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A theory T is said to have exact saturation at a singular cardinal κ if it has a κ-saturated
model which is not κ+-saturated. We show, under some set-theoretic assumptions, that
any simple theory has exact saturation. Also, an NIP theory has exact saturation if and
only if it is not distal. This gives a new characterization of distality.
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1. Introduction

A first-order theory T has exact saturation at κ if it has a κ-saturated model which
is not κ+-saturated. When κ > |T | is regular, then any theory has exact saturation
at κ (see Fact 2.5), hence we are only interested in the case κ singular.

Possibly adding set-theoretic assumptions, we expect that for a given theory T ,
having exact saturation at a singular cardinal κ does not depend on κ, and that
this property is an interesting dividing line within first-order theories. We indeed
show this for stable, simple and NIP theories.
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The second author has shown previously [4, IV, Lemma 2.18] that stable theories
have exact saturation at any κ. Since this is not stated exactly in this form there,
and also for completeness, we added a proof here (see Theorem 2.4). He also showed
that an NIP theory with an infinite indiscernible set has exact saturation at any
singular κ with 2κ = κ+ [5, Claim 2.26].

We establish here the precise dividing line for NIP theories: with the same
assumptions on κ, an NIP theory has exact saturation at κ if and only if it is not
distal. This gives a new characterization of distality within NIP theories, and allows
an answer to Question 2.30 from [5]. See Corollary 4.11.

We also generalize the result on stable theories to simple theories: let T be
simple and assume that κ is singular of cofinality greater than |T |, 2κ = κ+ and
�κ holds, then T has exact saturation at κ.

2. Definitions and First Results

Definition 2.1. Suppose T is a first-order theory and κ is a cardinal. We say
that T has exact saturation at κ if T has a κ-saturated model M which is not
κ+-saturated.

We will use the following notion throughout the paper.

Definition 2.2. Let T be any complete theory. Suppose that D is a collection of
finitary types over some set A. A set B is a D-set if for every finite tuple b from
B, tp(b/A) ∈ D. For a D-set B ⊇ A, a type p ∈ S<ω(B) is called a D-type if Bd is
a D-set for some (any) d |= p. A D-model is a model of T which is a D-set.

2.1. Stable theories

Suppose T is a stable theory. This part is not new, but it is short, and we keep it
for completeness.

Fact 2.3 ([4, IV, Lemma 2.18]). Suppose p(x) is a partial type over B ⊆ A.
Then there is A0 ⊆ A of size ≤ |T |, and an extension q ⊇ p over BA0 which isolates
a complete type over A.

Proof. Enumerate the formulas 〈ϕi(x, yi) | i < |T |〉. Construct an increasing con-
tinuous sequence of types 〈pi | i < |T |〉, where p0 = p such that pi+1 isolates a
complete ϕi-type over A and |pi+1\pi| = 1. To find pi+1, let ψ(x) be a formula over
A with minimal R2,ϕi-rank consistent with pi (which exists by stability), and let
pi+1 = pi ∪ {ψ}. Finally, let q =

⋃
i<|T | pi.

Theorem 2.4. Assume T is stable. Then for all κ > |T |, T has exact saturation
at κ.

Proof. Let I be an indiscernible set of cardinality κ. Let D be the collection of
finitary types p over I such that for some I0 ⊆ I of cardinality < κ, p|I0 � p.
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Suppose that p(x) = tp(c/I) ∈ D, as witnessed by I0. By stability, there is
some I ′ ⊆ I of size ≤ |T | such that I\I ′ is indiscernible over cI ′ (let I ′ be the set
of parameters appearing in the formulas defining tp(c/I) over I, or see Fact 4.2
below). Let I ′0 = I ′ ∪ I ′′, where I ′′ ⊆ I is any infinite countable set disjoint from
I ′ ∪ I0. Then an easy argumenta gives us that p|I′

0
� p. This shows that we can

always assume that I0 has size ≤ |T |.
By Fact 2.3, we can construct a κ-saturatedD-modelM containing I of cardinal-

ity 2κ. It is enough to show that given D-sets A ⊆ B, where |A| < κ, and some type
p ∈ S(A), there is some realization a |= p such that aB is a D-set. We may assume
that I ⊆ B. By Fact 2.3, there is some A0 ⊆ B such that |A0| ≤ |T | and a type
p0 ⊇ p over A0A such that p0 isolates a complete type over B. Let a |= p0. Then aB
is aD-set: for a finite tuple c fromB, let I0 be such that tp (A0Ac/I0) � tp (A0Ac/I)
and |I0| ≤ |A0| + |A| + |T | < κ. Then tp(ac/I0) � tp(ac/I).

Now note that Av(I/I) which is a type of a new element in I over I is not a
D-type, so M is not κ+-saturated.

2.2. Unstable theories

Recall that a type p(x) ∈ S(M) is called invariant over A ⊆ M if it does not
split over A: if a, b ∈ M are such that a ≡A b, then for any formula ϕ(x, y),
ϕ(x, a) ∈ p⇔ ϕ(x, b) ∈ p.

Fact 2.5. If T is not stable then T has exact saturation at any regular |T | < κ.

Proof. Let M0 |= T be of size |T |. For i ≤ κ, define a continuous increasing
sequence of models Mi, where |Mi+1| = 2|Mi| and Mi+1 is |Mi|+-saturated. Hence
Mκ is κ-saturated and |Mκ| = �κ(|T |).

As T is unstable, |S(Mκ)| > �κ(|T |). Why? first note that Mκ is �κ(|T |)+-
universal in the sense that if N |= T , |N | ≤ �κ(|T |), then N can be elementarily
embedded into Mκ. To show this, given N , we may assume |N | = �κ(|T |), and
write N as a continuous increasing sequence

⋃{Ni | i < κ}, where |N0| = |T | and
|Ni+1| = 2|Ni|. By induction, find an increasing continuous sequence of elementary
maps fi : Ni → Mi+1 for all i < κ, using the fact that |Ni| = |Mi| and Mi+1 is
|Mi|+-saturated. Taking the limit will give us an elementary map f : N → Mκ.
Hence, if |S(Mκ)| ≤ �κ(|T |), it would follow that for any model N of size |N | ≤
�κ(|T |), S(N) ≤ �κ(|T |), which would mean that T is �κ(|T |)-stable.

However, as the number of types over Mκ invariant over Mi is ≤ 22|Mi| ≤
�κ(|T |), there is p(x) ∈ S(Mκ) which splits over every Mi. Hence for each i < κ,
there is some formula ϕi(x, y) and some ai, bi ∈ Mκ such that ai ≡Mi bi and

aSuppose ϕ(x, a, d) ∈ p, where d ∈ I′ and I′ ∩ a = ∅. Let a′ ∈ I′′ be such that a′ ≡ a, so
that a′ ≡I′ a and ϕ(x, a′, d) ∈ p. Let ψ(x, b, e) ∈ p, b ∈ I0, e ∈ I′ and b ∩ I′ = ∅, be such that
ψ(x, b, e) � ϕ(x, a′, d). Let b′ ∈ I′′ be such that b′ ≡ b and b′∩aa′ = ∅. Then ψ(x, b′, e) � ϕ(x, a′, d)
and ψ(x, b′, e) ∈ p. Note that a ≡db′e a

′ so that ψ(x, b′, e) � ϕ(x, a, d).
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ϕi(x, ai) ∧ ¬ϕi(x, bi) ∈ p. Let q(x) be {ϕi(x, ai) ∧ ¬ϕi(x, bi) | i < κ}. Then q is not
realized in Mκ.

3. Simple Theories

In the following definition, for a set of ordinals A, Lim(A) is the set of ordinals
δ ∈ A which are limits of ordinals in A.

Definition 3.1 (Jensen’s Square principle, [2, p. 443]). Let κ be an uncount-
able cardinal; �κ (square-κ) is the following condition:

There exists a sequence 〈Cα |α ∈ Lim(κ+)〉 such that:

(1) Cα is a closed unbounded subset of α.
(2) If β ∈ Lim(Cα), then Cβ = Cα ∩ β.
(3) If cof(α) < κ, then |Cα| < κ.

Remark 3.2. Suppose that 〈Cα |α ∈ Lim(κ+)〉 witnesses �κ. Let C′
α = Lim(Cα).

Then the following holds for α ∈ Lim(κ+).

(1) If C′
α �= ∅, then either sup(C′

α) = α, or C′
α has a last element < α in which

case cof(α) = ω.
(2) C′

α ⊆ Lim(α) and for all β ∈ C′
α, C′

α ∩ β = C′
β .

(3) If cof(α) < κ, then |C′
α| < κ.

Theorem 3.3. Suppose that T is simple, µ is singular with |T | < κ = cof(µ),
µ+ = 2µ and �µ holds. Then T has exact saturation at µ.

The square assumption will only be used in the end of the proof.
Towards the proof, let us first fix an increasing continuous sequence 〈λi | i < κ〉

of cardinals whose limit is µ such that λi+1 is regular for all i < κ and such that
λ0 > κ.

If T is stable, then we already know that T has exact saturation at µ by Theo-
rem 2.4. So assume that T is not stable.

As it is simple, by e.g. [8, Exercises 8.2.5 and 8.2.6], it has the independence
property. Let ϕ(x, y) witness this.

Notation 3.4. For a sequence of linear orders 〈(Xi <i) | i ∈ I〉, where I is linearly
ordered by <, let

∑
i∈I Xi be the linear order whose set of elements is

⋃{Xi ×
{i} | i ∈ I} ordered by (x, i) < (y, j) if and only if i < j or i = j and x <i y.

Let Succ(κ) = κ\Lim(κ). For i ∈ Succ(κ), let Ii be the linear order λi, and let
I =

∑
i∈Succ(κ) Ii. Let 〈ai | i ∈ I〉 be an indiscernible sequence witnessing that ϕ has

the independence property i.e. for every subset s ⊆ I, there is some bs such that
ϕ(bs, ai) holds if and only if i ∈ s. Abusing notation, we will write Ii = 〈aj | j ∈ Ii〉
and similarly for I.
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Definition 3.5. For i ∈ Succ(κ), let Di be the collection of finitary types p ∈
S<ω(Ii) such that for any finite s ⊆ Ii there is some α < λi such that I≥α

i (i.e.
Ii � [α, λi)) is indiscernible over s ∪ d for some (any) d |= p.

Remark 3.6. Note that since λi is regular when i is a successor, a set A is a Di-set
if and only if for any subset C ⊆ A, |C| < λi, there is some α < λi such that I≥α

i

is indiscernible over C ∪ I<α
i . Indeed, given C, for every finite set t ⊆ C, let αt be

as in Definition 3.5 (for s = ∅). Let α0 = sup{αt | t ⊆ C finite}. Let α0 < α1 be
defined similarly for C ∪ I<α0

i . Continue and finally put α = sup{αn |n < ω}.

Definition 3.7. Let M be the class of sequences Ā = 〈Ai | i < κ〉 such that:

• For some i0 ∈ Succ(κ), for all i0 ≤ i ∈ Succ(κ), Ii ⊆ Ai, and for all i < i0,
Ai = ∅; 〈Ai | i < κ〉 is increasing and continuous and |Ai| ≤ λi for all i ∈ Succ(κ).

• For all i ∈ Succ(κ), Ai is a Di-set.

Definition 3.8. For Ā, B̄ ∈ M, write Ā ≤i B̄ for: for all i ≤ j < κ, Aj ⊆ Bj ;
Ā ≤ B̄ for: Ā ≤0 B̄; and Ā ≤∗ B̄ for: there is some i < κ such that Ā ≤i B̄.

Proposition 3.9. Given Ā ∈ M, there is Ā ≤ B̄ ∈ M such that for all i ∈ Succ(κ),
Bi is either ∅ or a model of T .

Proof. For simplicity assume that i0 = 0 in Definition 3.7. It is enough to prove
the following.

Claim 3.10. Let i ∈ Succ(κ). Suppose that ψ(x) is a formula over Ai. Then there
is some Ā ≤ B̄ ∈ M such that Bi realizes ψ.

Proof. Suppose ψ = ψ(x, c). Let α < λi be such that I≥α
i is indiscernible over

Ai−1c∪I<α
i (see Remark 3.6). Let d |= ψ. by Ramsey and compactness, there is some

sequence J with the same order type and EM -type as I≥α
i over cdAi−1I

<α
i which is

indiscernible over cdAi−1I
<α
i . Hence J ≡cAi−1I<α

i
I≥α
i , so apply an automorphism

of C to move J to I≥α
i over cAi−1I

<α
i and let d′ be the image of d. We get that

I≥α
i is indiscernible over cd′Ai−1I

<α
i and still d′ |= ψ, and even d′ ≡Ai−1 d (this is

not important here, but will be later). Let p = tp(d′/cAi−1Ii).
(	) Suppose now that we are in a general situation, where we have some type

p1 ∈ S(AjBIj+1), where B ⊆ Aj+1 is of cardinality < λj+1 and there is some
α < λj+1 such that for any d |= p1, I

≥α
j+1 is indiscernible over dAjBI

<α
j+1, and suppose

e ∈ Aj+1. Then there is some λj+1 > β > α such that I≥β
j+1 is indiscernible over

AjBI
<β
j+1e. By Ramsey and compactness, there is some indiscernible sequence J with

the same EM and order type as I≥β
j+1 over AjBI

<β
j+1ed which is indiscernible over

AjBI
<β
j+1ed for some fixed d |= p1. Then J ≡AjBeI<β

j+1
I≥β
j+1 and J ≡AjBdI<β

j+1
I≥β
j+1.

Hence, applying an automorphism fixing AjBI
<β
j+1e which maps J to I≥β

j+1, we move
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d to some d′ which still realizes p1 but now I≥β
j+1 is indiscernible over AjBI

≥β
j+1ed

′.
Let p2 = tp(d′/AjBIj+1e) ⊇ p1.

Using (	) iteratively, taking unions at limit stages, starting with p, we can find
some ψ ∈ pi ∈ S(Ai) such that for every d |= pi, Aid is a Di-set.

We construct an increasing continuous sequence of types, 〈pj | i ≤ j < κ〉, pj ∈
S(Aj) such that for j ∈ Succ(κ), if e |= pj then Aje is a Dj-set. We then let
p =

⋃
i≤j<κ pj , d |= p and define Bj = Aj ∪ {d} for all i ≤ j < κ.

The construction of pj+1 uses a weak version of (	) in the first step (keeping only
the type over Aj , as we did in the beginning), and then (	) as in the construction
of pi.

Main Lemma 3.11. Suppose that 〈Ai | i < κ〉 ∈ M, and C ⊆ ⋃
i<κAi is such

that |C| < µ. Let p ∈ S(C). Then there is some Ā ≤ B̄ ∈ M which contains a
realization of p.

Proof. Here, we use the simplicity of T .
First, by Proposition 3.9, we may assume that for i ∈ Succ(κ), Ai = ∅ or is a

model.
We may assume that there is some E ⊆ C of size ≤ |T | such that p does not fork

over E and moreover if q is a type over
⋃

i<κAi extending p, then q does not fork
over E (if p was already realized in

⋃
i<κAi, we can extend p and take E to be that

realization). We get this by trying to construct an increasing continuous sequence
〈(pα, Eα) |α < |T |+〉 of subsets Eα ⊆ ⋃

i<κAi of cardinality ≤ |T |, and complete
types pα over Eα∪C extending p starting with (p, ∅) such that pα+1|Eα+1 forks over
Eα. By local character of nonforking in simple theories (see [8, Proposition 7.2.5]),
it follows that we must get stuck at some point in the construction, say α, and
let E = Eα, p = pα (note that in particular, pα does not fork over Eα because
otherwise we could increase Eα).

Let i0 < κ be a successor ordinal such that Ai0 �= ∅, E ⊆ Ai0 and |C| < λi0 .
(Here, we use the assumption that cof(µ) = κ > |T |.)

Now we make things easier:

(1) Enlarge C, so that for all i0 ≤ i ∈ Succ(κ), C ∩Ai is a model of T . We can do
this by building Ci,l for l < ω, i0 ≤ i < κ, so that 〈Ci,l | i0 ≤ i < κ〉 is increasing
continuous with union Cl, C∩Ai ⊆ Cl∩Ai ⊆ Ci,l′ for l′ > l and where Ci,l∩Ai

is a model for i ∈ Succ(κ) and |Ci,l| ≤ λi0 . Finally, let C′ =
⋃{Cl | l < ω}.

(2) Enlarge C again, so that for all i0 ≤ i ∈ Succ(κ), C |
C∩Ai
Ai. To achieve

this, build again Ci,l as above such that for i ∈ Succ(κ), Ci,l |
Ci,l∩Ai
Ai.

(We construct Ci+1,l+1 as follows. Start with Ci,l+1 ∪ (Cl ∩Ai+1) and by local
character find some B0 ⊆ Ai+1 of cardinality ≤ λi0 such that Ci,l+1 ∪ (Cl ∩
Ai+1) |
B0

Ai+1, then let C1
i+1,l+1 = Ci,l+1 ∪ (Cl ∩ Ai+1) ∪ B0. Continue this

ω steps and take the union). Finally, let C′ =
⋃{Ci,l | i < κ, l < ω}.
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(3) Enlarge C by alternating steps (1) and (2) ω times, so that both C ∩ Ai is a
model of T and C |
C∩Ai

Ai for all i ∈ Succ(κ) such that i ≥ i0.

Now we want to find some e |= p such that tp(e/Ai0) is a Di0 -type. Start with any
e |= p. Note that by the choice of E above, tp(e/

⋃
i<κAi) does not fork over E.

Let α < λi0 be such that I≥α
i0

is indiscernible over (C ∩ Ai0)I
<α
i0

. By Ramsey,
there is some J with the same order type and EM -type as I≥α

i0
over (C ∩Ai0 )I

<α
i0
e

which is indiscernible over (C∩Ai0 )I
<α
i0
e. Since e |
E

⋃
i<κAi, in particular we have

that e |
(C∩Ai0)
Ii0 by the choice of i0 above, so also e |
(C∩Ai0)

I<α
i0
J (here, we use

the fact that I≥α
i0

is indiscernible over (C∩Ai0 )I
<α
i0

, see also below). By applying an
automorphism over (C ∩Ai0 )I

<α
i0

taking J to I≥α
i0

, we can find some d ≡I<α
i0

(Ai0∩C)

e such that d |
C∩Ai0
Ii0 and I≥α

i0
is indiscernible over dI<α

i0
(C ∩ Ai0 ). By the

independence theorem over models in simple theories (see [8, Theorem 7.3.11]), as
e |
Ai0∩C

C, d |
Ai0∩C
Ii0 , e ≡Ai0∩C d and C |
Ai0∩C

Ii0 , there is some d′ such

that d′ |= p and d′ ≡(C∩Ai0)Ii0
d.

This gives us some e |= p such that tp(e/Ii0(C ∩Ai0)) is a Di0 -type.
Now, we use basically the same idea as in the proof of Proposition 3.9, using the

independence theorem: we start with a Di0 -type q1 ∈ S(BIi0 ), where C ∩Ai0 ⊆ B ,
|B| < λi0 , consistent with p, and we want to extend it to a Di0 -type q2 ∈ S(BIi0f)
where f ∈ Ai0 which is also consistent with p. Let d |= q1 ∪ p. By the choice of E,
d |
E

⋃
i<κAi. Let α < λi be such that I≥α

i0
is indiscernible over dBI<α

i0
. Let β > α

be such that I≥β
i0

is indiscernible over fBI<β
i0

. Find J with the same EM -type as
I≥β
i0

over I<β
i0
Bdf such that J is indiscernible over I<β

i0
Bdf . Then J ≡I<β

i0
Bd I

≥β
i0

,

and J ≡I<β
i0

Bf I
≥β
i0

. As d |= p, we know that d |
Ai0∩C
Ii0Bf (by choice of i0), hence

also d |
Ai0∩C
I<β
i0
JBf (if ψ(x, j,m) witnessed forking, where j ∈ J is an increasing

tuple and m ∈ I<β
i0
Bf , then for some increasing tuple j′ ∈ I≥β

i0
, ψ(d, j′,m) holds.

But j′m ≡Ai0∩C jm as I≥β
i0

is indiscernible over fBI<β
i0

) . Move J to I≥β
i0

over
I<β
i0
Bf , to get some d′ ≡Ii0B d, but now I≥β

i0
is indiscernible over I<β

i0
Bd′f and

d′ |
Ai0∩C
Ii0Bf. Now, we can use the independence theorem as above, and find

q2.
Using this technique (constructing an increasing continuous sequence of types

over small subsets of Ai0 augmented with Ii0) we can find some e |= p such that
tp(e/Ai0 ) is a Di0 -type.

Now we may continue. More formally, we find an increasing continuous sequence
of types pi for i0 ≤ i < κ such that:

• pi0 = tp(e/Ai0); pi ∈ S(Ai) and for i ∈ Succ(κ), pi is a Di-type and pi ∪ p is
consistent for all i.

We can do this by using the same technique as in the construction of pi0 . Finally,
let pκ =

⋃
i<κ pi, let e |= pκ, and let Bi = ∅ for i < i0 and Aie for i ≥ i0.
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Proof of Theorem 3.3. Let 〈Cα |α ∈ Lim(µ+)〉 be a sequence as in Remark 3.2.
Note that |Cα| < µ for all α < µ+ as µ is singular. Let {Sα |α < µ+} be a partition
of µ+ to sets of size µ+. We construct a sequence 〈(Āα, p̄α) |α < µ+〉 such that:

(1) Āα = 〈Aα,i | i < κ〉 ∈ M;
(2) p̄α is an enumeration 〈pα,β |β ∈ Sα\α〉 of all complete types over subsets of

⋃
i<κAα,i of size < µ (this uses µ+ = 2µ);

(3) If β < α then Āβ ≤∗ Āα (see Definition 3.8);
(4) If α ∈ Sγ and γ ≤ α, then Āα+1 contains a realization of pγ,α;
(5) If α is a limit ordinal, then for all i < κ such that |Cα| < λi, Aα,i �= ∅ and for

all β ∈ Cα, Āβ ≤i Āα.

Start with A0,i = Ii for i ∈ Succ(κ) and otherwise defined by continuity.
For α+ 1, use Main Lemma 3.11.
For α limit, there are two possibilities.

Case 1. sup(Cα) = α. Suppose i0 < κ is minimal such that |Cα| < λi0 (so
necessarily i0 ∈ Succ(κ)). For i < i0, let Aα,i = ∅. For i ≥ i0 successor, let
Aα,i =

⋃
β∈Cα

Aβ,i. Note that |Aα,i| ≤ λi. We have to show that Āα satisfies
(1), (3) and (5). The latter is by construction and the fact that for β ∈ Cα,
|Cβ | ≤ |Cα|.

For (1), suppose s ⊆ Aα,i is a finite set where i0 ≤ i ∈ Succ(κ). For every
element e ∈ s, there is some βe ∈ Cα such that e ∈ Aβe,i. Let β = max{βe | e ∈ s}.
Then β is a limit ordinal and Cα∩β = Cβ . As |Cβ | < λi0 , it follows by the induction
hypothesis that s ⊆ Aβ,i. As Aβ,i is a Di-set for all such β, it follows that Aα,i is
a Di-set as well.

Lastly, (3) is easy by assumption of the case and transitivity of ≤∗.

Case 2. sup(Cα) < α. In this case, if Cα �= ∅, then it has a last element, and
cof(α) = ω < κ. If Cα = ∅, choose γ = 0, otherwise, it is the last element of Cα.
Let i∗ < κ be minimal such that |Cα| < λi∗ .

Choose a cofinal set S ⊆ α above γ of size ℵ0 < κ. For all ε < ζ ∈ S, Āε ≤∗ Āζ

as is witnessed by some iε,ζ < κ. As κ is regular, there is some i∗ < i0 ∈ Succ(κ)
such that Āε ≤i0 Āζ for all ε < ζ ∈ S. By the same reasoning there is some
i0 < i1 ∈ Succ(κ) such that Āγ ≤i1 Āε for all ε ∈ S. Set Aα,i = Aγ,i for i < i1 and
Aα,i =

⋃
β∈S Aβ,i for i ≥ i1.

Now: (1) follows by choice of i0 (so that each Aα,i is a Di-set) and i1 (so that
Aα,i is increasing with i), (3) follows by the transitivity of ≤∗, so we are left with
(5). The first part is easy: if Cα = ∅, then it follows by our choice of Ā0. Otherwise,
use the fact that Cγ ⊆ Cα.

Suppose β ∈ Cα. Then, either β = γ, in which case this clause is obvious, or
β < γ, in which case β ∈ Cγ . By the induction hypothesis, Āβ ≤i∗ Āγ ≤ Āα, so we
are done by the choice of i∗.
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Finally, let M =
⋃

α<µ+,i<κAα,i. Then M is a µ-saturated model of T by (4). How-
ever, it is not µ+-saturated because the type {ϕ(x, aj) | j ∈ I even}∪{¬ϕ(x, aj) | j ∈
I odd} is not realized in M : suppose b realizes it. We have that b is a finite tuple,
but since Āα is an increasing continuous sequence for all α < µ+, there must be
some α < µ+ and i ∈ Succ(κ) such that b ∈ Aα,i. But clearly tp(b/Ii) is not a
Di-type — contradiction.

4. Dependent Theories

Here, we characterize the NIP (dependent) theories which have exact saturation
at κ, assuming the Continuum Hypothesis at κ. They happen to be precisely the
nondistal theories.

Throughout this section, assume that T is NIP: for no formula ϕ(x, y) is it the
case that there are 〈ai | i < ω〉 and 〈bs | s ⊆ ω〉 such that C |= ϕ(ai, bs) holds if and
only if i ∈ s.

We use the notation Xopp for a linear order X to denote X with the order
reversed.

4.1. Preliminaries

4.1.1. NIP theories

Suppose I is an indiscernible sequence. We will identify I and its underlying order.
For instance, we will say that I is dense if its underlying order type is. All our
sequences will be infinite.

Shrinking of indiscernibles. Recall the following definition, which, in NIP theories,
gives a complete type.

Definition 4.1. The average type (at ∞) of an indiscernible sequence with no end,
〈ai | i ∈ I〉, over A, denoted by Av∞(I/A), consists of formulas of the form φ(b, x)
with b ∈ A, such that for some i ∈ I, C |= φ(b, aj) for every j ≥ i.

We will use shrinking of indiscernibles (which is a stronger version of the exis-
tence of averages), as formulated in the following fact. Given a linear order (X,<),
a finite convex equivalence relation on X is an equivalence relation with finitely
many classes which are convex.

Fact 4.2 (Shrinking, see e.g. [7, Theorem 3.33]). Suppose I is an indiscernible
sequence over some set A, and suppose that b is some finite tuple and ∆ a finite
set of formulas. Then there is a finite convex equivalence relation ∼ on I such that
each ∼-class C is ∆-indiscernible over Ab ∪ I\C.

Moreover, given a formula ϕ(x0, . . . , xn−1, y, z) there is such an equivalence
relation ∼ such that for any two finite increasing sequences ī, j̄ of length n from I,
if ī ∼ j̄ (i.e. i0 ∼ j0, . . . , in−1 ∼ jn−1) and a ∈ Az then ϕ(ai0 , . . . , ain−1 , b, a) holds
if and only if ϕ(aj0 , . . . , ajn−1 , b, a).
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A cut in an indiscernible sequence I has the form c = (I1, I2) for I1 an initial
segment of I and I2 its corresponding end segment. Our cuts will always be internal
(both I1, I2 are not empty) and have infinite cofinality from both sides, unless we
specifically say otherwise.

Here is a useful and easy corollary of Shrinking of indiscernibles (Fact 4.2). We
leave its proof as an exercise.

Corollary 4.3. Suppose that I is indiscernible, |T | ≤ θ, and that ci for i < θ+ are
distinct cuts, each of cofinality at least θ+ from both sides. Then for any set A with
|A| ≤ θ, there is some i < θ+ such that there is an interval I0 around ci which is
indiscernible over A ∪ I\I0.

Invariant types and Morley sequences. Recall that for a global A-invariant type p ∈
S(C), and for B ⊇ A, the sequence 〈ai | i < ω〉 generated by realizing ai |= p|Ba<i

is always indiscernible over B. This sequence is a Morley sequence generated by
p over B. In general, Morley sequences need not be of order type ω. A sequence
〈ai | i ∈ I〉 of any order type (I,<) is a Morley sequence of p over B if for any i ∈ I,
ai |= p|Ba<i . Let p(I)|B = tp(〈ai | i ∈ I〉/B) and p(I) be the global A-invariant type
⋃

A⊆B p
(I)|B. See e.g. [8, Example 7.2.10; 7, Sec. 2.2.1] for more.

In NIP, any endless indiscernible sequence over A is a Morley sequence of some
invariant type over a set containing A (extend I to I+Iopp, and let p be the average
type of Iopp at −∞, so p is Iopp-invariant and I is a Morley sequence of p over
AIopp).

4.1.2. Distal theories

Suppose that I is indiscernible and that c = (I1, I2) is a cut in I. For a set A,
denote by lim(c−/A) = Av∞(I1/A), and similarly lim(c+/A) is the average type of
I2 at −∞ over A. This is the limit type of c− (or c+) over A. Note that if A = C,
this is an I1 (or I2)-invariant type.

Note that lim(c+/I) = lim(c−/I) (so we just write lim(c/I)), and that if
b |= lim(c/I) then b fills I: when b is put in c, the augmented sequence I ∪ b is
indiscernible. In fact this is equivalent to satisfying lim(c/I).

More generally, if c̄ is some (possibly infinite) ordered tuple of tuples in same
length as the tuples in I, we will say that c̄ fills c if when we put c̄ in c, in the right
order, the augmented sequence I ∪ c̄ is indiscernible.

For instance, if c̄ is of order type ω, then, using the notation from above, we
have that if c̄ |= lim(c+/C)(ω)|I , then c̄ fills c.

When I is indiscernible over A, we can add “over A” everywhere, meaning that
we name the elements of A.

Definition 4.4. We say that two types p(x), q(y) ∈ S(A) are orthogonal if their
union implies a complete type in x, y over A (usually this notion is called “weakly
orthogonal”, but full orthogonality will not be used in this paper).
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If c1 and c2 are two distinct cuts in a dense indiscernible sequence I, and
bi |= lim(ci/I) for i = 1, 2, we will say that b1, b2 are I-independent, if, when
placed in their appropriate cuts, I ∪ {b1, b2} is indiscernible. The two limit types
are orthogonal if and only if this happens to every such b1, b2.

Definition 4.5. A dense indiscernible sequence I is called distal if whenever c1, c2
are two distinct cuts in I, then lim(c1/I) and lim(c2/I) are orthogonal.

Remark 4.6. (1) If I is a dense indiscernible sequence which is not distal, then
there are two distinct cuts ci for i = 1, 2 and bi |= lim(ci/I) such that I ∪
{b1, b2} (i.e. I augmented with b1, b2 placed in their corresponding cuts) is not
indiscernible. By compactness and indiscernibility, it is easy to see that this is
true for any dense indiscernible sequence with the same EM-type as I and any
distinct cuts d1, d2 there.

(2) Distal indiscernible sequences and distal theories (see below) were defined and
discussed at length in [6]. There, they are defined a bit differently, namely: an
infinite indiscernible sequence (not necessarily dense) is distal if it has the same
EM-type as a dense indiscernible sequence which is distal. On the face of it,
this defines a larger class even inside dense sequences, but this is not the case
by [6, Lemma 2.3].

Definition 4.7. An NIP theory T is called distal if all infinite dense indiscernible
sequences in it are distal.

Fact 4.8 ([7; 1, Theorems 9.21 and 9.22]). A theory T is distal if and only
if for any formula ϕ(x, y) there is a formula θ(x, z) such that: for any M |= T ,
A ⊆ M of size at least 2, a ∈ Mx and a finite C ⊆ Ay there is b ∈ Az such that
M |= θ(a, b) and θ(x, b) � tpϕ(a/C). Equivalently, in some elementary extension
(M,A) ≺ (M ′, A′) of the pair, there is b ∈ (A′)z such that M ′ |= θ(a, b) and
θ(x, b) � tpϕ(a/A).

Example 4.9 ([6, Corollary 2.30]). Examples of distal theories include o-
minimal theories (e.g. RCF, DLO), and the theory of the p-adics.

4.2. Results

Now we are ready to state our main theorem for this section.

Theorem 4.10. Suppose that κ is a singular cardinal such that κ+ = 2κ. An NIP
theory T with |T | < κ is distal if and only if it does not have exact saturation at κ.

In [5, Question 2.30], the following question appears. Is there a dependent theory
T with exact saturation at some singular cardinal κ of cofinality > |T | such that
even in T eq there is no infinite indiscernible set?

In [7, Sec. 9.3.4], there is an example of an NIP theory which is not distal
and yet has no nontrivial generically stable type, even in T eq. Having an infinite
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indiscernible set is equivalent to having a generically stable type (see [7, Sec. 2.2.2,
Remark 2.32]). Together, we get the following.

Corollary 4.11. The answer to [5, Question 2.30] is “yes”, provided that for some
singular κ with cof(κ) > |T |, κ+ = 2κ.

Left to Right.

Proposition 4.12. If T is distal and |T | < κ is singular, then every κ-saturated
model M is also κ+-saturated.

Proof. Suppose A ⊆ M and |A| = κ. Suppose µ = cof(κ) < κ. Let p ∈ S(A), and
we want to show that p is realized in M . Write A =

⋃
i<µAi with |Ai| < κ. For

each i < µ, let bi |= p � Ai, bi ∈M (exists as M is κ-saturated). Let ϕ(x, y) be some
formula. By Fact 4.8, there is some (M ′

i , A
′
i) � (M,Ai), d

ϕ
i ∈ A′

i and θϕ such that
M ′

i |= θϕ(bi, d
ϕ
i ) and θϕ(x, dϕ

i ) � tpϕ(bi/Ai) (as usual, we assume that everything
happens in the monster model C of T ). Let qi = {θϕ(x, dϕ

i ) |ϕ(x, y) ∈ L}.

Claim 4.13. If µ > j ≥ i then bj |= qi (in M ′
i).

Proof. For j = i, this is by choice of θϕ, so suppose j > i and that θϕ(bi, d
ϕ
i ) ∧

¬θϕ(bj, d
ϕ
i ) for some ϕ. Hence (M ′

i , A
′
i) |= ∃z ∈ P (θϕ(bi, z) ∧ ¬θϕ(bj , z)), where P

is a predicate symbol interpreted as A′
i. Hence the same is true in (M,Ai). But

bi ≡Ai bj so this cannot happen.

Let di = 〈dϕ
i |ϕ ∈ L〉 for i < µ, and find ei |= tp(di/Ai ∪ {bi | i < µ}) in

M , which exists by κ-saturation. Enumerate it as ei = 〈eϕ
i |ϕ ∈ L〉. Let ri(x) =

{θϕ(x, eϕ
i ) |ϕ ∈ L}. Note that for each ϕ and i < µ, θϕ(x, eϕ

i ) � tpϕ(bi/Ai) and
that bj |= ri for j ≥ i by Claim 4.13.

Let r =
⋃

i<µ ri. By the previous paragraph, r is a consistent type in M , and it
is a type over a set of size ≤ µ · |T | < κ, so it is realized, say by c ∈M . Then c |= p.

Right to left — Technical lemmas.

Definition 4.14. Suppose s ⊆ C is a finite set, and I is an indiscernible sequence.
Let us say that a cut c in I is generic for s if there is a neighborhood I0 = (i1, i2)
of c in I such that I0 is indiscernible over s ∪ I\I0.

Similarly, for a small set A, c is A-generic if it is generic for every finite subset
from A. We can similarly say that c is q-generic for a complete finitary type q over
I, meaning that c is c-generic for some (any) c |= q (formally, for

⋃
c).

Definition 4.15. For an indiscernible sequence I, let DI be the collection of fini-
tary types q ∈ S<ω(I) such that q is orthogonal (see Definition 4.4) to lim(c/I) for
some q-generic cut c.
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Remark 4.16. Suppose that c is generic for c in some sequence I as witnessed
by (i1, i2). Then lim(c−/Ic) = lim(c+/Ic) and if b |= lim(c/Ic) then b fills c and
moreover, the interval (i1, i2) ∪ b is indiscernible over c ∪ I\(i1, i2).

Hence, to say that q is orthogonal to c in Definition 4.15 means that whenever
c |= q and a |= lim(c/I), we have that a |= lim(c/Ic).

Remark 4.17. Note that if I is dense indiscernible, and c is c-generic then c is c-
generic also in Iopp (I with reverse order). Similarly, q ∈ DI if and only if q ∈ DIopp

with the same cut witnessing this. Moreover, note that I is a DI -set (for any finite
s ⊆ I, any cut c will witness this), and that if A is a DI -set then so is AI.

We want to show that this definition behaves well.

Main Lemma 4.18. Suppose I is dense indiscernible. If q ∈ DI and c is q-generic,
then q is orthogonal to lim(c/I).

The proof uses two ingredients, both from [6]. One is the finite co-finite theorem,
and the other is the external characterization of domination.

First, a technical claim.

Claim 4.19. Suppose that I is a dense indiscernible sequence, and that tp(c/I) ∈
DI as witnessed by c = (I1, I2). Let I1 � i1 < i2 ∈ I2 be such that (i1, i2) is
indiscernible over I\(i1, i2) ∪ c. Suppose that J is some dense sequence with no
minimum such that I ′ = I1 + J + I2 is indiscernible and, in I ′, we still have that
(i1, i2) is indiscernible over I\(i1, i2) ∪ c. Then tp(c/I ′) ∈ DI′ as witnessed by
(I1, J + I2).

Similarly, if J has no maximum, the same is true for (I1 + J, I2).

Proof. What this claim says is that, letting d = (I1, J+I2), d is c-generic in I ′ (by
assumption) and if a |= lim(d/I ′), then a |= lim(d/I ′c). Suppose not. Then for some
formula ϕ(x, x1, . . . , xk−1) over c∪ I1 ∪ I\(i1, i2) there are d < b1 < · · · < bk−1 < i2
from J + I2 such that ¬ϕ(a, b1, . . . , bk−1) holds even though for all c0 < · · · <
ck−1 < i2 from I2, ϕ(c0, . . . , ck−1) holds.

Choose b′1 < · · · < b′k−1 < i2 from I2. Let Γ0(x) be the type over c ∪ I saying
that x fills c and let Γ = Γ0 ∪ {¬ϕ(x, b′1, . . . , b′k−1)}. Then Γ is consistent: a finite
part Γ′

0 of Γ0 says that 〈a′j | j < m〉 � 〈x〉 � 〈c′j | j < l〉 is ∆-indiscernible where
〈a′j | j < m〉, 〈c′j | j < l〉 are increasing sequences from I1 and I2, respectively and ∆
is a finite set of L-formulas. For 0 < i < k, let s′i = {j < l | b′i−1 < c′j ≤ b′i}, where
b′0 = −∞ in I2. As J + I2 is dense, we can find an increasing sequence 〈cj | j < l〉
from J + I2 such that, letting si = {j < l | bi−1 < cj ≤ bi} (where b0 = −∞ in J),
s′i = si. As (i1, i2) is indiscernible over c∪ I\(i1, i2) in I ′, there is an automorphism
σ fixing c∪ I1 ∪ I\(i1, i2) taking b′i to bi and c′j to cj . But σ−1(a), then satisfies Γ′

0

and also ¬ϕ(x, b′1, . . . , b
′
k−1) as we wanted.

However, Γ cannot be satisfied by the assumption that tp(c/I) ∈ DI .
The analogous claim on (I1 + J, I2) is proved similarly.
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We continue with the finite-co-finite theorem [6, Theorem 3.30]. This theorem
states that if I = I1 + I2 + I3 is indiscernible, both I1, I3 are infinite and I1 + I3
is indiscernible over A, then for any a ∈ A, and any ϕ(x, y), the set {b ∈ I2 |C |=
ϕ(a, b)} is either finite or co-finite.

Fact 4.20 ([6, Corollary 3.32]). Let I1 + I2 + I3 be an indiscernible sequence,
such that I1 and I3 are without endpoints. Suppose that I1 + I3 is indiscernible
over A. Then there is some I ′2 ⊆ I2 such that |I2\I ′2| ≤ |T |+ |A| and I1 + I ′2 + I3 is
A-indiscernible.

Proposition 4.21. Let I be dense indiscernible. Suppose that q ∈ DI and that c is
a cut in I that witnesses it. Then q is orthogonal to lim(c+/C)(X)|I for any linear
order (X,<).

Proof. Suppose (i1, i2) is an interval around c which witnesses that q ∈ DI . What
we have to show is that if c |= q and ā |= lim(c+/C)(X)|I (i.e. ā is an ordered
sequence of order type (X,<) which fills c), then (i1, i2) ∪ ā is indiscernible over
c ∪ I\(i1, i2).

We may assume thatX is finite. We prove by induction on n that the proposition
holds for all I with X = n as an order. For n = 1 this is just the assumption that
q ∈ DI . Suppose this is true for n and prove it for n+ 1.

Let c = (I1, I2) inside (i1, i2). Let a0, . . . , an fill c.
Let J be a dense indiscernible sequence of cofinality (|I|+ |T |)+ from both sides

(and such that between any two elements there are (|I|+ |T |)+ elements), such that
I1 + a0 + · · ·+ an−1 + J + an + I2 is indiscernible over I\(i1, i2). By Fact 4.20, we
may assume that I1 + J + I2 is indiscernible over c ∪ I\(i1, i2).

Let d = (I1+J, I2), which we identify with the corresponding cut in the extended
sequence I ′ = I ∪ J . By Claim 4.19, d witnesses that tp(c/I ′) ∈ DI′ , and hence
I1 + J + an + I2 is indiscernible over c ∪ I\(i1, i2). Note that J + an is dense with
no minimum, so by applying Claim 4.19 again on the sequence I ′′ = I ′ ∪an, we get
that tp(c/I ′′) ∈ DI′′ as witnessed by the cut corresponding to (I1, J + an + I2). By
the induction hypothesis, I1 + a0 + · · · + an−1 + J + an + I2 is indiscernible over
c ∪ I\(i1, i2). In particular, we get what we wanted.

Now, we need to discuss domination in indiscernible sequences. Although we
will not use it directly, we give the definition.

Definition 4.22. Suppose that I is a dense Morley sequence of an A-invariant
type p over A. Suppose c is a cut in I, ā is an ordered tuple which fills c over A,
and that a |= p|IA. We will say that ā dominates a over (I, A) if whenever d �= c

is a cut in I, and b̄ is any ordered tuple which fills d over A, if ā |
I
b̄ (i.e. when

put in their appropriate cuts in the right order, I ∪ {ā, b̄} is A-indiscernible) then
a |
I

b̄ (i.e. a |= p|IAb̄).
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Say that ā strongly dominates a over (I, A) if for any dense A-indiscernible
sequence J containing I such that ā still fills some cut in J and a |= p|AJ , ā
dominates a over (J,A).

Remark 4.23. In the definition in [6, Definition 3.2], the tuple b̄ is dense. How-
ever, by compactness, if ā dominates a over (I, A) for dense tuples, then there is
domination for any ordered tuple.

The following fact says that we can always find strong domination.

Fact 4.24 ([6, Proposition 3.6]). Let I be a dense Morley sequence (of finite
tuples) of a global A-invariant type p over A and a |= p|AI . Suppose c is a cut
in I. Then there is an ordered tuple ā of length ≤ |T | that fills c which strongly
dominates a over (I, A).

Fact 4.25 ([6, Proposition 3.7]). Let I be a dense Morley sequence of an A-
invariant type p over A, a |= p|AI . Suppose ā fills a cut c and that ā strongly
dominates a over (I, A). Let d ∈ C. Assume that:

There is a partition I = J1 + J2 + J3 + J4 such that J2 and J4 are infinite, c is
interior to J2, J2 ∪ {ā} is indiscernible over J	=2Ad and J4 is a Morley sequence of
p over J	=4Ad.

Then a |= p|AId.

Proof of Main Lemma 4.18. So assume that I is dense indiscernible and
tp(c/I) ∈ DI . Suppose that c is a cut which witnesses this.

Let d be another cut which is generic for c. We want to show that tp(c/I) is
orthogonal to lim(d/I). Suppose without loss of generality that c < d (otherwise,
reverse the order of I, see Remark 4.17). Suppose that a |= lim(d/I). We want to
show that a |= lim(d/Ic). Let i1 < i2 < j1 < j2 witness that c and d are c-generic
respectively. Let d = (I1, I2). Let p = lim(d+/C), so that p is I2-invariant. We want
to show that a |= p|Ic.

By Fact 4.24, we may find some ā filling c over I2 such that ā strongly dominates
a over (I1, I2). As c witnesses that tp(c/I) ∈ DI , and as ā fills c in I, Proposition
4.21 implies that (i1, i2) ∪ ā is indiscernible over cI\(i1, i2).

Let J2 = (i1, i2), J4 = (j1,+∞) in I1 and let J1, J3 fill the other parts of I1 so
that I1 = J1 + J2 + J3 + J4. Let us check that the assumptions of Fact 4.25 are
satisfied, with I there being I1, d = c and A = I2. Note that I1 is a Morley sequence
of p over I2. Also c is interior to J2, and J4 is a Morley sequence of p over J	=4I2c

by the choice of (j1, j2). We already mentioned that J2 ∪ {ā} is indiscernible over
J	=2I2c. Finally, the conclusion of Fact 4.25 is exactly what we want.

Right to Left. Assume that T is NIP but not distal, and that |T | < κ is singular
such that κ+ = 2κ.

For an ordinal α < κ, let (Yα, <) be a dense linear order of cofinality |α|+, and of
power |α|+. Let (Xα, <) be the linear order Yα+Y opp

α . Let cα be the cut (Yα, Y
opp
α ).
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Since T is not distal, there is a dense indiscernible sequence I which is not distal.
By Remark 4.6, we may assume that I is of order type

∑
α<κXα (see Notation 3.4).

Abusing notation, we let cα denote the appropriate cuts in I. Note that |I| = κ.

Definition 4.26. Let D = DI .

Note that by Shrinking (Fact 4.2), given some set A of size < κ, any cut c in
I which is not one of the cutsb induced by the finite equivalence relations induced
by A (there are at most |T |+ |A| such) which has cofinality (|T |+ |A|)+ from both
sides is A-generic. In particular, given such an A, for some α < κ, cα is generic
for A.

Lemma 4.27. Suppose A is a D-set, |A| < κ. Suppose that p(x) ∈ S(A). Then
there is some q ⊇ p, q ∈ S(AI0) where I0 ⊆ I, |I0| ≤ |T | such that if b |= q then bA
is a D-set.

Proof. Try to construct an increasing continuous sequence of partial types 〈pε | ε <
|T |+〉 and intervals Iε = (iε1, iε2) ⊆ Xαε around distinct A-generic cuts cαε in I such
that p0 = p, pε+1\pε contains one formula over AIε. Also, we ask that each Iε is
indiscernible over AI\Iε (in other words, it witnesses that cαε is generic for A).

Suppose pε (or any completion of it) is not as we wanted. This means that there
is some b |= pε such that bA is not a D-set. Let αε < κ be such that cαε is a
generic cut for bA and such that αε /∈ {αζ | ζ < ε}, and suppose this is witnessed
by Iε = (iε1, i

ε
2) ⊆ Xαε . By definition, some finite tuple ba from bA is not a D-set,

which means that tp(ba/I) is not orthogonal to lim(cαε/I). This means that there
is some c filling cαε such that c does not fill cαε in Iε over ba ∪ I\Iε.

Hence, there is a formula ϕ(y0, . . . , yi−1, y, yi+1, . . . , yk, x, w) over I\Iε and
some c0 < · · · < ci−1 < cαε < ci+1 < · · · < ck from Iε such that
¬ϕ(c0, . . . , ci−1, c, ci+1, . . . , ck, b, a) holds while for all d0 < · · · < dk < cαε from
Iε, ϕ(d0, . . . , dk, b, a) holds.

As A is a D-set, by Main Lemma 4.18, c fills cαε in Iε over A ∪ I\Iε.
Let c′ < c′′ ∈ Iε be such that ci−1 < c′ < c′′ < cαε . Then for any formula θ ∈ pε,

C |= ∃xθ(x) ∧ ¬ϕ(c0, . . . , ci−1, c, ci+1, . . . , ck, x, a)

∧ ϕ(c0, . . . , ci−1, c
′, ci+1, . . . , ck, x, a),

and hence

C |= ∃xθ(x) ∧ ¬ϕ(c0, . . . , ci−1, c
′′, ci+1, . . . , ck, x, a)

∧ ϕ(c0, . . . , ci−1, c
′, ci+1, . . . , ck, x, a).

bHere, we use the term “cuts” in the most general sense, as opposed to our convention so far
where cuts had infinite cofinality from both sides.
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Put

pε+1 = pε ∪ {¬ϕ(c0, . . . , ci−1, c
′′, ci+1, . . . , ck, x, a)

∧ϕ(c0, . . . , ci−1, c
′, ci+1, . . . , ck, x, a)}.

Then pε+1 is consistent.
Finally, let p∞ =

⋃
ε<|T |+ pε, and let b |= p∞. Then we have a sequence of

mutually indiscernible sequences 〈Iε | ε < |T |+〉 overA and some b such that for each
ε < |T |+, Iε is not indiscernible over b. This means that the dp-rank of tp(b/A) is
≥ |T |+, which implies the independence property. See for example [3, Corollary 2.3].

Hence, we must get stuck somewhere, and we are done.

Corollary 4.28. Suppose A ⊆ B are D-sets and |A| < κ, |B| ≤ κ. Assume that
p(x) ∈ S(A), then there is some b |= p such that Bb is a D-set.

Proof. Write B as an increasing continuous sequence
⋃

α<κBα, where |Bα| < κ

and A = B0. Construct an increasing continuous sequence of types 〈qα |α < κ〉
and subsets 〈Iα |α < κ〉 of I such that p = q0, I0 = ∅, qα+1 ∈ S(Bα+1 ∪ Iα+1),
|Iα| ≤ |α||T | < κ for all α < κ and if b |= qα+1 then bBα+1 is a D-set.

For α = 0 and limit there is nothing to do. For α + 1, first choose q′α+1 ∈
S(Bα+1 ∪ Iα) extending qα. Apply Lemma 4.27 to get some J ⊆ I of size ≤ |T |
and a type qα+1 ∈ S(Bα+1 ∪ IαJ) such that if b |= qα+1, then bBα+1 is a D-set
(which is the same as saying that bBα+1I is a D-set, see Remark 4.17). Finally, let
Iα+1 = IαJ .

When the construction is done, let q =
⋃

α<κ qα and b |= q.

We can finally prove the right to left direction of Theorem 4.10. We wish to
construct a κ-saturated model M which is not κ+-saturated.

Proposition 4.29. Any D-model M ⊇ I is not κ+-saturated.

Proof. As I is not distal, the limit type of any cut c in it is not orthogonal to any
limit type of a another cut. See Remark 4.6. This means that the type lim(c/I) is
not a D-type, and hence not realized in M .

Proof of Theorem 4.10. By Proposition 4.29, it is enough to construct a κ-
saturated D-model containing I. We do this in similar way to the one in the proof
of Theorem 3.3.

Let 〈Sα |α < κ+〉 be a partition of κ+ to sets of size κ+. Construct an increasing
continuous sequence of D-sets 〈Aα |α < κ+〉 and sequences of types 〈p̄α |α < κ+〉
such that:

(1) |Aα| ≤ κ;
(2) p̄α is an enumeration 〈pα,β |β ∈ Sα\α〉 of all complete types over subsets of Aα

of size < κ (this uses κ+ = 2κ);
(3) If α ∈ Sγ and γ ≤ α, then Aα+1 contains a realization of pγ,α.
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Start with A0 = I, see Remark 4.17. Step (3) is done by Corollary 4.28. Finally,
let M =

⋃
α<κ+ Aα and we are done.
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