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THE JOURNAL OF SYMBOLIC LOGIC 

Volume 48, Number 3, Sept. 1983 

INTERPRETING SECOND-ORDER LOGIC 
IN THE MONADIC THEORY OF ORDER1 

YURI GUREVICH AND SAHARON SHELAH 

Abstract. Under a weak set-theoretic assumption we interpret second-order logic 
in the monadic theory of order. 

§0. Introduction. The monadic (second-order) theory of a chain (i.e. a linearly 
ordered set) C can be denned as the first-order theory of the two-sorted structure: 

The universe of C, the power-set of C; the order relation < on elements of C, 
and the containment relation e between elements and subsets of C. 

In a similar way we can define the monadic theory of any other structure. 
The monadic second-order logic appears to be an appropriate logic to handle 

linear order. It gives several natural, expressive and manageable theories. See a 
discussion on this subject in Gurevich [2]. 

The decision problem for the monadic theory of (linear) order was a long-stand­
ing open problem. (Recall that Rabin [5] proved decidability of the monadic theory 
of countable chains.) Assuming the Continuum Hypothesis, Shelah [6] interpreted 
the true first-order arithmetic in the monadic theory of the real line (which is easily 
interpretable in the monadic theory of order). Confirming Shelah's conjecture and 
assuming the Godel constructibility axiom V ~ L, Gurevich [1] interpreted the 
second-order theory of continuum in the monadic theory of the real line. The 
monadic theory of the real line (and therefore the monadic theory of order) was 
proved undecidable (without using any extra set-theoretic assumptions) in Gure­
vich and Shelah [3]. 

Here we assume that for every cardinal ?. there is a regular cardinal K > k such 
that 2<k, i.e. 2{2P: [i < K], is equal to K. Under this assumption we interpret 
second-order logic in the monadic theory of order. In other words we assign effec­
tively a sentence <f>' in the monadic language of order to arbitrary second-order sen­
tence 0 in such a way that every nonempty set satisfies <j> iff every chain satisfies <fi'. 

Our proof is based on the technique developed in the mentioned papers Shelah 
[6], Gurevich [1] and Gurevich and Shelah [3]. This paper is self-contained never­
theless. 

We think that the second-order logic can be interpreted in the monadic theory 
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INTERPRETING SECOND-ORDER LOGIC 817 

of order without using any extra set-theoretic assumptions. It needs more com­
plicated constructions however. 

Speaking about intervals of a chain we mean nonempty open intervals. Intervals 
{x: x < a} and {x: x > a} are denoted (— oo, a) and (a, oo), respectively. Speaking 
about topological properties of a chain we mean the interval topology. 

§1. A suitable chain. Given a regular cardinal K > Ni with 2<IC = a we define a 
chain U whose monadic theory is especially convenient for interpreting the second-
order theory of nonempty sets of cardinality less than K. 

Elements of U are functions x: a -> <x>\ such that either a < K or a = K and 
{j3: /3 < K and x(/3) ^ 0} is cofinal in K. In other words x is a sequence of at most 
countable ordinals, the length of x is at most K, and if the length of x is equal to 
K then x does not have a tail of zeroes. In this section x, y, z range over U. 

Note that the inclusion relation on U gives a tree of height K. The ath level of 
the tree consists of sequences of length a. If a = dom(x) < K and /3 < w\ then 
x ' j8, i.e. x U {(a, /3)}, is a successor of x. We say that x is /i'm;7 or successor if 
the length, i.e. the domain of x, is so. The meet x A j o f sequences x, y is the 
maximal common initial segment of x and y, it is the greatest lower bound of x 
and y in the tree. We say that x and y are ?ree compatible if either x c j or y £ x. 

Now we describe the linear order of U. Given x # y consider z = x A y and 
a = dom(z). If z is a proper initial segment of both x and y and x(a) < y(a) then 
x < y. If z = x then j> < x. In other words the order is lexicographic on tree in­
compatible pairs and if x is a proper initial segment of y then y < x. Note that the 
empty sequence A is the last element in U and there is no first element in U. Speak­
ing about intervals of U we always mean nonempty open intervals. Speaking about 
topological properties of U we always mean the interval topology. 

Let D = {x e U: dom(x) < K}. If x e D then x = sup{x A a: a < coi} and 
cofinality of the interval (— oo, x) is coi. If x e U — D then x = sup{(x|a) " 0: 
x(a) > 0} and the cofinality of (— oo, x) is K. 

Let Dl = {x e D: x is limit}. If x e U — D then x = inf{x|a: a < K} and coini-
tiality of the interval (x, A] is K. If x e Z)' then x = inf {x|«: a < dom(x)} and 
coinitiality of (x, A] is dom(x). If x is successor then the coinitiality of (x, A] is n. 
For, suppose x = y * a and for every j3 < /c let y$ be obtained from y " (a + 1) 
by attaching a tail of j3 zeroes. Then x = i n f ^ : /3 < «:}. 

For a € D let Cone(a) = {x: a c x}. Then a £ Cone(a), and Cone(a) is an 
interval, and a = sup Cone(a). Every interval includes some Cone(a). For, 
choose x < y in the given interval. If x, y are tree incompatible, z = x A y and a = 
dom(z) take 

a = z ~ x(a) ~ (x(a + 1) + 1). 

And if y c x a n d a = dom(j>)take 

a = j ~ (x(a) + 1). 

Claim 1. rAe i/won o/" less than K nowhere dense subsets of U is nowhere dense in U. 
PROOF. Suppose X < K is an infinite cardinal and {Xa: a < X) is a family of 

nowhere dense sets. Given an interval / select a sequence <aa: a <, A> of elements 
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818 YURI GUREVICH AND SAHARON SHELAH 

of D such that Cone(a0) £ / and Cone(aa+i) E Cone(aa) — Xa for a < X and 
aa — U(G(3: fi < a) f° r ^ 'm ' t a- Evidently <aa: a < X) increases by inclusion 
hence <Cone(aa): a < A> decreases by inclusion. Thus Cone(a^) is included into 
/and avoids any Xa. D 

A nonempty subset A of D will be called auxiliary if (i) ,4 is cofinal in the in­
terval (— oo, a) for every a e A, and (ii) if 4̂ is coinitial in the interval (d, A] for some 
ds Dl then de A. Note that this definition is expressible in the monadic theory of 
chain U with a parameter D'. 

Claim 2. Let E be a function from D to D. Suppose that for every ae D: 
(1) If a < /3 < coi then there are a' < ft < a>i such that E(a) " a' £ E(a " a) 

andE(a) " 0' £ £(a ~ j3); a«c? 
(2) Tfdom(a) w /ww/'f ?/zen £(a) = \J{E(a\a): a < dom(a)}. 
Then for every a, binD: 
(A) a c 6 # £ ( a ) <= £(6), 
(B) a < 6 (if£(a) < £(6), 
(C) E(a A 6) = £(o) A £(6) 

anc? ?/ie range E(D) ofE is auxiliary. 
PROOF. An easy induction on b proves an implication a <= b -* E(a) c E(b). 

By (1) E preserves tree incompatibility. That takes care of (A). If a, b are tree 
compatible then (A) implies (B) and (C). Suppose that a < b are tree incompatible 
and c = a A b. Then there are a < j3 < <x>\ with c ' a E f l . c ' j S c i . By (1) 
there are a < /3' < cui with £(c) ~ a' £ £(c " a ) E £(a) and £(c) ~ /3' £ 
E(c ~ (3) £ £(^). Hence £(a) < £(6) and £(c) = £(a) A £(*>). 

It remains to prove that E(D) satisfies conditions (i) and (ii) in the definition of 
auxiliary sets. The first is easy: by (1) E{a) = sup{£(a"a) : a < coi} for every 
a e D. To prove the second, suppose that E{D) is coinitial in (d, A] for some d e D'. 

For every a < dom(c/) there is a < j3 < dom(<i) with d|/3 e £(£>). For, choose 
consecutively a e A y < dom(rf) and 6 6 D such that ^ |a > £(a) > ^Ij- > E(b) 
> d. Then 

£(a A b) = £(a) A £(6) = £(c) A % £ r f 

and 

d\a £ £(a) A £(&) = £(a A i ) ; 

hence £(a A 6) = </|/3 for some /3 > a. 
By (A) the £-preimages of elements d\a e £(£>) are tree compatible. Form a = 

\){E~\d\a): d\a e £(£>)}. Using (2) it is easy to check that £(a) = d. • 
For every I c [/we define the free closure of Xas follows: 
JCpO = {j e U: either >> e A' or y is limit and for every a < dom(j) there is 

a < j3 < dom(j>) with j>|/3 e X). 
Evidently TC(X) is a part of X which is the closure of X in the interval topology 

oft / . 
C/a/m 3. If A £ Z) is auxiliary then \A\ = * and \TC(A)\ = \A\ = 2'. 
PROOF. It is easy to construct £ : D -* A satisfying the conditions of Claim 2. 

Extend £ on Uby £(x) = \J{E(x\a): x\a eA}forxeU - D. Then 
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INTERPRETING SECOND-ORDER LOGIC 819 

K = 2<* = \D\ < \A\ < \E(D)\ = \D\ = 2<* 

and 

2* = \U\ < \TC(A)\ < \E(U)\ = \U\ = 2'. Q 

§2. Coding. We work in the chain U of § 1. Given a set of cardinality less than 
K we would like to interpret its second-order theory in the monadic theory of U. 
The main step of the desired interpretation is made in this section. Elements of 
the given set will be coded by everywhere dense subsets of U. 

Every ordinal a is uniquely represented as ^ + « for some ordinal /3 and 
natural number n. We say that a is even or odd if n is so. Let Odd be the set of 
odd ordinals less than /c, and 

D° = {a £ D: dom(a) e Odd}. 

THEOREM 1. Let F be a family of subsets of D such that 2 < \F\ < K and \JF = 
D — D'. Suppose that for every C e F there is a set Ord(C) of successor ordinals 
such that 

C = {a e D: dom(a) e Ord(C)}, and 
Odd f| Ord(C) is cofinal in K, and 
Odd n Ord(C0) fl Ord(Cj) = 0 for different C0, Cx e F. 
Then there is W c (J — D such that for every interval IofU and for every subset 

XofDwithD0 f| X dense in I the following statements are equivalent: 
(A) For every interval I0 ^ / there are C e F and a subinterval J £ I0 with J f] 

X c C. 
(B) For every interval /x ^ /, every X0 c D° f| X and every Xx £ X, if X0, Xx 

are dense in /j then there is an auxiliary A c D such that Xa, X± are dense in A and 
\A(] W\ < 1. 

Note that (B) abbreviates a monadic formula with parameters D, D', D°. The­
orem 1 states that this monadic formula expresses (A). 

PROOF OF THEOREM 1. We adapt the following terminology. Members of f a r e 
colors. A subset X of U varies at a < K if \x{a): x e X} contains at least two or­
dinals. X is of color C if C contains every successor ordinal a such that X varies 
at a. X is mono if there is a unique color C such that X is of color C. X is motley 
if it has a pair of tree incompatible elements and for every pair x, y of tree incom­
patible elements of X there are colors C0, Cx such that {x, y} varies at some a e 
Ord(C0)-Ord(C!) and at some 0 e Ord(Cj) - Ord(C0). Note that a pair {x, y} 
is motley if there are colors C0, Q such that {x, y) varies at some a s Odd f| 
Ord(C0) and at some /3 e O r d ^ ) - Ord(C„). 

LEMMA 2. Suppose that A is an auxiliary set and C0, C\ are colors such that C0 f| 
D° and Cj — C0 are dense in A. Then there is an auxiliary motley subset of A. 

PROOF. It suffices to construct a map E: D -* A satisfying the conditions of 
Claim 2 in §1 and such that for every aeD and every a < /3 < ah the pair 
{E(a" a), E(a ~ /3)} is motley. We construct E by induction. Choose E(A) 
arbitrary. If a e D is limit set E{a) = (J {E(a\a): a < dom(a)}. 

Now, given E(a) e A we want to select E(a ~ a) for a < coi- The set M = 
{a < coi'. Cone(£(a)"a) meets A} is cofinal in wi- For every cce.Mchoose aa in 
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820 YURI GUREVICH AND SAHARON SHELAH 

A (1 Cone(£(a) ~ a) f] C0 [} D°, the set Ma = {,3 < coy: Cone(aa~/3) meets A} 
is cofinal in co\. For every a e M and /3 6 Ma choose bap in A fl Cone(aa A /3) fl 
( Q — C0), let Maj3 = {7- < o>i: Cone(6a;3~7-) meets A}. Choose d < K exceeding 
every dom(6aj9). For every ae M, /3 e Ma, y e Map choose capr of length at least 
3 in A ft Cone(bafr). 

Let / be an order-preserving function from w\ onto M. Suppose that a < wi 
and for every a' < a, E(a " a') is chosen to be some cfa>t^r. Choose /3 in 

Mfa - {E(a " a')(dom(afa)): a' < a}. 

Then choose 7- in 

Mfaj - {E(a~ a')(dom(bfaJ)): a' < a}. 

Set E(a " a) = cfa^iT. For every a < a the pair {E{a " a'), E(a ~ a)} varies 
at dom(a/a) and dom(bfa^) which belong to Odd f| Ord(C0) and Ord(C0 — 
Ord(C0), respectively. Lemma 2 is proved. 

Next we construct W £ U — D. It will be a motley set meeting the tree closure 
of every motley auxiliary set. 

Since |JD| = 2<IC = K and every auxiliary set is a subset of D the motley auxiliary 
sets can be arranged into a sequence (Aa: a < 2'). By induction on a < 2' we 
choose xa in TC(Aa) — D. Suppose that elements xp, /3 < a, are chosen. If /3 < a 
and CeF then there is at most one element x e TC(Aa) — D such that the pair 
{x, Xp) is mono and of color C. (For, suppose that x, y are different elements of 
TC(Aa) — D and the pairs {x, xp}, {y, x^} are mono and of color C. Then {x, y} 
is mono and of color C. Let z = x A y. There are a,binAa with z c a c x, 
z cz b c y. Then {a, b} is mono which is impossible.) By Claim 3 in §1 we can 
find xa e TC(Aa) — D such that {xa, Xp] is motley for every /3 < a. Set Ĥ  = {x0: 
a < 2*}. 

It is easy to see that \A [} W\ > 2 for every motley auxiliary A. If y4 is mono then 
\A f] W[ < \. For, suppose A is of color C, and x, >> are different elements of 
A f] W. Then {x, y} is motley, hence it varies at some successor a $ Ord(C). A 
meets Cone(x|(a + 1)) and Cone(j|(a + 1)), hence A varies at a which is im­
possible. 

Given / and X as in Theorem 1 we prove that (A) is equivalent to (B). First 
suppose (A). Given I-y, XQ, Xx as in (B) it suffices to build a map E: D -> D f] Ix 

such that E satisfies the conditions of Claim 2 in §1 and X0, Xx are dense in the 
range E(D) and E(D) is mono. 

Arrange all elements of D into a sequence <rfa: a < K} such that dom(da) £ a 

and for every successor ae D there are an even a and an odd /3 with a = da = dp. 
By (A) we can suppose that 7X f| Z s C for some color C. Choose E(A) in £> H A 
such that Cone(£(yl) s /^ Suppose that a < K and £(a) is chosen already for 
every a e D of length less than a. Suppose also that for every /3 < a all sequences 
£•(«) with dom(a) = /3 have the same length. 

If a is limit and a is an element of D of length a set E(ci) = (J{£(a|/3): /3 < a}. 
Suppose a is successor. There is a sequence a e £> of length a — 1 such that 
</„_! £ a. If a — 1 is even choose x e Cone(£a) [) X0, if a — I is odd choose x s 
Cone (Ed) f| A^. If ft e D, /3 < cux and dom(ft) = a — 1 choose jy = E(b " /3) such that 
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INTERPRETING SECOND-ORDER LOGIC 821 

dom(j) = dom(x), E(b) " /3 c y, and 

y(f) = x(y) for dom(Eb) < y < dom(x). 

Let A be the range of E. By Claim 2 in §1 A is auxiliary. It is easy to see that 
XQ, Xi are dense in A. It is easy to see that A is mono (and of color C). 

Now suppose that (A) fails, i.e. there is an interval 70 £ 7 such that J f) X — 
C # 0 for any color C and any subinterval J £ 70. By Claim 1 in §1 there is a color 
C0 such that C0 f\ D° f] X is dense in some interval 7g E 70, and there is a color 
Cx such that Cx f] Z — C0 is dense in some interval 7X E 7Q. We check that (B) 
fails for this 7X and 

x0 = c0 n a° n x jr: = cx n * - c0. 
If /l is an auxiliary set and A"0, Xx are dense in ^ then, by Lemma 2, 4̂ has an 

auxiliary motley subset B. Then 

\A f) W\ > \B [} W\ > 2. 

Theorem 1 is proved. 
Note that clause (B) of Theorem 1 abbreviates a certain formula 

cj>{X, D, jy, £>°, W, I) 

in the monadic language of order. Let Storey(Z, D, D', D°, W) be a formula in 
the monadic language or order saying the following: 

X c D, and D° f] X is everywhere dense, and 

<fiX, D, £>', D°, W, the whole chain), 

and there are are no 7, Y such that 7 is an interval, Y s D — X, Y is dense in 7 
and $(X U Y, D, D', D°, W, I). 

THEOREM 3. Let F be as in Theorem 1. There is W £ U — D such that 
Storey(A\ D, D', D°, W) holds in U iff X £ D and for every interval I there are 
C e Fand an interval J £ 7 with C f] J = X (~| J-

PROOF. Construct Was above. Now use Theorem 1. • 

§3. Distributivity. In this section we work in a T3 topological space U. Recall 
that an open set is called regular if it is the interior of some closed set. It is well 
known and easy to check that the regular open sets form a complete Boolean al­
gebra with 0 being the empty set, 1 = U, G < 77meaning G £ 77, G-H = G f] H, 
G + 77 being the interior of the closure of G U H, and — G being the interior 
of U - G. This Boolean algebra will be denoted RO(U). If S £ RO(U) the infimum 
and the supremum of S will be denoted IIS and ZS respectively. (If S is empty then 
IIS = 1 and 2S = 0.) 

Let K be a cardinal. A complete Boolean algebra B is called it-distributive if it 
satisfies a certain distributive law equivalent (see Lemma 17.7 in Jech [4]) to the 
following property: every collection of K partitions of B has a common refinement. 
We shall say that (/is /cdistributive if 7?0(t/) is so. 

Claim 1. Suppose that U is n-distributive. Then the union of every collection of 
K nowhere dense sets is nowhere dense. 
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822 YURI GUREVICH AND SAHARON SHELAH 

PROOF. We use the T3 property to prove that every nonempty open set V includes 
a nonempty regular open subset. There are x e V and disjoint open neighborhoods 
M, Nof x and U — Vrespectively. Evidently x e (the interior of M) c V. 

For any nowhere dense set X there is a partition <Ga: a < 7r> of RO(U) such 
that every Ga avoids X. Suppose that <G^: /3 < a> is already built and Ha = 
2{Gf /3 < a}. If Ha ^ 1 let Ga be a nonempty regular open subset of (U ~ Ha) 
-Xa. 

Given nowhere dense sets Xa, a < K, build partitions Pa, a < K, such that every 
[jPa avoids Xa. There is a partition P refining all partitions Pa. Then U — \JP 
is nowhere dense and includes all Xa. • 

It is easy to see that U is /r-distributive for every K if isolated points are dense in 
U. If f/has no isolated points then it is not \U[-distributive. 

We will say that a cardinal A is the distributivity of U if U is /t-distributive for 
K < A but U is not J-distributive. Recall that U is called orderable if its topology 
is the interval topology of some linear order on the points of U. 

Claim 2. Suppose that U is orderable and without isolated points. Let A be the 
distributivity of U and (Aa: a < J> be a sequence of everywhere dense subsets 
of U. There is a sequence (Xa: a < Ay of nowhere dense subsets of U such that 
Xa E Aa and [J {Xa: a < A} is dense in some nonempty open subset of U. 

PROOF. Fix an order on U whose interval topology is the topology of U. There 
is a sequence (Pa: a < A} of partitions of RO(U) such that (i) if a < /3 < A then 
Pp refines Pa, and (ii) no partition of RO{U) refines all partitions Pa. Without loss 
of generality every Pa is composed from intervals. There is an interval C0 such that 
every interval G ^ G0 meets at least two different members of some Pa. 

For all a < A and Ie Pa choose a point x(cc, /) e Aa fl I- Let Xa = {x(a, I): 
l£Pa} and X = [J{Xa: a < A}. Each Xa is nowhere dense and included into Aa. 
We check that X is dense in Go-

Let G c GQ be an interval. There are a < A such that G meets some different 
members 70, I\ of Pa. Without loss of generality x(a, I0) < x(a, J\). There is a < {1 
< A such that G fl h meets different members /2, /3 of Pp. Without loss of general­
ity x(fi, I2) < xffi, h\ Then /2 c G and x(/3,12)eG () X- • 

Claim 3. Let C be a chain without isolated points. Suppose that every interval of 
C has a subchain of type coi or <D* . Then C is ^-distributive. 

PROOF. Without loss of generality every nonempty subset of C has the supremum 
and the infimum in C. By contradiction suppose that sets X„, n < a>, are nowhere 
dense but their union X is dense in some interval /. Without loss of generality 
I = C and every X„ is closed. 

If a e C — X and the interval (— oo, a) does not have the last point then its co-
finality is equal to co. For, let /„ be the maximal interval containing a and avoiding 
sets Xm, m < n. Then a = sup{inf In:n< a>}. Similarly, if a e C — X and the in­
terval {a, oo) does not have the first point then its coinitiality is equal to o). 

Note that C — Xis everywhere dense. By Claim 2 (with A„ = C — X forn < w) 
there are nowhere dense sets Y„ £ C — X, n < a, whose union Y is dense in 
some interval / . Without loss of generality J = C and every Yn is closed. 

Check as above that for every aeC — Y, if the interval (— oo, a) does not have 
the last element then its cofinality is equal to w, and if the interval (a, oo) does 
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INTERPRETING SECOND-ORDER LOGIC 823 

not have the first element then its coinitiality is equal to w. Without loss of gen­
erality C has a subchain C" isomorphic to cui; let a = sup C". The cofinality of the 
interval (— oo, a) is equal to w\ which is impossible. • 

§4. A short pairing tower. We work in a K0-distributive chain U without isolated 
points. We define and study towers on U. 

Letters G, H with or without indices will denote nonempty regular open subsets 
of U. Note that every G forms a subchain of U whose interval topology coincides 
with the topology inherited from U. If <^(Vx, . . . , V„) is a formula in the monadic 
language of U and the only free variables of <fi are the shown set variables and 
X\, ..., X„ are subsets of U then the sentence <f>(Xh ..., X„) will be called a U-
sentence. Define 

d o m ^ * ! , ...,Xn)) = 2{G: ^(X, fl G, . . . , X„ f\ G) 

holds in the subchain G}. 

Let t = (D, D>, D°, D\ D2, W) be a sequence of subsets of U. A subset X of D 
will be called a storey (of t) if dom(Storey(A\ t)) = 1. Here Storey is the monadic 
formula described in §2. If X £ D then Z> fl X will be denoted X' for i = 0, 1, 2. 
We will say that J is a towr if it satisfies the following conditions: 

(Tl) D°, D1, D2 are disjoint and everywhere dense subsets of D. 
(T2) There is at least one storey and for every storey A, B: 

domC4° = B°) = domC^1 = 51) = dom(^ = B\ 
dom(A° (1 B° = 0) = -domC4° = 5°), 
domiA1 £ B1) + domCB1 s A1) = 1. 

(T3) There are no G and A" £ /)0 s u c h that G £ dom(^° £ A') for some storey 
A, and for every storey A with G £ dom(^4° £ A') there is a storey 5 such that 

G £ dom(fi° c l _ # & 5 i c ^ i ) . 

Claim 1. Suppose that t = (£>, D', £>°, Z)1, £>2, Jf) w a tower in U. 
(i) IfX £ £) and for every G there are a storey Aoft and H £ G swc/z ?/iaf 4̂ f| -^ 

= A" pi H then X is a storey oft. 
(ii) Let t\G = (D [~| G, D> f| C, Z»° f| G, D1 fl G, D2 fl G, W fl G). The t\G 

is a tower in the subchain G. Moreover if A is a storey oft then A (~) G is a storey of 
t\G. 

PROOF, (i) A straightforward analysis of the formula Storey. 
(ii) is obvious. • 
In the rest of this section / is a tower and letters A, B, C with or without indices 

denote storeys of /. We say that A < B on G if G £ dom(^41 £ B1). We say that 
A < B on G if A < B on G and B1 — A1 is dense in G. By induction on ordinal 
a we define relations A = a modulo t on G. Suppose that relations A = (S modulo 
/ on G are defined for /3 < a. We say that A = a modulo / on G if 

(i) there are no /3 < a and H £ G such that 4̂ = /3 modulo t on // , and 
(ii) A <, B on G for every 5 such that there are no /3 < a and H <, G with 

B = (3 modulo f on // . 
Claim 2. A = 0 modulo t on G iff A <, B on G for every B. If A = a modulo t on 
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G then A = a modulo t on every H £ G. If A — a modulo t onG and B — a modulo 
t on G then G £ dom(^4 = B). If A = a and B = /3 modulo t on G and a < /3 then 
A < BonG. 

Proof is clear. 
The minimal ordinal a such that there is no A with A = a modulo / will be called 

the height of t. Let z be the height of t. 
The set 2{G: there is no A such that A = z modulo t} will be called the arena 

off. 
Claim 3. The arena oft is not empty. 
PROOF. Suppose the contrary. Then for every G there are A and H £ G such 

that A = z modulo t on H. Construct a maximal family {(A,-, H,): i e /} such that 
{//,: i s / } is disjoint and every A{ = z modulo t on //,-. Then (J{^4, f] / / , : /"e/} 
is a storey and it is equal to r modulo / on U, which is impossible. • 

In the rest of this section we suppose that the arena of t is equal to U. 
THEOREM 4. For all A,G there are a < z, H c. G such that A = a modulo t on H. 
PROOF. By contradiction suppose that for some G the collection K = {A: there 

are no a < z, H £ G with A = a modulo t on H} is not empty. If A e K and 
A < B on G for every BeK then A = z modulo / on G, which is impossible. 
Hence for all A e K, Gx £ G there are B e K, H £ Gi with B < A on H. Moreover 
for every A e Kthere is Be K with B < A on G. For, construct a maximal family 
{(£,, #„•): / e /} such that 5 , e /:, //, £ G, B{ < A on //, and {//,: / e /} is disjoint. 
Then (\j{B{ f) //,-: / e /}) \J (A - G) is some storey £ and B < A on G. 

Therefore there is a sequence (A„:n < cu> of members of K such that A„+1 < A„ 
on G. Let 

X = U{y*o: „ < wy 

We show that G, X violate (T3) in the definition of towers. Evidently G £ 
dom(^§ £ A'). Suppose that G £ dom(^° £ X) for some storey A. Since (/ is «0-
distributive, for every / / £ G there is n such that dom(/4 = A„) meets //. For, other­
wise A0 f) A® f] H is nowhere dense, hence A° f] X f| H is nowhere dense, which 
contradicts G £ dom04° £ X). Thus (\J{A„+1 f] dom(^ = An) f~| C7: « < eo}) U 
(/40 — G) is some storey B and B < A on G. • 

A tower ? will be called short if it satisfies the following two conditions. 
(ST1) For every A there is E £ D° such that dom(fi° £ £) = 1 if 5 < ^ on U 

and dom(5° £ E) = 0 if ^ < B on t/. 
(ST2) I fZ£ D° and every ,4 f| Zis nowhere dense then Jf is nowhere dense. 
Claim 5. Suppose that t is short and A is the distributivity of U. Then z < A. 
PROOF. By contradiction suppose A < z. For a < z choose Aa such that Aa = a 

modulo t on U. Without loss of generality {Aa: a < A} is disjoint because Aa 

can be replaced by Aa — [j{Af /3 < a} for a < A. 
There is E £ D° such that dom(^° £ E) = 1 for a < A and dom(/^ £ E) = 0 

for a > A- If A > z use (ST1) with A = ^ to find an appropriate set E. If A = r 
set £ = Z»°. 

By Claim 2 in §3 there is a sequence <A'„: or < A} of nowhere dense sets such 
that Xa £ Aa |"| £ for a < J and the union X = (J{^«: a < J} is somewhere 
dense. If a < A then Aa (] X = Xa. If a ^ A then ^ a fl X £ ,4„ (~| £• In e i t h e r 
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case Aa f] X is nowhere dense. By Theorem 4 A (") X is nowhere dense for every 
A. By (ST2) X is nowhere dense which gives a contradiction. • 

A storey A will be called zero if A < B on U for any i?. We will say that B = 
A + 1 if A < B on £/ and there are no C, G with ^ < C and C < B on G. We will 
say that A is limit if for every 5 < A on £/ there is C with 5 < C < 4̂ on £/. We 
will say that C = max(^, B)tfA < C on U and £ < C on £/ and domG4 = C) + 
dom(j5 = C) = 1. Below, A + 1 denotes any B with 2? = ,4 + 1, and ,4 + 2 de­
notes (v4 + 1) + 1, and max(y4, B) denotes any C with C = max(y4, B). 

Claim 6.IfB = A + landC = A + l then dom(B = C)= \.IfA = a modulo 
t and B = A + 1 /Aen B = a + 1 modulo t. If A = a modulo t then: A is limit iff 
a = 0 or a is limit, z is limit iff for every A there is A 4- 1. For every A, B there is 
max(/4, B). If C0 = max(^, B) andCi = max(^, B) then dom(C0 = C{) = 1. If 
A = a modulo t, B = ($ modulo t and C = max(^, E) then C = max(a, /3) modulo t. 

Proof is easy. 
Recall a well-known ordering of pairs of ordinals: (ao, ft) < (ai, ft) if either 

max(a:0, /30) < max(ai, ft) or the maximums are equal and (ao, ft) precedes (a\, ft) 
lexicographically. If (a, ft is the 7-th pair in that order we write nu(a, ft = 7-. 
We are interested in towers coding a portion of this pairing function. 

A tower t will be called pairing if it satisfies the following conditions. 
(PT1) For every A there is a limit B with A < B on U. 
(PT2) For every limit A, B there is a limit C such that 

dom(^2 u (B + l)2 = (C + 2)2) = 1, 

and for every limit C there are limit A, B such that 

domC42 U (-S + l)2 = (C + 2)2) = 1. 

(PT3) Suppose that Ah Bh C,- are limit and 

dom(,42 U (fi,- + l)2 = (C„- + l)2) = 1 for/ = 0, 1. 

If max(/4,, 5,) < max(^!_,-, 2?w) on G, or G < dom(max(y40,2?0) = max(^1; ^ ) ) 
and A; < Ai_t on G or G < dom(,40 = J4X) and .5, < 5X_,- on G, then C, < C2_,-
on G for / = 0, 1. 

Claim 1. Suppose that t is a pairing tower. 
(i) z is limit. Moreover z = nu(0, z). 
(ii) If A = aa , 5 = dj/3, C = coy- modulo t and 

dom(/42 U (^ + l)2 = (C +2)2) = 1 

fAe« 7- = ««(«, ft. 
Proof is clear. 

§5. Interpretation. In this section second-order logic is interpreted in the monadic 
theory of order. First we reduce second-order logic to a certain monadic theory. 

Order pairs of ordinals as follows: 
(a, ft < (7-, d) if either max{a, ft < max^, 5} or max{a, ft = max^, 3} and 

(a, ft precedes (7-, d) lexicographically. 
We write 7- = nu(a, ft if (a, ft is the 7-th pair in this order. It is easy to see 
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that o) = «w(0, on) and moreover K = nu(0, K) for every infinite cardinal K. An 
ordinal 5 will be called pairing if d = «w(0, 5). For every pairing ordinal 5 > 0 
let 

Ps = {(«, ;3, r ) : r = "M(«. /3) < 5}, 

and let Ms be the structure <<5, Ps} (d is the universe of Ms and P5 is the only 
relation of Md). 

Note that Ps gives a 1-1 function from d x d onto 5. 
Claim 1. Second-order logic is interpretable in the monadic theory of structures Ms. 
PROOF. Since Ps gives a pairing function on d it is easy to interpret the second-

order theory of 5 in the monadic theory of M5. For example, an arbitrary binary 
relation R on 5 can be coded by {nu(a, /3): (a, |3) e R}. Moreover the straight­
forward interpretation of the second-order theory of d in the monadic theory of 
Ms is uniform in 5, i.e. to each second-order sentence <f> we assign effectively (by 
induction on (ft) a sentence <fr' in the monadic theory of a ternary predicate in such 
a way that for every pairing ordinal d, 5 satisfies (j> iff Ms satisfies 0'. 

Given a second-order sentence <ft write a second-order sentence <f> saying that 
every nonempty subset of elements satisfies (]). Translate 0 into a sentence <ft in 
the monadic language of a ternary predicate as above. It is easy to see that $ is 
true in all nonempty sets iff <j>' is true in all structures Ms. • 

Given a formula <fr(vi, ..., vm, VY, ..., V„) in the monadic language of a ternary 
predicate P, a chain U without isolated points, a tower t = (D, D', D°, D1, D2, W) 
in U, storeys Ah ..., Am of t, and subsets Xh ..., X„ of D°, we define (by induction 
on (ft) a regular open subset j>t(Ax, ..., Am> Xx, . . ., Xn) of U: 

(P(Ait Ait Ak)\ = domC4? U (Aj + l)2 = {A„ + 2)2\ 
{A, e X,)t = dom(,4? £ X,), 

(~ A = ] ~ fa (̂  or <fit = (4>t or <pt), 
(3v <fr(v))t = 2'{^('4): ^ is a zero or limit storey of t}, 

We are especially interested in the case when <f> is a sentence, i.e. 0 has no free 
variables. In this case (0, = 1) can be considered as a formula (with free variables 
D, D', D°, D1, D2, W) in the monadic language of order. It is a specific formula, 
its construction does not depend on the choice of U, t. 

THEOREM 2. Suppose that U is a chain without isolated points, and the distributivity 
d of U is uncountable. Suppose that t = (D, £>', D°, D1, D2, IV) is a short pairing 
tower in U of height % = a)d, and the arena of t is equal to U. Then Ms satisfies a 
monadic sentence <j> iff<j>t = 1 in U. 

PROOF. For a < d let Aa be a storey of t such that Aa = oxx modulo t. By Claim 
5 in §4, r < A- Hence we can suppose that the collection {A\: a < 5} is disjoint. 
(Just change Aa for Aa — IJ(^$ : fi < a) if necessary.) For every subset /o f 5 let 
SV)=\J{A°:aeI}. 

LEMMA 3. Suppose that G is a nonempty regular open subset ofU, and 

00*1, ••- ,»„, V\, . . . , Vn) 

is a formula in the monadic language of a ternary predicate, and Bx, ..., Bm, 
Ci, . . . , Cm are storeys of t with G £ dom(5,- = C,) for 1 < / < m, and 
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Xx, ..., X„, Yx, ..., Y„ are subsets of D° such that G f] domCB0 £ Xj) = G f\ 
dom(B° £ Yj)for 1 < j < n and any storey B oft. Then 

G f] <j>t(Bi> • • •. Bm, Xx, ..., X„) = G f] <j>t(Cx, . . . , Cm, Yi, ..., Yn). 

PROOF. An easy induction on <f>. • 
By induction on a formula 0 in the monadic language of a ternary predicate P 

we prove the following: 
If <j>{ai, • •., ccm, Ix, ..., I„) holds (respectively fails) in Ms then 

S(/i), ...,S(I„)) 

is equal to 1 (respectively to 0) in U. 
In the case <f> = P(ax, at, a%) use the fact that t is a pairing tower. Cases (j> = 

( « e / ) , ( J = ~(j>x, 0 = (0x or 0 2 ) a r e e a s Y-
Suppose (j> = 3v0(v). If 0 holds in Ms then some <p(a) holds in A/ ,̂ 

hence (l>,{a) = 1 and ^ = 1. If (j>t # 0 then there is a zero or limit storey A with 
</>t(A)^ 0. By Theorem 4 in §4 some <f>t(Aa)^0. Hence <fi(a) holds in M5 and 0 
holds in Md. 

Suppose <j> = 3 K^(K). If ^ holds in A/5 then there is 7 £ <5 such that ^(/) holds 
in Ms, hence <f>t(S(I)) = 1 and ^ = 1. Suppose §t / 0. Then there is X £ D° with 
^(A') ^ 0. Since 8 < A there is a partition of RO(U) refining all partitions 

dom(^o c X) + (1 - domG4» £ *)) = 1. 

Hence there is a nonempty regular open set G such that G £ cpt(X) and for 
every a < 5, either G is included into dom(,4° £ X) or G avoids it. Let 

/ = {a: G c dom(y4° £ A-)}. 

By Lemma 3, G = G fl <f>t(X) = G (~| <!>t(S(I)), hence ^ ( W ) ) # 0, and ^(7) 
holds in A/3, and ^ holds in A/j. Theorem 2 is proved. 

Claim 4. Suppose that <j)(vx, . . . , vm, Vx, ..., V„) is a formula in the monadic 
language of a ternary predicate, and U is a chain without isolated points, and t = 
(D, D1, D°, D1, D2, W) is a tower in U, and Ax, ..., Am are storeys of t, and Xx, 
..., X„ are subsets ofD°. Then <f>t = 1 {respectively <j>, = 0) in U iff every interval 
I of U has a subinterval J such that <ptlJ = 1 (respectively <j)t[J = 0) in J. (About 
t\Jsee Claim 1 in §4.) 

PROOF. Easy induction on <f>. 
Given a sentence <f> in the monadic language of a ternary predicate write down a 

sentence <p* in the monadic language of order saying the following: 
If there are no isolated points and every interval embeds either cox or w* then for 

every short pairing tower t, <j>t = 1. 
Claim 5. <j> holds in all structures Ms ijfcji* holds in every chain. 
PROOF. First suppose that <f> holds in all structures Ms, and U is a chain without 

isolated points, and every interval of U embeds either on or w* and Ms a short 
pairing tower in U. 

We build a partition <Ga: a < n} or RO(U) such that the arena of every t\Ga 

is equal to Ga. Let G0 be the arena of / itself. Suppose that <G^: /3 < a> is con­
structed; if H = 2{Gf 0 < a / 1} let Ga be the arena of t\(-H). 
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By Claim 3 in §3 U is x0-distributive. By Theorem 2 <f>UG = 1 for all a < %. 
By Claim 4 cbt = 1. 

Now suppose that cj> fails in some Ms. Using our set-theoretic assumption find a 
cardinal K such that K > «i, K > d and 2</c = K. 

Let [/, D, D', D° be as in §§1 and 2. It is easy to construct subsets D1, D2 of D 
and a family F = {^4a: a < cod} of subsets of D such that: 

(i) For 2 = 1,2 there is a cofinal subset Ord(D') of K with D< = {a e Z>: dom(a) e 
Ord(D')}. 

(ii) D\ D2 partition £»-(£> ' U £>0)-
(iii) F satisfies the conditions of Theorem 1 in §2. 
(iv) If a < j3 < cod then Aa f) D1 <= Ap and Ap f] D1 — ^„ is everywhere dense. 
(v) For all a, /3, r < <o<5, r = »«(a, /3) iff ( ^ ^ U >4«,/H-I) fl & = ^ B r + 2 fl ^2-
Let If be as in Theorem 1 of §2. It is easy to see that / = (D, D>, D°, D\ D2, W) 

is a short pairing tower of height cod. Evidently the arena of t is equal to U. By 
Claim 1 in §1 the distributivity of U exceeds cod- By Theorem 2 <j>, = 0 in U. Thus 
cb* fails in U. 

Claims 1 and 5 give: 
COROLLARY 6. Second-order logic is interpretable in the monadic theory of order. 
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