗H
6,0
δ ]. We can thus as in Lemma 9 let 〈Aα : α < γ+〉

enumerate in V [Gδ ∗G′δ] the maximal antichains of
∏
i∈B

P 1
θi,j(γ)[Sθi,j(γ)] with respect

to M [Hδ ∗H ′δ ∗H ′′δ ∗H4
δ ∗H5

δ ∗H
6,0
δ ], and we can once more mimic the construction

in Lemma 9 of H ′′α0
to produce in V [Gδ ∗G′δ] an M [Hδ ∗H ′δ ∗H ′′δ ∗H4

δ ∗H5
δ ∗H

6,0
δ ]-

generic object H6,1
δ over

∏
i∈B

P 1
θi,j(γ)[Sθi,j(γ)]. If we now let H6

δ = H6,0
δ ∗H6,1

δ and

H = Hδ ∗H ′δ ∗H ′′δ ∗H4
δ ∗H5

δ ∗H6
δ , then our construction guarantees j : V → M

extends to k : V [Gδ ∗G′δ]→M [H], so V [G] |= “δ is γ supercompact”. This proves
Lemma 13. � Lemma 13

We remark that the proof of Lemma 13 will work whether or not θα0 is defined.
We prove now the natural analogue of Lemma 10.

Lemma 14. For γ regular, V [G] |= “δ is γ strongly compact iff δ is γ supercompact,
except possibly if for the i so that δ = δi, θi is undefined”.

Proof of Lemma 14. As in Lemma 10, we assume towards a contradiction that the
lemma is false, and let δ = δi0 < γ be so that V [G] |= “δ is γ strongly compact, δ
isn’t γ supercompact, θi0 is defined, γ is regular, and γ is the least such cardinal”.
Since Lemma 13 implies that if V |= “δ is γ supercompact”, then V [G] |= “δ is γ
supercompact”, as in Lemma 10, it must be the case that λi0 ≤ γ.

Write P = Pλi0 ∗ Q̇λi0 ∗ Ṙ, where Pλi0 is the forcing through stage λi0 , Q̇λi0 is a

term for the forcing at stage λi0 , and Ṙ is a term for the rest of the forcing. In V
Pλi0 ,

since V |= “δ = δi0 isn’t λi0 supercompact”, we can write Qλi0 as T0×T1, where T1

is P 0
θi0 ,λi0

∗P 1
θi0 ,λi0

[Ṡθi0 ,λi0 ], and T0 is the rest of Qλi0 . Since V
Pλi0 |= “T0×P 0

θi0 ,λi0
is < λi0 -strategically closed” (and hence adds no new bounded subsets of λi0 when

forcing over V
Pλi0 ), the arguments of Lemma 3 apply in V

Pλi0
∗(Ṫ0×Ṗ 0

θi0
,λi0

)
to show

V
(Pλi0

∗(Ṫ0×Ṗ 0
θi0

,λi0
))∗P 1

θi0
,λi0

[Ṡθi0 ,λi0
]
= V

Pλi0
∗Q̇λi0 |= “δi0 isn’t λi0 strongly compact

since λi0 doesn’t carry a δi0 -additive uniform ultrafilter”.

It remains to show that V
Pλi0

∗Q̇λi0 ∗Ṙ = V P |= “δi0 isn’t λi0 strongly compact”.

If this weren’t the case, then let U̇ be a term in V
Pλi0

∗Q̇λi0 so that ‖– R“U̇ is a δi0 -

additive uniform ultrafilter over λi0”. Since ‖– Pλi0 ∗Q̇λi0 “Ṙ is ≺ λ+
i0

-strategically

closed” and V
Pλi0

∗Q̇λi0 |= GCH, if we let 〈xα : α < λ+
i0
〉 be in V

Pλi0
∗Q̇λi0 a listing

of all of the subsets of λi0 , as in the construction of H ′′α0
in Lemma 9, we can let
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〈rα : α < λ+
i0
〉 be an increasing sequence of elements of R so that rα‖“xα ∈ U̇”.

If now in V
Pλi0

∗Q̇λi0 we define U ′ by xα ∈ U ′ iff rα‖– “xα ∈ U̇”, then it is routine

to check that U ′ is a δi0 -additive uniform ultrafilter over λi0 in V
Pλi0

∗Q̇λi0 , which

contradicts that there is no such ultrafilter in V
Pλi0

∗Q̇λi0 . Thus, V P |= “δi0 isn’t
λi0 strongly compact”, a contradiction to V [G] |= “δ is γ strongly compact”. This
proves Lemma 14. � Lemma 14

Note that the analogue to Lemma 11 holds if δ = δi and θi is defined, i.e., for
γ regular, V [G] |= “δ is γ supercompact” iff V |= “δ is γ supercompact” if δ = δi
and θi is defined. The proof uses Lemmas 13 and 14 and is exactly the same as the
proof of Lemma 11.

Lemmas 12–14 complete the proof of our Theorem in the general case.
� Theorem

4. Concluding Remarks

In conclusion, we would like to mention that it is possible to use generaliza-
tions of the methods of this paper to answer some further questions concerning the
possible relationships amongst strongly compact, supercompact, and measurable
cardinals. In particular, it is possible to show, using generalizations of the methods
of this paper, that the result of [Me] which states that the least measurable cardi-
nal κ which is the limit of strongly compact or supercompact cardinals is not 2κ

supercompact is best possible. Specifically, if V |= “ZFC + GCH + κ is the least
supercompact limit of supercompact cardinals + λ > κ+ is a regular cardinal which
either is inaccessible or is the successor of a cardinal of cofinality > κ + h : κ→ κ
is a function so that for some elementary embedding j : V → M witnessing the
< λ supercompactness of κ, j(h)(κ) = λ”, then there is some generic extension
V [G] |= “ZFC + For every cardinal δ < κ which is an inaccessible limit of super-
compact cardinals and every cardinal γ ∈ [δ, h(δ)), 2γ = h(δ) + For every cardinal
γ ∈ [κ, λ), 2γ = λ + κ is < λ supercompact + κ is the least measurable limit of
supercompact cardinals”.

It is also possible to show using generalizations of the methods of this paper that
if V |= “ZFC + GCH + κ < λ are such that κ is < λ supercompact, λ > κ+ is
a regular cardinal which either is inaccessible or is the successor of a cardinal of
cofinality > κ + h : κ → κ is a function so that for some elementary embedding
j : V → M witnessing the < λ supercompactness of κ, j(h)(κ) = λ”, then there
is some cardinal and cofinality preserving generic extension V [G] |= “ZFC + For
every inaccessible δ < κ and every cardinal γ ∈ [δ, h(δ)), 2γ = h(δ) + For every
cardinal γ ∈ [κ, λ), 2γ = λ + κ is < λ supercompact + κ is the least measurable
cardinal”. This generalizes a result of Woodin (see [CW]), who showed, in response
to a question posed to him by the first author, that it was possible to start from
a model for “ZFC + GCH + κ < λ are such that κ is λ+ supercompact and λ
is regular” and use Radin forcing to produce a model for “ZFC + 2κ = λ + κ is
δ supercompact for all regular δ < λ + κ is the least measurable cardinal”. In
addition, it is possible to iterate the forcing used in the construction of the above
model to show, for instance, that if V |= “ZFC + GCH + There is a proper class of
cardinals κ so that κ is κ+ supercompact”, then there is some cardinal and cofinality
preserving generic extension V [G] |= “ZFC + 2κ = κ++ iff κ is inaccessible + There
is a proper class of measurable cardinals + ∀κ[κ is measurable iff κ is κ+ strongly
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compact iff κ is κ+ supercompact] + No cardinal κ is κ++ strongly compact”. In
this result, there is nothing special about κ+, and each κ can be λ supercompact
for λ = κ++, λ = κ+++, or λ essentially any “reasonable” value below 2κ. The
proof of these results will appear in [AS].
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