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INFINITE PRODUCTS OF FINITE SIMPLE GROUPS

JAN SAXL, SAHARON SHELAH, AND SIMON THOMAS

Abstract. We classify the sequences 〈Sn | n ∈ N〉 of finite simple nonabelian
groups such that

∏
n Sn has uncountable cofinality.

1. Introduction

Suppose thatG is a group that is not finitely generated. ThenG can be expressed
as the union of a chain of proper subgroups. The cofinality of G, written c(G), is
defined to be the least cardinal λ such that G can be expressed as the union of a
chain of λ proper subgroups. Groups of uncountable cofinality were first considered
by Serre in his study of groups acting on trees.

Definition 1.1. [Se, p. 58] A group H has property (FA) if and only if whenever
H acts without inversion on a tree T , then there exists a vertex t ∈ T such that
h(t) = t for all h ∈ H.

In [Se], Serre characterised the groups which have property (FA).

Theorem 1.2. [Se] The group H has property (FA) if and only if the following
three conditions are satisfied.

(1) H is not a nontrivial free product with amalgamation.
(2) Z is not a homomorphic image of H.
(3) If H is not finitely generated, then c(H) > ω.

This result led to the question of whether there exist any natural examples of un-
countable groups with property (FA). Let 〈Gn | n ∈ N〉 be a sequence of nontrivial
finite groups. Then

∏
nGn denotes the full direct product of the groups Gn, n ∈ N.

By Bass [Ba], if H is a profinite group and H acts without inversion on the tree T ,
then for every h ∈ H there exists t ∈ T such that h(t) = t. This implies that H
satisfies conditions 1.2(1) and 1.2(2). In particular, we see that the profinite group∏
nGn has property (FA) if and only if c(

∏
nGn) > ω. The following result, which

was proved by Koppelberg and Tits, provided the first examples of uncountable
groups with property (FA).

Theorem 1.3. [KT] Let F be a nontrivial finite group and let Gn = F for all
n ∈ N. Then c(

∏
nGn) > ω if and only if F is perfect.
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4612 JAN SAXL, SAHARON SHELAH, AND SIMON THOMAS

Suppose that F is perfect. Since |
∏
nGn| = 2ω, Theorem 1.3 yields that

ω1 ≤ c
(∏

n

Gn

)
≤ 2ω.

This suggests the problem of trying to compute the exact value of c(
∏
nGn). (Of

course, this problem is only interesting if 2ω > ω1.) The following result is an
immediate consequence of a theorem of Koppelberg [Ko].

Theorem 1.4. If F is a nontrivial finite perfect group and Gn = F for all n ∈ N,
then c(

∏
nGn) = ω1.

Proof. If 〈g(n)〉n ∈
∏
nGn and π ∈ F , let Xπ(g) = {n ∈ N | g(n) = π}. Then

{Xπ(g) | π ∈ F} yields a partition of N into finitely many pieces. Consider the
powerset P(N) as a Boolean algebra. By Koppelberg [Ko], we can express

P(N) =
⋃
α<ω1

Bα

as the union of a chain of ω1 proper Boolean subalgebras. For each α < ω1, define

Hα = {g ∈
∏
n

Gn | Xπ(g) ∈ Bα for all π ∈ F}.

Then it is easily checked that Hα is a proper subgroup of
∏
nGn. Clearly

∏
nGn =⋃

α<ω1
Hα, and so c(

∏
nGn) ≤ ω1.

The above results suggest the following questions.

Question 1.5. For which sequences 〈Sn | n ∈ N〉 of finite simple nonabelian groups
do we have c(

∏
n Sn) > ω?

Question 1.6. Suppose that 〈Sn | n ∈ N〉 is a sequence of finite simple nonabelian
groups such that c(

∏
n Sn) > ω. Is it possible to compute the exact value of

c(
∏
n Sn)?

It may be helpful to give a word of explanation concerning Question 1.6. The
point is that it may be impossible to compute the exact value of c(

∏
n Sn) in

ZFC. For example, consider the group Sym(N) of all permutations of N. In
[MN], Macpherson and Neumann showed that c(Sym(N)) > ω. Later Sharp and
Thomas [ST1] proved that it is consistent that c(Sym(N)) and 2ω can be any
two prescribed regular uncountable cardinals subject only to the requirement that
c(Sym(N)) ≤ 2ω. Hence it is impossible to compute the exact value of c(Sym(N))
in ZFC. (The theorem of Macpherson and Neumann suggests that Sym(N) is
probably another natural example of an uncountable group with property (FA). In
the final section of this paper, we shall confirm that this is true.)

The following result shows that there exist sequences 〈Sn | n ∈ N〉 of finite simple
nonabelian groups such that c(

∏
n Sn) = ω.

Theorem 1.7. Let 〈Sn | n ∈ N〉 be a sequence of finite simple nonabelian groups.
Suppose that there exists an infinite subset I of N such that the following conditions
are satisfied.

(1) There exists a fixed (possibly twisted) Lie type L such that for all n ∈ I,
Sn = L(qn) for some prime power qn.

(2) If n, m ∈ I and n < m, then qn < qm.

Then c(
∏
n Sn) = ω.
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INFINITE PRODUCTS OF FINITE SIMPLE GROUPS 4613

Here L(qn) denotes the group of Lie type L over the finite field GF (qn). The
proof of Theorem 1.7 makes use of the following easy observation.

Lemma 1.8. Suppose that N C G and that G/N is not finitely generated. Then
c(G) ≤ c(G/N).

Proof of Theorem 1.7. By Lemma 1.8, we can suppose that I = N. Let D be a
nonprincipal ultrafilter on N, and let N be the set of elements g = 〈g(n)〉n ∈

∏
n Sn

such that {n ∈ N | g(n) = 1} ∈ D. Then N is a normal subgroup of
∏
n Sn, and∏

n Sn/N is the ultraproduct G =
∏
n Sn/D. (See Section 9.5 of Hodges [H].) By

Lemma 1.8, it is enough to show that c(G) = ω.
There exists a fixed integer d such that each of the groups L(qn) has a faithful

d-dimensional linear representation over the field GF (qn). Since the class of groups
with a faithful d-dimensional linear representation is first-order axiomatisable, it
follows that G has a faithful d-dimensional linear representation over some field K.
(For example, see Section 6.6 of Hodges [H]. It is perhaps worth mentioning that
every known proof only yields the existence of a set of axioms for this class. The
problem of finding an explicit intelligible set of axioms remains open.) To simplify
notation, we shall suppose that G 6 GL(d,K). We also suppose that K has been
chosen so that G ∩GL(d,K ′) is a proper subgroup of G for every proper subfield
K ′ of K. By Exercise 9.5.5 of Hodges [H], |G| = 2ω. It follows that |K| = 2ω,
and hence K has transcendence dimension 2ω over its prime subfield k. Let B be
a transcendence basis of K over k. Express B =

⋃
n<ω

Bn as the union of a chain

of proper subsets. For each n < ω, let Kn be the algebraic closure of Bn in K.
Then each Kn is a proper subfield of K, and K =

⋃
n<ω

Kn. For each n < ω, let

Gn = G ∩GL(d,Kn). Then G =
⋃
n<ω

Gn, and each Gn is a proper subgroup of G.

Hence c(G) = ω.

The main result of this paper is that the converse of Theorem 1.7 is also true.

Theorem 1.9. Suppose that 〈Sn | n ∈ N〉 is a sequence of finite simple nonabelian
groups such that c(

∏
n Sn) = ω. Then there exists an infinite subset I of N such

that conditions 1.7(1) and 1.7(2) are satisfied.

Now suppose that 〈Sn | n ∈ N〉 is a sequence of finite simple nonabelian groups
such that c(

∏
n Sn) > ω. If there exists an infinite subset J of N such that Sn = Sm

for all n, m ∈ J , then Lemma 1.8 and Theorem 1.4 imply that c(
∏
n Sn) = ω1.

This is the only case in which we have been able to compute the exact value of
c(
∏
n Sn) in ZFC.

Question 1.10. Is it consistent that there exists a sequence 〈Sn | n ∈ N〉 of finite
simple nonabelian groups such that c(

∏
n Sn) > ω1?

We hope that Question 1.10 has a positive answer, as this would lead to some very
attractive problems. For example, consider the following question. (We suspect that
it cannot be answered in ZFC.)

Question 1.11. Is it true that c(
∏
nAlt(n+ 5)) = c(

∏
n PSL(n+ 3, 2))?

In Section 5, we shall prove the following consistency result. Among other things,
it shows that it is impossible to prove in ZFC that c(Sym(N)) = c(

∏
n Sn) for some

sequence 〈Sn | n ∈ N〉 of finite simple nonabelian groups.
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Theorem 1.12. It is consistent that both of the following statements are true.

(1) c(Sym(N)) = ω2 = 2ω.
(2) c(

∏
nGn) ≤ ω1 for every sequence 〈Gn | n ∈ N〉 of nontrivial finite groups.

The following problem is also open. (Of course, a negative answer to Question
1.10 would yield a negative answer to Question 1.13.)

Question 1.13. Is it consistent that there exists a sequence 〈Sn | n ∈ N〉 of finite
simple nonabelian groups such that c(

∏
n Sn) > c(Sym(N))?

This paper is organised as follows. In Section 2, we shall prove that if 〈Sn | n ∈ N〉
is a sequence of finite alternating groups, then c(

∏
n Sn) > ω. In Section 3, we shall

prove Theorem 1.9 in the special case when each Sn is a projective special linear
group. In Section 4, we shall complete the proof of Theorem 1.9. Our proof makes
use of the fact that there are only finitely many sporadic finite simple groups, and
thus relies on the classification of the finite simple groups. Section 5 contains the
proof of Theorem 1.12. In Section 6, we shall prove that Sym(N) has property
(FA).

Our notation is standard, but a couple of points should be mentioned. Suppose
that G is a subgroup of Sym(Ω). If each nonidentity element g ∈ G is fixed-
point-free, then G is said to act semiregularly on Ω. If G acts transitively and
semiregularly, then G is said to act regularly on Ω. In this paper, permutation
groups and linear groups always act on the left. Thus, for example, we have that

( 1 2 3 )( 1 3 5 7 )( 1 2 3 )−1 = ( 2 1 5 7 ).

We follow the usual convention of regarding each ordinal as the set of its predeces-
sors. Thus ω = N. Also if a, b are natural numbers such that a > b, then their
set-theoretic difference is a r b = {b, b + 1, . . . , a − 1}. If A is a matrix, then AT

denotes the transpose of A.

2. Infinite products of alternating groups

In this section, we shall prove the following special case of Theorem 1.9.

Theorem 2.1. Let 〈Sn | n ∈ N〉 be a sequence of finite simple nonabelian groups.
If each Sn is an alternating group, then c(

∏
n Sn) > ω.

We shall make use of the following two results, which will be used repeatedly
throughout this paper.

Proposition 2.2. [Th] Suppose that G is not finitely generated and that H is a
subgroup of G. If G is finitely generated over H, then c(H) ≤ c(G).

Proof. Let c(G) = λ. Express G =
⋃
α<λ

Gα as the union of a chain of λ proper

subgroups. Let Hα = H ∩ Gα. Then H =
⋃
α<λ

Hα. Since G is finitely generated

over H, each Hα is a proper subgroup of H. Thus c(H) ≤ λ.

Proposition 2.3. Let 〈Sn | n ∈ N〉 be a sequence of nontrivial finite perfect groups.
Suppose that there exists a finite set F of groups such that Sn ∈ F for all n ∈ N.
Then c(

∏
n Sn) > ω.
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Proof. By Proposition 2.2, we can suppose that for each group S ∈ F , the set
{n ∈ N | Sn = S} is either infinite or empty. Since the class of groups of uncountable
cofinality is closed under taking finite direct products, Theorem 1.4 implies that
c(
∏
n Sn) > ω.

We shall begin the proof of Theorem 2.1 by making a couple of easy reductions.
For each m ≥ 5, let Pm =

∏
n S

m
n , where Smn = Alt(m) for all n ∈ N. Let

G0 =
∏
m≥5 Pm. Then Lemma 1.8 implies that it is enough to prove that c(G0) > ω.

Let G1 =
∏
m≥8 Pm. Then G0 = P5×P6×P7×G1. By Theorem 1.4, c(Pm) = ω1 for

all m ≥ 5. Hence it is enough to prove that c(G1) > ω. Finally let G2 =
∏
m≥3 P2m .

Then Theorem 2.1 is an immediate consequence of the following two results.

Lemma 2.4. c(G1) = c(G2).

Theorem 2.5. c(G2) > ω.

First we shall prove Lemma 2.4. Note that Lemma 1.8 implies that c(G1) ≤
c(G2). Our proof that c(G2) ≤ c(G1) is based upon Proposition 2.2.

Let I = {〈m,n〉 | 8 ≤ m ∈ N, n ∈ N}. Then G1 =
∏

〈m,n〉∈I
Smn , where Smn =

Alt(m). For each 〈m,n〉 ∈ I, let t be the integer such that 2t ≤ m < 2t+1 and let
Tmn = Alt(2t) 6 Smn . Then we can identify G2 with the subgroup

∏
〈m,n〉∈I

Tmn of G1.

By Proposition 2.2, it is enough to prove the following result.

Lemma 2.6. G1 is finitely generated over G2.

This is the first of the many places in this paper where we need to prove that an
infinite product of groups is finitely generated over an infinite product of subgroups.
A moment’s thought shows that such results require “uniform generation” results
for the corresponding sequences of groups. We shall make repeated use of the
following easy observation.

Proposition 2.7. Let 〈Hn | n ∈ N〉 and 〈Gn | n ∈ N〉 be sequences of groups such
that Hn 6 Gn for all n ∈ N. Suppose that there exists a word w(x1, . . . , xs, y1, . . . , yt)
from the free group on {x1, . . . , xs, y1, . . . , yt} such that the following condition is
satisfied.

(2.7) For all n ∈ N, there exist elements θ1, . . . , θt ∈ Gn such that each φ ∈ Gn can
be expressed as φ = w(ψ1, . . . , ψs, θ1, . . . , θt) for some ψ1, . . . , ψs ∈ Hn.

Then there exist elements g1, . . . , gt ∈
∏
nGn such that∏

n

Gn = 〈
∏
n

Hn, g1, . . . , gt〉.

Lemma 2.6 is a consequence of the following “uniform generation” results for the
finite alternating groups, which will also be needed in the proof of Theorem 2.5.

Lemma 2.8. Let m ≥ 3 and let θ = ( m − 2 m − 1 )( m m + 1 ) ∈ Alt(m + 1).
Then for every φ ∈ Alt(m+ 1), there exist ψ1, ψ2, ψ3 ∈ Alt(m) such that

φ = ψ1θψ2θψ3.

Proof. If φ ∈ Alt(m), then we can take ψ1 = φ and ψ2 = ψ3 = id. So suppose
that φ ∈ Alt(m + 1) r Alt(m). Let ψ2 = ( m − 2 m − 1 m ). Then τ = θψ2θ =
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( m− 1 m− 2 m+ 1 ). Since Alt(m+ 1) acts 2-transitively on {1, . . . ,m+ 1}, we
have the double coset decomposition

Alt(m+ 1) = Alt(m) ∪Alt(m)τAlt(m).

Thus φ ∈ Alt(m)τAlt(m), and so there exist ψ1, ψ3 ∈ Alt(m) such that φ =
ψ1θψ2θψ3.

Let m = 4n for some n ≥ 2. A permutation π ∈ Alt(m) is said to have type 22n

if π is the product of 2n disjoint transpositions. Thus π2 = id and π is fixed point
free. The set of permutations π ∈ Alt(m) of type 22n forms a single conjugacy class
in Alt(m).

Lemma 2.9 (Brenner [Br]). Let m = 4n for some n ≥ 2. Let C be the conjugacy
class of Alt(m) consisting of all permutations of type 22n. Then for every φ ∈
Alt(m), there exist π1, . . . , π4 ∈ C such that φ = π1 . . . π4.

Lemma 2.10. Suppose that m = 8n for some n ≥ 1. Let ∆0 = {1, . . . , 4n}, ∆1 =

{4n+1, . . . , 8n} and let Γ = Alt(∆0)×Alt(∆1). Let θ =
∏4n
i=1( i 2i )( 4n+i 2i−1 ).

Then every φ ∈ Alt(m) can be expressed as a product

φ = ψ1θψ2θψ3θψ4θψ5θψ6θψ7θψ8θψ9

for some ψ1, . . . , ψ9 ∈ Γ.

Proof. By Lemma 2.9, it is enough to show that each permutation φ ∈ Alt(m) of
type 24n can be expressed as a product φ = ψ1θψ2θψ3 for some ψ1, ψ2 , ψ3 ∈ Γ. Let
A = {` ∈ ∆0 | φ(`) ∈ ∆0} and B = {` ∈ ∆1 | φ(`) ∈ ∆1}. Then |A| = |B| = 2s for
some 0 ≤ s ≤ 4n. Let C = {1, . . . , 8n}r(A∪B). Then |C∩∆0| = |C∩∆1| = 4n−2s.
Let t = 4n− 2s. Let ∆2 = {2i | 1 ≤ i ≤ 4n} and ∆3 = {2i− 1 | 1 ≤ i ≤ 4n}.

Case 1. Suppose that t ≥ 2n. Choose a subset D ⊆ C ∩∆0 of size 2n, and let E =
φ[D]. Then there exists ψ1 ∈ Γ such that ψ1[D] = ∆2 ∩∆0 and ψ1[E] = ∆2 ∩∆1.
This implies that

ψ1φψ
−1
1 ∈ Alt(∆2)×Alt(∆3) = θ (Alt(∆0)×Alt(∆1)) θ.

Thus we have that

ψ2 = θψ1φψ
−1
1 θ ∈ Γ,

and so

φ = ψ−1
1 θψ2θψ1

is a suitable product.

Case 2. Suppose that t < 2n. Then s > n. Choose φ-invariant subsets D ⊆ ∆0

and E ⊆ ∆1 such that |D| = |E| = 2n. Then there exists ψ1 ∈ Γ such that
ψ1[D] = ∆2 ∩∆0 and ψ1[E] = ∆2 ∩∆1. Arguing as in Case 1, we see that there
exists ψ2 ∈ Γ such that φ = ψ−1

1 θψ2θψ1.

Proof of Lemma 2.6. For each 0 ≤ i ≤ 7, let

Hi =
∏
{Smn | 〈m,n〉 ∈ I,m ≡ i (mod 8) }

and

Ki =
∏
{Tmn | 〈m,n〉 ∈ I,m ≡ i (mod 8) }.
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Then G1 =
∏7
i=0 Hi and G2 =

∏7
i=0 Ki. Clearly it is enough to show that Hi is

finitely generated over Ki for each 0 ≤ i ≤ 7.
First consider the case when i = 0. Let 〈m,n〉 ∈ I satisfy m = 8s for some

s ≥ 1, and let t be the integer such that 2t ≤ m < 2t+1. Define ∆m,n
0 = {1, . . . , 4s}

and ∆m,n
1 = {4s + 1, . . . , 8s}. Then Alt(∆m,n

0 ) 6 Tmn = Alt(2t). There exists an
element φ ∈ Alt(m) = Smn such that φAlt(∆m,n

0 )φ−1 = Alt(∆m,n
1 ). Hence there

exists g1 ∈ H0 such that∏
{Alt(∆m,n

0 )×Alt(∆m,n
1 ) | 〈m,n〉 ∈ I,m ≡ 0 (mod 8) } 6 〈K0, g1〉.

Now Lemma 2.10 implies that there exists an element g2 ∈ H0 such that H0 =
〈K0, g1, g2〉.

Next consider the case when i = 1. For each 〈m,n〉 ∈ I with m ≡ 1 (mod 8),
let Umn = Alt(m − 1) 6 Smn . By the previous paragraph, there exist elements g1,
g2 ∈ H1 such that∏

{Umn | 〈m,n〉 ∈ I,m ≡ 1 (mod 8) } 6 〈K1, g1, g2〉.

Now Lemma 2.8 implies that there exists an element g3 ∈ H1 such that H1 =
〈K1, g1, g2, g3〉. Continuing in this fashion, we can successively deal with the re-
maining cases.

The rest of this section is devoted to the proof of Theorem 2.5. Suppose that
c(G2) = ω. Express G2 =

⋃
t<ω

Ht as the union of a chain of ω proper subgroups.

Our strategy will be to define by induction on t < ω

1. a sequence of elements ft ∈ G2;
2. a strictly increasing sequence of integers it such that ft ∈ Hit ;
3. a sequence of elements gt ∈ G2 rHit .

These sequences will be chosen so that there exists an element h ∈ G2 such that
hfth

−1 = gt for all t < ω. But this implies that h /∈
⋃
t<ω

Ht, which is the desired

contradiction.
Let J = {〈m,n〉 | 3 ≤ m ∈ N, n ∈ N}. Then G2 =

∏
〈m,n〉∈J

Amn , where Amn =

Alt(2m) for all n ∈ N. The elements gt = 〈gt(m,n)〉m,n ∈
∏
m,nA

m
n , t < ω, will be

chosen so that for each 〈m,n〉 ∈ J , the sequence

g0(m,n), g1(m,n), . . . , gt(m,n)

is a generic sequence of elements of Alt(2m), in the following sense.

Definition 2.11. If 0 ≤ t ≤ m − 1, then the sequence π0, . . . , πt of elements of
Alt(2m) is a generic sequence if

1. the subgroup 〈π0, . . . , πt〉 is elementary abelian of order 2t+1;

2. if id 6= φ ∈ 〈π0, . . . , πt〉, then φ is a permutation of type 22m−1

. (In other
words, 〈π0, . . . , πt〉 acts semiregularly on {1, . . . , 2m}.)

If m − 1 ≤ t < ω, then the sequence π0, . . . , πt of elements of Alt(2m) is a generic
sequence if

(a) π0, . . . , πm−1 is a generic sequence;
(b) π` = πm−1 for all m− 1 ≤ ` ≤ t.
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It is an easy exercise to show that for each t < ω, there exists a unique generic
sequence π0, . . . , πt in Alt(2m) up to conjugacy within Sym(2m); and two such
generic sequences up to conjugacy within Alt(2m) if m ≥ 3 and 2 ≤ t < ω. (We
shall not make use of this observation in the proof of Theorem 2.5.)

To begin the induction, choose any element f0 = 〈f0(m,n)〉m,n ∈ G2 =
∏
m,nA

m
n

such that f0(m,n) is a permutation of type 22m−1

for each 〈m,n〉 ∈ J ; and let i0
be an integer such that f0 ∈ Hi0 . Let fG2

0 be the conjugacy class of f0 in G2. Then

Lemma 2.9 implies that G2 = 〈fG2
0 〉. Hence there exists an element h0 ∈ G2 such

that g0 = h0f0h
−1
0 /∈ Hi0 . Now suppose that t ≥ 0 and that we have defined

1. a sequence of elements fj ∈ G2,
2. a strictly increasing sequence of integers ij such that fj ∈ Hij ,
3. a sequence of elements gj ∈ G2 rHij , and
4. a sequence of elements hj ∈ G2

for 0 ≤ j ≤ t such that the following conditions hold.

(a) f0(m,n), . . . , ft(m,n) is a generic sequence in Amn = Alt(2m) for all m,n.
(b) If 0 ≤ j ≤ k ≤ t, then hkfjh

−1
k = gj.

(c) If m− 1 ≤ j ≤ t and n ∈ N, then hj(m,n) = hm−1(m,n).

First we shall define ft+1.

Case 1. Suppose that m − 1 ≤ t and n ∈ N. Then we define ft+1(m,n) =
fm−1(m,n).

Case 2. Suppose that t < m− 1 and n ∈ N. We shall set up some notation which
will be used during the rest of this section. Let

E(m,n) = 〈g0(m,n), . . . , gt(m,n)〉.
Then E(m,n) is an elementary abelian group of order 2t+1 acting semiregularly on
{1, . . . , 2m}. Let

{1, . . . , 2m} = Φm,n1 ∪ · · · ∪ Φm,n2m−t−1

be the decomposition into E(m,n)-orbits. Then E(m,n) acts regularly on Φm,ni

for each 1 ≤ i ≤ 2m−t−1. Choose αi ∈ Φm,ni for each 1 ≤ i ≤ 2m−t−1. Let
E(m,n) = {πk | 1 ≤ k ≤ 2t+1}, where π1 = id, and define

∆m,n
k = {πk(αi) | 1 ≤ i ≤ 2m−t−1}

for each 1 ≤ k ≤ 2t+1. Then the diagonal subgroup

D(m,n) = Diag(Alt(∆m,n
1 )× · · · ×Alt(∆m,n

2t+1))

= {
2t+1∏
i=1

πiφπi | φ ∈ Alt(∆m,n
1 )}

is contained in the centraliser of E(m,n) in Alt(2m). Let τ(m,n) ∈ D(m,n) be

any permutation of type 22m−1

, and define

ft+1(m,n) = ht(m,n)−1τ(m,n)ht(m,n).

This completes the definition of ft+1 = 〈ft+1(m,n)〉m,n.

Next we choose it+1 to be an integer such that

(i) it < it+1 and ft+1 ∈ Hit+1 ; and
(ii) P ∗ =

∏
{Amn | 3 ≤ m ≤ t+ 3, n ∈ N} 6 Hit+1 .
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(Proposition 2.3 implies that c(P ∗) > ω. Hence it+1 can be chosen so that (ii) also
holds.)

Finally we shall define ht+1 and gt+1.

Case 1. Suppose that m − 1 ≤ t and n ∈ N. Then we define ht+1(m,n) =
hm−1(m,n) and gt+1(m,n) = gm−1(m,n).

Case 2. Suppose that t < m − 1 and n ∈ N. Then we choose a suitable element
σ(m,n) ∈ D(m,n) and define

ht+1(m,n) = σ(m,n)ht(m,n)

and

gt+1(m,n) = ht+1(m,n)ft+1(m,n)ht+1(m,n)−1

= σ(m,n)τ(m,n)σ(m,n)−1.

Of course, a suitable choice means one such that gt+1 = 〈gt+1(m,n)〉m,n /∈ Hit+1 .
This completes the successor step of the induction, provided that a suitable choice
exists.

Claim 2.12. There exists a choice of σ(m,n) for m > t + 1 and n ∈ N such that
gt+1 /∈ Hit+1 .

Proof. Suppose that for every choice of the sequence

〈σ(m,n) | t < m− 1, n ∈ N〉
we have that gt+1 ∈ Hit+1 . Then we shall prove that G2 is finitely generated over
Hit+1 . But this means that there exists r ∈ N with it+1 ≤ r such that Hr = G2,
which is a contradiction.

Let J ′ = {〈m,n〉 | t + 4 ≤ m ∈ N, n ∈ N} and let P ′ =
∏
{Amn | 〈m,n〉 ∈ J ′}.

Thus G2 = P ∗ × P ′. Note that if π(m,n) ∈ D(m,n) is any element of type 22m−1

,
then there exists σ(m,n) ∈ D(m,n) such that σ(m,n)τ(m,n)σ(m,n)−1 = π(m,n).
Using the fact that P ∗ 6 Hit+1 , we see that the following statement holds.

(†) Suppose that π = 〈π(m,n)〉m,n ∈ P ′. If π(m,n) ∈ D(m,n) is an element of

type 22m−1

for all 〈m,n〉 ∈ J ′, then π ∈ Hit+1 .

Using Lemma 2.9, we see that
∏
{D(m,n) | 〈m,n〉 ∈ J ′} 6 Hit+1 . Now let θ1 =

〈θ1(m,n)〉m,n ∈ P ′ be an element such that θ1(m,n) ∈ Alt(∆m,n
1 ) is a permutation

of type 22m−t−2

for each 〈m,n〉 ∈ J ′. Then {ψθ1(m,n)ψ−1 | ψ ∈ D(m,n)} is the

conjugacy class in Alt(∆m,n
1 ) of all permutations of type 22m−t−2

. Using Lemma
2.9 again, we see that∏

{Alt(∆m,n
1 ) | 〈m,n〉 ∈ J ′} 6 〈Hit+1 , θ1〉.

Continuing in this fashion, we find that there exist θ1, . . . , θ2t+1 ∈ P ′ such that∏
{Alt(∆m,n

1 )× · · · ×Alt(∆m,n
2t+1) | 〈m,n〉 ∈ J ′} 6 〈Hit+1 , θ1, . . . , θ2t+1〉.

By repeatedly applying Lemma 2.10, we now see that there exists a finite subset F
of P ′ such that

P ′ 6 〈Hit+1 , θ1, . . . , θ2t+1 , F 〉.
Hence G2 = P ∗ × P ′ is finitely generated over Hit+1 , which is a contradiction.
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Thus the induction can be carried out for all t < ω. Define the element h =
〈h(m,n)〉m,n ∈ G2 by h(m,n) = hm−1(m,n). Then we have that hfth

−1 = gt for
all t < ω, which is a contradiction. This completes the proof of Theorem 2.5.

3. Infinite products of special linear groups

In this section, we shall prove the following result.

Theorem 3.1. Suppose that 〈SL(dn, qn) | n ∈ N〉 is a sequence of finite special
linear groups which satisfies the following conditions.

(1) If dn = 2, then qn > 3.
(2) There do not exist an infinite subset I of N and an integer d such that

(a) dn = d for all n ∈ I; and
(b) if n, m ∈ I and n < m, then qn < qm.

Then c(
∏
n SL(dn, qn)) > ω.

Using Theorem 3.1 and Lemma 1.8, we see that Theorem 1.9 is true in the special
case when each Sn is a projective special linear group.

Our strategy in the proof of Theorem 3.1 will be the same as that in the proof
of Theorem 2.1. We shall begin by defining the notion of a generic sequence of
elements in SL(2m, q). Let V = V (n, q) be an n-dimensional vector space over
GF (q), and let B be a basis of V . Then Sym(B) denotes the group of permutation
matrices with respect to the basis B. Note that for any finite field GF (q), we have
that Alt(B) 6 SL(n, q).

Definition 3.2. If 0 ≤ t ≤ m − 1, then the sequence π0, . . . , πt of elements of
SL(2m, q) is a generic sequence if there exists a basis B of V (2m, q) such that

1. the group 〈π0, . . . , πt〉 is an elementary abelian subgroup of Alt(B) of order
2t+1;

2. 〈π0, . . . , πt〉 acts semiregularly on B.

If m− 1 ≤ t < ω, then the sequence π0, . . . , πt of elements of SL(2m, q) is a generic
sequence if

(a) π0, . . . , πm−1 is a generic sequence;
(b) π` = πm−1 for all m− 1 ≤ ` ≤ t.

First we shall prove an analogue of Lemma 2.9. Let m = 4n for some n ≥ 1.
Then C(m, q) denotes the conjugacy class in SL(m, q) consisting of all elements
π such that π is represented by a permutation matrix of type 22n with respect to
some basis B of V (m, q). (It is easily checked that the set of such elements forms
a single conjugacy class in SL(m, q).) Note that SL(m, q) has a maximal torus T1

of order (q4n − 1)/(q − 1). By Zsigmondy’s theorem [Zs], there exists a primitive
prime divisor p > 2 of q4n − 1. Let ψ ∈ T1 be an element of order p. Then ψ is
clearly a regular element of T1. (A semisimple element g ∈ SL(m, q) is regular if
and only if it lies in a unique maximal torus.)

Lemma 3.3. With the above hypotheses, there exist elements π1, π2 ∈ C(m, q)
such that ψ = π1π2.

Proof. Regard K = GF (q4n) as a 4n-dimensional vector space over GF (q). Let

τ ∈ K generate a normal basis of K over GF (q); i.e. B = {τ, τq, τq2

, . . . , τq
4n−1} is

a basis of K over GF (q). Let f ∈ Aut(K) be the Frobenius automorphism; so that
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f(α) = αq for all α ∈ K. Let g = f2n. Then g is represented by a permutation
matrix of type 22n with respect to the basis B. Thus g ∈ C(m, q).

Let K∗ = 〈α〉, and let β = αq
2n−1. Then β has order q2n + 1, and g(β) = β−1.

Consider the primitive prime divisor p of q4n−1 = (q2n−1)(q2n+1). Then clearly p
divides q2n+1. Thus there exists an element γ ∈ 〈β〉 of order p; and we can suppose
that ψ ∈ T1 is the linear transformation defined by ψ(x) = γx for all x ∈ K. Since
g(γ) = γ−1, we see that gψg−1 = ψ−1. Since ψ has odd order, the involutions g
and gψ are conjugate in the dihedral group 〈g, gψ〉. The result follows.

Theorem 3.4. Suppose that m = 4n for some n ≥ 1. Then for every φ ∈
SL(m, q), there exist π1, . . . , π10 ∈ C(m, q) such that φ = π1 . . . π10.

Proof. Let G = SL(4n, q) and let ψ ∈ T1 be as above. Let τ ∈ G be an element of
order q4n−1 − 1 and let T2 be the maximal torus which contains τ . (Of course, τ is
a regular element of T2.) Let C1, C2 be the conjugacy classes of ψ, τ respectively.
We claim that the product C1C2 of these two classes covers all of GrZ(G). Using
Lemma 3.3, this implies that each element of C2 is a product of 3 elements of
C(m, q); and hence every element of GrZ(G) is a product of 5 elements of C(m, q).
The result follows.

The proof of the claim uses character theory and follows [MSW, pp. 96–99] very
closely. For any conjugacy class C3 of G and σ ∈ C3, define

m(C1, C2, C3) =
|G|2

|CG(ψ)| |CG(τ)| |CG(σ)|
∑ χ(ψ)χ(τ)χ(σ)

χ(1)

where the summation runs over the irreducible characters χ of G. By a well-known
class formula, m(C1, C2, C3) is equal to the number of triples (a1, a2, a3) such that
ai ∈ Ci and a1a2a3 = 1. It therefore suffices to show that the character sum
involved in the formula for m(C1, C2, C3) is positive for any class C3 of non-central
elements of G.

Now the values of the irreducible characters of G on semisimple elements can be
calculated from the values of the Deligne-Lusztig characters. (See [Ca2, Chapter
7].) The Deligne-Lusztig characters RT,θ are parametrized by pairs (T, θ). The
equivalence relation of geometric conjugacy on these pairs yields a partition of the
irreducible characters of G into disjoint series as follows. The geometric conjugacy
classes of pairs (T, θ) can be parametrized by the conjugacy classes (s) of semisimple

elements in the dual group Ĝ = PGL(4n, q). Let E(s) be the set of irreducible
characters occurring as a constituent in one of the RT,θ with (T, θ) corresponding
to (s). Then the sets E(s), where (s) runs over the set of conjugacy classes of

semisimple elements of Ĝ, form a partition of the set of irreducible characters of G.
( See [Ca2, 7.3.8 and 7.5.8].)

The RT,θ span the space of class functions restricted to semisimple elements.
(See [Ca2, 7.5.7].) In particular, suppose that ρ is a semisimple element of G and
that χ ∈ E(s). Then if RT,θ(ρ) = 0 for all pairs (T, θ) corresponding to (s), we have
that χ(ρ) = 0. Now RT,θ = R(s) vanishes on the regular elements of the torus T ′ if

the element s is not conjugate in Ĝ to an element of the dual T̂ ′ of T ′. Hence the
RT,θ not vanishing on either of the classes C1, C2 will correspond to semisimple

classes (s) in Ĝ such that s ∈ T̂1 ∩ T̂2. Let T̄i be the preimage of T̂i in GL(4n, q).
Then T̄1 is cyclic of order q4n − 1, and T̄2 is the product of two cyclic groups of
orders q4n−1 − 1 and q − 1. Furthermore, both T̄1 and T̄2 contain Z(GL(4n, q)).
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Since
(∣∣T̄1

∣∣ , ∣∣T̄2

∣∣) = (q − 1)(4n, q − 1), it follows that T̂1 ∩ T̂2 = 1. Thus we need
only consider the set E(1) of unipotent characters of G. It is well-known that if the
degree of an irreducible character is divisible by the full power of a prime r dividing
the order of a group, then the character vanishes on all r-singular elements of the
group. Using this result, an inspection of the degrees of the unipotent characters
of G in [Ca2, p. 465] shows that only two irreducible characters contribute to
the character sum in the above formula; namely, the principal character and the
Steinberg character St. It follows that

m(C1, C2, C3) =
|G|2

|CG(ψ)| |CG(τ)| |CG(σ)|

(
1 +

St(ψ)St(τ)St(σ)

St(1)

)
and so [Ca2, 6.4]

m(C1, C2, C3) =
|G|2

|CG(ψ)| |CG(τ)| |CG(σ)|

(
1− St(σ)

St(1)

)
.

This is 0 precisely when σ ∈ Z(G), as claimed.

Next we shall prove the analogue of Lemma 2.8. It is easier to state the result in
terms of infinite products of groups, rather than in terms of “uniform generation”.
Let 〈SL(dn, qn) | n ∈ N〉 be a sequence of special linear groups. Fix some n ∈ N.
Let SL(dn, qn) act on the vector space V (dn, qn) in the natural manner. Extend this
action to V (dn + 1, qn) = V (dn, qn)⊕ 〈vdn+1〉 by specifying that π(vdn+1) = vdn+1

for all π ∈ SL(dn, qn). Using this extended action, we can regard SL(dn, qn) as a
subgroup of SL(dn + 1, qn).

Lemma 3.5.
∏
n SL(dn + 1, qn) is finitely generated over

∏
n SL(dn, qn).

Proof. We shall make use of the Bruhat decomposition

SL(d, q) =
⋃
w∈W

BwB

of the special linear group, where B is a Borel subgroup and W is the Weyl group.
Fix some integer n ∈ N. Choose a basis {vi | 1 ≤ i ≤ dn} of V (dn, qn). We
shall regard each element of SL(dn + 1, qn) as a matrix with respect to the basis
B = {vi | 1 ≤ i ≤ dn + 1}. Note that we have identified SL(dn, qn) with the
subgroup

Sn =

{(
A 0
0 1

)
| A ∈ SL(dn, qn)

}
of SL(dn + 1, qn). Define

Tn =

{(
1 0
0 A

)
| A ∈ SL(dn, qn)

}
.

Then there exists π ∈ SL(dn + 1, qn) such that πSnπ
−1 = Tn. Hence there exists

an element g0 ∈
∏
n SL(dn + 1, qn) such that

∏
n Tn 6 G0 = 〈

∏
n Sn, g0〉. Let Un

be the subgroup of strictly upper triangular matrices in SL(dn + 1, qn), and let Hn

be the subgroup of diagonal matrices. Then Bn = Un oHn is a Borel subgroup of
SL(dn + 1, qn). We shall show that

∏
nBn 6 G0.

First we shall show that
∏
nHn 6 G0. Fix some n ∈ N. Let

D = diag(λ1, . . . , λdn+1) ∈ Hn.
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Then D1 = diag(λ1, λ
−1
1 , 1, . . . , 1) ∈ Hn ∩ Sn, D2 = diag(1, λ1λ2, λ3, . . . , λdn+1) ∈

Hn ∩ Tn and D = D1D2. The result follows.
Next we shall show that

∏
n Un 6 G0. Fix some n ∈ N. Note that1 0 0

0 A b
0 0 1

1 c 0
0 1 0
0 0 1

 =

1 c 0
0 A b
0 0 1


for each (dn − 1)× (dn − 1)-matrix A. Also note that if Z ∈ Un has the form1 0 d

0 1 0
0 0 1


then there exist X ∈ Un∩Sn and Y ∈ Un∩Tn such that [X,Y ] = Z. (For example,
this follows from Chevalley’s commutator formula [Ca1, 5.2.2].) Hence if φ ∈ Un is
arbitrary, then there exist θ, τ ∈ Un∩Sn and ψ, σ ∈ Un∩Tn such that φ = ψθ[τ, σ].
The result follows.

Let Nn be the subgroup of SL(dn + 1, qn) consisting of the elements which
stabilise the frame {〈vi〉 | 1 ≤ i ≤ dn + 1}. Then the Weyl group of SL(dn + 1, qn)
is Wn = Nn/Bn ∩ Nn; and Wn is isomorphic to Sym(dn + 1) acting on the set
{vi | 1 ≤ i ≤ dn + 1}. Note that Nn ∩ Sn corresponds to the subgroup Sym(dn) of
Wn. Let θ = ( dn dn + 1 ). Arguing as in the proof of Lemma 2.8, we see that for
every φ ∈ Sym(dn+1), there exist ψ1, ψ2, ψ3 ∈ Sym(dn) such that φ = ψ1θψ2θψ3.
Hence there exists g1 ∈

∏
n SL(dn + 1, qn) such that

∏
nNn 6 G1 = 〈G0, g1〉. It

follows that G1 =
∏
n SL(dn + 1, qn).

Finally we shall prove the analogue of Lemma 2.10. Consider a product of the
form

∏
n SL(8dn, qn). Fix some n ∈ N. Let SL(8dn, qn) act on the vector space

Vn = V (8dn, qn) in the natural manner, and let Bn = {vi | 1 ≤ i ≤ 8dn} be a
basis of Vn. Let E0 = 〈vi | 1 ≤ i ≤ 4dn〉 and E1 = 〈vi | 4dn + 1 ≤ i ≤ 8dn〉.
We regard SL(E0) as the subgroup of SL(8dn, qn) consisting of the elements π
such that π[E0] = E0 and such that π(vi) = vi for all 4dn + 1 ≤ i ≤ 8dn. We
also regard SL(E1) as a subgroup of SL(8dn, qn) in the obvious fashion. Let Γn =
SL(E0)× SL(E1) 6 SL(8dn, qn).

Lemma 3.6.
∏
n SL(8dn, qn) is finitely generated over

∏
n Γn.

Proof. Once again, we shall make use of the Bruhat decomposition of the special
linear group. Fix some n ∈ N. We shall regard SL(8dn, qn) as a group of matrices
with respect to the ordered basis (v1, . . . , v8dn) of Vn. Let Bn = Un o Hn be the
Borel subgroup consisting of the upper triangular matrices of SL(8dn, qn) First we
shall show that there exists a subgroup G0 of

∏
n SL(8dn, qn) such that

1. G0 is finitely generated over
∏
n Γn, and

2.
∏
n Un 6 G0.

Fix some n ∈ N. Let Mn be the ring of all 4dn × 4dn-matrices over GF (qn), and
let

Tn =

{(
1 S
0 1

)
| S ∈Mn

}
.
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Then it is enough to find G0 such that
∏
n Tn 6 G0. Note that for each A ∈

SL(4dn, qn), we have that(
A 0
0 1

)(
1 S
0 1

)(
A−1 0
0 1

)
=

(
1 AS
0 1

)
.

Regard Mn as an SL(4dn, qn)-module with the natural action, S
A7−→ AS. Then the

existence of a suitable subgroup G0 is an immediate consequence of the following
claim.

Claim 3.7.
∏
nMn is finitely generated as a

∏
n SL(4dn, qn)-module.

Proof of Claim. We shall prove thatMn is “uniformly generated” as an SL(4dn, qn)-
module. The result will then follow. Fix some n ∈ N. Throughout this proof, each
of the matrices will be expressed in terms of 2dn × 2dn blocks. Let

J1 =

(
1 0
0 0

)
, J2 =

(
0 0
0 1

)
, J3 =

(
0 1
0 0

)
, J4 =

(
0 0
1 0

)
.

If B ∈ GL(2dn, qn), then
(
B 0
0 B−1

)
,
(
B−1 0

0 B

)
∈ SL(4dn, qn); and(

B 0
0 B−1

)(
1 0
0 0

)
=

(
B 0
0 0

)
and

(
B−1 0

0 B

)(
0 0
1 0

)
=

(
0 0
B 0

)
, etc.

Thus if B1, . . . , B4 ∈ GL(2dn, qn), then there exist C1, . . . , C4 ∈ SL(4dn, qn) such
that (

B1 B2

B3 B4

)
=

4∑
i=1

CiJi.

Now suppose that
(
S1 S2
S3 S4

)
∈ Mn is arbitrary. By [Ze], each of the matrices Si

is the sum of two non-singular ones. Hence there exist C1, . . . , C4, D1, . . . , D4 ∈
SL(4dn, qn) such that (

S1 S2

S3 S4

)
=

4∑
i=1

CiJi +
4∑
i=1

DiJi.

Thus each Mn is “uniformly generated” from the generators J1, . . . , J4.

Next we shall show that there exists an element g0 ∈
∏
n SL(8dn, qn) such that∏

nHn 6 G1 = 〈G0, g0〉; and hence
∏
nBn 6 G1. For each λ ∈ GF (qn)∗, let

Dλ = diag(λ, 1, . . . , 1) ∈ GL(4dn, qn). Define

Fn =

{(
Dλ 0
0 D−1

λ

)
| λ ∈ GF (qn)∗

}
.

Since
∏
n Γn 6 G0, it is enough to find an element g0 such that

∏
n Fn 6 〈G0, g〉.

For each λ ∈ GF (qn)∗, let Eλ = diag(λ, λ−1, 1, . . . , 1) ∈ GL(4dn, qn). Define

Kn =

{(
Eλ 0
0 1

)
| λ ∈ GF (qn)∗

}
.

Then
∏
nKn 6

∏
n Γn 6 G0. Also there exists an element π ∈ Nn such that

πKnπ
−1 = Fn. The existence of a suitable element g0 follows easily.

Finally we shall show that there exists an element g1 ∈
∏
n SL(8dn, qn) such that∏

nNn 6 G2 = 〈G1, g1〉. Fix some n ∈ N. Let En0 = {vi | 1 ≤ i ≤ 4dn} and En1 =
{vi | 4dn+1 ≤ i ≤ 8dn}, so that Bn = En0 ∪En1 . Then the groups of permutation ma-
trices Alt(En0 ), Alt(En1 ) are subgroups of Γn. Lemma 2.10 implies that there exists

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

Sh:584



INFINITE PRODUCTS OF FINITE SIMPLE GROUPS 4625

an element g1 ∈
∏
nAlt(Bn) such that

∏
nAlt(Bn) = 〈

∏
(Alt(En0 )×Alt(En1 )) , g1〉.

Now let π = 〈π(n)〉n ∈
∏
nNn be an arbitrary element. Let X be the subset of

N consisting of those n such that π(n) corresponds to an odd permutation of Bn.
Then there exists an element ψX = 〈ψX(n)〉n ∈

∏
n (Nn ∩ Γn) such that

1. ψX(n) corresponds to the odd permutation ( v1 v2 ) if n ∈ X , and
2. ψX(n) = 1 if n /∈ X .

Since
∏
nHn,

∏
nAlt(Bn) 6 〈G1, g1〉, it follows that πψX ∈ 〈G1, g1〉, and hence

π ∈ 〈G1, g1〉. Thus
∏
nNn 6 〈G1, g1〉.

Now we are ready to begin the proof of Theorem 3.1. Since the proof is very
similar to that of Theorem 2.1, we shall just sketch the main points. Suppose that
〈SL(dn, qn) | n ∈ N〉 is a sequence of finite special linear groups which satisfies the
hypotheses of Theorem 3.1. By Proposition 2.3, we can suppose that {dn | n ∈ N}
is an infinite subset of N. Arguing as in the proof of Lemma 2.4, we can reduce
to the case when each dn has the form 2mn for some mn ≥ 2. (Since the sequence
satisfies condition 3.1(2), there exists a finite set F of groups such that if dn ≤ 3,
then SL(dn, qn) ∈ F . By Propositions 2.2 and 2.3, we can safely ignore these
factors.) Let G =

∏
n SL(2mn , qn) and suppose c(G) = ω. Express G =

⋃
t<ω

Ht as

the union of a chain of ω proper subgroups. Now suppose that t ≥ 0 and that we
have defined

1. a sequence of elements fj = 〈fj(n)〉n ∈ G,
2. a strictly increasing sequence of integers ij such that fj ∈ Hij ,
3. a sequence of elements gj = 〈gj(n)〉n ∈ GrHij , and
4. a sequence of elements hj = 〈hj(n)〉n ∈ G

for 0 ≤ j ≤ t such that the following conditions hold.

(a) f0(n), . . . , ft(n) is a generic sequence in SL(2mn , qn) for each n ∈ N.
(b) If 0 ≤ j ≤ k ≤ t, then hkfjh

−1
k = gj.

(c) If mn − 1 ≤ j ≤ t, then hj(n) = hmn−1(n).

We must show that it is possible to continue the induction. There is no difficulty in
defining ft+1 and it+1. The problem is to show that there exist suitable elements
ht+1 and gt+1 = ht+1ft+1h

−1
t+1 such that gt+1 /∈ Hit+1 . As in the proof of Theorem

2.1, we shall show that if no such elements exist, then G is finitely generated
over Hit+1 ; which is a contradiction. So suppose that no such elements exist. Let
P ∗ =

∏
{SL(2mn, qn) | mn ≤ t+3} and P ′ =

∏
{SL(2mn , qn) | mn ≥ t+4}, so that

G = P ∗×P ′. Since 〈SL(2mn , qn | n ∈ N〉 satisfies condition 3.1(2), either c(P ∗) > ω
or P ∗ is finite. Thus we can suppose that it+1 was chosen so that P ∗ 6 Hit+1 . Fix
some n ∈ N such that mn ≥ t+ 4. Let Bn be a basis of V (2mn , qn) chosen so that
the group E(n) = 〈g0(n), . . . , gt(n)〉 is an elementary abelian subgroup of Alt(Bn)
of order 2t+1, which acts semiregularly on Bn. Let {Φni | 1 ≤ i ≤ 2mn−t−1} be
the set of orbits of E(n) on Bn. For each 1 ≤ i ≤ 2mn−t−1, choose v1

i ∈ Φni . Let
E(n) = {ψk | 1 ≤ k ≤ 2t+1}. For each 1 ≤ k ≤ 2t+1 and 1 ≤ i ≤ 2mn−t−1, define
vki = ψk(v1

i ). For each 1 ≤ k ≤ 2t+1, let V nk = 〈vki | 1 ≤ i ≤ 2mn−t−1〉. Then
V (2mn , qn) = V n1 ⊕ · · · ⊕ V n2t+1 , and the diagonal subgroup

Dn = Diag (SL(V n1 )× · · · × SL(V n2t+1))

is contained in the centraliser of 〈g0(n), . . . , gt(n)〉 in SL(2mn, qn). Since each can-
didate π for gt+1 satisfies π ∈ Hit+1 , we find that the following statement holds.
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(†) Suppose that π ∈ P ′. If π(n) ∈ Dn∩C(2mn , qn) for all n such that mn ≥ t+4,
then π ∈ Hit+1 .

Using Theorem 3.4, this implies that
∏
{Dn | mn ≥ t+ 4} 6 Hit+1 . Arguing as in

the proof of Theorem 2.1, we see that there exists a subgroup Γ0 of G such that

1. Γ0 is finitely generated over Hit+1 , and
2.
∏
{SL(V n1 )× · · · × SL(V n2t+1) | m− n ≥ t+ 4} 6 Γ0.

By repeatedly applying Lemma 3.6, we next see that there exists a subgroup Γ1 of
G such that

1. Γ1 is finitely generated over Γ0, and
2. P ′ =

∏
{SL(2mn, qn) | mn ≥ t+ 4} 6 Γ1.

But this means that Γ1 = G, and so G is finitely generated over Hit+1 . This
contradiction shows that the induction can be carried out for all t < ω. But this
yields an element h ∈ G such that hfth

−1 = gt for all t < ω, which is impossible.
Thus c(G) > ω. This completes the proof of Theorem 3.1.

4. The proof of Theorem 1.9

In this section, we shall complete the proof of Theorem 1.9. Most of our work
will go into proving the special cases of Theorem 1.9 in which each Sn is a classical
group of a fixed kind. We shall deal successively with the symplectic groups, the
unitary groups and the orthogonal groups over finite fields. The general result will
then follow easily. (Clear accounts of the classical groups can be found in [Ca1] and
[Ta].)

4.1. Symplectic groups. Suppose that 〈Sp(2dn, qn) | n ∈ N〉 is a sequence of
finite symplectic groups such that dn ≥ 2 for each n ∈ N. Fix some n ∈ N.
Then there exists a basis êf = (ei | 1 ≤ i ≤ dn) (̂fi | 1 ≤ i ≤ dn) of the
corresponding symplectic space such that (ei, fj) = δij and (ei, ej) = (fi, fj) = 0
for all 1 ≤ i, j ≤ dn. (Such a basis is called a normal basis .) We shall consider
Sp(2dn, qn) as a group of matrices with respect to the ordered basis êf . Let
Edn = 〈e1, . . . , edn〉 and Fdn = 〈f1, . . . , fdn〉. Then the setwise stabiliser of the
subspaces Edn and Fdn in Sp(2dn, qn) contains the subgroup

Gn =

{(
A 0

0
(
A−1

)T) | A ∈ SL(dn, qn)

}
.

Theorem 4.1. Suppose that dn ≥ 3 for all n ∈ N. Then
∏
n Sp(2dn, qn) is finitely

generated over the subgroup
∏
nGn.

Corollary 4.2. Suppose that 〈Sn | n ∈ N〉 is a sequence of finite simple symplectic
groups such that there does not exist an infinite subset I of N for which conditions
1.7(1) and 1.7(2) are satisfied. Then c(

∏
n Sn) > ω.

Proof of Corollary 4.2. For each n ∈ N, let Sn = PSp(2dn, qn). Put J = {n ∈
N | dn < 3}, so that

∏
n∈N Sn =

(∏
n∈J Sn

)
×
(∏

n/∈J Sn
)
. By assumption, there

exists a finite set F of groups such that Sn ∈ F for all n ∈ J . By Proposition 2.3,
either c(

∏
n∈J Sn) > ω or

∏
n∈J Sn is finite. Hence if

∏
n/∈J Sn is finite, then the

result follows from Proposition 2.2. So we can suppose that
∏
n/∈J Sn is infinite;

and it is enough to prove that c(
∏
n/∈J Sn) > ω. To simplify notation, we shall

suppose that J = ∅. Let
∏
nGn be the subgroup of

∏
n Sp(2dn, qn) defined above.
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By Theorem 3.1, c(
∏
nGn) > ω. So using Theorem 4.1 and Proposition 2.2, we see

that c(
∏
n Sp(2dn, qn)) > ω. Hence c(

∏
n PSp(2dn, qn)) > ω.

We shall approach Theorem 4.1 via the Bruhat decomposition

Sp(2d, q) =
⋃
w∈W

BwB

of the symplectic group, where B is a Borel subgroup and W is the Weyl group.
Fix some n ∈ N. Let êf = (ei | 1 ≤ i ≤ dn) (̂fi | 1 ≤ i ≤ dn) be our distinguished
normal basis. For each 1 ≤ i ≤ dn, let Ei = 〈e1, . . . ei〉. Then the stabiliser Bn of
the flag of totally isotropic subspaces

E1 6 E2 6 · · · 6 Edn
is a Borel subgroup of Sp(2dn, qn). Let Nn be the subgroup of Sp(2dn, qn) which
stabilises the symplectic frame {〈ei〉, 〈fi〉 | 1 ≤ i ≤ dn}. Then the Weyl group of
Sp(2dn, qn) is Nn/Bn ∩Nn. Let Hn = Bn ∩Nn. Then Hn consists of the matrices
of the form (

D 0
0 D−1

)
where D ∈ GL(dn, qn) is a diagonal matrix. Let UTn be the subgroup of strictly
upper triangular matrices in SL(dn, qn), and define

Un =

{(
P PS

0
(
P−1

)T) | P ∈ UTn, ST = S

}
.

Then Bn = Un oHn.
First we shall show that there exists a subgroup Γ0 of

∏
n Sp(2dn, qn) such that

1. Γ0 is finitely generated over
∏
nGn, and

2.
∏
n Un 6 Γ0.

Note that for each A ∈ SL(dn, qn), we have(
A 0

0
(
A−1

)T)(1 S
0 1

)(
A−1 0
0 AT

)
=

(
1 ASAT

0 1

)
.

Let Mn be the left SL(dn, qn)-module of symmetric dn × dn-matrices, with the
action

S
A7−→ ASAT .

Then it is enough to prove that
∏
nMn is finitely generated as a

∏
n SL(dn, qn)-

module. We shall consider Mn in three different cases, and show that in each case
Mn is “uniformly generated” as a SL(dn, qn)-module. The result will then follow.
Let p = char(GF (qn)).

Case 1. Suppose that p > 3. Since p is odd, every S ∈ Mn is congruent to a
diagonal matrix. This easily implies that there exists A ∈ SL(dn, qn) such that
ASAT is a diagonal matrix. Thus we need only consider diagonal matrices D =
diag(λ1, . . . , λdn) ∈ Mn. Let D1 = diag(1, 0, . . . , 0) and D2 = diag(0, 1, . . . , 1), so

that 1 = D1 +D2. If α = (α1, . . . , αdn) ∈ (GF (qn)∗)dn , let

Rα = diag(α1, 1, . . . , 1, α
−1
1 )

and

Sα = diag((α2 . . . αdn)−1, α2, . . . , αdn).
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Then RαD1R
T
α = diag(α2

1, 0, . . . , 0) and SαD2S
T
α = diag(0, α2

2, . . . , α
2
dn

). Since p >

3, for each λ ∈ GF (qn), there exist β1, . . . , β4 ∈ GF (qn)∗ such that λ =
∑4
i=1 β

2
i .

(For example, see Chapter 4 [Sm].) Thus we can “uniformly generate” each diagonal
matrix D ∈Mn from the generators D1 and D2.

Case 2. Suppose that p = 3. Once again, we need only consider diagonal matrices
D ∈ Mn. Let D1 = diag(1, 1, 0, . . . , 0) and D2 = diag(δ, 1, 1, . . . , 1), where δ =
1 if dn is even and δ = 0 if dn is odd. For each subset X of {1, . . . , dn}, let
DX

1 = diag(χX(1), 0, . . . , 0) and DX
2 = diag(0, χX(2), . . . , χX(dn)), where χX is

the characteristic function of X . It is easy to check that if

S ∈
{(

0 0
0 0

)
,

(
1 0
0 0

)
,

(
0 0
0 1

)
,

(
1 0
0 1

)}
then there exist A1, . . . , A6 ∈ SL(2, 3) such that S =

∑6
i=1AiA

T
i . Hence there

exist Bi, Ci ∈ SL(dn, 3) for 1 ≤ i ≤ 6 such that
∑6
i=1 BiD1B

T
i = DX

1 and∑6
i=1 CiD2C

T
i = DX

2 . Now it is easy to complete the proof of this case. Let
D = diag(λ1, . . . , λdn) ∈Mn. Then for each 1 ≤ i ≤ dn, there exist αi, βi ∈ GF (qn)
such that λi = α2

i + β2
i . (It is well-known that if F is any finite field, then every

element of F is a sum of two squares. Unfortunately it is often not possible to
express an element as the sum of two nonzero squares.) Let X = {i | αi 6= 0} and
Y = {i | βi 6= 0}. Then there exist diagonal matrices Rj ∈ SL(dn, qn) for 1 ≤
j ≤ 4 such that R1D

X
1 R

T
1 = diag(α2

1, 0, . . . , 0), R2D
X
2 R

T
2 = diag(0, α2

2, . . . , α
2
dn

),

R3D
Y
1 R

T
3 = diag(β2

1 , 0, . . . , 0) and R4D
Y
2 R

T
4 = diag(0, β2

2 , . . . , β
2
dn

). Thus we can
“uniformly generate” each diagonal matrix from the generators D1 and D2.

Case 3. Suppose that p = 2. If S = (sij) ∈ Mn, then S is said to be alternating
if sii = 0 for all 1 ≤ i ≤ dn. If S is not alternating, then S is congruent to a
diagonal matrix. Clearly for each S ∈ Mn, there exist Bk ∈ Mn for 1 ≤ k ≤ 3
such that S =

∑3
k=1Bk and none of the Bk are alternating. Thus we need only

consider diagonal matrices D ∈ Mn. It is easily checked that if C is a diagonal
3 × 3-matrix over GF (2), then there exist Ai ∈ SL(3, 2) for 1 ≤ i ≤ 4 such that

C =
∑4
i=1 AiA

T
i . It is now easy to adapt the argument of Case 2. (In fact, the

argument is even simpler in this case, as every element in GF (qn) is a square.) This
completes the proof of the existence of the subgroup Γ0 of

∏
n Sp(2dn, qn).

Next we shall show that there exists a subgroup Γ1 of
∏
n Sp(2dn, qn) such that

1. Γ1 is finitely generated over Γ0, and
2.
∏
nHn 6 Γ1.

For each n ∈ N, let LTn be the subgroup of strictly lower triangular matrices in
SL(dn, qn), and define

Vn =

{(
Q 0

SQ
(
Q−1

)T) | Q ∈ LTn, ST = S

}
.

Then there exists an element π ∈ Sp(2dn, qn) such that πUnπ
−1 = Vn. Hence there

exists g1 ∈
∏
n Sp(2dn, qn) such that

∏
n Vn 6 Γ1 = 〈Γ0, g1〉. We shall prove that∏

nHn 6 Γ1. For each λ ∈ GF (qn)∗, let Dλ = diag(λ, 1, . . . , 1) ∈ GL(dn, qn).
Define

Fn =

{(
Dλ 0
0 D−1

λ

)
| λ ∈ GF (qn)∗

}
.
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Since
∏
nGn 6 Γ1, it suffices to show that

∏
n Fn 6 Γ1. For each t ∈ GF (qn),

let S(t) be the symmetric dn × dn-matrix with t in the upper left position and 0
elsewhere. Define

X(t) =

(
1 S(t)
0 1

)
∈ Un and T (t) =

(
1 0
S(t) 1

)
∈ Vn.

Then it is easily checked that for each λ ∈ GF (qn)∗,(
Dλ 0
0 D−1

λ

)
= X(λ)Y (−λ−1)X(λ)X(−1)Y (1)X(−1).

(This is essentially [Ca1, 6.4.4].) Hence we have that
∏
n Fn 6 Γ1, as required.

Finally we shall show that there exists a subgroup Γ2 of
∏
n Sp(2dn, qn) such

that

1. Γ2 is finitely generated over Γ1; and
2.
∏
nNn 6 Γ2.

This implies that Γ2 =
∏
n Sp(2dn, qn), and hence completes the proof of Theorem

4.1. Again fix some n ∈ N. Then Wn is generated by the images of the elements
{wi | 1 ≤ i ≤ dn} of Nn defined as follows.

(a) If 1 ≤ i < dn, then wi is the permutation matrix corresponding to the per-
mutation ( ei ei+1 )( fi fi+1 ).

(b) wdn(edn) = −fdn , wdn(fdn) = edn and wdn fixes the remaining elements of
êf . (Thus wdn corresponds to the odd permutation ( edn fdn ).)

It follows that Wn is isomorphic to Zdn2 o Sym(dn), where Zdn2 is the natural

permutation module for Sym(dn). Let t = bdn/2c and let v ∈ Zdn2 be a vector of

weight t. Let En be the submodule of Zdn2 consisting of the vectors of even weight.
Then for every u ∈ En, there exist π, φ ∈ Sym(dn) such that u = π(v) + φ(v).

Let W+
n be the subgroup of Wn consisting of the even permutations of the set

{ei, fi | 1 ≤ i ≤ dn}. Then W+
n can be regarded as a subgroup of Sp(2dn, qn). Also

notice that W+
n corresponds to the subgroup EnoSym(dn) of Zdn2 oSym(dn). So

the argument of the previous paragraph shows that there exists g2 ∈
∏
n Sp(2dn, qn)

such that
∏
nW

+
n 6 〈Γ1, g2〉. We shall show that

∏
nNn 6 〈Γ1, g2〉. Once again

fix some n ∈ N. Consider the element w = wdnwdn−1wdn . Since w corresponds to
an even permutation of {ei, fi | 1 ≤ i ≤ dn}, it follows that w ∈ 〈W+

n , Bn〉. Using
the standard properties of groups with BN -pairs [Ca1, Section 8.2], we have that

(BnwdnBn) (BnwBn) = BnwdnwBn ∪BnwBn.
In particular, w ∈ (BnwdnBn) (BnwBn). Hence there exist elements b1, b2, b3 ∈ Bn
such that w = b1wdnb2wb3, and so wdn = b−1

1 wb−1
3 w−1b−1

2 . Obviously if we let
1 = c1 = c2 = c3 ∈ Bn, then 1 = c−1

1 wc−1
3 w−1c−1

2 . Hence for each subset X of N,
ψX = 〈ψX(n)〉n ∈ 〈Γ1, g2〉, where ψX(n) = wdn if n ∈ X and ψX(n) = 1 if n /∈ X .
It follows easily that

∏
nNn 6 〈Γ1, g2〉. (Cf. the final paragraph of the proof of

Lemma 3.6.)

4.2. Unitary groups. In this subsection, we consider products
∏
n SU(dn, qn) of

finite special unitary groups. First consider the case when dn is even. Then the
corresponding unitary space has a normal basis êf . Arguing as in Subsection 4.1,
we obtain the following result.

Theorem 4.3. Suppose that 〈SU(2dn, qn) | n ∈ N〉 is a sequence of special unitary
groups which satisfies the following conditions.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

Sh:584



4630 JAN SAXL, SAHARON SHELAH, AND SIMON THOMAS

(1) If dn = 1, then qn > 3.
(2) There do not exist an infinite subset I of N and an integer d such that

(a) dn = d for all n ∈ I; and
(b) if n, m ∈ I and n < m, then qn < qm.

Then c(
∏
n SU(2dn, qn)) > ω.

Next consider a product of the form
∏
n SU(2dn + 1, qn), where dn ≥ 2 for all

n ∈ N. Fix some n ∈ N. Then there exists a basis

êf (̂w) = (ei | 1 ≤ i ≤ dn) (̂fi | 1 ≤ i ≤ dn) (̂w)

of the corresponding unitary space such that (ei, fj) = δij and (ei, ej) = (fi, fj) = 0
for all 1 ≤ i, j ≤ dn; and (w,w) = 1 and (w, ei) = (w, fi) = 0 for all 1 ≤ i ≤ dn.
Then we can regard SU(2dn, qn) as the subgroup of SU(2dn + 1, qn) consisting of
the elements π such that π(w) = w.

Theorem 4.4. Suppose that dn ≥ 2 for all n ∈ N. Then
∏
n SU(2dn + 1, qn) is

finitely generated over
∏
n SU(2dn, qn).

Proof. We shall make use of the Bruhat decomposition

SU(2d+ 1, q) =
⋃
w∈W

BwB

of the special unitary group, where B is a Borel subgroup and W is the Weyl
group. Fix some n ∈ N. For each 1 ≤ i ≤ dn, let Ei = 〈e1, . . . , ei〉. Then the
stabiliser Bn of the flag of totally isotropic subspaces E1 6 E2 6 · · · 6 Edn is a
Borel subgroup of SU(2dn + 1, qn). Let Nn be the subgroup of SU(2dn + 1, qn)
which stabilises the polar frame {〈ei〉, 〈fi〉 | 1 ≤ i ≤ dn}. Then the Weyl group of
SU(2dn+1, qn) is Wn = Nn/Bn∩Nn. Note that Nn∩SU(2dn, qn) already contains
representatives of each element of Wn. Thus it suffices to prove that there exists an
element g such that

∏
nBn 6 〈

∏
n SU(2dn, qn), g〉. We shall regard SU(2dn+1, qn)

as a group of matrices with respect to the ordered basis (e1, . . . , edn , w, fdn , . . . , f1).
Thus Bn is the subgroup of the upper triangular matrices which are contained in
SU(2dn + 1, qn). Let Un be the subgroup of Bn consisting of the strictly upper
triangular matrices. Let Hn = Bn∩Nn. Then Hn consists of the diagonal matrices
of the form D 0 0

0 λ−1 0
0 0 D∗


where

1. D = diag(λ1, . . . , λdn) ∈ GL(dn, q
2
n);

2. D∗ = diag(λ̄−1
dn
, . . . , λ̄−1

1 ); and
3. λ = det(DD∗).

Here σ 7−→ σ̄ is the automorphism of GF (q2
n) of order 2. (Notice that for all

diagonal matrices D ∈ GL(dn, q
2
n), we have that λλ̄ = 1 and hence (λ−1w, λ−1w) =

(w,w).) We have that Bn = Un oHn.
First we shall show that there exists an element g ∈

∏
n SU(2dn + 1, qn) such

that
∏
n Un 6 〈

∏
n SU(2dn, qn), g〉. Later we shall see that also∏

n

Hn 6 〈
∏
n

SU(2dn, qn), g〉;

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

Sh:584



INFINITE PRODUCTS OF FINITE SIMPLE GROUPS 4631

and so g satisfies our requirements. Once more, fix some n ∈ N. Let E+
dn

= 〈Edn , w〉,
and let Γn be the setwise stabiliser of E+

dn
in SU(2dn+1, qn). Let ρ : Γn → GL(E+

dn
)

be the restriction map. We shall regardGL(E+
dn

) as a group of matrices with respect

to the ordered basis (e1, . . . , edn , w). Note that for each A ∈ SL(dn, q
2
n), we have

that (
A 0
0 1

)
∈ ρ [SU(2dn, qn) ∩ Γn] ;

and that for each x ∈ GF (q2
n)dn , we have that(

A 0
0 1

)(
1 x
0 1

)(
A−1 0
0 1

)
=

(
1 Ax
0 1

)
.

Now choose θ ∈ Un such that ρ(θ) =

(
1 x0

0 1

)
, where x0 ∈ GF (q2

n)dn is any

nonzero vector. Let φ ∈ Un be an arbitrary element. Then ρ(φ) =

(
B y
0 1

)
for

some y ∈ GF (q2
n)dn and some strictly upper triangular matrix B ∈ GL(dn, q

2
n).

Clearly there exist A1, A2 ∈ SL(dn, q
2
n) such that(

1 −y
0 1

)
=

(
1 A1x0 +A2x0

0 1

)
=

(
1 A1x0

0 1

)(
1 A2x0

0 1

)
.

Hence there exist ψ1, ψ2 ∈ SU(2dn, qn) ∩ Γn such that ρ(ψ1θψ
−1
1 ψ2θψ

−1
2 φ) =(

B 0
0 1

)
and hence ψ1θψ

−1
1 ψ2θψ

−1
2 φ ∈ SU(2dn, qn). Thus we can “uniformly

generate” Un using the element θ. It follows that there exists an element g ∈∏
n SU(2dn + 1, qn) such that

∏
n Un 6 〈

∏
n SU(2dn, qn), g〉.

Let ψ ∈ Nn ∩ SU(2dn, qn) correspond to the permutation ( e1 f1 ) . . . ( edn fdn ).
Then Vn = ψUnψ

−1 is the unipotent subgroup of strictly lower triangular matrices
of SU(2dn + 1, qn); and also

∏
n Vn 6 〈

∏
n SU(2dn, qn), g〉.

We can regard SU(3, qn) as the subgroup of SU(2dn + 1, qn) consisting of those
elements π such that π(ei) = ei and π(fi) = fi for all 1 ≤ i ≤ dn − 1. Now let
h ∈

∏
nHn be an arbitrary element. Then there exists g ∈

∏
n (Hn ∩ SU(2dn, qn))

such that hg ∈
∏
n (Hn ∩ SU(3, qn)). Consequently, in order to show that

∏
nHn is

contained in 〈
∏
n SU(2dn, qn), g〉, it is enough to show that

∏
(Hn ∩ SU(3, qn)) 6

〈
∏
n SU(2dn, qn), g〉. To accomplish this, we shall use a slightly modified form

of [Ca1, pp. 239–242]. For the rest of this proof, we shall write the elements of
SU(3, qn) as 3 × 3-matrices with respect to the ordered basis (edn , w, fdn). Fix
an element ε ∈ GF (q2

n) such that εε̄ = −1. Suppose that λ, t ∈ GF (q2
n) satisfy

λ−1 + λ̄−1 = tt̄. Then the matrices

A1 =

1 ε−1λt λ
0 1 ελ̄t̄
0 0 1

 and A2 =

1 ε−1λ̄t λ
0 1 ελt̄
0 0 1


are elements of Un ∩ SU(3, qn), and the matrix

B =

 1 0 0
−εt̄ 1 0
λ̄−1 −ε−1t 1
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is an element of Vn ∩ SU(3, qn). The product of these matrices is

A1BA2 =

 0 0 λ
0 −λ−1λ̄ 0
λ̄−1 0 0

 .

Let Ln be the subset of GF (q2
n)∗ consisting of those elements λ such that there

exists t ∈ GF (q2
n) such that λ−1 + λ̄−1 = tt̄. By [Ca1, 13.7.3], each λ ∈ GF (q2

n)∗

can be expressed as λ = λ1λ̄
−1
2 for some λ1, λ2 ∈ Ln. Hence we can “uniformily

generate” each element of Hn ∩ SU(3, qn) via the equationλ 0 0
0 λ−1λ̄ 0
0 0 λ̄−1

 =

 0 0 λ1

0 −λ−1
1 λ̄1 0

λ̄−1
1 0 0

 0 0 λ2

0 −λ−1
2 λ̄2 0

λ̄−1
2 0 0

 .

We can now easily obtain the following result.

Corollary 4.5. Suppose that 〈Sn | n ∈ N〉 is a sequence of finite simple unitary
groups such that there does not exist an infinite subset I of N for which conditions
1.7(1) and 1.7(2) are satisfied. Then c(

∏
n Sn) > ω.

4.3. Orthogonal groups. In this subsection, we shall consider products of finite
orthogonal groups. First consider the case when each group has the form Ω+(2d, q).
Then the corresponding orthogonal space has a normal basis êf . Arguing as in
Subsection 4.1, we obtain the following result.

Theorem 4.6. Suppose that 〈Ω+(2dn, qn) | n ∈ N〉 is a sequence of orthogonal
groups which satisfies the following conditions.

(1) dn ≥ 3 for each n ∈ N.
(2) There does not exist an infinite subset I of N and an integer d such that

(a) dn = d for all n ∈ I; and
(b) if n, m ∈ I and n < m, then qn < qm.

Then c(
∏
n Ω+(2dn, qn)) > ω.

Now we shall consider products of the form
∏
n Ω(2dn + 1, qn), where dn ≥ 2 for

each n ∈ N. Fix some n ∈ N. Let Q be the quadratic form on the corresponding
orthogonal space, and let (u, v) = Q(u+v)−Q(u)−Q(v) be the associated bilinear
map. We can suppose that there exists a basis

êf (̂w) = (ei | 1 ≤ i ≤ dn) (̂fi | 1 ≤ i ≤ dn) (̂w)

of the orthogonal space such that

(ei, fj) = δij and (ei, ej) = (fi, fj) = Q(ei) = Q(fi) = 0

for all 1 ≤ i, j ≤ dn; and

Q(w) = 1 and (w, ei) = (w, fi) = 0

for all 1 ≤ i ≤ dn. Then we can regard Ω+(2dn, qn) as the subgroup of Ω(2dn+1, qn)
consisting of the elements π such that π stabilises the subspace 〈ei, fi | 1 ≤ i ≤ dn〉
setwise and π(w) = w. Clearly this situation is very similar to that which we
considered in Subsection 4.2. The main difference is that the Weyl group gets
larger in the passage from Ω+(2dn, qn) to Ω(2dn + 1, qn). The Weyl group Wn

of Ω(2dn + 1, qn) is Zdn2 o Sym(dn), acting on the set {ei, fi | 1 ≤ i ≤ dn} with
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blocks of imprimitivity {ei, fi | 1 ≤ i ≤ dn}. The Weyl group of Ω+(2dn, qn) is the
subgroup W+

n of Wn consisting of the even permutations of {ei, fi | 1 ≤ i ≤ dn}.
But this point has already been dealt with during our treatment of the symplectic
groups in Subsection 4.1. Hence we can easily obtain the following result.

Theorem 4.7. Suppose that dn ≥ 2 for all n ∈ N. Then
∏
n Ω(2dn + 1, qn) is

finitely generated over
∏
n Ω+(2dn, qn).

Finally we shall consider products of the form
∏
n Ω−(2dn+2, qn), where dn ≥ 3

for each n ∈ N. In this case, there exists a basis êf (̂w, z) of the corresponding
orthogonal space such that

(ei, fj) = δij and (ei, ej) = (fi, fj) = Q(ei) = Q(fi) = 0

for all 1 ≤ i, j ≤ dn; and

(w, ei) = (w, fi) = (z, ei) = (z, fi) = 0

for all 1 ≤ i ≤ dn; and the subspace 〈w, z〉 does not contain any singular vectors.
So we can regard Ω+(2dn, qn) as the subgroup of Ω−(2dn + 2, qn) consisting of
the elements π such that π stabilises the subspace 〈ei, fi | 1 ≤ i ≤ dn〉 setwise,
π(w) = w and π(z) = z.

Theorem 4.8. Suppose that dn ≥ 3 for each n ∈ N. Then
∏
n Ω−(2dn + 2, qn) is

finitely generated over
∏
n Ω+(2dn, qn).

Proof. As before, we shall make use of the Bruhat decomposition

Ω−(2d+ 2, q) =
⋃
w∈W

BwB,

where B is a Borel subgroup and W is the Weyl group. Fix some n ∈ N. For
each 1 ≤ i ≤ dn, let Ei = 〈e1, . . . , ei〉. Then the stabiliser Bn of the flag of totally
singular subspaces

E1 6 E2 6 · · · 6 Edn
is a Borel subgroup of Ω−(2dn + 2, qn). Let Nn be the subgroup of Ω−(2dn + 2, qn)
which stabilises the polar frame {〈ei〉, 〈fi〉 | 1 ≤ i ≤ dn}. Then the Weyl group

of Ω−(2dn + 2, qn) is Wn = Nn/Bn ∩ Nn. Once again, Wn is Zdn2 o Sym(dn)
acting on the set {ei, fi | 1 ≤ i ≤ dn} with blocks of imprimitivity {ei, fi} for
1 ≤ i ≤ dn. As before, the main point is to show that there exists a subgroup G of∏
n Ω−(2dn + 2, qn) such that

1. G is finitely generated over
∏
n Ω+(2dn, qn), and

2.
∏
nBn 6 G.

Let Un be the subgroup of unipotent elements of Bn and let Hn = Bn ∩ Nn,
so that Bn = Un o Hn. First we shall show that there exists an element g0 ∈∏
n Ω−(2dn + 2, qn) such that

∏
n Un 6 G0 = 〈

∏
n Ω+(2dn, qn), g0〉. Note that

if π ∈ Un, then there exist vectors x, y ∈ Edn such that π(w) = w + x and
π(z) = z + y. Let E+

dn
= 〈Edn , w, z〉 and let Γn be the setwise stabiliser of E+

dn
in

Ω−(2dn+2, qn). Let ρ : Γn → GL(E+
dn

) be the restriction map. We regardGL(E+
dn

)
as a group of matrices with respect to the ordered basis (e1, . . . , edn , w, z). So for
each A ∈ SL(dn, qn), we have that(

A 0
0 1

)
∈ ρ

[
Ω+(2dn, qn) ∩ Γn

]
.
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Arguing as in the proof of Theorem 4.4, we see that the existence of a suitable
element g0 ∈

∏
n Ω−(2dn+2, qn) is a consequence of the following easy observation.

Claim 4.9. Suppose that d ≥ 3. Let S = SL(d, q) and V = V (d, q). Let S act
on V × V via the action A(x,y) = (Ax, Ay). Suppose that a, b ∈ V are linearly
independent. Then for all (x,y) ∈ V ×V , there exist A, B ∈ S such that (x,y) =
A(a, b) +B(a, b).

Finally we shall show that there exists an element g1 ∈
∏
n Ω−(2dn + 2, qn)

such that
∏
nHn 6 G1 = 〈G0, g1〉. We shall regard Ω−(4, qn) as the subgroup of

Ω−(2dn + 2, qn) consisting of the elements π such that π stabilises the subspace
〈edn , fdn , w, z〉 setwise and such that π(ei) = ei and π(fi) = fi for all 1 ≤ i ≤
dn − 1. Since

∏
n Ω+(2dn, qn) 6 G0, it is enough to find an element g1 such that∏

n (Hn ∩ Ω−(4, qn)) 6 〈G0, g1〉. We shall make use of the fact that

Ω−(4, qn) ' SL(2, q2
n)/{±1}.

(For example, see [Ta, 12.42].) Let pn = char(GF (qn)). Then Un ∩ Ω−(4, qn) is
a group of order q2

n, and hence is a Sylow pn-subgroup of Ω−(4, qn). It is easily
checked that SL(2, q2

n) is “uniformly generated” by the two subgroups UT (2, q2
n)

and LT (2, q2
n), consisting of the strictly upper triangular matrices and strictly lower

triangular matrices of SL(2, q2
n). (See [Ca1, 6.4.4].) Since UT (2, q2

n) and LT (2, q2
n)

are Sylow pn-subgroups of SL(2, q2
n), it follows that there exists an element g1 ∈∏

n Ω−(2dn + 2, qn) such that
∏
n Ω−(4, qn) 6 〈G0, g1〉.

Corollary 4.10. Suppose that 〈Sn | n ∈ N〉 is a sequence of finite simple or-
thogonal groups such that there does not exist an infinite subset I of N for which
conditions 1.7(1) and 1.7(2) are satisfied. Then c(

∏
n Sn) > ω.

4.4. Conclusion. We can now complete the proof of Theorem 1.9. Suppose that
〈Sn | n ∈ N〉 is sequence of finite simple nonabelian groups such that there does not
exist an infinite subset I of N for which conditions 1.7(1) and 1.7(2) are satisfied.
Let G =

∏
n Sn. Let

• C0 be the set of 26 sporadic finite simple groups,
• C1 be the set of finite simple alternating groups,
• C2 be the set of finite simple projective special linear groups,
• C3 be the set of finite simple symplectic groups,
• C4 be the set of finite simple unitary groups,
• C5 be the set of finite simple orthogonal groups, and
• C6 be the set of finite simple groups of Lie types E6, E7, E8, F4, G2, 2E6,

2B2, 2G2, 2F4 and 3D4.

By the classification of the finite simple groups, each finite simple nonabelian group
lies in one of the above sets. Some groups lie in more than one of these sets. For
example, Alt(8) ' PSL(4, 2). For the rest of this argument, we shall suppose that
we have slightly modified the above sets so that they yield a partition of the finite
simple nonabelian groups.

For each 0 ≤ i ≤ 6, let Ji = {n ∈ N | Sn ∈ Ci} and let Pi =
∏
n∈Ji Sn. Then

G =
∏6
i=0 Pi. Using Proposition 2.2, it is enough to show that for each 0 ≤ i ≤ 6,

either c(Pi) > ω or Pi is finite. If 1 ≤ i ≤ 5, this has been proved in Sections 2, 3
and 4. And if i = 0, this is an immediate consequence of Proposition 2.3. Finally
consider P6. Our hypothesis on 〈Sn | n ∈ N〉 implies that there exists a finite set
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of simple groups F ⊆ C6 such that Sn ∈ F for all n ∈ J6. So the result once again
follows from Proposition 2.3. This completes the proof of Theorem 1.9.

5. A consistency result

In this section, we shall prove Theorem 1.12. Our notation follows that of Kunen
[Ku]. Thus if P is a notion of forcing and p, q ∈ P, then q ≤ p means that q is a
strengthening of p. If V is the ground model, then we denote the generic extension
by V P when we do not want to specify a particular generic filter G ⊆ P.

Definition 5.1. A notion of forcing P is said to have the Laver property if the
following holds. Suppose that

1. 〈An | n ∈ N〉 is a sequence of finite sets;
2. f : N → N is a function such that f(n) ≥ 1 for all n ∈ N and f(n) → ∞ as
n→∞;

3. p ∈ P, g̃ is a P-name and p  g̃ ∈
∏
n An.

Then there exist q ≤ p and a sequence 〈Bn | n ∈ N〉 such that

(a) Bn ⊆ An and |Bn| ≤ f(n);
(b) q  g̃ ∈

∏
nBn.

Theorem 1.12 is an immediate consequence of the following two results.

Theorem 5.2. Suppose that V � CH, and that 〈Pα, Q̃α | α < ω2〉 is a countable
support iteration of proper notions of forcing such that for all α < ω2

(1) α Q̃α has the cardinality of the continuum; and

(2) α Q̃α has the Laver property.

Then in V Pω2 , c (
∏
nGn) ≤ ω1 for every sequence 〈Gn | n ∈ N〉 of nontrivial finite

groups.

Theorem 5.3. Suppose that V � CH. Then there exists a countable support iter-
ation 〈Pα, Q̃α | α < ω2〉 of proper notions of forcing such that

(a) 〈Pα, Q̃α | α < ω2〉 satisfies conditions 5.2(1) and 5.2(2); and
(b) V Pω2 � c(Sym(N)) = ω2 = 2ω.

First we shall prove Theorem 5.2.

Definition 5.4. Let 〈Gn | n ∈ N〉 be a sequence of nontrivial finite groups.

1. A cover is a function c : N→
[ ⋃
n∈N

Gn

]<ω
such that for all n ∈ N

(a) ∅ 6= c(n) ⊆ Gn;
(b) the identity element 1Gn ∈ c(n);
(c) if a ∈ c(n), then a−1 ∈ c(n).

2. If g = 〈g(n)〉n ∈
∏
nGn, then c covers g if g(n) ∈ c(n) for all n ∈ N.

3. If c is a cover and f : N → N, then c is an f -cover if |c(n)| ≤ f(n) for all
n ∈ N.

4. If c1 and c2 are covers, then the cover c1 ∗ c2 is defined by

(c1 ∗ c2)(n) = {ab, (ab)−1 | a ∈ c1(n), b ∈ c2(n)}.

Lemma 5.5. If c1 is an f1-cover and c2 is an f2-cover, then c1∗c2 is a 2f1f2-cover.

Proof. Obvious.
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It is perhaps worth mentioning that ∗ is generally not an associative operation
on the set of covers of

∏
nGn.

Definition 5.6. If C is a set of covers of
∏
nGn, then its closure c`(C) is the least

set of covers satisfying

1. C ⊆ c`(C); and
2. if d1, d2 ∈ c`(C) then d1 ∗ d2 ∈ c`(C).

Lemma 5.7. Suppose that C is a set of covers of
∏
nGn. Then

{g ∈
∏
n

Gn | There exists d ∈ c`(C) such that g is covered by d}

is a subgroup of
∏
nGn.

Proof. Easy.

From now on, let f : N → N be the function defined by f(n) = 2n+2 for all
n ∈ N.

Lemma 5.8. Suppose that 〈Gn | n ∈ N〉 is a sequence of finite groups such that

|Gn| ≥ 2(n+2)2

for all n ∈ N. If C is a countable set of f -covers of
∏
nGn, then

{g ∈
∏
n

Gn | There exists d ∈ c`(C) such that g is covered by d}

is a proper subgroup of
∏
nGn.

Proof. Suppose that d ∈ c`(C) is an m-fold ∗-product of c1, . . . , cm ∈ C in some
order. (Remember that ∗ is not an associative operation.) Then Lemma 5.5 implies
that d is a 2m−1fm-cover. So we can enumerate c`(C) = {dn | n ∈ N} in such a
way that dn is a φn-cover for all n ∈ N, where φn = 2nfn+1. In particular,

|dn(n)| ≤ 2nf(n)n+1 = 2n
2+4n+2 < |Gn| .

Hence there exists g = 〈g(n)〉n ∈
∏
nGn such that g(n) ∈ Gnrdn(n) for all n ∈ N.

Clearly g is not covered by any element d ∈ c`(C).

Proof of Theorem 5.2. Suppose that V � CH and that 〈Pα, Q̃α | α < ω2〉 is a
countable support iteration of proper notions of forcing such that for all α < ω2

1. α Q̃α has the cardinality of the continuum; and
2. α Q̃α has the Laver property.

From now on, we shall work inside V Pω2 . Let 〈Gn | n ∈ N〉 be a sequence of
nontrivial finite groups. First suppose that there exists an infinite subset I of N
and a finite group G such that Gn = G for all n ∈ I. By Lemma 1.8 and Theorems
1.3 and 1.4, c (

∏
nGn) ≤ c

(∏
n∈I Gn

)
≤ ω1. Hence we can assume that no such

subset I of N exists. Then there exists an infinite subset J = {jn | n ∈ N} of N
such that |Gjn | ≥ 2(n+2)2

for all n ∈ N. By Lemma 1.8, c (
∏
nGn) ≤ c

(∏
n∈J Gn

)
.

To simplify notation, we shall suppose that |Gn| ≥ 2(n+2)2

for all n ∈ N.
Since the sequence 〈Gn | n ∈ N〉 of finite groups can be coded by a real number,

there exists α < ω2 such that 〈Gn | n ∈ N〉 ∈ V Pα . By Shelah (III 4.1 of [Sh-b]),
V Pα � CH. Let {cβ | β < ω1} be an enumeration of the f -covers c ∈ V Pα of∏
nGn. For each γ < ω1, let Cγ = {cβ | β < γ} and define

Hγ = {g ∈
∏
n

Gn | There exists d ∈ c`(Cγ) such that g is covered by d}.
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By Lemma 5.8, Hγ is a proper subgroup of
∏
nGn for all γ < ω1. Thus it suffices

to show that
∏
nGn =

⋃
γ<ω1

Hγ .

Let g ∈
∏
nGn be any element. By Shelah ([Sh-b, VI, Section 2] and [Sh-326,

Appendix]), the Laver property is preserved by countable support iterations of
proper notions of forcing. This implies that there exists a sequence 〈Bn | n ∈ N〉 ∈
V Pα such that

(a) Bn ⊆ Gn and |Bn| ≤ 2n; and
(b) g(n) ∈ Bn for all n ∈ N.

Define the function c by

c(n) = Bn ∪ {a−1 | a ∈ Bn} ∪ {1Gn}
for all n ∈ N. Then c ∈ V Pα is an f -cover of

∏
nGn, and so c = cβ for some β < ω1.

Hence g ∈
⋃

γ<ω1

Hγ .

The rest of this section will be devoted to the proof of Theorem 5.3. Each of
the notions of forcing which we shall use in our iteration will satisfy Axiom A. It
is well-known that if P satisfies Axiom A, then P is proper. (For example, see [J,
p.101]. )

Definition 5.9. A notion of forcing P satisfies Axiom A if there is a collection
{≤n| n ∈ ω} of partial orderings of P which satisfies the following conditions.

(1) p ≤0 q iff p ≤ q.
(2) If p ≤n+1 q, then p ≤n q.
(3) If 〈pn | n ∈ ω〉 is a sequence such that pn+1 ≤n pn for all n ∈ ω, then there

exists q ∈ P such that q ≤n pn for all n ∈ ω.
(4) For each p ∈ P, n ∈ ω and an ordinal name α̃, there exist a countable set B

and a condition q ∈ P such that q ≤n p and q  α̃ ∈ B.

Definition 5.10. Fix a partition {In | n ∈ N} of N into infinitely many finite
subsets such that the following conditions hold.

1. |In| ≥ 2 for all n ∈ N.
2. For each t ≥ 2, there exist infinitely many n ∈ N such that |In| = t.
3. If n < m, then max(In) < min(Im). (Thus each In consists of a finite set of

consecutive integers.)

The notion of forcing B consists of all functions p such that

(a) there exists a subset J of N such that domp =
⋃
n∈J

In;

(b) if n ∈ J , then p � In ∈ Sym(In);
(c) if t ≥ 2, then there exist infinitely many n ∈ Nr J such that |In| = t.

If p, q ∈ B, then we define q ≤ p if and only if q ⊇ p.
Lemma 5.11. B satisfies Axiom A and has the Laver property.

Proof. For each p ∈ B and t ≥ 2, let

St(p) = {m ∈ N | m /∈ dom p and |Im| = t},
and for each n ≥ 1, let Stn(p) be the set of the first n elements of St(p). If t ≤ 1 or
n = 0, let Stn(p) = ∅. For each n ∈ ω, define a partial ordering ≤n on B by setting
q ≤n p if and only if

1. q ⊇ p, and
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2. for each t ≤ n, Stn(p) ⊆ Br dom p.

Then it is easily checked that the partial orderings {≤n| n ∈ ω} satisfy clauses
(1)–(4) of Definition 5.9. It is also easy to verify that B has the Laver property.

It follows that B satisfies conditions 5.2(1) and 5.2(2). (It is also easily seen that
B is ωω-bounding. However, we shall not need this fact in the proof of Theorem
5.3.) After first introducing some group theoretic notation, we shall explain the
relevance of B to the problem of computing c(Sym(N)).

Definition 5.12. Suppose that {an | n ∈ N} is the increasing enumeration of the
infinite subset A of N. If π ∈ Sym(N), then πA ∈ Sym(A) is defined by πA(an) =
aπ(n) for all n ∈ N. If Γ is a subgroup of Sym(N), then ΓA = {πA | π ∈ Γ}.
Definition 5.13. If g : N→ N is a strictly increasing function, then

Pg =
∏
n

Sym(g(n)r g(n− 1)).

(Here we use the convention that g(−1) = 0.)

Definition 5.14. 1. If f , g : N → N, then f ≤∗ g iff there exists n0 ∈ N such
that f(n) ≤ g(n) for all n ≥ n0.

2. If g : N→ N is a strictly increasing function, then

Sg = 〈π ∈ Sym(N | π, π−1 ≤∗ g〉.
B was designed so that the following density condition would hold.

Lemma 5.15. Suppose that g : N → N is a strictly increasing function and that
p ∈ B. Then there exists an infinite subset A of Nr dom p such that p ∪ π ∈ B for
all π ∈ PAg .

Proof. Let dom p =
⋃
n∈J

In. Then it is easy to find a suitable set A of the form⋃
n∈K

In, where K is an appropriately chosen subset of N r J .

Arguing as in Section 2 of [ST2], we can now easily obtain the following result.

Lemma 5.16. Let V � CH and let 〈Pα, Q̃α | α < ω2〉 be a countable support

iteration of proper notions of forcing such that for each α < ω2, Pα  |Q̃α| = 2ω.
Suppose that S ⊆ {α < ω2 | cf(α) = ω1} is a stationary subset of ω2, and that

Q̃α = B̃ for all α ∈ S. (Here B̃ is the notion of forcing B in the generic extension
V Pα .) Then the following statements are equivalent in V Pω2 .

(1) c(Sym(N)) = ω1.
(2) It is possible to express Sym(N) =

⋃
i<ω1

Gi as the union of a chain of proper

subgroups such that for each strictly increasing function g : N → N, there
exists i < ω1 with Sg 6 Gi.

Definition 5.17. Laver forcing L consists of the set of all trees T ⊆ <ωω with the
following property. There exists an integer k such that

1. if n < k, then |T ∩ nω| = 1;
2. if n ≥ k and η ∈ T ∩ nω, then there exist infinitely many i ∈ ω such that
η 〈̂i〉 ∈ T .

If S, T ∈ L, then S ≤ T iff S ⊆ T .
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The following result is well-known.

Lemma 5.18. (1) Suppose that V � ZFC. Then there exists a function g ∈
NN ∩ V L such that f ≤∗ g for all f ∈ NN ∩ V .

(2) L satisfies Axiom A and has the Laver property.

It is now easy to complete the proof of Theorem 5.3. Let V � CH. Define a
countable support iteration 〈Pα, Q̃α | α < ω2〉 of proper notions of forcing with

the Laver property inductively as follows. If cf(α) = ω1, let Q̃α = B̃. Otherwise,

let Q̃α = L̃. From now on, we work inside V Pω2 . Clearly 2ω = ω2. Suppose
that c(Sym(N)) = ω1. By Lemma 5.16, we can express Sym(N) =

⋃
i<ω1

Gi as the

union of a chain of proper subgroups such that for each strictly increasing function
g : N→ N, there exists i < ω1 with Sg 6 Gi. Lemma 5.18 implies that there exists
a sequence 〈gα : N→ N | α < ω2〉 of strictly increasing functions such that

1. if α < β < ω2, then gα ≤∗ gβ; and
2. for all f : N→ N, there exists α < ω2 such that f ≤∗ gα.

There exist i < ω1 and a cofinal subset C of ω2 such that Sgα 6 Gi for all α ∈ C.
But this means that Gi = Sym(N), which is a contradiction. Hence c(Sym(N)) =
ω2.

6. Sym(N) has property (FA)

In this section, we shall prove that Sym(N) has property (FA). By Macpherson
and Neumann [MN], c(Sym(N)) > ω. Also, since every proper normal subgroup of
Sym(N) is countable, Z is not a homomorphic image of Sym(N). Thus it is enough
to prove the following result.

Theorem 6.1. Sym(N) is not a nontrivial free product with amalgamation.

Suppose that Sym(N) is a nontrivial free product with amalgamation. Then
there exists a tree T such that

1. Sym(N) acts without inversion on T ; and
2. there exists π ∈ Sym(N) such that π(t) 6= t for all t ∈ T .

(See Theorem 7 in [Se].) Thus it suffices to prove that whenever Sym(N) acts
without inversion on a tree T , then for every π ∈ Sym(N) there exists a vertex t ∈ T
such that π(t) = t. (This also yields a second proof that Z is not a homomorphic
image of Sym(N).) We shall make use of the following theorems of Serre.

Theorem 6.2. [Se, Theorem 16] SL(3,Z) has property (FA).

Theorem 6.3. [Se, Proposition 27] Let G = 〈g1, . . . , gn〉 be a finitely generated
nilpotent group acting without inversion on the tree T . Suppose that for each 1 ≤
i ≤ n, there exists ti ∈ T such that gi(ti) = ti. Then there exists t ∈ T such that
g(t) = t for all g ∈ G.

For the rest of this section, let Sym(N) act without inversion on the tree T .

Lemma 6.4. If π ∈ Sym(N) contains no infinite cycles, then there exists t ∈ T
such that π(t) = t.
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Proof. There exists a sequence 〈Gn | n ∈ N〉 of nontrivial finite cyclic groups such
that π ∈

∏
nGn 6 Sym(N). By Bass [Ba], whenever the profinite group

∏
nGn

acts without inversion on a tree T , then for every g ∈
∏
nGn there exists t ∈ T

such that g(t) = t.

Lemma 6.5. Suppose that π ∈ Sym(N) contains infinitely many infinite cycles
and no nontrivial finite cycles. Then there exists t ∈ T such that π(t) = t.

Proof. Consider the left regular action of SL(3,Z) on itself. Let h ∈ SL(3,Z) be an
element of infinite order, and let H = 〈h〉. Then H has infinite index in SL(3,Z).
Hence in the left regular action on SL(3,Z), h contains infinitely many infinite
cycles and no finite cycles. Consequently if Ω = {n ∈ N | π(n) 6= n}, then there
exists a subgroup G of Sym(N) such that

1. π ∈ G 6 Sym(Ω) 6 Sym(N); and
2. the permutation group (G,Ω) is isomorphic to the left regular action of
SL(3,Z) on itself.

By Theorem 6.2, there exists t ∈ T such that g(t) = t for all g ∈ G.

Lemma 6.6. Suppose that π ∈ Sym(N) contains finitely many infinite cycles and
no nontrivial finite cycles, and that π fixes infinitely many n ∈ N. Then there exists
t ∈ T such that π(t) = t.

Proof. There exist φ1, φ2 ∈ Sym(N) such that the following conditions are satisfied.

1. φ1 and φ2 both contain infinitely many infinite cycles and no nontrivial finite
cycles.

2. [φ1, φ2] = 1.
3. π = φ1φ2.

By Lemma 6.5 and Theorem 6.3, there exists t ∈ T such that g(t) = t for all
g ∈ G = 〈φ1, φ2〉.

Proof of Theorem 6.1. Let π ∈ Sym(N) be any element. We shall show that π fixes
a vertex of T . Express π = φψ as a product of disjoint permutations such that ψ
has no infinite cycles and φ has no nontrivial finite cycles. By Lemma 6.4 and
Theorem 6.3, it is enough to show that φ fixes a vertex of T . Suppose that φ 6= 1.
By Lemma 6.5, we can assume that φ contains only finitely many infinite cycles.
Let θ = φ2. Then θ contains ` infinite cycles for some 2 ≤ ` ∈ N. Hence there exist
τ1, τ2 ∈ Sym(N) such that the following conditions are satisfied.

1. τ1 and τ2 both contain finitely many infinite cycles and no nontrivial finite
cycles.

2. τ1 and τ2 are disjoint permutations.
3. θ = τ1τ2.

By Lemma 6.6 and Theorem 6.3, θ = φ2 fixes a vertex of T . By 6.3.4 of [Se], φ also
fixes a vertex of T .
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