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THE JOURNAL OF SYMBOLIC LOGIC
Volume 48, Number 3, Sept. 1983

INTERPRETING SECOND-ORDER LOGIC
IN THE MONADIC THEORY OF ORDER!

YURI GUREVICH AND SAHARON SHELAH

Abstract. Under a weak set-theoretic assumption we interpret second-order logic
in the monadic theory of order.

§0. Introduction. The monadic (second-order) theory of a chain (i.e. a linearly
ordered set) C can be defined as the first-order theory of the two-sorted structure:

The universe of C, the power-set of C; the order relation < on elements of C,
and the containment relation € between elements and subsets of C.

In a similar way we can define the monadic theory of any other structure.

The monadic second-order logic appears to be an appropriate logic to handle
linear order. It gives several natural, expressive and manageable theories. See a
discussion on this subject in Gurevich [2].

The decision problem for the monadic theory of (linear) order was a long-stand-
ing open problem. (Recall that Rabin {5] proved decidability of the monadic theory
of countable chains.) Assuming the Continuum Hypothesis, Shelah [6] interpreted
the true first-order arithmetic in the monadic theory of the real line (which is easily
interpretable in the monadic theory of order). Confirming Shelah’s conjecture and
assuming the Godel constructibility axiom ¥V = L, Gurevich [1] interpreted the
second-order theory of continuum in the monadic theory of the real line. The
monadic theory of the real line (and therefore the monadic theory of order) was
proved undecidable (without using any extra set-theoretic assumptions) in Gure-
vich and Shelah (3].

Here we assume that for every cardinal A there is a regular cardinal £ > A such
that 2<%, i.e. ¥{2#: u < &}, is equal to x. Under this assumption we interpret
second-order logic in the monadic theory of order. In other words we assign effec-
tively a sentence ¢’ in the monadic language of order to arbitrary second-order sen-
tence ¢ in such a way that every nonempty set satisfies ¢ iff every chain satisfies ¢'.

Our proof is based on the technique developed in the mentioned papers Shelah
[6), Gurevich [1] and Gurevich and Shelah [3]. This paper is self-contained never-
theless.

We think that the second-order logic can be interpreted in the monadic theory
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of order without using any extra set-theoretic assumptions. It needs more com-
plicated constructions however.

Speaking about intervals of a chain we mean nonempty open intervals. Intervals
{x:x < a}and {x: x > a} are denoted (— o0, @) and (4, ), respectively. Speaking
about topological properties of a chain we mean the interval topology.

§1. A suitable chain. Given a regular cardinal £ > 8; with 2<F = ¢ we define a
chain U whose monadic theory is especially convenient for interpreting the second-
order theory of nonempty sets of cardinality less than .

Elements of U are functions x: a — w; such that either ¢ < x or ¢ = £ and
{B: B < £ and x(B) # O} is cofinal in £. In other words x is a sequence of at most
countable ordinals, the length of x is at most x, and if the length of x is equal to
« then x does not have a tail of zeroes. In this section x, y, z range over U.

Note that the inclusion relation on U gives a tree of height 4. The ath level of
the tree consists of sequences of length . If @ = dom(x) < £ and 8 < w; then
x "~ B, i.e. x U {(a, B}, is a successor of x. We say that x is limit or successor if
the length, i.e. the domain of x, is so. The meet x A y of sequences x, y is the
maximal common initial segment of x and y, it is the greatest lower bound of x
and y in the tree. We say that x and y are tree compatible if either x € yory c x.

Now we describe the linear order of U. Given x # y consider z = x A y and
a = dom(z). If z is a proper initial segment of both x and y and x(¢) < y(a) then
x < y. If z = x then y < x. In other words the order is lexicographic on tree in-
compatible pairs and if x is a proper initial segment of y then y < x. Note that the
empty sequence A is the last element in U and there is no first element in U. Speak-
ing about intervals of U we always mean nonempty open intervals. Speaking about
topological properties of U we always mean the interval topology.

Let D = {xe U:dom(x) < £}. If xe D then x = sup{x A a:a < w} and
cofinality of the interval (—co, x) is w;. If xe U — D then x = sup{(x|a) "~ O:
x(a) > 0} and the cofinality of (— oo, x) is «.

Let D} = {x e D: xis limit}. If xe U — D then x = inf{x|a: @ < £} and coini-
tiality of the interval (x, A] is £. If x € D' then x = inf{x|a: @ < dom(x)} and
coinitiality of (x, A] is dom(x). If x is successor then the coinitiality of (x, A] is «.
For, suppose x = y ~ « and for every 8 < « let y; be obtained from y = (a + 1)
by attaching a tail of g zeroes. Then x = inf{y;: 8 < #}.

For a € D let Cone(a) = {x: a < x}. Then a ¢ Cone(a), and Cone(a) is an
interval, and a = sup Cone(a). Every interval includes some Cone(a). For,
choose x < y in the given interval. If x, y are tree incompatible,z = x A yand o =
dom(z) take

a=z"x(a)” (x(a + 1) + 1).
Andify « xand @ = dom(y) take

a=y~ (x(a) + 1)

Claim 1. The union of less than k nowhere dense subsets of U is nowhere dense in U.
PROOF. Suppose A < « is an infinite cardinal and {X,: a < A} is a family of
nowhere dense sets. Given an interval 7 select a sequence {a,: @ < 1) of elements
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of D such that Cone(ay) < I and Cone(a,+;) = Cone(a,) — X, for « < A and
a, = {J{ag: B < a} for limit a. Evidently {(a,: a < A) increases by inclusion
hence (Cone(a,): o < A) decreases by inclusion. Thus Cone(q;) is included into
lTand avoidsany X,,. [J

A nonempty subset 4 of D will be called auxiliary if (i) A is cofinal in the in-
terval (— o0, a) for every a € A4, and (ii) if A4 is coinitial in the interval (d, A] for some
d e D' then d € A. Note that this definition is expressible in the monadic theory of
chain U with a parameter D'

Claim 2. Let E be a function from D to D. Suppose that for everya € D:

(D) If @ < B < w, then there are o' < ' < w, such that E(a) "o’ < E(a” a)
and E(a) " § < E(a” p); and

(2) If dom(a) is limit then E(a) = | J{E(ala): @ < dom(a)}.

Then for every a,bin D:

(A) a c biff E(a) = E(b),

(B) a < biff E(a) < E(b),

(C) E(a A b) = E(a) A E(b)
and the range E(D) of E is auxiliary.

PrROOF. An easy induction on b proves an implication @ < b — E(a) c E(b).
By (1) E preserves tree incompatibility. That takes care of (A). If a, b are tree
compatible then (A) implies (B) and (C). Suppose that a < & are tree incompatible
and ¢ = a A b. Then there are a < < w; With c"a S a,¢c” < b. By (])
there are o < f' <w with E()"a' € E(c"a) € E(@) and E(c)"f§ <
E(c ™ ) € E(b). Hence E(a) < E(b) and E(c) = E(a) A E(b).

It remains to prove that E(D) satisfies conditions (i) and (ii) in the definition of
auxiliary sets. The first is easy: by (1) E(a) = sup{E(a "~ a): @ < w} for every
a € D. To prove the second, suppose that £(D) is coinitial in (d, A] for some d € D'.

For every a < dom(d) there is « < f < dom(d) with d|8 e E(D). For, choose
consecutively a € D, y < dom(d) and b € D such that dja > E(a) > d[y > E(b)
> d. Then

E(@aAb)=E@ A E(b) = E@ Adly<d

and
dla < E(@) A E(b) = E(a A b);

hence E(a A b) = d|Bforsome § > a.

By (A) the E-preimages of elements d|a € E(D) are tree compatible. Form a =
(J{E-Wd|a): d|a € E(D)}. Using (2) it is easy to check that E(a) = d. [

For every X = U we define the tree closure of X as follows:

TC(X) = {ye U: either y e X or y is limit and for every & < dom(y) there is
a < f < dom(y) with y|ge X}.

Evidently TC(X) is a part of X which is the closure of X in the interval topology
of U.

Claim 3. If A < D is auxiliary then [A| = & and |TC(4)| = |4| = 2~.

PROOF. It is easy to construct E: D — A satisfying the conditions of Claim 2.
Extend Eon U by E(x) = ( J{E(x|a): x|a € 4} for xe U — D. Then
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£ =2 = |D| £ |A| < |[E(D)| = |D| = 2<
and
2= Ul < |TCA)| < |EWU)| = U] =2~ O

§2. Coding. We work in the chain U of §1. Given a set of cardinality less than
£ we would like to interpret its second-order theory in the monadic theory of U.
The main step of the desired interpretation is made in this section. Elements of
the given set will be coded by everywhere dense subsets of U.

Every ordinal ¢ is uniquely represented as w8 + n for some ordinal 8 and
natural number n. We say that ¢ is even or odd if n is so. Let Odd be the set of
odd ordinals less than g, and

D° = {ae D: dom(a) € Odd}.

THEOREM 1. Let F be a family of subsets of D such that 2 < |F| < g and  JF =
D — D' Suppose that for every C e F there is a set Ord(C) of successor ordinals
such that

C = {a € D: dom(a) € Ord(C)}, and

0Odd N Ord(C) is cofinal in k, and

0Odd N Ord(Cy) N Ord(Cy) = @ for different Cy, Cy € F.

Then there is W = U — D such that for every interval I of U and for every subset
X of D with DY (} X dense in I the following statements are equivalent :

(A) For every interval Iy < I there are C € F and a subinterval J = Iywith J
X< C

(B) For every interval I} < I, every Xg € D% () X and every X; < X, if Xy, X3
are dense in I| then there is an auxiliary A < D such that Xy, X, are dense in A and
AN wl<l.

Note that (B) abbreviates a monadic formula with parameters D, D!, D% The-
orem | states that this monadic formula expresses (A).

ProOOF OF THEOREM 1. We adapt the following terminology. Members of F are
colors. A subset X of U varies at & < x if {x(a): x € X} contains at least two or-
dinals. X is of color C if C contains every successor ordinal ¢ such that X varies
at . X is mono if there is a unique color C such that X is of color C. X is motley
if it has a pair of tree incompatible elements and for every pair x, y of tree incom-
patible elements of X there are colors Cy, C; such that {x, y} varies at some a €
Ord(Cy) —Ord(Cy) and at some § e Ord(C;)—Ord(Cy). Note that a pair {x, y}
is motley if there are colors Cy, C; such that {x, y} varies at some ¢ € Odd
Ord(Cy) and at some 8 € Ord(C;) — Ord(Cy).

LeMMA 2. Suppose that A is an auxiliary set and C, C; are colors such that Cy )
DY and C; — Cyare dense in A. Then there is an auxiliary motley subset of A.

Proor. It suffices to construct a map E: D — A satisfying the conditions of
Claim 2 in §1 and such that for every ae D and every a < f§ < w; the pair
{E(@a” a), E(a” p)} is motley. We construct E by induction. Choose E(A)
arbitrary. If a € D is limit set E(a) = | J{E(ala): @ < dom(a)}.

Now, given E(a) € A we want to select E(¢ ") for a < ;. The set M =
{a < wy: Cone(E(a)” @) meets A} is cofinal in w;. For every o € M choose a, in
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A4 ) Cone(E(a) ~a) N Co N DY, the set M, = {§ < w;: Cone(a, " §) meets A}
is cofinal in w,. For every a € M and e M, choose b,; in 4 [} Cone(a, A §) N
(C1 —~ Cy), let My = {r < w;: Cone(b,s"y) meets 4}. Choose § < £ exceeding
every dom(b,g). For every a € M, Be M,, y € M5 choose c,g, of length at least
din 4 () Cone(b,g"y).

Let f be an order-preserving function from w; onto M. Suppose that ¢ < w;
and for every o' < «, E(a” a') is chosen to be some ¢y, 5 ,. Choose §in

Mg, — {E(a” a')(dom(as,)): o' < a}.
Then choose ¢y in
Mg — {E(@” a'Ydom(bye 0): @' < a}.

Set E(a” @) = cyyp, For every a’ < o the pair {E(a”«a'), E(a” a)} varies
at dom(as,) and dom(by, ;) which belong to Odd () Ord(Cy) and Ord(Cy) —
Ord(Cy), respectively. Lemma 2 is proved.

Next we construct W = U — D. It will be a motley set meeting the tree closure
of every motley auxiliary set.

Since |D| = 2<* = g and every auxiliary set is a subset of D the motley auxiliary
sets can be arranged into a sequence {A4,: @ < 2¢)>. By induction on ¢ < 2* we
choose x, in TC(A4,) — D. Suppose that elements x;, 8 < «, are chosen. If 8 < a
and C e F then there is at most one element x € TC(4,) — D such that the pair
{x, x5} is mono and of color C. (For, suppose that x, y are different elements of
TC(A,) — D and the pairs {x, xg}, {y, x5} are mono and of color C. Then {x, y}
is mono and of color C. Let z = x A y. There are a,bin A, with z < a < x,
z < b < y. Then {a, b} is mono which is impossible.) By Claim 3 in §1 we can
find x, € TC(4,) — D such that {x,, x4} is motley for every 8 < a. Set W = {x,:
a < 26},

It is easy to see that |4 (| W| = 2 for every motley auxiliary 4. If A is mono then
[A | W| < 1. For, suppose A is of color C, and x, y are different elements of
A () W. Then {x, y} is motley, hence it varies at some successor a ¢ Ord(C). 4
meets Cone(x|(«¢ + 1)) and Cone(y{(e + 1)), hence 4 varies at a which is im-
possible.

Given I and X as in Theorem 1 we prove that (A) is equivalent to (B). First
suppose (A). Given I, X,, X; as in (B) it suffices to build amap £: D - D (N I}
such that E satisfies the conditions of Claim 2 in §1 and X,, X; are dense in the
range E(D) and E(D) is mono.

Arrange all elements of D into a sequence {d,: @ < &) such that dom(d,) < «
and for every successor a € D there are an even ¢ and an odd g witha = d, = d,.
By (A) we can suppose that I; [} X € C for some color C. Choose E(A)in D N I,
such that Cone(E(A) < I;. Suppose that & < x and E(a) is chosen already for
every a € D of length less than a. Suppose also that for every 8 < o all sequences
E(a) with dom(ag) = B have the same length.

If @ is limit and a is an element of D of length « set E(a) = (J{E(alp): B < a}-
Suppose « is successor. There is a sequence a€ D of length ¢ — 1 such that
d, 1< a If « — 1is even choose x € Cone(Ea) (| X, if a — 1 is odd choose x e
Cone (Ea) 1 X;. If be D, 8 < w; and dom(b) = a — 1 choose y = E(b™ ) such that
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dom(y) = dom(x), Eb)y~Bcy, and
Wr) = x(y) for dom(Eb) < y < dom(x).

Let A be the range of £. By Claim 2 in §1 A is auxiliary. It is easy to see that
X, X, are dense in A. It is easy to see that A is mono (and of color C).

Now suppose that (A) fails, i.e. there is an interval [y < 7 such that J ] X —
C # 0for any color C and any subinterval J < J,. By Claim 1 in §1 there is a color
C, such that Cy 1 D® N X is dense in some interval I; < 1, and there is a color
C; such that C; 1 X — Cy is dense in some interval I}  I;. We check that (B)
fails for this /; and

X0=C0ﬂDoﬂX, X1=C1ﬂX—'C0.

If A4 is an auxiliary set and X, X, are dense in A4 then, by Lemma 2, 4 has an
auxiliary motley subset B. Then

AN Wl =IBn W =2

Theorem 1 is proved.
Note that clause (B) of Theorem 1 abbreviates a certain formula

¢(X, D, D', D°, W, I)

in the monadic language of order. Let Storey(X, D, D!, DO, W) be a formula in
the monadic language or order saying the following:
X € D, and D° () X is everywhere dense, and

#X, D, D', DO, W, the whole chain),

and there are are no 7, Y such that /is an interval, Y € D — X, Y is dense in J
and (X U Y, D, D', DO, W, I).

THEOREM 3. Let F be as in Theorem 1. There is W < U — D such that
Storey(X, D, D!, D° W) holds in U iff X < D and for every interval I there are
Ce Fandaninterval J < IwithC N J= XN J.

Proor. Construct W as above. Now use Theorem 1. []

§3. Distributivity. In this section we work in a T topological space U. Recall
that an open set is called regular if it is the interior of some closed set. It is well
known and easy to check that the regular open sets form a complete Boolean al-
gebra with 0 being the empty set, | = U, G < HmeaningG < H,G-H = G | H,
G + H being the interior of the closure of G |J H, and —G being the interior
of U — G. This Boolean algebra will be denoted RO(U). If S = RO(U) the infimum
and the supremum of S will be denoted JIS and IS respectively. (If S is empty then
IS =1and 2§ = 0)

Let £ be a cardinal. A complete Boolean algebra B is called g-distributive if it
satisfies a certain distributive law equivalent (see Lemma 17.7 in Jech [4]) to the
following property: every collection of  partitions of B has a common refinement.
We shall say that U is g-distributive if RO(U) is so.

Claim 1. Suppose that U is k-distributive. Then the union of every collection of
& nowhere dense sets is nowhere dense.
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PrOOF. We use the T3 property to prove that every nonempty open set ¥ includes
a nonempty regular open subset. There are x € V and disjoint open neighborhoods
M, N of xand U — Vrespectively. Evidently x e (the interior of M) < V.

For any nowhere dense set X there is a partition {G,: &« < z) of RO(U) such
that every G, avoids X. Suppose that {(Gz: 8 < a) is already built and H, =
2{Gs: B < a}. If H, # 1 let G, be a nonempty regular open subset of (U ~ H,)

Given nowhere dense sets X,, @ < &, build partitions P,, @ < &, such that every
(JP, avoids X,. There is a partition P refining all partitions P,. Then U — | JP
is nowhere dense and includes all X,. []

It is easy to see that U is g-distributive for every f if isolated points are dense in
U. If U has no isolated points then it is not {U|[-distributive.

We will say that a cardinal 4 is the distributivity of U if U is g-distributive for
£ < 4dbut Uis not A-distributive. Recall that U is called orderable if its topology
is the interval topology of some linear order on the points of U.

Claim 2. Suppose that U is orderable and without isolated points. Let 4 be the
distributivity of U and {A,: a < 4) be a sequence of everywhere dense subsets
of U. There is a sequence {X,: a < A) of nowhere dense subsets of U such that
X, € A, and U{X,,: a < 4} is dense in some nonempty open subset of U.

Proor. Fix an order on U whose interval topology is the topology of U. There
is a sequence (P,: o < 4) of partitions of RO(U) such that (i) if « < § < 4 then
P refines P,, and (ii) no partition of RO(U) refines all partitions P,. Without loss
of generality every P, is composed from intervals. There is an interval G, such that
every interval G = G, meets at least two different members of some P,.

For all ¢ < 4 and /€ P, choose a point x(a, /)€ A, [ I. Let X, = {x(a, I):
Ie P,yand X = {J{X,: a < 4}. Each X, is nowhere dense and included into 4,.
We check that X is dense in Gy.

Let G € G, be an interval. There are & < 4 such that G meets some different
members [y, I, of P,. Without loss of generality x(a, /y) < x(a, /7). Thereisa < §
< dsuchthat G (] I; meets different members /,, /3 of Pg. Without loss of general-
ity x(8, I) < x(B, I3). Then I, « Gand x(8, I)e G\ X. O

Claim 3. Let C be a chain without isolated points. Suppose that every interval of
C has a subchain of type w; or w*% . Then C is 8y-distributive.

Proor. Without loss of generality every nonempty subset of C has the supremum
and the infimum in C. By contradiction suppose that sets X, n < @, are nowhere
dense but their union X is dense in some interval /. Without loss of generality
I = Candevery X, is closed.

If ae C — X and the interval (— oo, a) does not have the last point then its co-
finality is equal to w. For, let I, be the maximal interval containing a and avoiding
sets X,,, m < n. Then a = sup{inf /,: n < w}. Similarly, if ae C — X and the in-
terval (a, c0) does not have the first point then its coinitiality is equal to .

Note that C — X is everywhere dense. By Claim 2 (with 4, = C — X forn < w)
there are nowhere dense sets ¥, € C — X, n < @, whose union Y is dense in
some interval J. Without loss of generality / = C and every Y, is closed.

Check as above that for every a € C — Y, if the interval (— o0, a) does not have
the last element then its cofinality is equal to @, and if the interval (a, c0) does
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not have the first element then its coinitiality is equal to . Without loss of gen-
erality C has a subchain C’ isomorphic to wi; let & = sup C’. The cofinality of the
interval (— 00, a) is equal to w; which is impossible. []

§4. A short pairing tower. We work in a 8y-distributive chain U without isolated
points. We define and study towers on U.

Letters G, H with or without indices will denote nonempty regular open subsets
of U. Note that every G forms a subchain of U whose interval topology coincides
with the topology inherited from U. If ¢(V5, ..., V,) is a formula in the monadic
language of U and the only free variables of ¢ are the shown set variables and
Xy, ..., X, are subsets of U then the sentence @(X7, ..., X,) will be called a U-
sentence. Define

dom(g(Xy, ..., X)) =3{G: (X1 N G,..., X, N G)
holds in the subchain G}.

Let t = (D, D!, D% D1, D% W) be a sequence of subsets of U. A subset X of D
will be called a storey (of t) if dom(Storey(X, t)) = 1. Here Storey is the monadic
formula described in §2. If X < D then D/ (| X will be denoted X?fori = 0, 1, 2.
We will say that ¢ is a tower if it satisfies the following conditions:

(T1) DO, D1, D? are disjoint and everywhere dense subsets of D.

(T2) There is at least one storey and for every storey A, B:

dom(A4? = B% = dom(A4! = B!) = dom(4 = B),
dom(4° ] B° = 0) = —dom(4°® = BY),
dom(A4! € B!) + dom(B! = 41) = 1.

(T3) There are no G and X = DO such that G = dom(A4° = X) for some storey
A, and for every storey 4 with G = dom(A4° € X) there is a storey B such that

G € dom(BY € X — A% & Bl c AY).

Claim . Suppose that t = (D, D', D% D!, D2, W) is a tower in U.

W) If X < D and for every G there are a storey A of tand H = G suchthat A | H
= X (| Hthen X is a storey of 1.

Gy Let t{IG=D NG D NG, DG, DG, D2 G, W G) The t|G
is a tower in the subchain G. Moreover if A is a storey of t then A [\ G is a storey of
t|G.

PROOF. (i) A straightforward analysis of the formula Storey.

(i) is obvious. [

In the rest of this section ¢ is a tower and letters 4, B, C with or without indices
denote storeys of 7. We say that 4 < Bon G if ¢ = dom(4! = B!). We say that
A< BonGif A < Bon G and B! — Alis dense in G. By induction on ordinal
a we define relations 4 = @ modulo ¢ on G. Suppose that relations 4 = § modulo
ton G are defined for § < a. We say that 4 = o modulo 7 on G if

(i) there are no 8 < aand H = G such that 4 = 8 modulo ¢ on H, and

(i) 4 < B on G for every B such that there are no § < a and H < G with
B = g modulo ¢ on H.

Claim2. A = Omodulo t on G iff A < Bon G for every B. If A = a modulo t on
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Gthen A = amodulotonevery H < G.If A = a modulo t on G and B = a modulo
tonGthen G < dom(A = B). If A = a and B = § modulo t on G and a < f3 then
A < BonG.

Proofis clear.

The minimal ordinal ¢ such that there is no 4 with A = ¢ modulo ¢ will be called
the height of t. Let ¢ be the height of 7.

The set 3{G: there is no 4 such that 4 = 7 modulo ¢} will be called the arena
of ¢.

Claim 3. The arena of t is not empty.

ProOF. Suppose the contrary. Then for every G there are 4 and H = G such
that 4 = ¢ modulo ¢ on H. Construct a maximal family {(4;, H;): i € I} such that
{H,: ieI} is disjoint and every 4, = z modulo ¢ on H,. Then | J{4, () H;:iel}
is a storey and it is equal to ¢ modulo ¢ on U, which is impossible. [

In the rest of this section we suppose that the arena of ¢ is equal to U.

THEOREM 4. For all A, G there are ¢ < 7, H = G such that A = ¢ modulo t on H.

Proor. By contradiction suppose that for some G the collection K = {4: there
are no ¢ < 7, H € G with 4 = ¢ modulo ¢ on H} is not empty. If 4 e K and
A < B on G for every Be K then 4 = 7 modulo ¢ on G, which is impossible.
Hence forall A € K, G; < G thereare Be K, H = G, with B < 4 on H. Moreover
for every A € K there is Be K with B < A4 on G. For, construct a maximal family
{(B;, H)):iel}suchthat B;e K, H; < G, B; < Aon H;and {H;: i € I} is disjoint.
Then (| J{B; N H;:iel}) U (4 — G)is some storey Band B < A on G.

Therefore there is a sequence (A4,:n < @) of members of Ksuchthat 4,,; < 4,
on G. Let

X ={4): n < 0}

We show that G, X violate (T3) in the definition of towers. Evidently G =
dom(4) = X). Suppose that G = dom(4? = X) for some storey A. Since U is Ry-
distributive, for every H < G there is n such that dom(4 = 4,) meets H. For, other-
wise A% | A% ) His nowhere dense, hence 4% (| X [} H is nowhere dense, which
contradicts G € dom(4° = X). Thus (| J{4,+; N dom(4 = 4,) N1 G:n < w}) U
(4y — G)issomestorey Band B < AonG. [J

A tower t will be called short if it satisfies the following two conditions.

(ST1) For every A there is £ < D%such thatdom(B' < E) =1ifB< Aon U
and dom(B® < E) =0if 4 < Bon U.

(ST2)If X < D%and every A (| Xis nowhere dense then X is nowhere dense.

Claim 5. Suppose that t is short and A4 is the distributivity of U. Then ¢ < 4.

Proor. By contradiction suppose 4 < ¢. For @ < zchoose 4, suchthat 4, = «
modulo ¢ on U. Without loss of generality {4,: « < 4} is disjoint because A,
can be replaced by 4, — ( J{44: f < a} fora < 4.

There is E < DO such that dom(A4% € E) = 1 fora < danddom(42 < E) =0
fora = 4.1f 4 > 7 use (ST1) with 4 = A4 to find an appropriate set E. If 4 = ¢
set E = DO,

By Claim 2 in §3 there is a sequence {X,: a < 4) of nowhere dense sets such
that X, < 4, (] E for a« < 4 and the union X = [ J{X,: a < 4} is somewhere
dense. If ¢ < dthen 4, N1 X = X,. fa = Athen 4, | X = 4, N E. In either
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case A, [] X is nowhere dense. By Theorem 4 A () X is nowhere dense for every
A. By (ST2) X is nowhere dense which gives a contradiction. []

A storey A will be called zero if A < B on U for any B. We will say that B =
A + 1if A < Bon U and there are no C, G with 4 < Cand C < Bon G. We will
say that A is limit if for every B < A on U there is C with B < C < 4 on U. We
will say that C = max(4, B)if 4 < Con Uand B < Con Uand dom(4 = C) +
dom(B = C) = 1. Below, 4 4+ 1 denotes any Bwith B = A4 + [, and 4 + 2de-
notes (4 + 1) + 1, and max(4, B) denotes any C with C = max(4, B).

Claim6.IfB=A + landC = A + | thendom(B = C) = 1. If A = a modulo
tand B= A + | then B = o + | modulo t. If A = a modulo t then: A is limit iff
o = 0 or o is limit. ¢ is limit iff for every A there is A + 1. For every A, B there is
max(A, B). If Cy = max(4, B) and C; = max(4, B) then dom(Cy = Cy) = 1. If
A = amodulo t, B = f modulo t and C = max(4, B) then C = max(a, 8) modulo t.

Proof is easy.

Recall a well-known ordering of pairs of ordinals: (g, 8o) < (ay, By) if either
max(ag, o) < max(e,, §;) or the maximums are equal and (ay, 8) precedes (a;, 51)
lexicographically. If (a, f) is the yth pair in that order we write nu(a, f) = 7.
We are interested in towers coding a portion of this pairing function.

A tower t will be called pairing if it satisfies the following conditions.

(PT1) For every A there is a limit B with 4 < Bon U.

(PT2) For every limit 4, B there is a limit C such that

dom(42 [y B+ 12 =(C+2)) =1,
and for every limit C there are limit 4, B such that
dom(A4% |J (B + 12 = (C + 2)%) = 1.
(PT3) Suppose that A4;, B,, C, are limit and
dom(A42 U (B; + )2 =(C; + )3 =1 fori=0,1.

If max(4;, B;) < max(4;_;, B;_;) on G, or G < dom(max(A4y, By) = max(4;, By))
and 4; < A;_;on G or G < dom(4y = A;) and B; < By_; on G, then C; < Cy_;
onGfori=0,1.

Claim 1. Suppose that t is a pairing tower.

(i) 7 is limit. Moreover v = nu(0, 7).

(i) If A = wa, B = wf, C = wy modulo t and

dom(42 |J (B + 1)2 = (C +2)?) = 1

then v = nu(a, f).
Proof is clear.

§5. Interpretation. In this section second-order logic is interpreted in the monadic
theory of order. First we reduce second-order logic to a certain monadic theory.

Order pairs of ordinals as follows:

(@, B) < (1, 0) if either max{a, 8} < max{y, 8} or max{a, 8} = max{y, §} and
(@, P) precedes (r, ) lexicographically.

We write y = nu(a, f) if (a, §) is the yth pair in this order. It is easy to see
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that o = nu(0, w) and moreover £ = nu(0, ) for every infinite cardinal . An
ordinal § will be called pairing if § = nu(0, §). For every pairing ordinal § > 0
let

Ps = {(a, B, 7): v = nu(a, B) < 0},

and let M; be the structure (g, P;> (6 is the universe of M; and P; is the only
relation of Mj).

Note that P; gives a 1-1 function from § x § onto 4.

Claim 1. Second-order logic is interpretable in the monadic theory of structures M.

PRrOOF. Since P; gives a pairing function on g it is easy to interpret the second-
order theory of § in the monadic theory of M;. For example, an arbitrary binary
relation R on § can be coded by {nu(a, §): (@, ) € R}. Moreover the straight-
forward interpretation of the second-order theory of § in the monadic theory of
M is uniform in g, i.e. to each second-order sentence ¢ we assign effectively (by
induction on ¢) a sentence ¢’ in the monadic theory of a ternary predicate in such
a way that for every pairing ordinal d, ¢ satisfies ¢ iff M} satisfies ¢'.

Given a second-order sentence ¢y write a second-order sentence ¢ saying that
every nonempty subset of elements satisfies (). Translate ¢ into a sentence ¢’ in
the monadic language of a ternary predicate as above. It is easy to see that ¢ is
true in all nonempty sets iff ¢’ is true in all structures M;. [J

Given a formula ¢(vy, ..., v,, V1, ..., ¥,) in the monadic language of a ternary
predicate P, a chain U without isolated points, a tower t = (D, D!, Db, D1, D2, W)
in U, storeys Ay, ..., A, of t,and subsets X7, .. ., X, of DO, we define (by induction
on ¢) a regular open subset ¢,(A4y, ..., A, Xy, ..., X,) of U:

(P(4;, Ajy A)), = dom(A% U (4 + 12 = (4, + 2)?),

(4;€ X)), = dom(4? = X)),

(~@) = 1 — ¢y, ($ 0r @), = (, o §),

Av §(v)), = Z{pA): A is a zero or limit storey of ¢},

@V ¢(V), = 3{gX): X < D).

We are especially interested in the case when ¢ is a sentence, i.e. ¢ has no free
variables. In this case (¢, = 1) can be considered as a formula (with free variables
D, D!, DY D!, D2, W) in the monadic language of order. It is a specific formula,
its construction does not depend on the choice of U, .

THEOREM 2. Suppose that U is a chain without isolated points, and the distributivity
4 of U is uncountable. Suppose that t = (D, D', D', DY, D2, W) is a short pairing
tower in U of height © = w6, and the arena of t is equal to U. Then Mj; satisfies a
monadic sentence ¢ iff ¢, = 1in U.

PRrROOF. For o < ¢ let 4, be a storey of ¢ such that 4, = wa modulo ¢, By Claim
5in §4, v < 4. Hence we can suppose that the collection {A42: & < §} is disjoint.
(Just change A4, for 4, — { J{4%: 8 < a} if necessary.) For every subset I of § let
S = (J{4%: ael}.

LEMMA 3. Suppose that G is a nonempty regular open subset of U, and

¢(u1, vy Uy V17 ey Vn)

is a formula in the monadic language of a ternary predicate, and By, ..., B,,
Cy, ....C, are storeys of t with G =< dom(B,=C)) for 1 <i< m, and
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Xy, .. Xy Ya, ., Y, are subsets of DO such that G [} dom(B? € X;) = G )
dom(B° < Y,) for | < j < nandany storey Bof't. Then

G n ¢t(Bl, e Bm’ X], ---’Xn) =G n ¢t(cl’ LY Cm, Yl, R Yn)~

PROOF. An easy inductionon¢. O

By induction on a formula ¢ in the monadic language of a ternary predicate P
we prove the following:

If glar, ..., &p 11, - - ., I,) holds (respectively fails) in M, then

¢t(Aa1’ Ty Azxm’ S(Il)9 ] S(In))

is equal to 1 (respectively to 0) in U.

In the case ¢ = P(ay, az, as) use the fact that ¢ is a pairing tower. Cases ¢ =
(@el), ¢ = ~¢1, ¢ = (P Or @) are easy.

Suppose ¢ = Av(v). If ¢ holds in M, then some ¢(a) holds in Mj;,
hence ¢(a) =1 and ¢, = 1. If ¢, # O then there is a zero or limit storey 4 with
¢:(A)# 0. By Theorem 4 in §4 some ¢,(A4,)#0. Hence ¢{«) holds in M; and ¢
holds in M;.

Suppose ¢ = 3V ¢(V). If ¢ holds in M; then there is I < § such that () holds
in M;, hence ¢(S(I)) = 1 and ¢, = 1. Suppose ¢, # 0. Then thereis X = D9 with
¢(X) # 0. Since § < 4 there is a partition of RO(U) refining all partitions

dom(4? = X) + (1 — dom(4? c X)) = 1.

Hence there is a nonempty regular open set G such that G < ¢,(X) and for
every ¢ < 4, either G is included into dom(4% = X) or G avoids it. Let

I={a: G c dom(4 = X)}.

By Lemma 3, G = G ] ¢(X) = G ) ¢LS()), hence ¢,(S()) # 0, and ¢(J)
holds in Mj;, and ¢ holds in M;. Theorem 2 is proved.

Claim 4. Suppose that ¢(vy, ..., Vp V1, ..., V,) is a formula in the monadic
language of a ternary predicate, and U is a chain without isolated points, and t =
(D, D!, D% D\, D2, W) is a tower in U, and A, ..., A,, are storeys of t, and X1,
..., X, are subsets of D°. Then ¢, = 1 (respectively ¢, = 0) in U iff every interval
I of U has a subinterval J such that ¢, ; = 1 (respectively ¢,; = 0) in J. (About
t|J see Claim 1 in §4.)

ProoOF. Easy induction on ¢.

Given a sentence ¢ in the monadic language of a ternary predicate write down a
sentence ¢* in the monadic language of order saying the following:

If there are no isolated points and every interval embeds either w; or w*% then for
every short pairing tower ¢, ¢, = 1.

Claim 5. ¢ holds in all structures M iff ¢* holds in every chain.

Proor. First suppose that ¢ holds in all structures M;, and U is a chain without
isolated points, and every interval of U embeds either w; or w% and ¢ is a short
pairing tower in U.

We build a partition (G,: @ < z) or RO(U) such that the arena of every ¢|G,
is equal to G,. Let Gy be the arena of ¢ itself. Suppose that (G4: § < a) is con-
structed; if H = Z{Gs: B < a # 1} let G, be the arena of ¢|(— H).
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By Claim 3 in §3 U is Ny-distributive. By Theorem 2 ¢, = 1 for all a < 7.
By Ciaim 4 ¢, = 1.

Now suppose that ¢ fails in some M;. Using our set-theoretic assumption find a
cardinal g such that £ > 8y, £ > dand 2~ =¢.

Let U, D, D!, D% be as in §§1 and 2. It is easy to construct subsets D!, D2 of D
and a family F = {4,: a < w0} of subsets of D such that:

(i) For i = 1, 2 there is a cofinal subset Ord(D¥) of x with Di= {a € D:dom(a) €
Ord(D?)}.

(ii) D1, D2 partition D — (D' |J DY).

(iii) F satisfies the conditions of Theorem 1 in §2.

(iv) Ifa < 8 < wdthen 4, ) D! = Agand 4, () D! — A, is everywhere dense.

(v) Forall g, 8, y < w0, y = nu(a, B) iff (A,e U Aypr1) N D? = Az ) D2

Let W be as in Theorem 1 of §2. Itiseasy to see that ¢+ = (D, D!, D% D1, D?, W)
is a short pairing tower of height wd. Evidently the arena of ¢ is equal to U. By
Claim 1 in §1 the distributivity of U exceeds wd. By Theorem 2 ¢, = 0in U. Thus
¢* fails in U.

Claims 1 and 5 give:

COROLLARY 6. Second-order logic is interpretable in the monadic theory of order.
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