\boldsymbol{N}_{ω} MAY HAVE A STRONG PARTITION RELATION

BY
SAHARON SHELAH ${ }^{+}$

ABSTRACT
We prove the consistency, with ZFC + G.C.H., of a strong partition relation of \boldsymbol{N}_{ω}, assuming the consistency of the existence of infinitely many compact cardinals.

The Erdos-Rado theorem and related partition theorems (see Erdos, Hajnal and Rado [3]) have been very useful. Unfortunately, the really good partition theorems are true only for large cardinals. So a natural question is: what is the best partition theorem which a small cardinal may satisfy? This may be a way to give independence results (and usually $V=L$ will give the negation).
In Shelah [8], answering a question of Erdos and Hajnal [1], [2], we gave such a partition theorem for κ_{ω} which is consistent with ZFC + G.C.H. We ask there whether a much stronger partition theorem is consistent too. We shall give here a positive answer, but we use a stronger hypothesis (the consistency of ZFC of the existence of \aleph_{0} compact rather than measurable cardinals).

On similar assertions proved in ZFC, see Erdos, Hajnal, Mate and Rado [4] and Shelah [7].

Notation. Natural numbers are denoted by k, l, m, r, ordinals by $i, j, \alpha, \beta, \gamma$, ξ, ζ, η, ν, cardinals by $\lambda, \kappa, \mu, \chi$. We define $\boldsymbol{J}_{\alpha}(\lambda)$ by induction on $\alpha: \boldsymbol{J}_{0}(\lambda)=\lambda$, and $د_{a}(\lambda)=\Sigma_{\beta<\alpha} 2^{\boldsymbol{\beta}_{\beta}^{(\lambda)}}$ for $\alpha>0$. Let $\lambda^{<\mu}=\Sigma_{\kappa<\mu} \lambda^{\kappa}$.
If $<$ orders $A, B \subseteq A, C \subseteq A, a \in A$ then $B<a$ means $(\forall x \in B) x<a$, $B<C$ means $(\forall x \in B)(\forall y \in C)(x<y)$, etc.

Let $[A]^{\kappa}=\{B: B \subseteq A,|B|=\kappa\},[A]^{<\kappa}=\{B: B \subseteq A,|B|<\kappa\}$.
We define $\kappa^{+\alpha}$ for an infinite cardinal κ and an ordinal α : if $\kappa=\mathcal{N}_{\beta}$ then $k^{+\alpha}=\boldsymbol{N}_{\beta+\alpha}$.
${ }^{\text {t }}$ The author would like to thank the United States-Israel Binational Science Foundation for supporting this research by Grant No. 1110.
Received February 10, 1980

We define: $\lambda \rightarrow(\mu)_{x}^{n}$ means that for any n-place function F from λ to χ, there is $B \in[\lambda]^{\mu}$, such that F has a constant value on all increasing n-tuples from B.

1. Definition. $\left\langle\lambda_{\xi}: \xi<\theta\right\rangle$ has a $\langle\kappa(\xi): \xi<\theta\rangle$-canonical form for $\Gamma=$ $\left\{\bar{r}(i)_{\chi(i)}^{\ell(i)}: i<\alpha\right\}$ [where $\chi(i)$ is a non-zero cardinal, and $\bar{r}(i)=\left\langle n_{1}(i) ; \cdots ; n_{k}(i)\right\rangle$, $n_{m}(i) \geqq 0$ and $\ell(i)$ are natural numbers, and for each $\bar{r}=\left\langle n_{1} ; \cdots ; n_{k}\right\rangle$ we denote $\left.n(\tilde{r})=\sum_{i=1}^{k} n_{i}, k(\bar{r})=k, n_{m}(\bar{r})=n_{m}\right]$ if for every set $A_{\xi}(\xi<\theta),\left|A_{\xi}\right|=\lambda_{\xi}$ (and $<$ well orders $\bigcup_{\xi<\theta} A_{\xi}, A_{\xi}<A_{\eta}$ for $\left.\xi<\eta\right)$ and functions $f_{i}(i<\alpha)$, f_{i} an $n(\bar{r}(i))$-place function from $\bigcup_{\xi} A_{\xi}$ to $\chi(i)$ there are $B_{\xi} \subseteq A_{\xi},\left|B_{\xi}\right|=\kappa(\xi)$ such that for every i, f_{i} is $\bar{r}(u)^{\ell(i)}$-canonical on $\left\langle B_{\xi}: \xi<\theta\right\rangle$. This means that when $\xi_{1}<\cdots<\xi_{k(f(i))}<\theta$,

$$
a_{1}<\cdots<a_{n_{1}(F(i))} \in B_{\xi_{1}}, \quad a_{n_{1}(f(i))+1}<\cdots<a_{\left.n_{1}(f(i))+m_{2}(F i)\right)} \in B_{\xi_{2}}, \quad \text { etc. }
$$

then $f_{i}\left(a_{1}, \cdots, a_{n(\bar{F}(i))}\right)$ depends on $\xi_{1}, \cdots, \xi_{k}, a_{1}, \cdots, a_{n(F i))-(i)}$ only (and not on $\left.a_{n(f(i))-\varepsilon+1}, \cdots, a_{n(f(i))}\right)$.
2. Main Theorem. Assume ZFC+G.C.H. is consistent with the existence of infinitely many compact cardinals (we use much less).

Then ZFC + G.C.H. is consistent with :

$$
\begin{aligned}
& \left.\left\langle\boldsymbol{N}_{k_{1}(n)}: n<\omega\right\rangle \text { has }\left\langle\boldsymbol{N}_{k_{2}(n)}: n<\omega\right)\right\rangle \text {-canonical forms for } \\
& \Gamma=\left\{(n, n+1, \cdots, m)_{x_{k(x)}(n)-1}^{n+(n+1)+\cdots+m}: n \leqq m<\omega\right\} \\
& \text { where } \quad k_{1}(n)=(n+5) n / 2+n+1, \quad k_{2}(n)=(n+5) n / 2+1 .
\end{aligned}
$$

The rest of the paper is dedicated to a proof, via forcing, starting with a model V such that:
3. Hypothesis. G.C.H. holds and there are compact cardinals $\boldsymbol{\kappa}_{0}=\kappa_{0}<\kappa_{1}<$ $\kappa_{2}<\cdots<$.

On forcing see e.g. Jech [5]. The proof proceeds via various claims and definitions.
4. Defintions. Let $D_{n}(\lambda, \mu, \chi)$ be the following filter:
(a) It is a filter over $\operatorname{Inc}(\lambda, \mu)$ which is the set of increasing sequences of length μ of ordinals $<\lambda$ (if the universe V is not self-evident, we write $\operatorname{Inc}(\lambda, \mu)^{\nu}$).
(b) The filter is generated by the set of generators, where a generator is

$$
\begin{aligned}
\operatorname{Ge}(F)= & \operatorname{Ge}_{n}(F ; \lambda, \mu, \chi) \\
= & \{\bar{a} \in \operatorname{Inc}(\lambda, \mu): \text { for some } \alpha<\chi \text { for any } i(0)<\cdots<i(n-1)<\mu, \\
& \left.F\left(a_{i(0)}, \cdots, a_{i(n-1)}\right)=\alpha\right\},
\end{aligned}
$$

where F is any n-place function from λ to χ.
5. Claim. (1) If $\chi=\chi^{<\kappa}$ (which holds always for $\kappa=\mathcal{N}_{0}$) then the intersection of $<\kappa$ generators of $D_{n}(\lambda, \mu, \chi)$ is a generator: hence the filter $D_{n}(\lambda ; \mu, \chi)$ is κ-complete.
(2) If $\lambda \rightarrow(\mu)_{x}^{n}$ (the usual partition relation) then $D_{n}(\lambda, \mu, \chi)$ is a proper filter, i.e., the empty set does not belong to it.

Proof. Trivial.
6. Notation. Let E_{n} be a normal ultrafilter over κ_{n} (exists because as κ_{n} is compact, it is a measurable cardinal). Let $I_{n}=\operatorname{Inc}\left(\kappa_{n}^{+(n+1)}, \kappa_{n}^{+1}\right)$ and $J_{n}=\kappa_{n} \times I_{n}$. Note that $D_{n+1}\left(\kappa_{n}^{+(n+1)}, \kappa_{n}^{+1}, \kappa_{n}\right)$ is a κ_{n}-complete (proper) filter (as $\kappa_{n}^{<\kappa_{n}}=\kappa_{n}$, because κ_{n} is compact, hence strongly inaccessible; and as G.C.H. holds, $D_{n+1}\left(\kappa_{n}^{+(n+1)}, \kappa_{n}^{+1}, \kappa_{n}\right)$ is a proper filter). So as κ_{n} is compact there is a κ_{n}-complete ultrafilter D_{n}^{*} over I_{n} extending $D_{n+1}\left(\kappa_{n}^{+(n+1)}, \kappa_{n}^{+1}, \kappa_{n}\right)$. So

$$
F_{n}=E_{n} \times D_{n}^{*}=\left\{A \subseteq J_{n}=\kappa_{n} \times I_{n}:\left\{i<\kappa_{n}:\left\{t \in I_{n}:\langle i, t\rangle \in A\right\} \in D_{n}^{*}\right\} \text { is in } E_{n}\right\} .
$$

We call $f: J_{n} \rightarrow \kappa_{n}$ regressive if $f(\alpha, t)\left[\alpha<\kappa, t \in I_{n}\right.$; more formally $\left.f(\langle\alpha, t\rangle)\right]$ is an ordinal $<\alpha$. We call it regressive on A if $f(\alpha, t)<\alpha$ for $\langle\alpha, t\rangle \in A$; and almost regressive if it is regressive on some $A \in F_{n}$. We define, when f is constant, constant on A and almost constant, similarly.
7. Claim. Every almost regressive function $f: J_{n} \rightarrow \kappa$ is almost constant.

Proof. Let f be regressive on $B \in F_{n}$. Let $B_{\alpha}=\left\{t \in I_{n}:\langle\alpha, t\rangle \in B\right\}$, so for some $B^{\prime} \subseteq \kappa, B^{\prime} \in E_{n}$ and $B_{\alpha} \in D_{n}^{*}$ for $\alpha \in B^{\prime}$.

For each $\alpha \in B^{\prime},\left\{A_{\beta}^{\alpha}: \beta<\alpha\right\}$ where $A_{\beta}^{\alpha}=\left\{t \in I_{n}: f(\alpha, t)=\beta\right\}$ is a partition of B_{α} to $|\alpha|<\kappa$ parts. As D_{n}^{*} is κ-complete, $B_{\alpha} \in D_{n}^{*}$, for some $\beta=\boldsymbol{h}(\alpha)<\alpha$, $A_{h(\alpha)} \in D_{n}^{*}$. So h is a regressive function on B^{\prime}. Hence as $B^{\prime} \in E_{n}$ and E_{n} is normal, there is $\gamma<\kappa$ such that $\{\alpha: h(\alpha)=\gamma\} \in E_{n}$. Trivially

$$
\{\langle\alpha, t\rangle: f(\alpha, t)=\gamma\} \in E_{n} \times D_{n}^{*}=F_{n}
$$

and of course f is constant on this set.
8. The Forcing. Let P_{n} be the Levi collapse of κ_{n+1} to κ_{n}^{+n+3}; i.e., P_{n} collapse every $\lambda, \kappa_{n}^{+n+1}<\lambda<\kappa_{n+1}$ to κ_{n}^{+n+2}, and each condition consists of κ_{n}^{+n+1} atomic conditions of the form ${\underset{\sim}{H}}_{\lambda}^{n}(\alpha)=\beta$ (λ as above, $\alpha<\kappa_{n}^{+n+2}, \beta<\lambda$) (see e.g. [5]). The order is inclusion. Let

$$
p \mid \xi=\left\{"{\underset{\sim}{H}}_{\lambda}^{n}(\alpha)=\beta^{\prime}:{\underset{\sim}{H}}_{\lambda}^{\prime}(\alpha)=\beta \text { belong to } p, \lambda<\xi\right\}
$$

and $\quad \lambda(p)=\operatorname{Sup}\left\{\lambda\right.$: for some $\alpha, \beta,{\underset{\lambda}{n}}_{\lambda}^{n}(\alpha)=\beta$ belong to $\left.p\right\}$.
Let $P=\Pi_{n<\omega} P_{n}$. Let $G \subseteq P$ be generic, $G_{n}=G \cap P_{n}$. Let $\phi_{n} \in P_{n}$ be the empty condition (so we stipulate $n \neq m, \phi_{n} \neq \phi_{m}$). We identify $\left\langle p_{0}, \cdots, p_{n-1}\right\rangle \in$ $\Pi_{\ell<n} P_{\ell} \quad$ with $\quad\left\langle p_{0}, \cdots, p_{n-1}, \phi_{n}, \phi_{n+1}, \cdots\right\rangle \quad$ and $\quad p \in P_{n} \quad$ with $\left\langle\phi_{0}, \cdots, \phi_{n-1}, p, \phi_{n+1}, \phi_{n+2}, \cdots\right\rangle$.
As is well known the first ω cardinals in $V[G]$ are $\kappa_{0}=\kappa_{0}, \kappa_{0}^{+1}, \kappa_{0}^{+2}, \kappa_{1}, \kappa_{1}^{+1}$, $\kappa_{1}^{+2}, \kappa_{1}^{+3}, \kappa_{2}, \kappa_{2}^{+1}, \kappa_{2}^{+2}, \kappa_{2}^{+3}, \kappa_{2}^{+4}, \kappa_{3}, \cdots, \kappa_{n}, \kappa_{n}^{+1}, \cdots, \kappa_{n}^{+n+1}, \kappa_{n}^{+n+2}, \kappa_{n+1}, \cdots$. Also $V[G]$ satisfies G.C.H.
Let f be (in $V[G]$) a function from increasing finite sequences from \boldsymbol{N}_{ω} to \boldsymbol{N}_{ω}, such that for $\alpha_{0}<\cdots<\alpha_{k}<\kappa_{n}^{+n+1}, f\left(\alpha_{0}, \cdots, \alpha_{k}\right)<\kappa_{n}$ and w.l.o.g. from the value of f for $\left\langle\alpha_{0}, \cdots, \alpha_{k}\right\rangle$ we can compute its value on any increasing subsequence starting with α_{0}.
We have to prove that there are sets $S_{n}(n>0), S_{n} \subseteq \kappa_{n}^{+n+1},\left|S_{n}\right|=\kappa_{n}^{+1}$, $S_{n} \cap \kappa_{n}=\varnothing$, and for every increasing sequence $\alpha_{0}<\cdots<\alpha_{k-1}$ of members of $\bigcup_{n} S_{n},\left|S_{n} \cap\left\{\alpha_{0}, \cdots\right\}\right|$ is $n+1$ for $n_{0} \leqq n \leqq n_{1}$, and zero otherwise, that $f\left(\alpha_{0}, \cdots, \alpha_{k-1}\right)$ depend only on k and the truth values of " $\alpha_{\ell} \in S_{n}$ ". Moreover, this is sufficient for proving the theorem.
So let $\underset{\sim}{f}$ be a P-name of f, and $p=\left\langle p_{n}: n<\omega\right\rangle \in P$. We shall find p^{\prime}, $p \leqq p^{\prime} \in P$, and $S_{n} p^{\prime} \mathbb{H}_{p}$ " $S_{n}(n<\omega)$ are as required". This clearly suffices.
9.. Claim. If $A \in F_{n+1}, p_{\langle\alpha, 1\rangle} \in P_{n}$ for every $\langle\alpha, t\rangle \in A$ then there is $B \subseteq A$, $B \in F_{n+1}$ and $q \in P_{n}$ such that $:$

$$
\begin{equation*}
\text { for any } \left.\langle\alpha, t\rangle \in B, \quad p_{\langle\alpha, t\rangle}\right\rangle \alpha=q, \tag{*}
\end{equation*}
$$

hence

(**)

$$
\text { for any } r, q \leqq r \in P_{n}, \quad \text { if } \lambda(r)<\alpha, \quad\langle\alpha, t\rangle \in B
$$

then $p_{\langle\alpha,\rangle\rangle} r$ are compatible.
Proof. It is easy to prove (*) by the normality of F_{n}, and (**) follows easily by the definition of P_{n}.
10. Proof of the Theorem. We continue 8.

First, as each P_{ℓ} is $\kappa_{\ell}^{((\ell+2)}$-complete, we can find $\bar{p}_{0}=\left\langle p_{0}^{0}, p_{0}^{0}, \cdots\right\rangle, \bar{p} \leqq \bar{p}_{0}$, such that for each n :
(0) $\vec{p}_{0} \mathbb{H}_{p} " f \mid \kappa_{n}^{+(n+1)}$ is determined by forcing with $\Pi_{\ell<n} P_{f} "$. So for some $\Pi_{e<n} P_{e}$-name $f_{n}, \bar{p}_{0} \|$ " $f \mid \kappa_{n}^{+(n+1)}=f_{n}$ ".

Now we define by induction on \vec{k}, a condition $\bar{p}_{k}=\left\langle p_{0}^{k}, p_{1}^{k}, \cdots\right\rangle$, sets $A_{\ell}^{k} \in F_{\ell}$ $(\ell<\omega)$ and conditions $q_{\langle\alpha, t)}^{k} \in P_{\ell}\left(\langle\alpha, t\rangle \in A_{\ell,}^{k}, \ell<\omega\right)$ such that:
(1) $p_{\ell}^{k} \leqq p_{\ell}^{k+1}$ (in P_{ℓ}), $A_{\ell}^{k+1} \subseteq A_{\ell}^{k},\langle\alpha, t\rangle \in A_{\ell+1}^{0} \rightarrow \kappa_{\ell}<\alpha$;
(2) $q_{(a, t)}^{k} \leqq q_{(\alpha, t)}^{k+1}$ for $\langle\alpha, t\rangle \in A_{e}^{k+1}$;
(3) $p_{\ell}^{k} \leqq q_{\langle\alpha,\rangle}^{k}$, moreover $p_{\ell}^{k}=q_{\langle\alpha, t\rangle}^{k} \mid \alpha$ (for $\langle\alpha, t\rangle \in A_{\ell}^{k}$);
(4) for any n, k for some $\Pi_{\ell<n} P_{f}$-name f_{n}^{k} for any $\left\langle\alpha_{n+1}, t_{n+1}\right\rangle \in A_{n+1}^{k}$, $\left\langle\alpha_{n+2}, t_{n+2}\right\rangle \in A_{n+2}^{k}, \cdots,\left\langle\alpha_{n+k}, t_{n+k}\right\rangle \in A_{n+k}^{k}$ and increasing sequences $\bar{\beta}_{n+e}$ from $t_{n+\ell}$ of length $n+\ell+1$ for $\ell=1, \cdots, k$,

$$
\begin{gathered}
\bar{p}^{k} \cup \bigcup_{\ell=1}^{k} q_{\left\langle\alpha_{\left.n++\epsilon_{n+\ell}\right\rangle} \Vdash_{p} " \text { for any increasing sequence } \bar{\gamma} \text { from } \kappa_{n}^{+(n+1)}\right.}^{f\left(\bar{\gamma}, \bar{\beta}_{n+1}, \cdots, \bar{\beta}_{n+k}\right)={\underset{\sim}{f}}_{n}^{k}(\bar{\gamma}) "}
\end{gathered}
$$

(note that $\bar{p}^{k} \cup \bigcup_{\ell=1}^{k} q_{\left(\alpha_{n+1,1 n+1)}\right.}=\left\langle p_{0, \cdots,}^{k}, \cdots, p_{n-1}^{k}, p_{n,}^{k}, p_{n+1}^{k} \cup q_{\left(\alpha_{n+1}, l_{n+1}\right)}, \cdots, p_{n+k}^{k} \cup\right.$ $\left.\left.q_{\left\langle\alpha_{n+k}+m_{n}+k\right\rangle}, p_{n+k+1}^{k}, \cdots\right\rangle\right)$.

For $k=0$. Let $A_{n}^{k}=\left\{\langle\alpha, t\rangle \in J_{n}: \bigcup_{\ell<n} \kappa_{\epsilon}<\alpha<\kappa_{n}\right\}$,

$$
q_{\langle\alpha, t\rangle}^{k}=p_{n}^{0} \quad \text { for }\langle\alpha, t\rangle \in A_{n .}^{k}
$$

For $k+1$. Let $n<\omega$, remember ${\underset{\sim}{f}}_{n+1}^{k}$ is a $\Pi_{\ell<n} P_{\ell}$-name of a function with domain the increasing finite sequences from $\kappa_{n+1}^{+(n+2)}$ and range $\subseteq \kappa_{n}^{+(n+2)}$ (except on the empty sequence, which is immaterial). Remember that G.C.H. holds, each κ_{n} is regular and $\Pi_{e<(n+1)} P_{\ell}$ satisfies the κ_{n+1}-chain condition.
So for each sequence $\bar{\alpha}=\left\langle\alpha_{0}, \cdots, \alpha_{n}\right\rangle, \alpha_{0}<\cdots<\alpha_{n+1}<\kappa_{n+1}^{+(n+2)}$ there is a set
 and $r_{i}^{\bar{\alpha}}+{ }^{\underline{1}}$ " $f_{n+1}^{k}(\bar{\alpha})=\gamma_{i}^{\bar{a}}$ ". We define an $(n+2)$-place function G_{n}^{k} on $\kappa_{n+1}^{+(n+2)}$:

$$
G_{n}^{k}(\bar{\alpha})=\left\{\left\langle r_{i}^{\bar{i}}, \gamma_{i}^{\overline{\tilde{}}}\right\rangle: i<i(\bar{\alpha})\right\} .
$$

The range of G_{n}^{k} has cardinality $\leqq \kappa_{n+1}$ (as $i(\alpha)<\kappa_{n}$ because $\Pi_{\ell \leq n} P_{\ell}$ satisfies the κ_{n+1}-chain condition, and $r_{i}^{\bar{\alpha}} \in \Pi_{\epsilon \leqq n} P_{\ell},\left|\Pi_{\ell \leqq n} P_{\ell}\right|=\kappa_{n+1} ; \gamma_{i}^{\bar{\alpha}}<\kappa_{n}^{+(n+2)}<\kappa_{n+1}$ and $\left.\kappa_{n+1}^{<k_{n+1}}=\kappa_{n+1}\right)$.
Let $B=\left\{t \in I_{n+1}: G_{n}^{k}\right.$ has the same value on all increasing sequences of length $(n+2)$ from $t\}$. By definition

$$
B \in D_{n+1}\left(\kappa_{n+1}^{+(n+2)}, \kappa_{n+1}^{+1}, \kappa_{n+1}\right) \subseteq D_{n+1}^{*} .
$$

Hence $B^{\prime}=\left\{\langle\alpha, t\rangle \in J_{n+1}: t \in B\right\} \in F_{n+1}$.
For every $\langle\alpha, t\rangle \in A_{n+1}^{k}$, choose an increasing sequence of length ($n+2$) from $t, \bar{\beta}$, and we can find $q_{(a, t),}^{k+1}, q_{(a,\rangle)}^{k} \leqq q_{(a, i\rangle}^{k+1} \in P_{n}$, and $q_{\{a,\rangle\rangle}^{k+1}$ force $\left\langle\bar{\gamma}, f_{n+1}^{k}\left(\bar{\gamma}^{\wedge} \bar{\beta}\right): \bar{\gamma}\right.$ an increasing finite sequence from $\left.\kappa_{n}^{+(n+1)}\right\rangle$ to be equal to some $\tilde{\Pi}_{\ell<n} P_{\ell}$-name $f_{(\alpha, 1)}^{k}$ (possible as P_{n} is $\kappa_{n}^{+(n+2)}$-complete). If $\langle\alpha, t\rangle \in B^{\prime}$ too, then the choice of $\tilde{\tilde{\beta}}$ is immaterial. Now by Claim 9 , we can find $A_{n+1}^{k+1} \subseteq B^{\prime} \cap A_{n+1}^{k}$, as required, and as the number of possible $f_{(\alpha, 1)}^{a}$ is $\leqq \kappa_{n}^{+(n+2)}$ we can assume $f_{(\alpha, t)}^{k}=f_{n}^{k+1}$ for every $\langle\alpha, t\rangle \in A_{n+1}^{k}$.
This really finishes the proof.
We define $A_{\ell}^{\omega}=\bigcap_{k<\omega} A_{\ell,}^{k}, q_{\langle\alpha, 1\rangle}^{\omega}=\bigcup_{k<\omega} q_{(\alpha, 1\rangle}^{k}$ and $p_{\ell}^{\omega}=\bigcup_{k<\omega} p_{\ell}^{k}$ for $\langle\alpha, t\rangle \in A_{\ell}^{e}$. As each F_{ℓ} is κ_{ℓ}-complete, $A_{\ell}^{\ddot{\ell}} \in F_{\ell}$. It is also clear that $p_{\ell}^{\omega} \in P_{\ell}$ and $q_{(\alpha, t)}^{\ddot{\prime}} \in P_{e}$ for $\langle\alpha, t\rangle \in A_{\rho}^{\mu}$.

Choose $\left\langle\alpha_{e}, t_{e}\right\rangle \in A_{\ell}^{\omega}$, and let $p^{1}=\left\langle q_{\left\langle\alpha_{0}, t_{e}\right\rangle}^{\omega}, q_{\left\langle\alpha, t_{i}\right\rangle}^{\omega}, \cdots, q_{\left\langle\alpha_{c}, l_{\ell}\right\rangle}^{\omega} \cdots\right\rangle$ and $S_{e}=t_{e}$. It is easy to check they are as required.

Concluding Remarks. An alternative presentation of the proof is that, after the collapse, the filter that D_{n+1}^{*} generates (over $\operatorname{Inc}\left(\kappa_{n}^{+(n+1)}, \kappa_{n}^{+1}\right)$) is still κ_{n+1}-complete, and it has the $\kappa_{n}^{+(n+1)}$-Laver property, i.e., there is a family S of subsets of $I_{n+1}(\in V)$ which is $\kappa_{n}^{+(n+2)}$-complete (i.e., the intersection of any descending ω chain of members of S is in S (or just contain a member)), is dense (if $A \subseteq I_{n}, I_{n}-A \notin D_{n+1}^{*}$ then A contains a member of S), and $A \in S \rightarrow A \subseteq$ $I_{n} \wedge I_{n}-A \notin D_{n+1}^{*}$.

References

[^0]The Hebrew Universtry of Jerusalem
Jerusalem, Israel
AND
The Oho State University
Columbus, Ohio, USA

[^0]: 1. P. Erdos and A. Hajnal, Unsolved problems in set theory, Proceedings of a Symposium in Pure Mathematics, XIII, Part I, Amer. Math. Soc., Providence, Rhode Island, 1971, pp. 17-48.
 2. P. Erdos and A. Hajnal, Unsolved and solved problems in set theory, Proc. Tarski Symp., Proc. Symposia in Pure Mathematics, XXV, Amer. Math. Soc., Providence, Rhode Island, 1974, pp. 269-288.
 3. P. Erdos, A. Hajnal and R. Rado, Partition theorems for cardinal numbers, Acta Math. Acad. Sci. Hungar. 16 (1965), 93-196.
 4. P. Erdos, A. Hajnal, A. Mate and R. Rado, Partition Calculus.
 5. T. Jech, Set Theory, Academic Press, 1978.
 6. S. Shelah, You cannot take Solovay's inaccessible away, Abstracts Amer. Math. Soc. 1 (1980), 236.
 7. S. Shelah, Canonization theorems and applications, J. Symbolic Logic, to appear.
 8. S. Shelah, Independence of strong partition relation for small cardinals and the free subset problem, J. Symbolic Logic 45 (1980), 505-509.
