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Abstract. We prove that the statement “for every infinite cardinal κ, ev-
ery graph with list-chromatic number κ has coloring number at most �ω(κ)”
proved by Kojman (2014) using the RGCH theorem implies the WRGCH the-
orem, which is a weaker relative of the RGCH, via a short forcing argument.

Similarly, a better upper bound than �ω(κ) in this statement implies
stronger (consistent) forms of the WRGCH theorem, the consistency of whose
negations is wide open.

Thus, the optimality of Kojman’s upper bound is a purely cardinal arith-
metic problem, and, as discussed below, is hard to decide.

1. Introduction

Recall that the list-chromatic or choosability number of a graph G = 〈V,E〉 is
κ if κ is the least cardinal such that for any assignment of lists of colors L(v) to
all vertices v ∈ V such that |L(v)| ≥ κ there exists a proper vertex coloring c of G
with colors from the lists, namely c(v) ∈ L(v) for all v ∈ V . A graph G has coloring
number κ if κ is the least cardinal such that there exists a well-ordering ≺ on V
such that a vertex v ∈ V is joined by edges to only < κ vertices u satisfying u ≺ v.

Alon [1] proved that every finite graph with list-chromatic number n has coloring
number at most (4+o(1))n and this bound is tight up to a factor of 2+ o(1) by [3].

In [7] Kojman used the Revised GCH theorem from cardinal arithmetic [13] to
prove in ZFC the upper bound of �ω(κ) on the coloring number of any graph with
a list-chromatic number ≤ κ, where �ω(κ) is the cardinal gotten by applying the
exponent function to κ infinitely many times.1

By Erdős and Hajnal [2] from 1966, if the GCH is assumed, κ++ = (2κ)+ =
(�1(κ))

+ bounds the coloring number of every graph with list-chromatic number κ
for every infinite κ. It is now known that much weaker axioms than the GCH —
certain weak consequences of the Singular Cardinals Hypothesis — imply the same
upper bound (see the second section in [7]), so in “many” models of set theory, the
upper bound is (2κ)+. Komjáth [6] recently improved the GCH upper bound to
2κ = κ+, constructed models of the GCH in which χ�(G) = Col(G) for every graph
with infinite χ�(G) and showed that in MA models 2κ is required.
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5372 SAHARON SHELAH

The sharp contrast between the single exponent in the bound for the finite case,
or in the bound for the infinite case in the presence of mild cardinal arithmetic
axioms, and the infinite tower of exponents in the ZFC bound, led Kojman to ask
whether the upper bound �ω(κ) could be lowered in ZFC. He also asked whether
the use of the RGCH in proving his �ω bound was necessary.

We prove here that:

(1) Kojman’s �ω upper bound implies the so-called Weak Revised GCH theo-
rem (WRGCH) in pcf theory.

(2) Better upper bounds imply open strengthenings of the WRGCH theorem.

All implications above are via standard forcing arguments.
Thus, improving Kojman’s upper bound on the coloring number of a graph

in terms of its list-chromatic number will be at least as hard as improving the
WRGCH theorem. In particular, a better upper bound cannot be gotten with only
graph-theoretic arguments.

Note that consistency results in pcf are hard; only recently did Gitik [4] succeed
to make a remarkable advance: for a countable set a of regular cardinals, pcf(a)
may be uncountable. Grand as it is, this is a far cry from what is needed to show
that the WRGCH cannot be improved. If, however, all relevant strengthenings of
the WRGCH are indeed not provable in ZFC, then Kojman’s �ω bound is optimal
(a more detailed discussion of this is given below).

1.1. Description of the reduction.

Definition 1.1. The Weak Revised GCH theorem, WRGCH, is the statement that
for every strong limit cardinal μ > ℵ0, e.g., �ω, and λ > μ, for some κ < μ there is
no sequence λ = 〈λi : i < μ〉 of finite sequences of regular cardinals in (μ, λ) such
that J<λ(λ) ⊆ [μ]<κ.

Here, the pcf operator is extended to sets a of finite sets (as above, we identify
a finite sequence of cardinals with its range) by letting pcf(a) be interpreted as
pcf(

⋃
a) and similarly J<λ(a) stands for {b : b ⊆ a& maxpcf(b) < λ}.

The WRGCH is a straightforward consequence of the Revised GCH theorem
[13].

Now consider, for a natural number m ≥ 1, the following two closely related
statements (even equivalent, see below) with parameter m, which are stronger than
the WRGCH:

⊕1
m there are no cardinal κ and set a of �m(κ) many finite sequences of regular

cardinals, each larger than �m(κ), such that J<sup(a)[a] ⊆ [a]<κ, i.e., b ∈
[a]κ implies that max pcf(b) ≥ sup(a);

⊕2
m there are no cardinals κ and Υ satisfying ∂ := �m(κ) ≤ Υ and a family of

sets A ⊆ [Υ]∂ such that |A∩B| < κ for all distinct A,B ∈ A and |A| > Υ.

The status of the statements above is as follows. If m < n, then ⊕i
m implies

⊕i
n for i ∈ {1, 2}. All ⊕i

m hold in models of the GCH or even of just the strong
hypothesis (see [12], §6), so are consistent with the axioms of ZFC.

The question for which m is ⊕i
m a theorem of ZFC is wide open, that is, for

all m ≥ 1, neither a ZFC proof nor a consistency of the negation is known at the
moment. The WRGCH, however, is a theorem of ZFC, as it follows trivially from
the RGCH theorem.
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LOWER BOUNDS 5373

Lowering �ω(κ) in Kojman’s upper bound to �n(κ) for some n < ω is at least
as hard as proving the equivalent statements ⊕1

m and ⊕2
m for m = 2n + 1. The

reason for this is that if the configuration that is forbidden by e.g. ⊕2
m does exists

in some model V of ZFC, then in some forcing extension of V there is a graph
with list-chromatic number θ and coloring number > �n(θ), for some θ > κ. The
relation m = 2n+ 1 can probably be tightened, but we made no effort to do so.

Also, if it is assumed to the contrary that the configuration that is forbidden
by the WRGCH does exist in some universe V of set-theory, then in some forcing
extension VP of V there is a graph with list-chromatic number < κ and coloring
number > �ω(κ), contrary to the �ω upper bound. Thus, the �ω graph-theoretic
bound implies the WRGCH.

We discuss next the pcf-theoretic statements and explain further their connection
to upper bounds on coloring numbers.

Let κ ≤ ∂ < Υ < λ = cf(λ) be cardinals. Consider the statement:

(st)1κ,∂,Υ,λ there is an A ⊆ [Υ]∂ of cardinality λ such that if A1 �= A2 belongs to

A, then |A1 ∩ A2| < κ.

We agree that if λ = Υ+ we may omit it and if ∂ = Υ, λ = χ+ = ∂+, then we
also may omit them, so the typical case (st)1κ,∂

is the existence of a family A ⊆ [∂]∂

of cardinality ∂+ which is a κ-family, that is, the intersection of any two distinct
members of A has cardinality < κ.

Why is using (st)1κ,∂ reasonable when �m(κ) ≤ ∂ < �m+1(κ)? The history of
this question is rich. In particular, Baumgartner got by forcing, without using large
cardinals, the consistency of (st)1κ,∂ with κ = κ<κ < ∂ < 2κ, so here m = 0.

We are, however, interested in the cases m ≥ 1, which are closely related to pcf
problems.

Consider the pcf statement,

(∗)2κ,∂,χ,λ κ < ∂ < χ < λ = cf(λ) and there is a sequence a = 〈ai : i < ∂〉
of finite sets of regular cardinals with each ai ⊆ (∂, χ) and such that
λ = maxpcf(

⋃
i ai) and J<λ[a] = {u ⊆ ∂ : pcf(

⋃
i∈u ai) ⊆ λ} (so really

χ � ∂. The main case, and the one we shall deal with, for transparency,
is λ = χ+).

Why are (st)1κ,∂,χ,λ and (∗)2κ,∂,χ,λ related to each other and to graph colorings?

(∗)0 if A ⊆ [χ]∂ has cardinality > χ, and is a κ-family, κ ≤ ∂ ≤ χ, then the
natural bi-partite graph associated to A and denoted GA (see Definition
2.4 below) has coloring number ≥ ∂+.

So finding such A with a small list-chromatic number, say κ, with �n(κ) ≤ ∂,
will give consistent lower bounds, which is the purpose of this note. The main point
here is that the list-chromatic number of such graphs can be lowered by applying
the internal forcing axiom from [15] (see also [19]), a natural generalization of MA.

Observe that

(∗)1 For � = 1, 2,

(a) if (st)�κ1,∂1,χ
and κ1 ≤ κ2 ≤ ∂2 ≤ ∂1, then (∗)�κ2,∂2,χ

.

(b) If (st)�κ1,∂1,Υ1,λ1
and κ1 ≤ κ2 < ∂2 ≤ ∂1 and Υ1 ≤ Υ2 < λ2 ≤ λ1, then

(st)�κ2,∂2Υ2,λ2
.

(∗)2 For � = 1, 2,
(a) (st)2κ,∂,Υ implies (st)1κ,∂,Υ and (st)2κ,∂,Υ,λ implies (st)1κ,∂,Υ,λ.
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5374 SAHARON SHELAH

(b) If (st)�κ,∂,Υ and Υ = Υ+
1 , ∂1 = min{∂,Υ1} ≥ κ (so � = 1 ∧ ∂ = Υ ⇒

∂1 = ∂), then (st)�κ,∂1,Υ1
.

(c) If (st)�κ,∂,Υ,λ and ∂ < Υ and Υ is a limit cardinal of cofinality �= cf(∂)

and �= cf(λ), then for every large enough Υ1 < Υ we have (st)�κ,∂,Υ1,λ
.

Also

(∗)3 If ∂<κ < λ = cf(λ), κ = cf(κ) > ℵ0 and (st)1κ,∂,Υ,λ, then (st)2κ,∂,Υ,λ.

Why? By [11], 6.1 with λ,Υ, ∂, κ∗ here substituting ∂∗, ∂, κ, σ there. Similarly,
by Theorem 6.2 in [11] we have ⊕1

m ⇐⇒ ⊕2
m for all m ≥ 1.

Let

(∗)0,nκ,∂ ∂ ∈ (�n(κ),�n+1(κ)).

So the problem with the consistency of (st)1κ,∂,Υ + (st)0,nκ,∂ is having (st)2κ,∂,Υ +

(st)0,nκ,∂ .

We may note that clause (b) is justified by the RGCH and λ = cf(λ) is usually
natural.

An example, then, of how this note clarifies the question of whether the upper
bound of �ω(κ) is tight is:

Conclusion 1.2. We have (A) ⇐⇒ (B) ⇐⇒ (C) where:

(A) For every n in some forcing extension of V there are κ, ∂ = �n(κ), Υ > ∂
and a κ-family A ⊆ [Υ]∂ of cardinality > Υ.

(B) For every n in some forcing extension of V there are κ, ∂ = �n(κ) and a
set a of ∂ finite sets of regular cardinals > ∂ such that J<sup(a)[a] ⊆ [a]<κ,
i.e., b ∈ [a]κ implies that max pcf(b) ≥ sup(a).

(C) For every n in some forcing extension of V there are κ, ∂ == �n(κ) and a
graph G with list-chromatic number κ and coloring number > ∂.

Proof of Conclusion 1.2. (A) =⇒ (B) follows from [11], 6.1 (and (B) =⇒ (A) is
obvious by (∗)2 above).

(A) =⇒ (C) is done in Theorem 2.1 below, where we start letting θ = 2κ, or,
if κ is regular, also θ = 2<κ suffices to get the assumptions of Conclusion 2.1. For
every n, (A)n ⇐⇒ (B)n and (A)2n+2 ⇒ (Bn) ⇒ (C)n.

To prove (C) =⇒ (B) it suffices to note, (use θ = θ<θ) that (a)λ,θ,κ ⇒ (b)λ.θ,κ
in Claim 2.13. See [8] and use the proof of compactness in singulars [10] and [16],
Section 2. �

In conclusion, the upper bound �ω(κ) cannot be lowered without making sub-
stantial progress in pcf theory. If, on the other hand, the negations of ⊕2

m are
consistent for all m, then Kojman’s �ω(κ) upper bound is optimal.

1.2. Should we expect consistency or better pcf theorems? Let us mention
first the known consistency results. Only quite recently Gitik [4] succeeded to prove,
from the consistency of large cardinal axioms, the consistency of a countable set
of regular cardinals a with pcf(a) uncountable, but really just | pcf(a)| = ℵ1. In
particular he got (st)2ℵ0,ℵ1,μ

. While a great achievement, this is still very distant
from what we need.

For κ > ℵ0 there are no known consistency results. After the RGCH was proved
in the early nineties much effort (at least by the present author) was made to lower
�ω — so far without any success. However in some other directions there were
advances ([5, 17, 18]).
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So do we expect consistency or ZFC results? Wishful thinking, or, if you prefer,
the belief that “set theory behaves in an interesting way” suggests that the answer
to “for which m the statement ⊕1

m holds in ZFC” should turn out to be somewhere
in the middle, e.g., m = 4 (or m = 957, for that matter). More seriously, the
situation is wide open. Perhaps, as on the one hand the ZFC �ω(κ) gap has not
changed for a long time now, while on the other hand there has been a recent
breakthrough in consistency, there is some sense in viewing consistency as more
likely.

2. Proofs

Theorem 2.1. Suppose that κ < θ = θ<κ, Υ > ∂ = �2�+1(θ) and there is a κ-
family A ⊆ [Υ]∂ of size Υ+. Then in some forcing extension there is a graph G
with list-chromatic number θ and coloring number > ��(θ).

As promised in the introduction, we may prove a weak version of the RGCH
theorem from a bound on a list-chromatic number.

Theorem 2.2. Suppose that κ < θ = θ<κ, Υ > ∂ > �ω(θ) and there is a κ-family
A ⊆ [Υ]∂ of size ∂+. Then in some forcing extension there is a graph G with
list-chromatic number θ and coloring number ≥ ∂ > �ω(θ).

Convention. For this section we fix ℵ0 ≤ κ < θ.

We shall need the following definition from [15] Def 1.1] (See also [19] for more
on this and other forcing axioms.) We recall one implication from Definition 2.4
below: if A is as in Theorem 2.1, then GA, as defined in Definition 2.4, has coloring
number > ∂.

Definition 2.3. A forcing notion P satisfies ∗ωμ where ℵ0 < μ = cf(μ) if Player
I (the “completeness” player) has a winning strategy in the following game in ω
moves:

At step k: If k �= 0, then Player I chooses 〈pk1,α : α < μ+〉 with pk1,α ∈ P such

that for all ξ < ζ and for club-many α < μ+ in Sμ+

μ , pk−1
2,α ≤ pk1,α, and also chooses

a function fk : μ+ → μ+ which is regressive on a club of μ+. If k = 0 Player I
chooses p01,αi = ∅P and f0 as the identically 0 function on μ+.

Player II chooses 〈pk2,i : i < μ+〉 such that for club-many α < μ+ in Sμ+

μ it holds

that pk1,α ≤ pk2,α.

Player I wins the play if there is a club E ⊆ μ+ such that for all α < β in

E ∩ Sμ+

μ , if fk(α) = fk(β) for all k < ω, then there is an upper bound in P to the

set {pk1.α : k < ω} ∪ {pk2,β : k < ω}.

Definition 2.4. (1) A is a κ-family of sets when |A ∩ B| < κ for all distinct
A,B ∈ A and is a (θ, κ)-family if in addition, |A| ≥ θ for all A ∈ A and,
for notational transparency, A ∩

⋃
A = ∅.

(2) Suppose A is a κ-family of sets. We define the (bi-partite) graph GA. Its
set of vertices is VA = A ∪

⋃
A. We denote

⋃
A by pt(A). The edge set

EA is {{v,A} : v ∈ A ∈ A}. When A is fixed or clear from context, we
refer to GA as 〈V,E〉.
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Definition 2.5. For a (θ, κ)-family A, a set Y ⊆ GA is closed (pedantically, A-
closed, but the identity of A is clear from the context) if:

(a) A �= B ∈ Y ∩ A ⇒ A ∩B ⊆ Y .
(b) If A ∈ A and |A ∩ Y | ≥ κ, then A ∈ Y .

A sub-graph G′ of GA is closed if its set of vertices is closed.

Claim 2.6. If A is a (θ, κ)-family and λκ = λ ≥ θ, then every sub-graph of GA of
size λ is contained in a closed sub-graph of the same size. Moreover, if Y1 ⊆ G is
closed and X ⊆ Y1 is of size λ, then there is a closed Y ⊆ Y1 of cardinality λ such
that X ⊆ Y .

Remark. Instead of λκ = λ it suffices that D(λ, κ) = λ, where D(λ, κ) = cf([λ]κ,⊇),
(see [7]).

Definition 2.7. Suppose θ > κ and μ are cardinals and |α|κ < μ for all α < μ. We
say that Prθ,κ(μ) holds when for every (θ, κ)-family A and every [closed] Y ⊆ GA
of cardinality |Y | < μ the list-chromatic number of Y is at most θ; that is, for
every assignment of lists L(v) to vertices in GA such that |L(v)| ≥ θ there is a valid
coloring c ∈

∏
v L(v).

Claim 2.8. Assume that A is a (θ, κ)-family, Y ⊆ GA is closed, cf(δ) �= cf(κ),
δ < cf(μ) and Zi ∈ [Y ]<μ is increasing with i < δ. If each Zi is A-closed, then
Z :=

⋃
i<δ Zi is A-closed.

Proof. First, if A �= B ∈ Z ∩ A, then for some i < δ it holds that A,B ∈ Zi, but
Zi is A-closed hence A ∩ B ⊆ Zi ⊆ Z as required (in Definition 2.5(a)). Second,
if A ∈ A satisfies that |A ∩ Z| ≥ κ, then (because cf(δ) �= cf(κ)) for some i < δ it
holds that |A ∩ Zi| ≥ κ and as Zi is closed, A ∈ Zi ⊆ Z. �
Lemma 2.9 (Step-up Lemma). Suppose that λ > μ = μ<μ > κ and θ > κ. Assume
that

(a) The internal forcing axiom for posets that satisfy ∗ωμ (see Definition 2.3)
holds for < λ dense sets.

(b) (∀α < μ)(|α|κ < μ).
(c) (∀α < λ)(|α|κ < λ).
(d) Prθ,κ(μ) holds.

Then Prθ,κ(λ).

Proof. Suppose
(∗)1 A is a (θ, κ)-family and Y∗ ⊆ GA is closed, |Y∗| < λ and L(v) such that

|L(v)| = θ is given for all v ∈ Y∗.
We need to prove the existence of a valid coloring c of G such that c(v) ∈ L(v)

for all v ∈ Y∗.
Let P be the following poset: q ∈ P iff q is a partial valid coloring for the given

lists and dom (q) ⊆ Y∗ ⊆ GA is closed of cardinality < μ. A condition q is stronger
than a condition p, q ≥ p, iff p ⊆ q.

(∗)2 P is a forcing notion.
(∗)3 (Density) if p ∈ P and Z ⊆ Y∗ satisfies |Z| < μ, then there is q ≥ p such

that Z ⊆ dom (q).

Proof of (∗)3. By possibly increasing Z, we may assume that Z is closed in Y∗ and
that dom (p) ⊆ Z. As dom (p) is closed, for all A ∈ A ∩ Z \ dom (p) it holds
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LOWER BOUNDS 5377

that |A ∩ dom (p)| < κ. For A ∈ A ∩ Z \ dom (p) let L′(A) = L(A) \ {p(v) : v ∈
A ∩ dom (p)}. As |A ∩ dom p| < κ < θ it holds that |L′(A)| = θ.

For v ∈ (Z \ dom (p))∩ pt(A) there is at most one A ∈ dom (p) such that v ∈ A,
because dom (p) is closed. Let L′(v) be gotten from L(v) by subtracting {p(A)}
from L(v) for that unique A, when A exists. For all x ∈ dom (p) let L′(x) = L(x).

By Prθ,κ(μ) there is condition p′′ with dom (p′′) = Z such that p′′(v) ∈ L′(v)
for every v ∈ Z. Let p′ = p′′ � (Z \ dom (p)) and let q = p ∪ p′. Now we claim that
q ∈ P. As x ∈ Z ⇒ q(x) ∈ L′(x) ⊆ L(x) for all x ∈ dom (q), all that needs to be
checked is the validity of the coloring q. Suppose that v ∈ A and v,A ∈ dom (q).
First assume that v ∈ dom (p) and A ∈ dom (p′). In this case p(v) �= p′(A) because
p(v) /∈ L′(A) by the definition of L′(A). Another case to check is v ∈ dom (p′) and
A ∈ dom (p), which followed from the choice of L′(v). The two remaining cases are
clear and hold as p, p′ ∈ P.
(∗)4 If 〈pi : i < δ〉 is an increasing sequence of conditions in P and δ < μ and
cf(δ) �= cf(κ), then the union is a condition, and is an upper bound of the sequence.

Proof of (∗)4. Let Yδ =
⋃
{dom pi) : i < δ}. Now |Yδ| < μ as δ < μ by the

assumptions, and i < δ ⇒ dom (pi) ∈ [Y∗]
<μ ⊆ [GA]

<μ by the definition of P,
recalling that μ is regular (by μ = μ<μ from the claim’s assumptions). Since
cf(δ) �= κ, by Claim 2.8 it holds that p =

⋃
i pi is a condition.

(∗)5 If δ < μ, p = 〈pi : i < δ〉 is increasing in P and cf(δ) = cf(κ), then p has an
upper bound in P.

Proof of (∗)5. Let Z ⊆ Y∗ ⊆ GA be closed such that |Z| < μ and Y =
⋃

i<δ dom (pi)
⊆ Z. By restricting to a subsequence we may assume that δ = cf(κ) and so
A ∈ A \ Y ⇒

∧
i<κ(|A ∩ dom (pi)| < κ ⇒ |A ∩ Y | ≤ κ). Now repeat the proof of

(∗)3 with p =
⋃

i pi with the following changes:

(a) ifA ∈ Z\Y , A ∈ A, then |A∩Y | ≤ κ hence L′(A) = L(A)\{p(v) : v ∈ A∩Y }
has cardinality θ as L(A) has cardinality θ > κ ≥ |A ∩ Y | ≥ |{p(v) : v ∈
A ∩ Y }|.

(b) If v ∈ Z \ Y , v ∈ pt(GA), then

i < κ ⇒ |{A ∈ dom (pi)∩]A : v ∈ A}| ≤ 1,

hence

|{A ∈ A ∩ Y : v ∈ A}| ≤ 1

and L′(v) = L(v) \ {p(A) : A ∈ Yδ ∧ v ∈ A} has cardinality θ.

Now we can finish as in (∗)3.
(∗)6 {p�ζ : � = 1, 2 and ζ < δ} has a common upper bound when:

(a) δ < κ+ ≤ μ (we will use δ = ω < κ+ when simpler as this is the one we
shall use).

(b) p�ζ ∈ P.

(c) ζ < ξ < δ ⇒ p�ζ ≤P p�ξ.

(d) p1ζ , p
2
ζ are compatible functions for ζ < δ.

Proof of (∗)6. Let p =
⋃

�,ζ p
�
ζ , so p is a function, but not necessarily a condition

in P. Let Y = dom (p) and Z ⊇ Y be closed and of cardinality < μ such that
Z ⊆ Y∗ ⊆ GA.
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(A) If A ∈ Z\Y , A ∈ A, and � ∈ {1, 2}, then � ∈ {1, 2}∧ζ < δ ⇒ |A∩dom (p�ζ)| <
κ so 〈|A∩dom (p�ζ)| : ζ < δ〉 is a non-decreasing sequence of sets each of cardinality

< κ hence ≤ κ. So |A ∪
⋃

ζ dom (p�ζ)| ≤ κ, hence |A ∩ Y | ≤ κ.

(B) If v ∈ Z\Y , v ∈ pt(GA), and � ∈ {1, 2}, then |{A ∈
⋃

ζ dom (p�ζ), v ∈ A}| ≤ 1

hence |{A ∈ Z \A : A ∈ A, v ∈ A}| ≤ 2. So all is fine.
We continue as in the proof of (∗)5.

(∗)7 P is μ-complete (by (∗)4 + (∗)5).
(∗)8 The property ∗ωμ holds for P.

The game which defines ∗ωμ lasts ω steps and at each step k < ω for � = 1, 2 a

sequence of conditions 〈pk1,α : α < μ+〉, a club Ek ⊆ μ+ and a regressive function

fk with domain μ+ played by the completeness Player I (see Definition 2.3 or [15],
Def 1.1; see also [19] for more on this and related forcing axioms).

This is how Player I chooses Ek and fk is sufficiently closed; fk has domain μ+

and is regressive such that:

⊕ If α1, α2 ∈ dom (fk) ∩ Sμ+

μ ∩ Ek, fk(α1) = fζ(α2), then pk1,α1
, pk1,a2

are com-
patible functions.

This clearly suffices (as the 〈(pk1,α1
, pk1,α2

) : k < δ〉 are like 〈(p1ζ, p2ζ) in (∗)6).
Clearly such a function fk exists but we elaborate.
(∗)8.1 fζ(δ) codes:

(a) akδ = dom (pk1,δ) ∩ (
⋃

α<δ dom pk1,α).

(b) pk1,δ � akδ .
(c) {pk1,δ(v) : v ∈ dom (pk1,δ) ∩A and pk1,δ(v) ∈

⋃
α<δ Rang(p

k
1,α)}.

(d) {pk1,δ(A) : A ∈ dom (pk1,δ) ∩ A and pk1,δ(A) ∈
⋃

α<δ Rang(p
k
1,α)}.

[ What is the point of clauses (c), (d)? Consider pk1,α1
, pk1,α2

with α1 < α2;

maybe there are � ∈ {1, 2}, v ∈ dom (pk1,α�
) ∩ pt(GA), A ∈ dom (pk1,α3−�

) ∩ A such

that v ∈ A and pk1,α�
(v) = pk1,α3−�

(A). Those are avoided by those clauses.]

So now Player I wins as whenever α < β belong to Sμ+

μ ∩
⋂

k Ek and
∧

k fk(α) =

fk(β), the set of conditions {pk1,α : k < ω} ∪ {pk1,β : k < ω} has an upper bound in

P by (∗)6.
This proves (∗)8.
(∗)9 If x ∈ Y∗, then Dx is an open dense subset of P where Dx = {p ∈ P : x ∈

dom (p)}.
[ Why (∗)9 holds? by (∗)3.]
By the axiom for posets with ∗ωμ , there is a generic filter for P which meets all

dense sets Dx for x ∈ Y , where p ∈ Dx if x ∈ dom (p). The union of the generic is
a valid coloring from the lists on Y∗. �

Corollary 2.10. Suppose n ≥ 1 and

(a) μ0 < μ1 · · · < μn.
(b) For all l ≤ n− 1 it holds that (∀α < μ�)(|α|κ < μ�).
(c) μ<μ�

� = μ� and 2μi = μi+1 for i < n.
(d) For every � < n, the forcing axiom for posets with ∗ωμ�

and < μ�+1 dense
sets holds.

(e) κ < μ0 ≤ θ+ and κ < θ.

Then Prθ,κ(μn).
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Proof. By induction on n. Since the list-chromatic number of any graph G of
cardinality < μ0 is ≤ |G| ≤ θ, the condition Prθ,κ(μ0) holds trivially. The induction
step follows from the main Lemma 2.9. �

Next we show how to force the conditions of the previous lemma.

Claim 2.11. Assume that:

(A) θ = θ<κ > κ and �2n+1(θ) < μ ≤ χ < λ.
(B) (st)1κ,μ,χ,λ.

Then for some P and μ̄,

(a) P is a θ+-complete forcing notion that satisfies (�2n+1(θ))
+-c.c.

(b) μ̄ = 〈μ� : � ≤ n〉 in VP such that μ� = μ<μ� = ��(θ) < ��+1(θ) for all
� ≤ n, |α|κ < μ� for all α < μ� and �n(θ) < μ ≤ χ < �n+1(θ).

(c) (st)1κ,μ,χ,λ.

(d) The forcing axiom ∗ωμ�
with < μ�+1 holds for all � ≤ n.

Proof. Now,

(∗)1 (�2n+1(θ))
+ ≤ ∂ and (�2n+1(θ))

+ < χ.

Why (∗)1? The first inequality holds by (A). For the second, letting χ1 =

�2n+1(θ)
+ we have χ

�2n(θ)
1 = χ1 hence χκ

1 = χ1 whereas χκ ≥ λ > μ because we
are assuming (st)1κ,μ,χ,λ.

Now let

(∗)2 (a) μ� = (�2�(θ))
+ for � ≤ n so 2<μ� ≤ �2�+1(θ).

(b) Choose μn+1 such that μn+1 = cf(μn+1) = (μn+1)
(μκ

n) > λ and α <
μn+1 ⇒ |α|κ < μn+1.

Remark. Less suffices; μn+1 = (λκ)+ or just μn+1 = cf(μn+1) > λ satisfies (∀α <
μn+1)(|α|κ < μn+1), but will complicate the notation below, e.g., (∗)4(b) for � = n
is different.

Now

(∗)3 (a) μ0 = θ+ hence μ0 = cf(μ0) and (∀α)(α < μ0 → |α|κ ≤ θκ = θ < μ0).
(b) μ0 < μ1 < · · · < μn < μn+1 are regular.
(c) (∀α < μ�)(|α|κ < μ�) for all � ≤ n+ 1.

(d) (μ�+1)
2<μ� = μ�+1.

(e) μn < μ ≤ χ < λ < μn+1.

Let

(∗)4 (a) Q∗
� = Levy(μ�, 2

<μ�) for � ≤ n.
(b) Q∗ =

∏
�≤n Q

∗
� .

(c) Q∗
≤k =

∏
�≤k Q

∗
� .

Easily,

(∗)5 (a) Q∗
� is μ�-complete and of cardinality 2<μ� , so satisfies the 2<μ�-c.c.

(b) Let V� := V
∏

k<� Q
∗
κ .

(∗)6 in Vn+1 := V
∏

�≤n Q� , we define 〈(Pk,Q
∼
2

�

) : k ≤ n+ 1, � ≤ n〉 such that:

(a) P0 is the trivial forcing.
(b) P�+1 is a forcing notion of cardinality μ�+1.
(c) P�+1 satisfies the μ+

� -c.c.
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(d) P�+1 = P� ∗Q
∼

2

�

.

(e) Q
∼

2

�

is a P<�-name of a forcing notion of cardinality μ�+1 that satisfies

μ+
� -c.c. that forces 2

μ� = μ�+1 and the axiom for forcing notions that
satisfy ∗ωμ�

for < min{μ�+1, (∂
κ)+} dense sets.

(f) Pk+1 is a Q∗-name and actually a Q∗
≤k-name

There is no problem to carry the induction (note that (μ�+1)
<μ = μ�+1 in

VPn+1
n+1 ). We return to V, so we have a Q≤k-name so P

∼�
for � = 0, . . . , k + 1

for the forcing notion above. Let, in V, Pk+1 = Q∗
≤k ∗ P

∼k+1
. Why is P = Pn as

required?
Clearly, all forcing notions Q∗

� ,Q∗,Q
∗
≤k,P

k , are θ+-complete, hence in particular

so is P. Therefore, in VP still (∀α < μ�)(|α|κ < μ�+1) for all � < n+ 1 because we
prove below that μ� does not collapse.

Clearly, Pk+1 has cardinality μk+1 and satisfies the (2<μk)+-c.c. and in V the

forcing notion Q� is μ�-complete and in VQ∗
≤k the forcing notion Q2

� is forced to be

μ�-complete. Hence in V for � ≤ k we have �Pk “μ� = μ<μ�

� is not collapsed”, and
Pk satisfies the ((2<μk)+)-c.c. as Q∗

≤k does, and Pk+1 satisfies (μκ)+-c.c.
Lastly, the relevant forcing axiom holds: if � < n, the one for ∗ωμ�

and< μ�+1dense

sets. So replacing μn+1 by (μκ)+ and applying Claim 2.6 we are done. �

A similar argument works to replace n with ω:

Theorem 2.12. The condition (A)�(∗) implies the condition (B)�(∗) for �(∗) ∈
{1, 2}, where:
(A)1 ℵ0 < cf(κ) ≤ κ < θ = θ<κ, χ ≥ λ ≥ �ω(θ) and there exists a κ-family

A ⊆ [χ]λ of cardinality |A| ≥ χ+.
(A)2 ℵ0 < cf(κ) ≤ κ < θ = θ<κ and for every n < ω there are χn > λn ≥ �n(θ) a

κ-family An ⊆ [χn]
λn of cardinality |An| ≥ χ+

n and λn /∈ [�ω(θ),�ω+1(θ)].
(B)1 For some forcing notion P not adding new sequences of ordinals of length

< θ, it holds that:

• (�ω(θ))
VP

= (�ω(θ))
V.

• There exists a graph G with list-chromatic number θ and coloring num-
ber > (�ω(θ))

+.
(B)2 Like (B)1 with the coloring number ≥ (�ω(θ))

+.

Proof. Stage A. For (A)1 ⇒ (B)1 assume (A)1 and let

(∗)1 (χn, λn) = (χ, λ), An = A, so we can assume (A)2.

(∗)2 Let u1 = {n : λn < �ω(θ)} hence n ∈ u1 ⇒ λn < �ω(θ) and let u3 = {n :
λn > �ω(θ)}.

Recalling clause (A)2 note that u1, u3 is a partition of ω.

(∗)3 Without loss of generality, for some i ∈ {1, 3} we have:
(a) ui = ω.
(b) If i = 3 without loss of generality there is some λ∗ > �ω(θ) such that∧

n λn = λ∗.
(c) If i = 1 let μ∗ = �ω(θ).

Licensed to Tech Univ Wien. Prepared on Thu May  3 03:39:10 EDT 2018 for download from IP 128.131.237.128.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

Sh:1052



LOWER BOUNDS 5381

Stage B.

(∗)4 Now without loss of generality there is a sequence 〈μn : n < ω〉 such that
(a) μ0 = θ+.
(b) μn = cf(μn).
(c) 2μn = μn+1 .
(d) Hence μω :=

∑
n μn = �ω(θ).

(e) The forcing axiom ∗ωμn
and < μn+1 dense sets hold.

Why? Is it the same as in the proof of Claim 2.11, but note that the forcing
may (in fact does) collapse �ω+1 to �ω(ω)

+. Also in the case i = 1 letting wlog
λn ∈ [�k(n),�k(n)+1(ω)) wlog k(n) is increasing and k(n+ 1) > k(n) + n.

(∗)5 Without loss of generality, in addition, letting θω = (�ω(θ)), we have 2
θω =

θ+ω and μω+1 = 2μω is >
∑

n χn and as in (∗)4(e) the forcing axiom ∗ω
θ+
ω

and < μω+1 dense sets hold.

Stage C. We deal with the case i = 1.
By Corollary 2.10, for every n, Prθ,κ(μn) holds. By an easy compactness for

singulars argument we have, as ℵ0 < cf(θ∗), also Prθ,κ(μω).
Now clearly for each n, ∂n < Υn as in the proof of Claim 2.11, there is a graph

Gn with |An| vertices, coloring number ≥ λn and list-chromatic number θ.
Taking then the disjoint sum of all Gn we have established (A)2 ⇒ (B)2.
Stage D. i ∈ {3}. Similarly, but we use (∗)5. �

Remark. We can replace �ω(θ) with �δ(∗)(θ) when δ(∗) < cf(κ).

Proof of Theorems 2.1 and 2.2. The proofs consist of combining the lemmas above.
�

We conclude with a few simple implications that are needed above.

Claim 2.13. Assume that θ is a regular cardinal and 2κ ≤ θ ≤ λ. We have (a)λ,θ,κ ⇒
(b)λ,θ,κ ⇒ (c)λ,θ,κ ⇒ (d)λ,θ,κ. If, in addition, θ = θκ (or just ∂ < θ ⇒ ∂κ < λ),
then (d)λ,θ,κ ⇒ (e)λ,θ,κ ⇒ (f)λ,θ,κ,

where

(a)λ,θ,κ λ is minimal such that there is a graph G with λ vertices, coloring number
≥ θ and list-chromatic number ≤ κ.

(b)λ,θ,κ λ is regular and there is a graph G with λ vertices, coloring number ≥ θ,
every sub-graph of G with < λ vertices has coloring number ≤ θ and the
complete bi-partite graph K(κ, 2κ) is not weakly embeddable into G.

(c)λ,θ,κ λ > θ is regular and there is C such that:

(α) C = 〈Cδ : δ ∈ S〉.
(β) S ⊆ {δ : δ < λ ∧ cf(δ) = θ} is stationary.
(γ) Cδ ⊆ δ and otp(Cδ) = θ.
(δ) If u ∈ [λ]κ, then {δ ∈ S : u ⊆ Cδ} is bounded in λ.

(d)λ,θ,κ λ > θ is regular and for some μ < λ for every ∂ ∈ [κ, θ) there is A ⊆ [μ]∂

of cardinality λ such that u ∈ [μ]κ ⇒ (∃<λv ∈ A)(u ⊆ v).
(e)λ,θ,κ λ > θ is regular and there are μ < λ and {A∂ : ∂ ∈ [κ, θ)} such that

A∂ ⊆ [μ]∂ is a κ-family of cardinality λ.
(f)λ,θ,κ λ > θ is regular and there are μ < λ and {a∂ : ∂ ∈ [κ, θ)} such that

a ⊆ Reg ∩ (μ \ θ), |a∂ | = ∂ and (
∏

a∂ , <[a∂ ]<κ) is λ-directed.

Licensed to Tech Univ Wien. Prepared on Thu May  3 03:39:10 EDT 2018 for download from IP 128.131.237.128.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

Sh:1052



5382 SAHARON SHELAH

Proof. (a)λ,θ,κ ⇒ (b)λ,θ,κ. Choose G witnessing (a)λ,θ,κ. We know that λ is regular,
and without loss of generality the vertex set of the graph is λ. The coloring number
is ≥ θ by the choice of G. If H ⊆ G has fewer than λ vertices, then it has coloring
number < θ by the minimality of λ . Also the complete bi-partite graph K(κ, 2κ)
and even K(κ, κ+) is not weakly embedded in G because its list-chromatic number
is κ+ and λ > 2κ and even just λ > κ+. Minimality of λ gives more. So (b)λ,θ,κ
holds.

(b)λ,θ,κ ⇒ (c)λ,θ,κ. See [9] or [10]. Assume that the vertex set is λ and let
S = {δ : (∃α ≥ δ)(|G[α] ∩ δ| ≥ θ)} where G[α] = {β : (α, β) is an edge of G}. If S
is not stationary, then using “every subgraph with < λ vertices has coloring number
≤ θ” we conclude that G has coloring number ≤ θ. By renaming we get (c)λ,θ,κ.

(c)λ,θ,κ ⇒ (d)λ,θ,κ. For each ∂ ∈ [κ, θ) we find, by Fodor’s lemma, α∂ < λ such
that A∂ = {δ ∈ S : |C∂ ∩ α∂ | ≥ ∂} has cardinality λ. So α∗ =

⋃
∂ α∂ < λ satisfies

the desired conclusion for the μ that is defined as μ = |α∗| so by renaming we are
done.

(d)λ,θ,κ ⇒ (e)λ,θ,κ. When, e.g., ∂ < θ ⇒ ∂κ < λ for each ∂ ∈ [κ, θ) let 〈u∂,α :
α < λ〉 list A∂ , and for α < λ let Wα = {β < λ : |uγ,β ∩ u∂,α| ≥ κ}. As
|[u∂,α]

κ| ≤ ∂ < λ = cf(λ), the set W∂ is bounded in λ, hence for some club E∂ ⊆ λ
it holds that α < β ∈ E∂ ⇒ |uγ,α ∩ u∂,β | < κ, so {u∂,α : α ∈ E∂} is as required.

(e)λ,θ,κ ⇒ (f)λ,θ,κ if ∂ < θ ⇒ ∂κ < λ, by [11] 6.1. �
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