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Suppose t = (T, T1, p) is a triple of two theories in vocabularies τ ⊂ τ1 with cardinality λ, T ⊆ T1 and a τ1-type
p over the empty set that is consistent with T1. We consider the Hanf number for the property “there is a model
M1 of T1 which omits p, but M1�τ is saturated”. In [2], we showed that this Hanf number is essentially equal
to the Löwenheim number of second order logic. In this paper, we show that if T is superstable, then the Hanf
number is less than �

(2( 2λ)+
)+ .
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1 Introduction

Let K be a family of classes of structures. An element K ∈ K is bounded if it does not have arbitrarily large
members. Hanf observed that if κ is the supremum of the maxima of the sizes of structures in the bounded K ∈ K,
then any K that has a member of cardinality at least κ has arbitrarily large models [4]. In many cases this bound
κ can be calculated (e.g., for a countable first order theory, it is ℵ0 by the upwards Löwenheim-Skolem theorem).
In this paper we call a Hanf number for a family K of classes calculable if it is bounded by a function that can be
computed by an arithmetic function in ZFC (cf. Definition 1.1) and if not it is incalculable.

The following definition is more abstract than needed for this paper but we include it for comparison with other
works where other Hanf functions are shown to be not calculable.

Definition 1.1 A function f (a class-function from cardinals to cardinals) is strongly calculable if f can
(provably in ZFC) be defined in terms of cardinal addition, multiplication, exponentiation, and iteration of the
� function. A function f is calculable if it is (provably in ZFC) eventually dominated by a strongly calculable
function. If not, it is incalculable.

We extend our work on Newełski’s question from [6] about calculating the Hanf number of the following
property:

Definition 1.2 Let τ ⊂ τ1 be two vocabularies and let T and T1 be theories in the vocabulary τ and τ1,
respectively. Let λ be a cardinal.

(1) If t = (T, T1, p) = (Tt, T1,t, pt) be a triple such that |τ1| ≤ λ, T ⊆ T1 and p is a τ1-type over the empty
set consistent with T1, then we say M1 |= t if M1 is a model of T1 which omits p, but M1�τ is saturated.

(2) Let Nλ be the set of t as in (1) with |τ1| = λ. By H(Nλ) we denote the Hanf number of Nλ, i.e., the least
cardinal κ such that if t ∈ Nλ has a model of cardinality κ , it has arbitrarily large models.1

(3) The Hanf number of a logic L (e.g., Lκ+,κ ) is the least cardinal μ such that if an L-sentence has a model
in cardinal μ, then it has arbitrarily large models.

∗ Corresponding author: e-mail: jbaldwin@uic.edu
∗∗ e-mail: shlhetal@math.huji.ac.il
1 Thus, ‘there is an M with cardinality κ such that M |= t and t ∈ Nλ’ replaces the notation in [2], ‘Pλ

N (Kt, κ) holds’.

C© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Sh:992



438 J. T. Baldwin and S. Shelah: A Hanf number for saturation and omission

Under mild set theoretic hypotheses, we showed in [2] that H(Nλ) essentially equals the Löwenheim number
of second order logic, which is incalculable. In § 2 we restrict the question by requiring that the theory T be
superstable; the number is then easily calculable in terms of Beth numbers.

The phenomenon that stability considerations can greatly lower Hanf number estimates was earlier explored
in [5]. Work in preparation extends the current context to strictly stable theories.

Much of this paper depends on a standard way of translating between sentences in languages of the form
Lλ,ω(τ ) and first order theories in an expanded vocabulary τ that omit a family of types. This translation dates
back to [3]; a short explanation of the process appears in [1, Chapter 6.1]. [7, Chapter VII.5] is an essential
reference for this paper. In those references, these (equivalent) Hanf numbers of sentences and associated pair of
a family of types and theory are calculated using the ‘well-ordering number of a class’. We begin with a slight
rewording of [7, Definition VII.5.1], using language from [3].

Definition 1.3

1. The Morley number μ(λ, κ) is the least cardinal μ such that if a first order theory T in a vocabulary
of cardinality λ has a model in cardinality μ which omits a family of κ types over the empty set, it has
arbitrarily large such models.

2. The well-ordering number δ(λ, κ) is the least ordinal α such that if a first order theory T in a vocabulary
τ of cardinality λ, which includes a symbol < has a model which omits a family κ types over the empty
set and < is well ordering of type α, then there is such a model where < is not a well-order.

The connection between these two notions is discussed in [7, § VII].

Fact 1.4

1. If κ > 0, μ(λ, κ) = �δ(λ,κ) .
2. For every infinite cardinal ϑ , H(Lϑ+,ω) ≤ μ(ϑ, 1) < �(2ϑ )+.

P r o o f . Item 1 is [7, VII.5.4]. Recall that Lopez-Escobar and Chang (cf., e.g., [3]) showed how to code
sentences of Lλ+,ω as first order theories omitting types. More strongly (as in the proof of [7, Theorem VII.5.1.4])
one can code by omitting a single type. That H(Lλ+,ω) < �(2λ)+ is now clear from [7, Theorems VII.5.4 &
VII.5.5.7]. �

2 Computing H(Nss
λ )

2.1 Introduction

We study the following notions in this section.

Definition 2.1 Let Nss
λ denote the set2 of t with |τ1| = λ with the additional requirement that Tt is a superstable

theory. Now we have the natural notion of the Hanf number, H(Nss
λ ) for this set: If t ∈ Nss

λ has a model of cardinality
≥ H(Nss

λ ), it has arbitrarily large models.

We will prove the following theorem:

Theorem 2.2

H(Lλ+,ω) < �(2λ)+ < H(Nss
λ ) < H(L(2λ)+,ω) < �(2( 2λ)+

)+ .

The first and fourth of these inequalities are immediate from Fact 1.4.2 taking ϑ first as λ and then as 2λ.
In § 2.2, we give a rather involved proof that �(2λ)+ is strictly less than H(Nss

λ ); together with the first
inequality, this implies immediately that H(Lλ+,ω) < H(Nss

λ ). Note that less than or equal, H(Lλ+,ω) ≤ H(Nss
λ ) is

2 Technically, this is not a set since a vocabulary is a sequence of relation symbols and we could use different names for the symbols; this
pedantry can be avoided in at least two ways: restrict the symbols to come from a specified set; return to Tarski’s convention of discussing not
vocabularies but similarity types, the equivalence classes of enumerated vocabularies such that the i th symbol has arity ni .
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straightforward. Just set t as (T0, T1, p) where T0 is pure equality and (T1, p) encode a given sentence ψ ∈ Lλ+,ω.
Then T0 is superstable and every model is saturated, so we have the desired interpretation.

The second and third inequalities are in §§ 2.2 and 2.3, respectively.

2.2 The second inequality

As noted the first inequality in Theorem 2.2 is standard. Thus by showing in Theorem 2.4, the second inequality
appearing in Theorem 2.2 we will have H(Lλ+,ω) < H(Nss

λ ) and in fact

Theorem 2.3 H(Lλ+,ω) < �(2λ)+ < H(Nss
λ ).

The proof of the second inequality requires the construction of two triples t1, t2. The first characterizes 2λ; the
second �(2λ)+ .

Fix Lλ as the set of constructible sets of hereditary cardinality less than λ. In fact, any transitive model with
cardinality λ of a very weak set theory would suffice.

Theorem 2.4 There is a t1 = (T, T1, p) ∈ Nss
λ with |τ (T1)| ≤ λ such that:

1. There is an M |= t2 with cardinality �(2λ)+

2. but there is no M |= t2 with cardinality greater than �(2λ)+ .

P r o o f . We first introduce t1 ∈ Nss
λ and prove several properties of it.

In the first stage, we define T to be the prototypic superstable theory with λ-independent unary predicates,
P1,t (i.e., in the vocabulary τ ). The set P2 will have cardinality λ when the type p is omitted. Then E3 will be an
extensional relation on P2 × P3 so that P3 has cardinality at most 2λ. The function F maps the universe into P3

while respecting the P1,t (and ¬P1,t ) and so that for any d, F(d) codes via E3 the τ -type of d. Thus saturation
with respect to the P1,t guarantees that P3 has cardinality exactly 2λ.

Now we begin the formal development: τ contains unary predicates P1,t for t ∈ Lλ; let T assert any Boolean
combination of the P1,t is consistent. Let τ1 = τ ∪ {ct : t ∈ Lλ} ∪ {P2, P3, E2, E3, F, F1}. Here the Pi and Ei are
unary and binary relations while F is a unary function and F1 is a binary function. The various names of the
symbols are chosen to keep the names different and not for any evocative purpose.

In the following definition, clauses 1) through 4) set the scene; clauses 5) through 7) are the crux of proving
Lemmas 2.7 and 2.8; the other clauses are preparation for the proof of Lemma 2.11. �

Definition 2.5 Let T1 be the τ1-theory such that for any τ1-structure M , M |= T1 iff

1. M�τ |= T ;
2. 〈cM

t : t ∈ Lλ〉 are pairwise distinct elements of M ;
3. cM

t ∈ P M
2 for t ∈ Lλ;

4. E M
2 ⊆ P M

2 × P M
2 and (P M

2 , E M
2 ) is a model of Th(Lλ, ε);

5. F M is a function from M onto P M
3 such that M |= (∀x)[P1,t(x) ↔ P1,t(F(x))] for every t ∈ Lλ;

6. (extensionality) E M
3 ⊆ P M

2 × P M
3 satisfies

(∀x1)(∀x2)[P3(x1) ∧ P3(x2) → (∃y)[P2(y) ∧ (yE3x1 ↔ ¬yE3x2)])

(so, we know that b1 �= b2 implies A2
M,b1

�= A2
M,b2

where A2
M,b := {a ∈ P M

2 :aE M
3 b});

7. for every d ∈ M :

d ∈ P M
1,t ↔ cM

t ∈ A2
M,F M (d)

(i.e., cM
t E3 F M(d));

8. if t1, t2 ∈ Lλ, then M |= ct1 E2ct2 if and only if Lλ |= t1 ∈ t2;
9. for every d ∈ P M

3 , 〈F1(e, d) : e ∈ M〉 is a 1-1 function from M into { f ∈ M : F M( f ) = d}.

The required τ1-type p to complete the definition of t is

p(x) = {P2(x)} ∪ {x �= ct : t ∈ Lλ}.
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Definition 2.6 We call a model M of T1 standard when

1. cM
t = t for t ∈ Lλ;

2. P M
2 = {t : t ∈ Lλ};

3. for every X ⊆ Lλ, there is b ∈ P M
3 such that A2

M,b = X (note that b is unique by Definition 2.5.6).

Lemma 2.7 If M is a standard model of T1 then M omits p and M�τ is saturated. That is, M |= t.

P r o o f . Condition 2) asserts p is omitted. A saturated model M of T is one where for each X ⊆ Lλ,
qX (x) = ∧

t∈Lλ
P1,t(x)t∈X is realized |M | times. Clauses 1) and 3) of Definition 2.6 guarantee there is a bX ∈ P M

3

such that X = A2
M,bX

. By clause 7) of Definition 2.5 any element of (F M)−1(bX ) realizes qX . Finally, Condition
8) of Definition 2.5 implies |(F M)−1(bX )| = |M |. �

Lemma 2.8 If M |= t1 (t1 = (T, T1, p)) then M is (isomorphic to) a standard model of T1.

P r o o f . Since M omits p, P M
2 = {cM

t : t ∈ L}. The map g : P M
2 → Lλ is a well-defined isomorphism from

(P M
2 , E M

2 ) by condition 9 of Definition 2.5.
Finally, condition 3) of Definition 2.6 holds because the saturation provides a realization dX of qX (x) =∧

t∈Lλ
P1,t(x)t∈X . But then by condition 7) of Definition 2.5, A2

M,F M (dX ) = {cM
t ∈ P M

2 :cM
t E M

3 F M(dX )} = X as
required. �

Now we introduce a second triple, t2 = (T, T2, p) ∈ Nss
λ , which will have models up to but no larger than

�(2λ)+ .
We add a new predicate P4 which will be linearly (indeed well) ordered by <4 (say as {aα :α < β}). The

well-ordering is obtained by first requiring that every non-empty definable subset of P4 has a least element and
then showing every countable subset is definable (using a set theoretic structure imposed on P2). A function G4

projects the universe onto P4. The predicate R will code the subsets of (G4)−1(aα) by elements of (G4)−1(aα+1).
An induction then bounds the cardinality of any model of t2.

Definition 2.9 The signature τ2 expands τ1 by adding <4, P4, R, G4, G5 where G4 is unary and G5 is binary.
Let T2 be the τ2-theory such that for any τ1-structure M , M |= T2 iff

1. M�τ1 |= T1;
2. <4 is a linear order of P M

4 satisfying the first order theory of well-orderings;
3. G4 is a function from M onto P M

4 ;
4. if cRM d then G4(c) <M

4 G4(d);
5. if d1 �= d2 then for some d ∈ M , d RM d1 ≡ ¬d RM d2;
6. G M

5 is a partial function from P M
4 × P M

4 to P M
3 . If d ∈ P4

M then and d1 <M
4 d2 <M

4 d then G5(d1, d) �=
G5(d2, d) (so every proper initial segment of P M

4 has cardinality ≤ |P M
3 |);

7. for any ϕ(x, y) ∈ L(τ2) and d in M with the same length as y, {a ∈ P M
4 : M |= ϕ(a, d)} is either empty

or has a first element.

Observe that t2 = (T, T2, p) ∈ Nss
λ .

Lemma 2.10 There is an M |= t2 of cardinality �(2λ)+ .

P r o o f . We define a τ2-model as follows: The universe of M is V(2λ)+ where Vα is the αth stage in the
cumulative hierarchy. Furthermore,

cM
t = t for t ∈ Lλ,

P M
2 = Lλ = {cM

t : t ∈ Lλ},
E M

2 = ε�P M
2 ,

P3
M = ℘(Lλ),

E M
3 = {(t, s) : t ∈ Lλ, s ∈ ℘(Lλ), t ∈ s},
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P M
1,t =

⋃
{Ys : s ∈ ℘(Lλ) ∧ t ∈ s},

P M
4 = (2λ)+, and

RM = ε�V(2λ)+ .

Let 〈Ys : s ∈ ℘(λ)〉 be a partition of |M | = V(2λ)+ such that each Ys has cardinality ||M || and s ∈ Ys (This implies
Ys ∩ ℘(Lλ) = {s}). Furthermore, The function F M maps M to ℘(Lλ) = P3

M : for d ∈ Ys , we have F(d) = s. We
choose F M

1 : M × M → M as 1-1 as function that maps M × Ys into Ys and let <M
4 be the natural order ε�(2λ)+ on

P M
4 . We let G M

5 be any binary function from P M
4 into P M

3 such that if d1 <M
4 d2 <M

4 d then G5(d1, d) �= G5(d2, d),
and finally G M

4 maps M to P M
4 by G M

4 (a) is the least α such that a ∈ Vα+1.
We have defined M to satisfy T2; it omits p by clause 2) and 3). And conditions 5) and 6) show M�τ1 is a

standard model of T1. So by Lemma 2.7, M�τ is saturated and M |= t1. �
Now we show t2 has no model of cardinality greater than �(2λ)+ .

Lemma 2.11 If M |= t2, |M | ≤ �(2λ)+ .

P r o o f . Since M |= t2, M |= t1 so by Lemma 2.8, without loss of generality, M�τ1 is standard.
The proof of Lemma 2.11 is easy from the next two claims. �
Claim 2.12 If dn <4

M dn−1 <4
M d for n < ω, there is ϕ(x, y) ∈ L(τ2) and a ∈ M with same length as y such

that {b : M |= ϕ(b, a)} = {dn : n < ω}.
P r o o f . Let D = {dn : n < ω} and writing G M

5 (d, dn) as bn , let B = {bn : n < ω}. Our goal is to show that
D is τ2-definable. Letting g(x) denote the function G M

5 (d, x), D = g−1(B) and g is τ2-definable. So it suffices
to show B is definable.

Let Xn denote A2
M,bn

= {a ∈ M : P M
2 (a) ∧ aE M

2 bn} and set X = ⋃
n<ω{n} × Xn . Now Xn is a τ2-definable

subset of P M
2 , so X is definable in (P M

2 , E M
2 ) using the set theoretic operations. And b ∈ B if and only (n, b)) ∈ X

so B is τ2-definable. �
Claim 2.13 The structure (P M

4 ,<M
4 ) is well-ordered of order type at most (2λ)+.

P r o o f . By Lemma 2.12 the range of any infinite descending sequence is τ2-definable. But then by clause 7
of Definition 2.9, it has a least element.

Since M�τ1 is standard, |P M
3 | = 2λ. Then condition 6) of Definition 2.9 implies the order type of (P M

4 ,<M
4 )

is at most (2λ)+. So we can write (P M
4 ,<M

4 ) as 〈aα : α < β〉 for some β ≤ (2λ)+.
To complete the proof, we can show by induction that |{a ∈ M : G M

4 (a) < aα}| ≤ �α(λ). Condition 4) of
Definition 2.9 shows that for any d ∈ M with G4(d) = aα , if bRd, then G M

4 (b) < aα . So with respect to R, d codes
a subset of (G M

4 )−1(aα). Since R is extensional by Condition 4) of Definition 2.9, the |(G M
4 )−1(aα| ≤ �α+1(λ)

and we finish by induction.
Theorem 2.4 is immediate from Lemmas 2.10 and 2.11. �
The Hanf number Lλ+,ω can consistently be less than �(2λ)+ . Cf. [8] and [7, Chapter VII.5].

2.3 The third inequality

The previous section completed the proof of the second inequality in Theorem 2.2; we pass to the third.

Lemma 2.14 H(Nss
λ ) < H(L(2λ)+,ω).

We first show H(Nss
λ ) ≤ H(L(2λ)+,ω) by constructing a map from t ∈ Nss

λ to ψt ∈ L(2λ)+,ω; this construction
depends heavily on the superstability hypothesis. Then we use some observations on Hanf numbers to show the
inequality is strict: H(Nss

λ ) < H(L(2λ)+,ω).

Lemma 2.15 For each t = (T, T1, p) ∈ Nss
λ , there is a τ2 extending τ1 with |τ1| = |τ2| = λ and a ψ ∈ L(2λ)+,ω

such that spec(t) = spec(ψ).

P r o o f . In preparation consider a fixed saturated model M of cardinality 2|T | of T .
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To form τ2, we add to τ1 constants 〈cα : α < (2λ)〉 and as described below a unary predicate P and 2n + 1-ary
functions Hn and function symbols Gn,m indexing maps from N to N m by n + m tuples. The type p will be
{P(x)} ∪ {x �= cα : α < 2λ}.

We write y1 ≡x1,x2 y2 if for every ϕ(v, w), ϕ(x1, y1) ↔ ϕ(x2, y2). Furthermore, F(x) is the collection (for
i < 2λ) of m-ary finite equivalence relations Ei (x; y, z) over x. �

Definition 2.16

1. Recall that a model N is Fa
κ(T )-saturated (also called a-saturated and ε-saturated) if each strong type over

a set of size less than κ(T ) is realized. For superstable theories Fa
κ(T )-saturated is just Fa

ℵ0
-saturated (each

strong type over a finite set is realized).
2. A model N is strongly ω-homogeneous, if any two finite sequences that realize the same type over the

empty set are automorphic in N .

Fact 2.17 If a model M of a stable theory is Fa
κ(T )-saturated and for each set of infinite indiscernibles I in M

there is an equivalent set of indiscernibles I′ in M that has cardinality |M |, then M is saturated. [7, III.3.10.2]

Notation 2.18 Now let ψt ∈ L(2λ)+,ω(τ1) assert of a model N :

1. The specified p = pt is omitted;
2. P M satisfies the complete τ ∪ {cα : α < 2λ}-diagram of M , the saturated model of cardinality 2|T | specified

at the beginning of the proof;
3. N�τ is strongly ω-homogeneous (add 2n + 1-ary functions Hn satisfying if a ≡ b, (λz)Hn(a, b, z) is

a τ -automorphism taking a to b; this is expressible since having the same type over the empty set is
expressible in L(2λ)+,ω(τ ));

4. for each n < ω, m < ω there is an (n + m + 1)-ary function G (into m-tuples) such that G witnesses
that for any n-tuple a and m-tuple b, if stp(b/a) is realized infinitely often then it is realized |N |-times.
Formally, N satisfies:

(∀xz)

⎡
⎣∧

n<ω

((∃≥ny)
∧

Ei (x;y,z)∈F(x)

Ei (x, z, y)) → (∀w)
∧

Ei (x;y,z)∈F(x)

Ei (x, z, G(x, z, w))

⎤
⎦

where for every x, z λwG(x, z, w) is a 1-1 map from N into N m .

We shall now prove H(Nss
λ ) ≤ H(L(2λ)+,ω): Suppose t ∈ Nss

λ , that ψt is as specified in Notation 2.18, and
N |= ψt. Since |N | = |N�τ1|, it suffices to show N�τ1 |= t. Clearly N omits pt and (N�P N )�τ is superstable; in
particular it is an elementary extension of the Fa

ℵ0
-saturated model M . We must show N�τ is saturated.

But N is strongly ω-homogeneous by Notation 2.18.2. So each consistent strong type p over an n-element
sequence a ∈ N is realized by H−1

n (a, b, c) where b ∈ M satisfies a ≡ b and c |= Hn(a, b, q) (where the Hn

transforms a strong type over a to one over b in the natural manner). Thus, N is Fa
ℵ0

-saturated so we may apply
Fact 2.17.

Every infinite indiscernible set J in N�τ is based on a finite d. That is, there is a strong type pJ over d such
that J contains infinitely many realizations of p. Now the conditions on G of Notation 2.18.4 guarantee that pJ

is realized |N | times in N as required.
Now we strengthen the inequality H(Nss

λ ) ≤ H(L(2λ)+,ω) to a strict one.

Claim 2.19 H(Nss
λ ) < H(L(2λ)+,ω).

P r o o f . [7, Theorems VII.5.4 and VII.5.5.1] show for any μ, cf(H(Lμ+,ω)) ≥ μ+; in particular,
cf(H(L(2λ)+,ω) ≥ (2λ)+. But there are at most 2λ classes in Nss

λ and Lemma 2.15 implies that the supremum
of the spec of each is less than H(L(2λ)+,ω). Thus, H(Nss

λ ) < H(L(2λ)+,ω). �
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