RADICALS AND PLOTKIN'S PROBLEM CONCERNING GEOMETRICALLY EQUIVALENT GROUPS

RÜDIGER GÖBEL AND SAHARON SHELAH

(Communicated by Stephen D. Smith)

Abstract

If G and X are groups and N is a normal subgroup of X, then the G-closure of N in X is the normal subgroup $\bar{X}^{G}=\bigcap\{\operatorname{ker} \varphi \mid \varphi: X \rightarrow$ G, with $N \subseteq \operatorname{ker} \varphi\}$ of X. In particular, $\overline{1}^{G}=R_{G} X$ is the G-radical of X. Plotkin calls two groups G and H geometrically equivalent, written $G \sim H$, if for any free group F of finite rank and any normal subgroup N of F the G-closure and the H-closure of N in F are the same. Quasi-identities are formulas of the form $\left(\bigwedge_{i \leq n} w_{i}=1 \rightarrow w=1\right)$ for any words $w, w_{i}(i \leq n)$ in a free group. Generally geometrically equivalent groups satisfy the same quasiidentities. Plotkin showed that nilpotent groups G and H satisfy the same quasi-identities if and only if G and H are geometrically equivalent. Hence he conjectured that this might hold for any pair of groups. We provide a counterexample.

In a series of paper, B. I. Plotkin and his collaborators [6, 3, 4, 5] investigated radicals of groups and their relation to quasi-identities. If G is a group, then the G-radical $R_{G} X$ of a group X is defined by

$$
R_{G} X=\bigcap\{\operatorname{ker} \varphi \mid \varphi: X \rightarrow G \text { any homomorphism }\}
$$

Clearly, $R_{G} X$ is a characteristic, hence a normal subgroup of X. The radical R_{G} can also be used to define the G-closure $\bar{U}^{G}=\bar{U}$ of a normal subgroup U of X, by saying that $\bar{U} / U=R_{G}(X / U)$. This immediately leads to Plotkin's definition of geometrically equivalent groups (see [6, 3, 4, 5] and [2, p. 113]).
Definition 0.1. Let G and H be two groups. Then G and H are geometrically equivalent, written $G \sim H$, if for any free group F of finite rank and any normal subgroup U of F the G - and H-closures of U in F are the same; i.e., for any normal subgroup U we have $\bar{U}^{G}=\bar{U}^{H}$.

It is easy to see that $G \sim H$ if and only if $R_{G} K=R_{H} K$ for all finitely generated groups K. Plotkin notes that geometrically equivalent groups satisfy the same quasi-identities. The well-known notion of quasi-identities relates to quasivarieties of groups. A quasi-identity is an expression of the form

$$
w_{1}=1 \wedge \cdots \wedge w_{n}=1 \rightarrow w=1 \text { where } w_{i}, w \in F(i \leq n) \text { are words. }
$$

[^0]Moreover the following was shown in [6] (see [2, p.113]).
Theorem 0.2. (a) If $G \sim H$, and G is torsion-free, then H is torsion-free.
(b) If G, H are nilpotent, then $G \sim H$ if and only if G and H satisfy the same quasi-identities.

This led Plotkin to conjecture that two groups might be geometrically equivalent if and only if they satisfy the same quasi-identities (see the Kourovka Notebook [2, p.113, problem 14.71]). In this note we refute this conjecture. Clearly there are only countably many finitely presented groups which we enumerate as the set $\mathfrak{K}=\left\{K_{n}: n \in w\right\}$ and let $G=\prod_{n \in w} K_{n}$ be the restricted direct product. Then G satisfies only those quasi-identities satisfied by all groups and so if H is any group with $G \leq H, G$ satisfies the same quasi-identities as H.
R. Camm [1, p. 68 , p. 75 Corollary] proved there are $2^{\aleph_{0}}$ non-isomorphic, twogenerator, simple groups (see also Lyndon, Schupp [7, p. 188, Theorem 3.2]). So there exists a 2 -generated simple group L which cannot be mapped nontrivially into G. We consider the pair $G, H=L \times G$ and show the following:

Theorem 0.3. If G, H and L are as above, $R_{G} L=L$ and $R_{H} L=1$. In particular G and H are not geometrically equivalent. Since $G \leq H$ satisfy the same quasiidentities, this is the required counterexample.

Proof. Since L is a two-generated simple group, L is an epimorphic image of a free group of rank 2. So it is enough to prove that $R_{G} L=L$ and $R_{H} L=1$. The first equality follows since there is no nontrivial homomorphism of L into G. On the other hand, there is a canonical embedding $L \rightarrow H=L \times G$, so $R_{H} L=1$.

References

[1] R. Camm, Simple free products, Journ. London Math. Soc. 28 (1953) 66-76. MR 14:616f
[2] E.I. Khukhro and V.D. Mazurov, Unsolved problems in group theory; the Kourovka Notebook, Russian Academy of Science, Novosibirsk, 1999. 13th ed. 1995 MR 97d:20001
[3] B. Plotkin, Radicals in groups, operations on classes of groups, and radical classes, Transl., II Ser. Amer. Math. Soc. 119, (1983) 89-118.
[4] B. Plotkin, Radicals and verbals, Radical theory, Colloqu. Math. Soc. Janos Bolyai 38, (1985) 379-403. MR 88f:16008
[5] B. Plotkin, Universal Algebra, Algebraic Logic, and Databases, Kluwer Acad. Publ. Dordrecht, Boston, London 1994. MR 95c:68061
[6] B. Plotkin, E. Plotkin, A. Tsurkov, Geometrical equivalence of groups, Commun. Algebra 27, (1999) 4015-4025. MR 2000e:08006
[7] R. C. Lyndon and P. E. Schupp, Combinatorial Group Theory, Springer Ergebinsberichte 89, Berlin-Heidelberg-New York, 1977. MR 58:28182

Fachbereich 6, Mathematik und Informatik, Universität Essen, 45117 Essen, Germany
E-mail address: R.Goebel@uni-essen.de
Department of Mathematics, Hebrew University, Jerusalem, Israel-and-Rutgers University, New Brunswick, New Jersey

E-mail address: Shelah@math.huji.ac.il

[^0]: Received by the editors September 6, 2000 and, in revised form, September 21, 2000.
 2000 Mathematics Subject Classification. Primary 20E06, 20E10, 20E32; Secondary 20 F06.
 The authors were supported by project No. G 0545-173, 06/97 of the German-Israeli Foundation for Scientific Research \& Development. This paper is \#GbSh 741 in Shelah's list of publications.

