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A TRICHOTOMY OF COUNTABLE, STABLE,

UNSUPERSTABLE THEORIES

MICHAEL C. LASKOWSKI AND S. SHELAH

Abstract. Every countable, strictly stable theory either has the Dimensional
Order Property (DOP), is deep, or admits an ‘abelian group witness to un-
superstability’. To obtain this and other results, we develop the notion of a
‘regular ideal’ of formulas and study types that are minimal with respect to
such an ideal.

1. Introduction

By definition, a stable, unsuperstable theory (henceforth called strictly stable)
admits a type that is not based on any finite subset of its domain. From this one
sees that such a theory admits trees of definable sets. That is, there is a sequence
〈ϕn(x, y) : n ∈ ω〉 of formulas such that for any cardinal κ there are definable sets
{ϕn(x, aν) : ν ∈ <ωκ} giving rise to κℵ0 partial types {pμ : μ ∈ ωκ} where each pμ
forks over {aμ|k : k < n} for all n ∈ ω. In [12] the second author used these trees to
count the number of uncountable models or to find the maximal size of a family of
pairwise nonembeddable models of a fixed cardinality of any stable, unsuperstable
theory. However, for other combinatorial questions, such as computing the Karp
complexity of the class of uncountable models of such a theory, the existence of
these trees does not seem to be sufficient. Here, with Theorem 4.3, we prove that
when the language is countable, any strictly stable theory exhibits at least one of
the three more detailed nonstructural properties mentioned in the abstract. This
theorem is used in [9], but it is likely to be applicable to other contexts as well.
Two of the alternatives, the Dimensional Order Property (DOP) or a theory being
deep appear in [12] and are compatible with superstability. The third alternative
is new and is captured by the following definition:

Definition 1.1. An abelian group witness to unsuperstability is a descending se-
quence 〈An : n ∈ ω〉 of abelian groups with [An : An+1] infinite for each n such
that the intersection A =

⋂
n An is connected and whose generic type is regular.

The existence of such a sequence readily contradicts superstability as for any
cardinal κ, one immediately obtains a family of {Cμ : μ ∈ ωκ} of cosets of A indexed
by a tree. The family of generic types of these cosets form a counterexample to
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1620 MICHAEL C. LASKOWSKI AND S. SHELAH

superstability witnessed by regular types. As well, with Theorems 4.3 and 4.4 we
see that one can frequently say more about the generic type of A. This added
information is used in [9].

As examples, the theory of separably closed fields has DOP ([1] or [2]). The
theory of infinitely many, refining equivalence relations in which each En+1 splits
each En-class into infinitely many classes is strictly stable and deep, as is the
model completion of a single unary function. For the third case, the theory of
(Zω,+, Un)n∈ω, where each Un is the subgroup in which the first n coordinates are
zero, is the paradigm of an abelian group witness to unsuperstability.

In order to establish these theorems, much of the paper discusses the notion of a
regular ideal of formulas (see Definition 2.3). The origins of these ideas date back
to Section V.4 of [12] and have been reworked and expanded in [3] and [10]. As
well, the proof of the trichotomy depends on results from [8].

Our notation is standard, and complies with either [10] or [12]. For a stable
theory T , κr(T ) denotes the least regular cardinal κ such that there is no forking
chain of length κ. Thus, a stable theory is superstable if and only if κr(T ) = ℵ0 and
κr(T ) = ℵ1 when T is countable and strictly stable. We call a model ‘a-saturated’
(a-prime) in place of ‘Fa

κr(T )-saturated’ (F
a
κr(T )-prime).

Throughout the whole of this paper we assume ‘T = T eq’. That is, T is
a stable theory in a multi-sorted language, C is a large, saturated model of T ,
and the language L is closed under the following operation: If E(x̄, ȳ) is a definable
equivalence relation, then there is a sort UE and a definable surjection fE : Clg(x̄) →
UE(C) in the language L. In particular, the set of sorts is closed under finite
products. Thus any finite tuple of elements from varying sorts can be viewed as
an element of the product sort. With this identification, every formula can be
considered to have a single free variable. As notation, L(C) denotes the set of
formulas with parameters from C and for a specific sort s, Ls(C) denotes the L(C)-
formulas ϕ(x) in which the free variable has sort s.

2. Regular ideals

Definition 2.1. An invariant ideal ID is a subset of L(C) containing all algebraic
formulas, closed under automorphisms of C, and for any sort s and any ϕ, ψ ∈ Ls(C)

(1) If ϕ, ψ ∈ ID, then ϕ ∨ ψ ∈ ID; and
(2) If ϕ � ψ and ψ ∈ ID, then ϕ ∈ ID.

A partial type Γ (i.e., a subset of Ls(C) for some sort s) is ID-small if it entails
some element of ID ∩ Ls(C).

Examples of invariant ideals include the algebraic formulas, the superstable for-
mulas (see Definition 4.1) or the ideal of formulas with Morley rank. These and
other examples are discussed in [10]. Many times we will make use of the fact that
formulas in ID may have ‘hidden’ parameters.

Lemma 2.2. Let ID be any invariant ideal.

(1) A complete type p ∈ S(A) is ID-small if and only if p ∩ ID 
= ∅.
(2) For any A and a, stp(a/A) is ID-small if and only if tp(a/A) is ID-small.
(3) If A ⊆ B and tp(a/B) does not fork over A, then tp(a/A) is ID-small if

and only if tp(a/B) is ID-small.
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A TRICHOTOMY OF COUNTABLE, STABLE, UNSUPERSTABLE THEORIES 1621

Proof. (1) Right to left is immediate. For the converse, assume p entails ψ ∈ ID.
By compactness there is ϕ ∈ p such that ϕ � ψ, hence ϕ ∈ ID.

(2) Right to left is clear. If stp(a/A) entails ψ(x, b) ∈ ID, then by compactness
and the finite equivalence relation theorem there is an A-definable equivalence re-
lation E(x, y) with finitely many classes such that tp(a/A)∪{E(x, c)} � ψ(x, b) for
some c. Choose A-automorphisms {σi : i < n} of C such that {E(x, σi(c)) : i < n}
includes all the E-classes. Since ID is an invariant ideal

∨
i<n ψ(x, σi(b)) ∈ ID

and tp(a/A) �
∨

i<n ψ(x, σi(b)).
(3) By (2) it suffices to prove this for strong types. Assume stp(a/B) is ID-

small. By (1) and (2), choose ψ(x, b) ∈ tp(a/B) ∩ ID. Choose {bi : i ∈ κ(T )}
independent over A, each having the same strong type over A as b. Since ID is
invariant, ψ(x, bi) ∈ ID for each i. Furthermore, since any a′ realizing stp(a/A)
is independent with some bi over A, ab and a′bi realize the same strong type over
A, hence ψ(a′, bi) holds. By compactness, there is a finite subset F such that
stp(a/A) �

∨
i∈F ψ(x, bi), so stp(a/A) is ID-small. �

Definition 2.3. An invariant ideal ID is regular if, for all L(C)-formulas ψ(y)
and θ(x, y), if ψ ∈ ID and θ(x, b) ∈ ID for every b ∈ ψ(C), then the formula
∃y(ψ(y) ∧ θ(x, y)) ∈ ID.

By analogy, recall that a cardinal κ is regular if and only if the union of fewer
than κ sets, each of size less than κ, has size less than κ.

We call a strong type stp(a/A) ID-internal if there is a set B ⊇ A independent
from a over A, a B-definable function f , and elements c̄ such that tp(c/B) is ID-
small for each c ∈ c̄ and a = f(c̄). The strong type stp(a/A) is ID-analyzable
if there is a finite sequence 〈ai : i ≤ n〉 from dcl(Aa) such that an = a and
stp(ai/A ∪ {aj : j < i}) is ID-internal for each i ≤ n. Since ID is a collection
of formulas, this definition of analyzability is equivalent to the usual one, see e.g.,
[10].

In order to iterate the defining property of a regular ideal, we need the following
notion, whose terminology is borrowed from [6].

Definition 2.4. A formula ϕ(x, c) is in ID, provably over B if there is some
θ(y) ∈ tp(c/B) such that ϕ(x, c′) ∈ ID for every c′ realizing θ.

Lemma 2.5. For all sets B and every n ∈ ω, if ϕ(x, y0, . . . , yn−1) is B-definable
and a, c0, . . . , cn−1 satisfy:

(1) tp(ci/B) is ID-small for each i < n;
(2) ϕ(x, c0, . . . , cn−1) ∈ ID provably over B; and
(3) ϕ(a, c0, . . . , cn−1),

then tp(a/B) is ID-small.

Proof. Fix any set B. We argue by induction on n. If n = 0 the formula ϕ(x)
itself witnesses that tp(a/B) is ID-small. Assume the result holds for n and fix a
formula ϕ(x, c0, . . . , cn) and a, c0, . . . , cn satisfying Conditions (1)–(3). By (1) and
Lemma 2.2, choose ψ(yn) ∈ tp(cn/B) ∩ ID. By (2), choose θ ∈ tp(c0, . . . , cn/B)
such that ϕ(x, c′0, . . . , c

′
n) ∈ ID for all c′0, . . . , c

′
n realizing θ. By shrinking θ we may

assume that θ(y0, . . . , yn) � ψ(yn).
Let θ∗ := ∃ynθ and ϕ∗ := ∃yn(ϕ ∧ θ). By our inductive hypothesis, in order

to prove that tp(a/B) is ID-small, it suffices to show that ϕ∗ and a, c0, . . . , cn−1

satisfy Conditions (1)–(3). Conditions (1) and (3) are immediate. To establish (2),
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1622 MICHAEL C. LASKOWSKI AND S. SHELAH

we argue that θ∗ witnesses that ϕ∗(x, c0, . . . , cn−1) ∈ ID provably over B. Visibly,
θ∗ ∈ tp(c0, . . . , cn−1/B). Choose c′0, . . . , c

′
n−1 realizing θ∗. On one hand, since

ψ ∈ ID and θ � ψ, θ(c′0, . . . , c
′
n−1, yn) ∈ ID. On the other hand, by our choice

of θ, ϕ(x, c′0, . . . , c
′
n−1, d) ∈ ID for any d such that θ(c′0, . . . , c

′
n−1, d) holds. Thus,

ϕ∗(x, c′0, . . . , c
′
n−1) ∈ ID since ID is a regular ideal. �

Proposition 2.6. If stp(a/A) is ID-internal, then tp(a/A) is ID-small.

Proof. Choose B ⊇ A independent from a over A, a B-definable formula ϕ(x, ȳ),
and a tuple of elements c̄ such that each tp(c/B) is ID-small for each c ∈ c̄,
ϕ(a, c̄) holds, and ∃=1xϕ(x, c̄). But the formula ϕ(x, c̄) ∈ ID provably over B via
the formula ∃=1xϕ(x, ȳ), so tp(a/B) is ID-small by Lemma 2.5. That tp(a/A) is
ID-small follows from Lemma 2.2. �

The reader is cautioned that while ID-internal types are ID-small, this result
does not extend to ID-analyzable types. In fact, the theory and type mentioned
in Remark 8.1.6 of [10] gives rise to an example of this. Much of the motivation of
this section, and in particular how it differs from treatments in [3] and [10], revolves
around how we handle ID-analyzable types that are not ID-small.

Definition 2.7. A strong type p is foreign to ID, written p ⊥ ID, if p ⊥ q for
every ID-small q.

Lemma 2.8. The following are equivalent for any regular ideal ID and any strong
type p:

(1) p ⊥ ID;
(2) p ⊥ q for every ID-internal strong type q;
(3) p ⊥ q for every ID-analyzable strong type q;
(4) If p = stp(a/A), then there is no a′ ∈ dcl(Aa) such that tp(a′/A) is ID-

small.

Proof. (1) ⇒ (2) follows immediately from Proposition 2.6. (2) ⇒ (3) follows by
induction on the length of the ID-analysis, using the fact that p ⊥ tp(b/B) and
p ⊥ tp(a/Bb) implies p ⊥ tp(ab/B). (3) ⇒ (4) is trivial, and (4) ⇒ (1) follows
immediately from (say) Corollary 7.4.6 of [10]. �

The reader is cautioned that when the regular ideal is not closed under ID-
analyzability, the following definitions differ from those in [10].

Definition 2.9. A partial type Γ is ID-large if it is not ID-small. Γ is ID-minimal
if it is ID-large, but any forking extension of Γ is ID-small. Γ is ID⊥-minimal
if it is ID-large, but any forking extension Γ ∪ {θ(x, c)} is ID-small whenever
stp(c/dom(Γ)) ⊥ ID.

Clearly ID-minimality implies ID⊥-minimality, but one of the applications in
Section 4 will use ID⊥-minimal types that are not ID-minimal.

Lemma 2.10. Let ID be any regular ideal. If a strong type p is both ID⊥-minimal
and foreign to ID, then p is regular.

Proof. The point is that a counterexample to the regularity of p can be found within
the set of realizations of p. If M is a-saturated and p = tp(a/M) is not regular, then
there are a tuple c̄ = 〈c1, . . . , cn〉 realizing p(n) for some n and a realization b of p
such that tp(a/Mc̄) forks over M , tp(b/Mc̄) does not fork over M , and tp(b/Mc̄a)
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A TRICHOTOMY OF COUNTABLE, STABLE, UNSUPERSTABLE THEORIES 1623

forks over Mc̄. Let q = tp(a/Mc̄) and choose an L(M)-formula θ(x, c̄) ∈ q such
that p ∪ {θ(x, c̄)} forks over M . As p ⊥ ID, p(n) ⊥ ID, so the ID⊥-minimality of
p implies tp(a/Mc̄) is ID-small.

But, since p is foreign to ID, tp(b/Mc̄), which is a nonforking extension of p
would be orthogonal to q by Lemma 2.8(2). In particular, tp(b/Mc̄a) would not
fork over Mc̄. �

The following easy ‘transfer result’ will be used in the subsequent sections.

Lemma 2.11. Assume that B is algebraically closed, p = tp(a/B) is foreign to
ID, q = tp(b/B), and b ∈ acl(Ba) \B. Then q is foreign to ID. If, in addition, p
is ID-minimal (ID⊥-minimal), then q is ID-minimal (ID⊥-minimal) as well.

Proof. If q were not foreign to ID, then by Lemma 2.8(4) there is c ∈ dcl(Bb) \B
such that tp(c/B) is ID-small. Since tp(c/B) is not algebraic it is not orthogonal
to p, which, via Lemma 2.8(2), contradicts p being foreign to ID. Thus q ⊥ ID.

Next, suppose that p is ID-minimal. Since p 
⊥ q and p ⊥ ID, q cannot be
ID-small. To see that q is ID-minimal, choose C ⊇ B such that tp(b/C) forks over
B. Then tp(a/C) forks over B, so tp(a/C) is ID-small. Thus tp(b/C) is ID-small
by Lemma 2.5. �

3. Chains and witnessing groups

Throughout this section ID always denotes a regular ideal.

Definition 3.1. We say A is an ID-subset of B, written A ⊆ID B, if A ⊆ B and
stp(b/A) ⊥ ID for every finite tuple b from B. When M and N are models we write
M �ID N when both M � N and M ⊆ID N . A set A is ID-full if A ⊆ID M for
some (equivalently for every) a-prime model M over A.

Lemma 3.2. Let ID be any regular ideal and assume M is a-saturated.

(1) If M � N are models, then M �ID N if and only if ϕ(N) = ϕ(M) for all
ϕ ∈ L(M) ∩ ID.

(2) If M ⊆ID A, then M �ID M [A], where M [A] is any a-prime model over
M ∪A.

Proof. (1) First suppose M �ID N and choose ϕ ∈ L(M) ∩ ID. If c ∈ ϕ(N), then
tp(c/N) is ID-small. If tp(c/M) were not algebraic, it would be nonorthogonal to
an ID-small type, contradicting tp(c/M) ⊥ ID. So tp(c/M) is algebraic, hence
c ∈ ϕ(M). Conversely, if there were c ∈ N such that tp(c/M) 
⊥ ID, then by
Lemma 2.8(4) there is c′ ∈ dcl(Mc) \ M such that tp(c′/M) is ID-small. Then
ϕ(N) 
= ϕ(M) for any ϕ ∈ tp(c′/M) ∩ ID.

(2) Recall that because M is a-saturated, M [A] is dominated by A over M .
Choose any tuple c from M [A]. If tp(c/M) were not foreign to ID, then as M is
a-saturated, there is an ID-small type q ∈ S(M) such that tp(c/M) 
⊥ q, hence
tp(c/M) is not almost orthogonal to q. Since c is dominated by A over M , there
is a from A such that tp(a/M) is not almost orthogonal to q, which contradicts
M ⊆ID A. �

Definition 3.3. A saturated chain is an elementary chain 〈Mα : α < δ〉 of a-
saturated models in which Mα+1 realizes every complete type over Mα for each
α < δ. An ID-chain is a sequence 〈Mα : α < δ〉 of a-saturated models such that
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1624 MICHAEL C. LASKOWSKI AND S. SHELAH

Mα �ID Mβ for all α < β < δ and Mα+1 realizes every type over Mα foreign to
ID. A chain (of either kind) is ID-full if the union

⋃
α<δ Mα is an ID-full set.

In general, a saturated chain need not be ID-full. However, if ID is either
the ideal of algebraic formulas or superstable formulas (both of which are regular),
then any a-saturated chain is ID-full, since types are based on finite sets. A more
complete explanation of this is given in the proof of Lemma 4.2. By contrast, the
following Lemma demonstrates that ID-chains are always ID-full.

Lemma 3.4. Every ID-chain is full. That is, if 〈Mα : α < δ〉 is an ID-chain, δ
is a nonzero limit ordinal, and Mδ is a-prime over

⋃
α<δ Mα, then Mα �ID Mδ

for all α < δ.

Proof. By the characterization of M �ID N given by Lemma 3.2(1), the first
sentence follows from the second. So fix an ID-chain 〈Mα : α < δ〉. Let N =⋃

α<δ Mα and let Mδ be a-prime over N . Fix any α < δ. Since Mα ⊆ID Mβ for all
α < β < δ, Mα ⊆ID N , so Mα �ID Mδ by Lemma 3.2(2). �

Definition 3.5. A formula θ is weakly ID-minimal (weakly ID⊥-minimal) if {θ}
is ID-minimal (ID⊥-minimal).

We now offer two complementary propositions. The main point of both is that
they produce regular types that are ‘close’ to a given regular ideal. The advantage
of (1) is that one obtains ID-minimality at the cost of requiring the chain to be
ID-full. In (2) the fullness condition is automatically satisfied by Lemma 3.4, but
one only gets ID⊥-minimality.

Proposition 3.6. Fix a regular ideal ID, a countable, stable theory T , and an
ID-large formula ϕ.

(1) Either there is a weakly ID-minimal formula ψ � ϕ or for every ID-full
saturated chain 〈Mn : n ∈ ω〉 with ϕ ∈ L(M0), there is an ℵ1-isolated,
ID-minimal p ∈ S(

⋃
n Mn) with ϕ ∈ p and p ⊥ ID.

(2) Either there is a weakly ID⊥-minimal formula ψ � ϕ or for every ID-
chain 〈Mn : n ∈ ω〉 with ϕ ∈ L(M0), there is an ℵ1-isolated, ID⊥-minimal
p ∈ S(

⋃
n Mn) with ϕ ∈ p and p ⊥ ID.

Moreover, in either of the two ‘second cases’ the type p is regular.

Proof. (1) Assume that there is no weakly ID-minimal ψ � ϕ. Fix an ID-full
saturated chain 〈Mn : n ∈ ω〉 with ϕ ∈ L(M0), let N =

⋃
n∈ω Mn, and let Mω be

ℵ1-prime over N . Let Δ0 ⊆ Δ1 ⊆ . . . be finite sets of formulas with L =
⋃

n∈ω Δn.
We inductively construct a sequence 〈ϕn : n ∈ ω〉 of ID-large formulas as follows:
Let ϕ0 be our given ϕ. Given ϕn � ϕ0 that is an ID-large L(Mn)-formula

An = {ψ ∈ L(Mn+1) : ψ � ϕn, ψ is ID-large and forks over Mn}.
As Mn+1 realizes every type over Mn foreign to ID and ϕn is not weakly ID-
minimal, An is nonempty. Choose ϕn+1 ∈ An so as to minimize R(ψ,Δn, 2). Let
Γ = {ϕn : n ∈ ω}. We first argue that Γ has a unique extension to a complete type
in S(N).

Claim. Γ � ¬ψ(x, b) for all ψ(x, b) ∈ ID ∩ L(N).

Proof. If the Claim were to fail, then Γ∪{ψ(x, b)} would be consistent, hence would
be realized in Mω, say by an element c. As the chain is ID-full, c ∈ N . For any n
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such that c ∈ Mn, ϕn+1 was chosen to fork over Mn, yet is realized in Mn, which
is impossible. �

Now let ψ(x, b) be any L(N)-formula. Choose n such that ψ(x, y) ∈ Δn. As
ϕn+1 was chosen to be of minimal R(–,Δn, 2)-rank, it is not possible for both
ϕn+1 ∧ ψ(x, b) and ϕn+1 ∧ ¬ψ(x, b) to be in An. For definiteness, suppose ϕn+1 ∧
ψ(x, b) 
∈ An. Since ϕn+1 forks over Mn, it must be that ϕn+1 ∧ ψ(x, b) ∈ ID.
Since ϕn+1 ∈ Γ, the Claim implies that Γ � ¬ψ(x, b). Thus Γ implies a complete
type in S(N), which we call p.

By construction p is ℵ1-isolated and is ID-large by the Claim. Since Mω is
ℵ1-saturated and p is ℵ1-isolated, there is a realization c of p in Mω. If p were not
foreign to ID, then by Lemma 2.8(4) there would be c′ ∈ dcl(Nc) \ N with c′/N
ID-small, directly contradicting ID-fullness.

It remains to show that any forking extension of p is ID-small. Let θ(x, a∗) be
any L(C)-formula such that p∪θ(x, a∗) forks over N . Then for some n, θ(x, y) ∈ Δn

and ϕn+1∧θ(x, a∗) forks over N . Thus, R(ϕn+1∧θ(x, a∗),Δn, 2) < R(ϕn+1,Δn, 2).
Let e list the parameters occurring in ϕn+1. Since Mn+1 is saturated, choose a′ ∈
Mn+1 such that tp(ea′) = tp(ea∗). It follows from the minimality of R(ϕn+1,Δn, 2)
that ϕn+1 ∧ θ(x, a′) 
∈ An, hence ϕn+1 ∧ θ(x, a′) ∈ ID. Thus, ϕn+1 ∧ θ(x, a∗) ∈ ID
by the invariance of ID.

As for (2) assume that there is no ID⊥-minimal formula implying ϕ. Choose
an ID-chain 〈Mn : n ∈ ω〉, which is automatically ID-full by Lemma 3.4. The
construction of Γ and p are analogous, taking A′

n = {ψ(x, b) ∈ An : tp(b/Mn) ⊥
ID} in place of An at each step. All that is affected is the final paragraph. As we
only need to establish ID⊥-minimality, choose a formula θ(x, a∗) with tp(a∗/N) ⊥
ID. Choose n as above such that, in addition, tp(a∗/N) is based and stationary on
some finite b ∈ Mn. Choose a′ ∈ Mn+1 such that tp(bea′) = tp(bea∗) and continue
as above.

In both cases, the regularity of p follows immediately from Lemma 2.10. �

Recall that a stable theory has NDIDIP if for every elementary chain 〈Mn :
n ∈ ω〉 of models, every type that is nonorthogonal to some a-prime model over⋃

n∈ω Mn is nonorthogonal to someMn. Relationships between NDIDIP and NDOP
are explored in [8].

Proposition 3.7. Fix a countable, stable theory T with NDIDIP and a regular
ideal ID such that the formula ‘x = x’ 
∈ ID.

(1) If there is an an ID-full, saturated chain 〈Mn : n ∈ ω〉, but there is no
weakly ID-minimal formula, then there is an abelian group witness to un-
superstability, where in addition the generic type of the intersection is both
ID-minimal and foreign to ID.

(2) If there is no weakly ID⊥-minimal formula, then there is an abelian group
witness to unsuperstability where the generic type of the intersection is
ID⊥-minimal and foreign to ID.

Proof. (1) Fix an ID-full, saturated chain 〈Mn : n ∈ ω〉 and let N =
⋃

n∈ω Mn.
Using Proposition 3.6(1) choose p ∈ S(N) to be ℵ1-isolated, foreign to ID, and
ID-minimal, hence regular. Since T has NDIDIP, p 
⊥ Mn. Since p is regular
and Mn is a-saturated, by Claim X 1.4 of [12] there is a regular type r0 ∈ S(Mn)
nonorthogonal to p. Let r denote the nonforking extension of r0 to N . As p and r
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are nonorthogonal there is an integer m such that p(m) is not almost orthogonal to
r(ω). Since p is ℵ1-isolated and Mn is a-saturated, Na is dominated by N over Mn

for any a realizing p. Thus p(1) is not almost orthogonal to r(ω) over N . Choose
k ≥ 1 maximal such that p(k) is almost orthogonal to r(ω) over N and choose
c̄ realizing p(k). Let B = acl(Nc̄) and choose a realization a of the nonforking
extension of p to B.

By Theorem 1 of [4], there is b ∈ dcl(Ba) \ B and a type-definable, connected
group A with a regular generic type q (so A is abelian by Poizat’s theorem [11])
and a definable regular, transitive action of A on p1(C), where p1 = tp(b/B). By
Lemma 2.11 the type p1 and hence q are both foreign to ID and ID-minimal. By
Theorem 2 of [5] there is a definable supergroup A0 ⊇ A. By an easy compactness
argument we may assume A0 is abelian as well. Furthermore, by iterating Theo-
rem 2 of [5] we obtain a descending sequence 〈An : n ∈ ω〉 of subgroups of A0 with
A =

⋂
n∈ω An.

Thus far we have not guaranteed that An+1 has infinite index in An. In order
to show that there is a subsequence of the An’s with this property and thereby
complete the proof of the Proposition, it suffices to prove the following claim:

Claim. For every n ∈ ω there is m ≥ n such that [An : Am] is infinite.

Proof. By symmetry it suffices to show this for n = 0. Assume that this were not
the case, i.e., that [A0, Am] is finite for each m. Then A has bounded index in
A0. We will obtain a contradiction by showing that the definable set A0 is weakly
ID-minimal. First, since q is ID-large, the formula defining A0 is ID-large as well.
Let ϕ(x, e) be any forking extension of the formula defining A0 and let E ⊆ A0 be
the set of realizations of ϕ(x, e). Let {Ci : i < 2κ ≤ 2ℵ0} enumerate the cosets of
A contained in A0. For each i, E ∩ Ci is a forking extension of Ci. Since every Ci

is a translate of A whose generic type is ID-minimal, this implies that E ∩ Ci is
ID-small for each i. Hence, ϕ(x, e) ∈ ID by compactness (and the fact that ID is
an ideal). Thus, the formula defining A0 is weakly ID-minimal, a contradiction.

The proof of (2) is identical, choosing an ID-chain satisfying the hypotheses and
using Proposition 3.6(2) in place of 3.6(1). �

4. Applications

Our first application gives a ‘trichotomy’ for strictly stable theories in a countable
language. It uses the ideal of superstable formulas.

Definition 4.1. R∞ denotes the ideal of superstable formulas (i.e., all formulas ϕ
with R∞(ϕ) < ∞).

Equivalently, ϕ ∈ R∞ if and only if for all cardinals κ ≥ 2|T |, for any model
M of size κ containing the parameters of ϕ, there are at most κ complete types
over M extending ϕ. In a sense, the following Lemma generalizes the fact that in
a superstable theory, any union of a chain of a-saturated models is a-saturated.

Lemma 4.2. R∞ is a regular ideal, any elementary chain 〈Mn : n ∈ ω〉 of a-
saturated models is R∞-full, and there are no weakly R∞-minimal formulas.

Proof. Invariance under automorphisms of C is clear and R∞ being an ideal follows
by counting types. To show regularity, choose ψ(y) ∈ R∞ and θ(x, y) ∈ L(C) such
that θ(x, b) ∈ R∞ for every b realizing ψ. Choose κ ≥ 2|T | and a model M of size κ
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containing the hidden parameters of both ψ and θ. Then there are at most κ types
p(x, y) ∈ S(M) extending θ(x, y)∧ψ(y), so the projection ∃y(θ(x, y)∧ψ(y)) ∈ R∞

as only κ types q(x) ∈ S(M) extend it.
To establish fullness, fix an elementary chain 〈Mn : n ∈ ω〉 of a-saturated mod-

els. Let N =
⋃

n∈ω Mn and choose an a-prime model Mω over N . Because of
Lemma 2.8(4), in order to show that N ⊆ID Mω it suffices to show that no element
of c ∈ Mω \ N is R∞-small. So choose c ∈ Mω such that tp(c/N) is ID-small
and we will show that c ∈ N . On one hand, since tp(c/N) contains a superstable
formula, there is a finite n such that tp(c/N) is based on Mn. On the other hand,
since Mω is a-prime over N , tp(c/N) is a-isolated. Thus tp(c/Mn) is a-isolated as
well (see e.g., Theorem IV 4.3(1) of [12]). Since Mn is a-saturated, this implies
c ∈ Mn ⊆ N .

To show that there are no weakly R∞-minimal formulas, suppose that a formula
ϕ has the property that any forking extension of ϕ is R∞-small. We will show
that ϕ ∈ R∞ by counting types. Fix a cardinal κ ≥ 2|T | and a model M of size
κ containing the parameters of ϕ. Let M0 � M have size |T | that also contains
the parameters containing ϕ. It suffices to show that every p ∈ S(M0) extending ϕ
has at most κ extensions to types in S(M). Clearly, there is a unique nonforking
extension of p and any forking extension of p contains an L(M)-formula witnessing
the forking. Each such forking formula ψ ∈ R∞, so there are at most κ q ∈ S(M)
extending ψ. Since the total number of ψ ∈ L(M) is at most κ, p has at most κ
extensions to types in S(M). �
Theorem 4.3. Let T be a stable, unsuperstable theory in a countable language.
Then at least one of the following three conditions occurs:

(1) T has the dimensional order property (DOP); or
(2) T has NDOP, but is deep (i.e., there is a sequence 〈Mn : n ∈ ω〉 such that

tp(Mn+1/Mn) ⊥ Mn−1 for all n ≥ 1); or
(3) There is an abelian group witness to unsuperstability (see Definition 1.1) in

which the generic type of the intersection is both R∞-minimal and foreign
to R∞.

Proof. To begin, Corollary 1.12 of [8] asserts that any such theory T has NDIDIP.
Since T is not superstable the formula ‘x = x’
∈ R∞. As well, by Lemma 4.2 there
are no weakly R∞-minimal formulas, so Proposition 3.7(1) asserts that an abelian
group witness to unsuperstability exists, whose generic type is regular and both
R∞-minimal and foreign to R∞. �

Our second application comes from an attempt to solve the ‘Main Gap for ℵ1-
saturated models.’ As in the previous theorem, the relevant setting is where a
countable theory T is stable, unsuperstable, with NDOP, and is shallow. The
main open question is whether, for such a theory, every nonalgebraic type r is
nonorthogonal to a regular type. The following result sheds some light on this
issue. In order to analyze this problem, fix a nonalgebraic, stationary type r over
the empty set. Let

IDr = {ϕ ∈ L(C) : r ⊥ ϕ}.
Verifying that IDr is an invariant ideal is straightforward. To see that it is a
regular ideal, fix L(C)-formulas ψ(y) ∈ IDr and θ(x, y) such that θ(x, b) ∈ IDr for
every b realizing ψ. Choose an a-saturated model M containing the parameters of
ψ and θ, pick a realization c of the nonforking extension of r to M , and let M [c]
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be any a-prime model over Mc. To show that ϕ(x) := ∃y(θ(x, y) ∧ ψ(y)) ⊥ r it
suffices to prove that any realization of ϕ in M [c] is contained in M . So choose any
a ∈ ϕ(M [c]). Choose b ∈ M [c] such that θ(a, b) ∧ ψ(b) holds. Since r ⊥ ψ, b ∈ M .
But then θ(x, b) is over M and is ⊥ r, so a ∈ M as well. Thus IDr is a regular
ideal.

Theorem 4.4. Assume that a countable theory T is stable, unsuperstable, has
NDOP, and is shallow. If a nonalgebraic, stationary type r is orthogonal to every
regular type, then there is an abelian group witness to unsuperstability in which the
generic type of the intersection A =

⋂
n An is both (IDr)⊥-minimal and foreign to

IDr.

Proof. Fix such a type r. By naming constants we may assume that r is over the
empty set. Note that any formula ϕ ∈ r is not an element of IDr, so ‘x = x’
∈ IDr.

Claim. There is no weakly (IDr)⊥-minimal formula.

Proof. Assume that ϕ were (IDr)⊥-minimal. We construct a regular type p 
⊥ r
as follows: Choose an a-saturated model M containing the parameters in ϕ, pick a
realization c of the nonforking extension of r to M , and choose an a-prime model
M [c] over Mc. Since ϕ is IDr-large we can find an a ∈ M [c] \ M realizing ϕ.
Choose such an a and let p = tp(a/M). Clearly, p 
⊥ r. To see that p is regular,
first note that p is (IDr)-minimal since p is IDr-large and extends ϕ. As well,
p is foreign to IDr, since if it were not, then by Lemma 2.8(4) there would be
b ∈ dcl(Ma) with tp(b/M) IDr-small. But then tp(c/Mb) would fork over M ,
implying that r is nonorthogonal to an IDr-small type, which is a contradiction.
So p is (IDr)-minimal and foreign to IDr, hence is regular by Lemma 2.10. �

The theorem now follows immediately from Proposition 3.6(2). �
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