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ABSTRACT. We prove that for any topological space which is metric, compact

(hence separable) path connected and locally path connected, its homotopy

group is not the additive group of the rational, moreover if it is not finitely

generated then it has the cardinality of the continuum.

We prove here

1. THEOREM. Let X be a compact metric (topological) space which is path

connected and locally path connected. If the homotopy group of X is not finitely

generated then it has the power of the continuum (in fact there is a perfect set of

nonhomotopic f's).

REMARK. X is locally path connected if for every open u and y G u there is

a path connected u', y G u' Ç u. We shall really use only "weakly" locally path

connected (see Definition 4).

2. INTRODUCTORY REMARKS. We have taken some trouble to make this acces-

sible to both algebraic topologists and logicians (hence most other mathematicians),

resulting in making the proof longer.

Nevertheless we assume e.g. that the reader understands what the theorem says.

On the topological notions we use, see e.g. [Sp].

A conclusion of the theorem is that the additive group of the rationals cannot

be the homotopy group of such a space.

The theorem answers a problem of Mycielski. I thank M. Foreman for asking me

about it. On theorems related to Lemma 7 and their history see Harrington and

Shelah [HS and Shi] to which our exposition is closer.

The proof gives not only continuum many but a perfect set of paths (from say

xo to xo) nonhomotopic in pairs.

I thank H. Miller for improving the presentation.

3. NOTATION. Z is the set of integers, Z+ the set of strictly positive integers.

R is the set of reals, R+ the set of strictly positive reals.

Let / = [0,1] = {t G R: 0 < t < 1}, endowed with the natural topology.

A path f in a topological space X is a continuous function from / to X. We say

/ is from x to y if /(0) = x, /(l) = y. We let /-1 be defined by f~x(t) = /(l - i)

(so it goes from /(l) to /(0)). For paths /, g, fg is defined only if /(l) = ^(0) and
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628 SAHARON SHELAH

then

fg(t) = (f^ °^1/2<
Jyy>      \g(2t-l),     1/2 < ¿ < 1.

Let E(xo,X) — the family of paths from xq to xn-

Let [/] be the equivalence class of / under the equivalence relation of being

homotopic relative to the endpoints. Dividing by it, E(xq,X) becomes a group

under the two operations defined above, which we call tt(X,xo)-

In a topological space a set is perfect if it is closed nonempty with no isolated

point. For what we actually get, see 12 and the definition of Za-

For a metric space, d is the metric and Br(x) — B(x, r) = {y G X: d(y, x) < r}.

4. DEFINITION. Say that a space X is graphical if it admits an open cover Í¿

such that for u, v G %, and all x G u, y G v, any two paths from x to y in u U v are

homotopic (relative to the end points) in X.

REMARK. For metric compact X, X is graphical iff

(*) for every x G X for some open u, x G u, and for every y, z G u any two paths

from x to y in u are homotopic (relative to end points) in X.

5. DEFINITION. (1) Say that X is weakly locally path connected (WLPC) if for

every x G X and every neighborhood u of x, there exists a neighborhood v of x in

U such that any point in v can be joined to x by a path through u.

6. DEFINITION. (2) Say that X is semilocally simply connected (SLPC) if every

point x G X has a neighborhood u such that tti (u; x) —► -k\ (X; x) is the trivial

homomorphism (i.e. any two paths in E(x,u) are homotopic in X).

7. LEMMA. IfX is a compact graphical WLPC space thenir1(X,Xo) is a finitely

generated group for any Xq G X.

PROOF. As X is graphical, there is an open cover f/ of X as in Definition 4.

For every y G X choose uy G % such that y G uy. As X is WLPC for some

open uy: y G uy Ç. uy and any point in uy is connected to y by a path through

Uy. So X — [J{Uy : y G X} but X is compact hence for some finite Y Ç X,

X = \J{Uy:yGY},w.\.o.g.XoGY.

For a path / we say that / is of type (yo, ■ ■ ■, yn) if there are reals 0 = in < h <

■ • • < t„ = 1 exemplifying it, i.e. such that for I = 0,..., n — 1 Rang(/ \ [t¡, í;+i]) Ç

uvi Um°,+1' and for i = 0,...,n/(*{)€«*,.

Note that one / may have many types; however every / has at least one type.

(For every t G [0,1], for some y GY, h(t) G uy, hence for some open interval J of

[0,1], t G J and / maps J into uy, and apply the compactness of [0,1].)

If Z1,/2 G E(x0,X) both have type (y0, ■■■ ,yn-i) then

f1, f2 are homotopic.

We shall prove this later. Let

F = {[/]: /G E(x0, X), and for some n < 2|F| +8 and

yo,---,yn-i e Y, f has type (y0, ■ ■ ■ ,yn-i)}-

By (*) F (which is a subset of the fundamental group) has power <

J2i<2\Y\+8 \Y\21 nence is finite. So it suffices to show that F generates the fun-

damental group.
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THE FUNDAMENTAL (HOMOTOPY) GROUP OF A SPACE 629

So let / G E(xo, X), and we shall prove [/] is in the subgroup which F generates.

We know that for some n and (yo, ■ ■ ■, yn-i), f is of type {yo,. ■ -, yn-i) and let

(io, • • •, tn-\) exemplify it. We prove by induction on n. We prove that [/] belongs

to the subgroup generated by F. If n < 2|Y| + 8 this is obvious. If not, let i =

|V|+4. Let {z0, ■ ■ ■ ,Zk) be a sequence of minimal length such that {zo,... ,zk} ç Y,

z0 = x0, Zk = yi and for each / < k — 1, u\{ n u\l 1 / 0. Hence there is a path

hi from zi to Z|+i, Rang(/i¡) Ç u° u u° . (Use paths from z¡ and z¡+i to some

point in ulz¡ n uj .) Also there is a path h from ?/¿ = zk to f(U), Rang(Zi) Ç uy_

(as /(í¿) G Uyt). So hohi ■ ■ ■ hk-i is a path from zq = xo to Zk = y¿ of type

(z0,- ■ ■ ,Zk-l)-

NOW let fm = f  \ [tm,tm + i\ SO

[/] = [ZoZl ■ ■ -ft ■ ■ ■ fn-l] = [ZoHZl] ■■■[fil--- [fn-l] = [/o][/l] • ' •

[A-iHÄ]-1!**-!]-1 • ■ ■ [Aol-'iN ■ • • [A»-3]l**-i][fc])[/<]I/i+i] ■ • •

[fn-l] = [ZoZl •••Zt-l/l_:/ífcÍi'lfeÍ2'"/lu:1][,lo/íl ■ ■ • hk-lhfifi+i ■■■ fn-l}-

So [Z] is the product of two elements (from {[/'] : /' G E(xo,X)}. The first has

naturally type (y0, ■■■ ,yl-i,yl,zk-X,zk-2,... ,z0), but i = \Y\ + 4, k < \Y\, so it

belongs to F.

The second has naturally type (zq, ■ ■ ■ ,Zk-2,Zk-i,yi,yi+\ ■ ■ -yn-i) which has

length n — i + k, but as i = \Y\ + 4, k < \Y\ this < n — 1, so it belongs to F.

PROOF OF (*). Let (t0,...,tn) exemplify that /' has type (yo,...,yn) for

I = 1,2.   So 0 = i0 < t[ < ■■■ < tln_1 < tln = 1 and Rang(Z;  \ [4-4+iD Q

For each m = 1,..., n — 1 the points f1 (t^) and f2^2^) are in uym so there is

a path gm from Z1^™) to f2^^) such that Rang(gm) Ç u°m. (Use paths from

Z'(4) to ym for/= 1,2.)

Let fm = fl \ [tm,tm+1] for m = 0, ...,n- 1. Now

[/1] = [/oVi---/^-i] = [/o1][/i1]---[/4-i]

= ([/¿][i?l])([ffl]-1[/11][ff2])([ff2]-1[/a1][ff2]) • ■ • (bn-l]-1^-!]),

and

[Z2] = [Zo2Zi2---Z2-i] = [Zo2][Zi2]---[Z2_i]-

So for proving equality it is enough to show:

(a) [fè9i] = [Zo2],
(b) [ffmVmffm + l] = [fll
(C)  bmÍl/¿-l] = [/n-il-
Now (b) holds as gml Z^Sm+i, (Zm) are homotopic by the choice of ^ and as

w°   , u°       G ^. For (a), (c) the situation is similar.
ym'      ym+1 \    / '   \    /

8. LEMMA.   A metric space is graphical provided it is WLPC and SLPC.

PROOF. For each x G X, let e(x) > 0 be such that tti(B£^(x),x) —» 7Ti(X,x)

is trivial (exists as X is SLPC). Let ¿(x) > 0 be such that any point in Bg^(x) is

connected to x by a path in Be^x-)/3(x) (exists as X is WLPC). Then {Bs^(x) : x €

X} is an open cover of X. Pick a pair of points, xi and x2 and let 5, = ¿?é(x,) (#«)•

Let ?/¿ G Bi, i = 1,2, and let a and /? be paths from yi to y2 in Bi UBî. Let qt
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630 SAHARON SHELAH

join Xi to yi in B£^x.y^(xi), i — 1,2. Then -71 a~¡2 ' and 7i/?"y2 1 are paths from

xi to x2 in C = Be(Xlyz(xi) U Be^X2y^(x2). We may assume e(xi) > e(x2). The

triangle inequality implies then that C Ç Be(Xi)(xi), so (7icry¿~ )(7i/?T2_1)_1 —

1\aß~ l*fa is null, and consequently a is homotopic (relative to endpoints) to ß.

Q.E.D

9. COROLLARY. If X is a WLPC compact metric space and 7Ti(AT) is not

finitely generated, then there exists a point x G X such that every neighborhood

U of x contains a loop at x (i.e. an f G n(X,x)) which is essential in X (i.e. \f] is

not the unit in the homotopy group).

So let xo, fn (n G Z+) be such that xo is as in conclusion 8, fn G E(xq,X),

RangZn Q Bi/n(xo), [fn] is not the unit in the homotopy group.

10. Proof of Theorem 1. Fix 0 = to < h < h < ■ ■ • < 1 s.t. 1 = limn_00 tn

(so 0 < tn < in+i < 1 for n G Z+) and for A C Z+ put

.  .  _   Í  fn((t -ín-l)/(í„ -tn-l))      \í U G A,   t G [tn-i,tn\,

\ Xo if n<£ A, t G [tn-i,in],

So fA is in a sense the infinitary product FlneA fn- By the choice of the Zn's, Za is

continuous. Hence it represents a member of the homotopy group of X. Also f{n}

represents the same element as fn and

if n is the first member of A, B = A — {n} then ¡a and
(*)

fnfs are homotopic.

11. FACT. If A, B Ç Z+, n $. B, A = B U {n} then fA, fB are not homotopic.
PROOF OF 11.   We prove it by induction on the number of m < n which are

in B. If this number is zero but fA, fs are homotopic then by (*) above ilfA and

fnfß are homotopic" we get that fn is homotopic to zero, a contradiction to its

choice.

Now Theorem 1 will follow immediately by Claim 12 and Lemma 13 below.

We define a relation If on T = {A: A a subset of Z+} by A<Ê?B iff the mappings

Za, Zß are homotopic.

12. CLAIM. If is an analytic (see below) equivalence relation.

12A. REMARK. (1) % is analytic means that the set {(A, B) : A, B G T, A G B}

is an analytic subset of the product space T x T.

(2) A C T is analytic if for some complete separable metric space Y and Borel

subset P of Y x T

A = {A G T : for some y G Y, (y, A) G P}.

We can replace "Borel" by "closed".

(3) Of course T is endowed with the Tychonov topology (e.g. use the metric

d(,4,ß)=Inf{l/2n: Ai) {1,.. .,n} = Bf) {l,...,n}}.
PROOF OF 12. By the basic properties of homotopy (see e.g. [Sp]) £? is an

equivalence relation. It is also true that fê is an analytic relation. As X is a

compact and metric it is necessarily separable. So let {zn : n G Z+} Ç X be a

dense subset of X. Suppose fA, Zß are homotopic, then there is a continuous

function g from [0,1] x [0,1] into X, such that for every real r g(r,0) = fA(r),

g(r, 1) = fß(r)- [More formally we should have written f((r, 0)), f((r, !)).] We say
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THE FUNDAMENTAL (HOMOTOPY) GROUP OF A SPACE 631

in such cases that "<? exemplifies the homotopy of fA and Zß"- As [0,1] x [0,1] is

compact, g is uniformly continuous, so there is a function h: Z+ —► Z+ such that

m G Z+,(x1,y1),(x2,y2) G [0,1] x [0,1], |xx -x2| + |y¿ - yi\

< l/h(m) implies d(g(x1,y1), g(x2,y2)) < 1/m.

We can code g by a set Cg of óctuples of positive natural number (i.e. members

ofZ+),

Cg = {(li,ki,l2,k2,n,m,i,j): h,kx,l2,k2: n,m,i,j belongs to Z+,

d(g(h/ki,l2/k2),zn) < n/m and h(i) = j}.

Let P = {{A, B, Cg) : g exemplifies the homotopy of fA,fß} and Tg = {A: A Ç

(Z+)8} again with the Tichonov topology. It is clear that

(1) Cg determine g (i.e. for every C Ç (Z+)8 for at most one g as above,

Cg   =   C).
(2) Tg is a separable metrizable space.

(3) P is a Borel subset of T8 x T x T.

(4) fA, fs are homotopic iff for some C, (A,B,C) G P.

By (3) and (4) and definition of analytic, we finish.

13. LEMMA. If ê? is an analytic equivalence relation on T = {A: A Ç Z+}

which satisfies

(*) if A, B C Z+, n £ B, A = B U {n} then A, B are not W-equivalent,

then there is a perfect subset of T of pairwise nonequivalent A Ç Z+.

REMARK. The proof uses some knowledge of set theory.

PROOF. Let N be a countable elementary submodel of (H((2H°)+), W) to which

the real parameter in the definition of W belongs. Now

(**) if {Ai,A2) be a pair of subsets of Z+ which is Cohen generic over N [this

means that it belongs to no first category subset of T x T which belongs to TV] then

(1) Ai, A2 are ^-equivalent in A^i,^] if they are ¿f-equivalent.

(2) Ai, A2 are non-ii'-equivalent in 7V[yli,^J.

PROOF OF (**). (1) By the absoluteness criterions.

(2) If not then some finite information forces this, hence for some n

(a) If (Ai,A2) is Cohen generic over N and A[ n {1,..., n} = A2 n {1,..., n}

and A2 n {1,... ,n} = A2 n {1,... ,n} then A\, A2 are ^-equivalent in JV[j4i,^42]-

Let A'l be A{ U {n + 1} if (n + 1) £ Ai and Ai - {n + 1} if (n + 1) G Au
Trivially also (A",A2) is Cohen generic over N, hence by (cv) above A", A2

are ê'-equivalent in N[A'{,A2]. By (**) (1) we know that really A", A2 are ¿?-

equivalent. As equivalence is a transitive relation clearly Ai, A'[ are ^-equivalent.

But this contradicts the hypothesis (*).

END OF THE PROOF OF THEOREM 1. We can easily find a perfect (nonempty)

subset P of {A: A Ç Z+} such that for any distinct A, B G P, (A,B) is Cohen

generic over N. So for A, B G P, N[A, B] (= "A, B are not á?-equivalent" and by

(**) (1) A,B are not ^-equivalent. This finishes the proof of 13 hence of Theorem

1. We can similarly [HSh, Shi] prove
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632 SAHARON SHELAH

14. LEMMA. Suppose I? is a co-K-Souslin equivalence relation on some k-

Souslin set rx Ç P = {A: A Ç Z+}, or Tj Ç (Z+)(z+> = {h: h a function

from Z+ to Z+} (equivalently uu>) and Ti has cardinality > k. Suppose further

for every n G Z+  and function ho from Z+  into Z+,  there are

(*) functions hi,h2: Z+ —* Z+, A¿Li ^o(¿) = hi(i) — h2(i), not ê'-

equivalent but {m G Z+ : ho(m) ^ hi(m)} is finite for 1 — 1,2.

,    v       Tf we ac^ a generic Cohen real r to our universe V, in V[r] 8? is

still an equivalence relation (i.e. its definition defines one).

Then there is a perfect family of sets A Ç Z+, pairwise non-ê?-equivalent.
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