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Constructing Boolean Algebras for cardinal invariants

SAHARON SHELAH

Abstract. We construct Boolean Algebras answering some questions of J. Donald Monk on cardinal invariants.
The results are proved in ZFC (rather than giving consistency results). We deal with the existence of superatomic
Boolean Algebras with “few automorphisms”, with entangled sequences of linear orders, and with semi-ZFC
examples of the non-attainment of the spread (anchdl.

Annotated content

81 A superatomic Boolean Algebra with fewer automorphisms than endomorphisms
We prove in ZFC that for some superatomic Boolean Algdbree have AutB) <
End(B). This solves [1, Problem 76, p. 291] of Monk.

82 A superatomic Boolean Algebra with fewer automorphisms than elements
We prove in ZFC that for some superatomic Boolean Algéhrae have AufB) <
|B|. This solves [1, Problem 80, p. 291] of Monk.

83 On entangledness
We provethatijt < k < x < Ded(n)and2* < A, andk isregular, and < U]Pd(}()
(see Definition 3.2), then Efs 1), i.e., there is an entangled sequence. dihear
orders each of cardinality. The reader may think of the case

w==Ry, «k=cf(x)<y=24=2"%<2 and r=y".

Note that the existence of entangled linear orders is connected to the problem whether
always[[;_, Inc(B;)/D > Inc([];_, B;/D) for an ultrafilterD on 6. We rely on
quotations of some pcf results.

84 On attainment of spread
We construct Boolean Algebras with the spread not obtained underZF&CH is
violated strongly enough, even just for regular cardinals”; so the consistency strength
is ZFC. We consider this a semi—ZFC answer.
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1. A superatomic Boolean Algebra with fewer
automorphisms than endomorphisms

Rubin has proved that ¥,+, then there is a superatomic Boolean algebra with few
automorphisms. We give here a construction in ZFC.

We use some notions of [9], they can be found in [5]; in particQlda] = J_g[a] +
(a\bg[a]). For this section we assume

HYPOTHESIS 1.1. (a) = (A; : i < &) is a strictly increasing sequence of regular
cardinals larger thaéy; leta = {A; : i < §}.

(b) ro > 219, or at leasto > |pcf(a)|.

The main combinatorial point used in our construction is given by the following.

PROPOSITION 1.2 There are sequenceg? : 6 € pcf(a)) and (bg[a] : 6 € pcf(a))
such that

@ f7 = (fl:a <0) C[[ais a<y,q-increasing cofinal sequencghy[a] : 6 €
pcf(a)) is a generating sequence, afd= max pcf(a) = by[a] : a

(b) £9 | (a\bg[a]) is constantly zero,

(c) if 61 < 62, a2 < B2 then

f22 1 (b, [a] N bgy[al) € {£22 | (boy[a] N by, [a]) : @1 < 61).

(d) for 6 e pcf(a) andx € bg[a], £7 (1) is a limit ordinal > sup(A N a).
(e) if 61 < 69, both inpcf(a), then there arer < w, 01, ..., 0, < 0 (all from pcf(a))
such thatbg, [a] N bg,[a] = J;_1 bo[a].

Proof. Leta’ = pcf(a), so|a’| < min(a’) and pcfa’) = o’ (by [9, Chapter |, 1.11]). We
can find a generating sequengg[a’] : 6 € o) (by [9, Chapter VIII, 2.6]), and hence a
closed smooth one (by [9, Chapter I, 3.8(3)]). Now repeat the proof of [9, Chapter II, 3.5]
or see [5]. Note that “smooth” means

oebgld] = b[a]C byla],

“closed” meangyg[a] = pcf(bg[a]) N a; together clause (e) follows. O

DEFINITION 1.3. Let(f? : 6 € pcf(a)) and(bg[a] : 6 € pcf(a)) be sequences given
by 1.2 (so they satisfy the demands (a)—(e) there).

1. For¢ € {0, 1}, 6 € pcf(a) anda < 6 we define the Boolean rin@ﬁ»a of subsets of
supa). We do this by induction of, and for eacl® by induction onx as follows.
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(@) If & = min(a), « = 0, thent’a is the Boolean ring (of subsets of gap)
generated by

{[suplanNi),y) A €a, sUanNi) <y < A},

that is the closure of the above family unden y, x Uy, x — y.
(b) If 6 € pef(a)\{min(a)}, then letB) o = U, conpeta) Br.o-
(¢) If 6 € pef(a), @ < 6 is alimit ordinal thensy , = Ug_, B 4
(d) If 6 € pcf(a), « =6, thent’a is the Boolean ring generated by

U Bg,ﬁu{ U [sup(kﬂa),k)}.

B<a A€bg[a]
(e) If6 € pcf(a),a =B +1<6,then
() Bg’a is the Boolean ring generated by

Bj U { | [sup@n), fé’(M)} ,

L€byp[a]
(ii) Bel’a is the Boolean ring generated by

By, U [ U [supann), £ 00 + 1)}.

A€bg[a]
2. We let

W, = U [supani), ff()  foré e pef(a), p <o,

’ A€by[a]
xby = U [sup@ni), fi(0) +1) foro epef(a), f <o,

’ rebg[a]
yvo = U I[supxna),nr) for 6 e pcf(a),

A€bg[a]

¢ = [sup(rNa), o) fora e [sup( Na), 1), A € a.

3. By , is the Boolean algebra of subsets of )menerated bys; ,, andB* stands for

the Boolean Algebra of subsets of supgenerated bﬁﬁqax pcita), max pcia)”

[After we shall note thaB® = B (in 1.4) we can writé8° = B = B'.]

PROPOSITION 1.4. 1B , is increasing iy, and for a fixed, B , is increasing in

« and is actually a Boolean ring of subsetssof(a).

2. B, is the Boolean ring generated by

{yo ioepcf(@)nd or 0 =a =0} U{zq : ¢ < SUp@)} U
{xf;,a:o<9, o epcf(a), « <o, £ <2}U
{xgsﬂ:,3—}-1<oz&£<20f,3+1=a&€§m}.

355



Sh:641

356 SAHARON SHELAH ALGEBRA UNIVERS.

3. If a is zero or limit< 6 € pcf(a), thenB) , = B} , andBY , = B} ,.
4.1 (01, 01, 1) <pex (2,2, £2) anda; € By , fori = 1,2,thenas Nay € Byl , .
5. 1f¢; € {0,1}, a; < 6; € pcf(a) fori =1,2and

0L<brv(r1=0&ar<a)V(O1=0& a1 =ar2& 01 < {7),

01 . . o
thenBy; , isanideal of3,; , .

Proof. (1)—(3) Straightforward.

(4) First note that it is enough to show the assertion under an additional demaag that

are among the generators of the Boolean rifigfs, Bﬁj»az, respectively, as listed in part
2).

CASE 1. One ofi1, az is z, for somea < supa).

Then the other is either, or zg, orngﬁ, and in all cases the intersectionn a is either

{1

empty or it isz, for someo’ < . Henceai Naz € By, .-

CASE 2.a1 = yg, ap = yg» for somed’, 8” € pcf(a).
If 8” < 6’ then, asy; € Bﬁial, we easily getiy € Bﬁi , and thus the intersectian N az
is in this Boolean ring.

So we may assume that < 6”. It follows from 1.2(e) that there argy, ..., 0, <6’
such that

o

ber[a] N bgr[a] = (] boy [a].
k=1

Thenai Naz = yo, U+ - U yg, @ndyoy, - .., Yo, € B ., SO We are done.

CASE 3.a1 = ygr, az = xp, 5 for somed’, 0” € pcf(a), m < 2,8 < 6”.

If ” < 6’ thenay € Bgi «, @nd we are done; so assume that< 6". It follows from

1.2(c) that thenff | (by'[a] N berlal) = £2' | (by[a] N byr[a]) for somee < 0. Like

in Case 2, one shows thag N yg» € Bf)l , alsoxy € B4 But nowa; Nay =

¢ 1,017 01,01"
X1 o N or N yor) € By, -
CASE 4.a1 = x[ g2 a2 = Yo for somed’, 6” € pcf(a), B < 0',m < 2.
If 8” < 6’ thenay e Bﬁial, and ifd” = 0’ thenay Naz = a;. So we may assunéé < 6”.
If bg:/[a] C byr[a], then clearlya; Naz = a; and we are done, so suppose otherwise. Then,
using 1.2(e), we find1, ..., 0, < 6’ such thaby[a] N by [a] = J;_; bs[a]. Since, in

this case, alb; are smaller thad’ andx); 5 NYeor = Uke1 Yo N Xp g We easily conclude

L1
a1 Nay € 691,061'
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CASE 5. a1 = ngjﬁ,, ap = ng,’fﬂ,, for somed’, " € pcf(a), B/ < 6', B’ < 6" and
m',m" < 2.
If (0”7, 8", m") <gex (', B’, m") then we are easily done.

If60” =0, 8" =B and 0=m’ < m” = 1, then clearlyz1 Naz = as.

Assume thad” = 6’, 8/ < B”. Then, by 1.2(a), we fingy, ..., ur—1 € 6’ N pcf(a)
such that

wea: fhw < £ ) S | bylal Ua\by).
Jj<k

Then clearly

a1 Naz = U(alﬁazﬁyu_i) Ula Uyw
Jj<k j<k

Also, for j < k, we have

Yu; € B

01,01 and ayNaz N yy; =(alﬂyu,-)ﬁ(azﬂyuj),

and the seta; Ny, andaz N y,; are intiO{l by (suitably applied) Case 3. So we can
easily finish.
The only remaining possibility i8' < 6”. By 1.2(a) we may picly < 6 such that

£ 1 gr[a] N bgrlal) = f2 1 (bgr[a] N by [a]).

Thenai N ap = xé}?:ﬂ, N xg}:’y N yg N ygr. By the discussion above we know that

m’ m” L1
Xy g N Xg , € 891,011'
done. Otherwiseyy: N ygr € BY , € B

the required conclusion.

. ’ 4
Now, if yo € yg» thenay N az = xy 5 N xp Y and we are

{1

oy (compare Case 2), and again we easily get

(5) Follows. O

PROPOSITION 1.5. 1[5’5,0 is a superatomic Boolean ring wiffiy} : y < sup(a)} as
the set of atoms.

2. By , is a superatomic Boolean algebra, in particulaf is.
3. Ifa, B < 0 € pcf(a) andy = »f (ordinal exponentiation; sg < 6 anda+y < 0),
thenthe rank ofxg,aw —xJ,is> B.

Proof. 1) Straight by induction ol and for a fixed by induction orw < 6 using 1.4(5).

2) Follows.
3) Easy by induction ors. 0
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PROPOSITION 1.6. 1The algebraB has exactlysup(a) atoms, so
|Atom(BY)| = sup(a).

2. |B] = max pcf(a).
3. |Aut(B)| < 25UR®),

Proof. Parts 1), 2) should be clear. Part 3) holds as the algetras supa) atoms by
part (1) (and two distinct automorphismsbdiffer on an atom). O

PROPOSITION 1.7 The algebra has2MaPci@) endomorphisms.

Proof. Let Z € max pcf(a). We define an endomorphisfy € End(B) by describing
how it acts on the generators. We let:

T7(zo) = zg Iif Bismaximalsuchtha <« < B+ w and:
[B=0o0rglimitor« = g € | J[suplan i), supani)+w)l,

A€a

Tz(y¢) = Yo,

0 0
Tz (xg’a) = Xg.a

xg o if & < maxpcf(a),
Tz(xy,) = { x5, if 6 =maxpcfa), « ¢ Z,
xj o if 6 =maxpcf(a), o € Z.

One easily checks that the above formulas correctly define an element @)Erziearly
Z1 # Zp impliesTz, # Tz, and we are done. O

So we can answer (in ZFC) Monk’s question [1, Problem 76, pages 259, 291].

CONCLUSION 1.8. Assume that is a strong limit singular cardinal, and(gf) > Rg
(or just pp~(n) = (2*)*, so most of those with ¢f) = Rg are OK) andu < « =
cf(x) < 2 < 2¢ (always suchu exists and for each sughsuchk exists). Thenthere is a
superatomic Boolean Algebiasuch that:

(@) Bl =«,

(b) |Atom(B)| = u,

(©) |Aut(B)| < 2,

(d) |EndB)| = 2-.

Proof. We can finda € Regn u such thata| = cf(u) andk = max pcf(a). Why? We
know

2 = W = cov(u, w, (cf ()™, 2) = cov(u, i, cf(w)*, cf (w)),

and now we use [9, Chapter Il, 5.4] when(g) > Ro; see [5, 6.5] for references on the
cf(u) = Rp case). O
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2. A superatomic Boolean Algebra with fewer
automorphisms than elements

Monk has asked ([1, Problem 80, pp. 291, 260]) if there may be a superatomic Boolean
Algebra|B| with “few” (i.e., < |B|) automorphisms. Remember that ABif > |Atom(B)|
if |JAtom(B)| # 1.

In this section we answer this question by showing that, in ZFC, there is a superatomic
Boolean AlgebraB with Aut(B) < |B|. Moreover, there are such Boolean Algebras in
many cardinals.

For our construction we assume the following:

HYPOTHESIS 2.1.(«) u is a strong limit singular cardinal of cofinalityp,

(B) =2k <4,

(y) T is atree withe levels,< A nodes and the number of itsbranches ig > A, and
T has a root.

Note that there are manyas in clauséwx) of 2.1, and then we can choose= 2* and,
e.g0.k =min{k : 2 > A}, T ="~ 2.

THEOREM 2.2. There is a superatomic Boolean Algelitasuch that:
B|=x and |AtomB)| =|T|+ u < |Aut(B)| < A.
Proof. LetT™ = T Ulim(T), so|T+| = x. Let

F = {f: fis aone-to-one function, Dotf) C T x u,
[Dom(f)| = u, Rand f) S T x p\Dom(f)}.

Clearly|F| < |T x pu|* < APF = 2M)F =20 = ).

Letx,a) = x0 = {(t, @)} (fort € T ande < p) andlety; = {(s, a) : s <7 t anda <
w} (fort € TT). (Note that if1, , are immediate successorssothenz,, = z,,; also the
family {z, : t € T™}is closed under intersections.)

CLAIM 2.2.1. There is a family4d, C [T x u]™° such that

(a) if y, y” € Ay are distinct, thery’ N y” is finite,
(b) ifr € TT andy e Ay, then

yCz VvV |lyNzl < Ro,

(c) ifY € [T x u]*, and f is a one-to-one function frorto T x u\Y (so f € F),
thenthere isy € A2 such thatf[y] is almost disjoint from every member.45.

Proof of the Claim.List 7 as{g, : « < A}. By induction one < % we choosey,, y,,
such that:
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(@) ya,y, are disjoint countable infinite subsets®fx u,
(B) Yo y, are almost disjoint to any” € {yg, y; : < a},

(¥) Yo S DOM(ga), vy = gulYel(= {gale) : € € ya}),
(8) if t € T then eithery, C z; or |y, Nz:| < No.

So assumeg, y}} for B < a have been defined. Pick an increasing sequénge n < w)
of regular cardinals such that= )", _ u, and 2 < ;1.
Choose pairwise disjoint sets € [Dom(gy)]*" (for n < w). We may replace’,, by
anyY, € [Y,]*, and evert, e [Y;,]"» with a strictly increasing sequenék, : n < w).
LetYy, = {(t/, ') 1 i < u,} be an enumeration (with no repetitions). Without loss of
generality:

¢ the sequencdevel(r') : i < u,) is constant or strictly increasing,
e the sequenc&! : i < u,) is constant or strictly increasing, and
o for eachn < w, for some truth valug¢, we have

(Vi < j < ) (truth value(s]' <7 t}’) =1t,).
[Why? E.g. usei,+1 — (/,Ln)g]. Cleaning a little more we may demand that
e for n # m, for some truth valug,, ,,,
(Vi < un)(Vj < ) (truth value(r! <7 t}") =tm.n).

[Why? E.g. use polarized partition relations.] Using Ramsey’s theorem applied to the
partition F (m, n) = t,_, (and replacingu, : n < w) by anw-subsequence and possibly
replacing((", o) 1 i < wa) by (7, @1y 1 < 1)), without loss of generality:

either: for some € T, for everyn € [] wu, we have

n<w

{(trf(é)’ O‘ﬁ(e)) <o} Sz,

or: foreveryt € Tt andn € [] u, we have

n<w

H(trf(é)’“ﬁ(e) H<w)lnz| <1l

Next we choosé(t,, 8,,) : 1 € [1,-, e} S Y (NO repetitions) and for eache [, _,, in
we consider

ynz{(tn{lvﬂn{e):g<w}v )’;;:ga[yn]

as candidates foy,, y,, respectively. Clauséx) holds as Ran@,) N Dom(g,) = 4,
clausegqy) and(8) are also trivial. So only clausg) may fail. Each8 < « disqualifies
at most 2° of then’s, i.e., of the pairg(y,, y;). Soonly< |a| x 2% < i = |“4u] of
the n’s are disqualified, so some are OK, and we are done. This finishes the Proof of
the Claim. d
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Let.4, be a family given by 2.2.1 and let
Ao={{x}:xeT x u} and Ar={z, 1t e T}

OurBoolean algebris the Boolean Algebra of subsetsiok 1 generated byloU.A1UA>.
CLAIM 2.2.2. The algebraB is superatomic.

Proof of the Claim.Clearly, the familyl = {b € B : B | b is superatomigis an ideal
inB. Plainlyx.q) € I for (r,®) € T x . Now, by induction orw < « we prove that if
t € TT is of levela, thenB | z; is superatomic.

If « =0, thenz, = ¢ and this is trivial.

If « = B + 1 andt is the immediate successor gfthen (asB | z; is superatomic by
the induction hypothesis) it is enough to prove tiat (z;, — z;) is superatomic. Now,
B | (z; — z5) is the Boolean Algebra of subsets{ef x 1, generated by

{Gs, o)} i < pbU{yNn({s}xpn):ye A,
and we are done by 2.2.1(a).

If  is a limit ordinal and cfa) = Ro, then(B [ z;)/ide({z; } g : B < a}) is a Boolean
Algebra generated by its atoms

yNz tyeArandy <z & /\—'ySZs

s<t

(remember 2.2.1(ab)), and thug, € I. If « is limit of uncountable cofinality the same
conclusion is even more immediate.

Sofz; :t € Tt} C I, andB/idg({z; : t € TT)) is a Boolean Algebra generated by its
set of atoms which is included in

{ye A2 =@NQ < z)}
(by 2.2.1(a)). Hence we conclude ttiats superatomic. O

CLAIM 2.2.3. 1. AtomB) = {x¢,¢) : (t,a) € T x pu}, soB has|T| + u atoms, and
1Bl = x.

2. |Aut(B)| < 2*; moreover for every’ € Aut(B)

HEt, o) eT x p: fxea) #Xe.mll < 1.

Proof of the Claim.(1) Easy.

(2) Clearly the second statement implies the first. S¢let Aut(B) and suppose that
f moves at least atoms. Then there ig € F such thatf (x(,¢)) = xg(,«) for all
(t,«) € Dom(g). But, by 2.2.1(c), there ig € A such thaty € Dom(g) andg[y]
is almost disjoint to every member gf,. An easy contradiction.
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REMARK 2.3. 1. As EndB) > |B| this gives an example for [1, Problem 76], too.
Still the first example (from §1) works in more cardinals and is different.

2. With a little more work we can guarantee that the number of one-to-one endo-
morphisms of is < 2+,

3. Alternatively, for the proof of 2.2.1 we can ugé° = 2* almost disjoint subsets
of Dom(gy), say (ysi : i < 2*); for eachi choosey[m. € [y.i1%° such that it
satisfies clause (b) of 2.2.1 (exists by Ramsey theorem), so for saméave:y, ;,
Vo.i = &alya.i] are almost disjoint torg, y/; for B < a. SOya.i, y, ; are as required.

3. On entangledness

DEFINITION 3.1. 1. Asequencé = (Z, : a < o*) of linear orders is-entangled if:

(a) eachZ, is a linear order of cardinality «, and

b) ifn <w,a1 < -+ < ay <oc*,andt;Z €1y, fore e{l,...,n},¢ <k are such
that; £ & = tf 7+~ t§, then foranyw C {1,...,n} we may find; < & < «
such that: '

tew = I, =1 <tf  and
el ....n\w = I, |=t§ <tf.
If « is omitted we meank = min{|Z,| : @ < a*}.

2. Engk, 1) is the statement asserting that there is an entangled seqlieacéZ,, :
a < M) of linear orders each of cardinaliky

DEFINITION 3.2. 1. For an ideal onk we let

Us(x) = min{]A|: A C[x]< and
Vfe)@Ace A{i <k: f(i)e A} e J+)}.

2. Ded" () =: min{#: there is no linear order with elements and density ).

THEOREM 3.3.Assume thait < « < x < Ded"(u), 2* < A, « is regular and
A < Ujba(x) (see Definitior8.2). ThenEngk, A) by a sequencéZ, : o« < A) of linear
orders of cardinalityc and density. (see Definitior8.1).

Proof. Let 7 be adense linear order of cardinalityvith a dense subsgt* of cardinality
w. Without loss of generality the set of elements’bfis x and of 7* is u. Letu"g (for
i

i <k, < x)be pairwise distinct members gf\ 7*, and leti = (up 1i <K, & < Xx).
Forf e “xletZ; = {ug,(l.) i< k).



Sh:641

Vol. 45, 2001 Constructing Boolean Algebras for cardinal invariants 363

MAIN CLAIM3.3.1 Ifn < w, fo,..., fu_1 € “x andZ = (Zy, - £ < n) is entangled,
then we can findd € [x]* such thaj.A| < 2 and:

if fe*yand(VA € (Vi < k)(f(i) ¢ A), @)

thean(Iﬂ is entangledv* means “for every large enough’

Proof of the Claim Assumefy, ..., fu—1 € “x andZ = (Zy, : £ < n)is entangled.
Let

= {f € *x : I7(Zy) is not entanglefd

For eachf, = f € F we fix wl/ € {0,...,n} andtf‘f € Iy, (for £ < n, j < «)
with no repetitions witnessing théﬂlf) is not entangled. Next we fix a moddl, <
(H( 3§ (X)), €, <*) such thatw + 1 € Ny, NIl = pu, {Z,Z7, T, f} € Ny andi/ =
( Y <n, j <«k) e Ny. Note that fori < « we have:

0] tl.’f ¢ Ny whenever ¢ Ny,
(i) xe Np& x| <k & SUp(NyNk) <i <k = 1i¢x.
Now we define a relatio® on F letting for f, g € F:

f Eg ifandonlyif () w'/ =ws,
(B) NyNx=NgNgx, '
(v) (V€ <n)(¥je Ny mc)(;f*f = tf-fg),

Note thatF is an equivalence relation ¢f, and there are at most Z-equivalence classes.
Therefore, in order to show 3.3.1, it is enough that for eBebquivalence clasg/E we
define a se¥y/r € [x]“ such that:

if feg/Ethen—(V*i)(f(i) ¢ Y/E). X)
Then, lettingA = {Y, /¢ : ¢ € F} we will get a family as required in 3.3.1.

Soletg € F, w* = wf and leti* = sup(N, N«).
Fori <k, and a sequende= (t‘ : ¢ < n) € [,., Zy, we let

Yi={f():feg/E& (Ve <m)( ' =19 & j <K&um)=t”f}
We claim that
(iii) if i > i* (buti < ) andf € [],., Zy,, then|Y}| < 1.
Why? Assume toward contradiction thét(j1), f2(j2) are two distinct members dl”

e m
fi. f2 € g/E, t;° fm — 4 (for ¢ < n andm = 1,2) andr” - uﬁ(ll) £ u fz(Jz)
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1172, Pick disjoint intervalga®, b1), (2, b?) of 7* such that*/"  (a”, b™) and ¢ #
I = 16 ¢ (@™, b™)] (form = 1, 2andé < n). Withoutloss of generality, if € w* then

bl < a?, elseb? < al. We canalso picky, by € J* (for¢ < n)suchthat, < ¢ < by and:

o if t¢ # ¥ then(ae, b)) N (ap, by) = 9,
o if 1t £ tl."’f’” then(ae, be) N (@™, b™) = 0.

Now, we are going to show that

(iy* if w € n, m € {1,2}, andig € Ny, N «, anda/ € J* N [ac 1) and
b e J* N (%, be] (for £ < n),
then we can fing € Nz, N« \ig such that

()11 € (@™, b™), and

eﬂ’)’l l
Eew:>a2’<t.f <t* and (*);

J
L,
tenmw = 1f < < b

So assume that (iii)fails, so there is ng € N, N «\ig such that(x); holds. First note
that then also there is nd < i (but ;" > ip) satisfying(x) . [Why? Supposex) ;: holds
true and choose;, by € J* such that

.
tew = af:a}f<t.;f’”

<bf <t and
J

¢ ¢, n
Zen\w=>t<a2‘<tj,m<b2‘=bg.
The set

Z={j ek\io: (V¢ <n)@} <1;"" < b)) & aw < 17" < by}

is non-empty (as witnessed hy) and it belongs to the mode¥,. Picking any;” €
Z N Ny, provides a witness for (iif) (so we get a contradiction).] Next, the set

Zo=:{j <«: (VL <n)t;"" € @ b)) & " e @, b))

belongstaVy, andi belongstoit. But > i*, so necessaril¥g has cardinality (remember
(ii)). Let

Zy=:{j € Zo\io: Gj1 < )1 € Zo& (V& <)t " < 177" =t e w))).

By the assumption that (iif)fails (and the discussion above) we have Z;. But again
Zy € Ny,, S0|Zo\Z1| = k. Since the sequenckis entangled, we can fingh < j» in
Zo\Z1 such that(v¢ < n)(tfl’f’” < tfz’f’” = ¢ € w). But thenj; withessesjo € Z1, a
contradiction. So (iiij really holds.
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Now we are going to use (iif)twice to justify (iii). Firstwe apply (iii} for w =: w*Nn,
io =0,m = 1witha, = ay, b = by gettingj1 € Ny, N« such that

CIr gt and

Kew*:>ag<tjl

ten\w* =1t < tf.l’fl < by,

andt;’l’f1 € (at, b1). Next we choose;", b € J* (for ¢ < n) such that
l?fl

J1
ten\w* = ' <bf <1t

tew* = 1M <af <t* and b = by,

fl’fl and az_ = qy.
Then we again apply (iif) this time forw =: w* Nw, m = 2,ip = j1 + 1 anda/, b
chosen above, getting € N, N«\ j1 such that, in particulatye < n)(tfz’f2 € (a) . b))

andtfz’f2 € (a2, b%). Then clearly

Ve =m(;t <15 =tew),

andj; < jz bothareinNy Nk = Ny, Nk. Sincef1, f, are E-equivalent we know that
tf’fl = t‘fl’fz (for ¢ < n), so we may get a contradiction with the choice-Gfand we finish
the proof of (iii).

Now we let

Yge=|J{Yi*<i<c&ie[][Zsy-
t<n
It follows from (iii) that | Y,/ £| < «. Clearly, for eachf € g/E the set{j <« : f(j) €
Yo/} is of sizex. HenceY,,  is as required irf) and this finishes the proof of 3.3.1.

Continuation of the proof of 3.3: Now we can construct the entangled sequence of lin-
ear orders as required in the theorem. For this, by inductian am., we choose functions
f« € ¥x such that:

the sequencéZy, : f < @) is entangled (®q)

Note that ifa < A is limit and fz have been chosen fgr < « so that(®g) holds (for
B < «a), then alsa®,,) holds. Letfy € “x be any function; note that®) holds true ag
is > n which is the density of7, so inJ there is no monotonic sequence of length.

Suppose we have defingid € “x for B < o so that(®,) holds true. Letg¢ : ¢ < o)
list all the sequence&; : ¢ < n) C «a such thatr < w and /\[1#2 Be, # Be,. Let
BE = (B, 0) L < ng). Clearly without loss of generality

af=a| V (0 <0 & a* <w).
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For eachy < o* we apply 3.3.1 t0f(;.0). - - . fp(z.n,—1) tO get a family.AS < [x]“ as
there (so in particulad® | < 2#). There isf, € “x such that

(V¢ < a®)(VA € AHV*i < k)(fuli) ¢ A).

Why? Otherwise J, _,- A° exemplifies

Ujpa00) < | [ A7| < (al+R0) - supll 4| : ¢ <™} < (o[ +R0) x 2 < 4.
¢<a*
Now, with f, chosen as abovég,1) holds true. O

REMARK 3.4. Theorem 3.3 should be compared with:

(@) [9, Chapter II, 4.10E], see AP2 there on history. There we got only.Ens
(b) [12, 82], but there the density is higher.

CONCLUSION 3.5. 1Letx be an uncountable regular cardinal 2%, x < x < 2%,
andU na(x) > 2% (e.g.,x = 2%, cf(x) = k < x). Then there is an entangled
sequence of Iengwj'?d()() of linear orders of cardinality.

2. Assumey is a strong limit singular cardinaly < « = cf(x) < x < 2* and
Upa(x) > 2* (e.g.,x = 2*, cf(x) = k < x). Then there is an entangled sequence
of IKengthU,Kbd(X) of linear orders of cardinality.

4. On attainment of spread
In this section we are interested in the following question

QUESTION 4.1.Let A be a singular cardinal.

1. Is there a Boolean algebr such that™(B) = A, e.g., in the following sense: there
is no sequencéy, : @ < 1) C B\{0} such that eacl, is not in the ideal generated
by

ly ={ap : p #a},

but for eachu < A there is such a sequence?
2. We can ask also/alternatively fod™ (B) = A (and/orhL™ (B) = 1) defined similarly
using{ag : B < a} (and/or{ag : B > a}, respectively.

For the discussion of the attainment properties of spread we refer the readerto [1, p. 175];
the attainment of hd, hL is discussed, e.g., in [1, p. 198, p. 191]. Forcing constructions for
different attainment properties for hd and hL are presented in [2].
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THEOREM 4.2. 1.Assume that is a strong limit singular cardinal,
Ro < cf(u) < u <cf(h) <A <28,
Then

(X,) there is a Boolean Algebr@ satisfying:
() IB] =A=s(®),
(i) s(B) is not obtainedi.e.,sT(B) = 1),
(i) moreovethd™ (B) = hL*(B) = A.

2. Assume that

(®2) (@) u<cf(h) <2,
(b) (A; 1 i < §8) is a (strictly) increasing sequence of regular cardinals with
limit w,
(c) J is anideal ons extending/?d, A € Jt,8\A € JT,
(d) (g : @ < cf(d)) is a<, | 4-increasing<; | ,-cofinal sequence of mem-
bers of[[;c4 Ai, and (h, : o < 1) is a sequence of distinct members of
[lies\a 2i such that

J<8 = NHhalj.gpljra<r B<cf <2,

Then(X;) holds.
3. Assume that

(®3) (@) u<cf(h) <2,
(b) (A; :i < &) is a strictly increasing sequence of regular cardinalgu,
(c) J is anideal ons extending/?d, A €5, A € J* ands\A € J T,
(d) go € []i—52i for o < A are pairwise distinct,
(e) among{g, [ A : @ < A} we can find anx; | 4-increasing cofinal sequence
of lengthcf (1),
(M) Hga i <A} <A
Then(X;) holds.

Proof. 1) We shall prove that the assumptions of part (2) hold.
As cf(un) > Ro, we know (by [9, Chapter VIII, 81]) that there is a sequefice: i <
cf(n)) such that

uw>r =cf(y) >

[T

j<i

and tcf( I1 )Li/Jé’f‘(’m) =cf(n).

i<cf(u)
Let (g0 : @ < cf(1)) be an increasing cofinal sequence(]’r[kcfw) Ais <be? )). Let
Cr(pn

he € [[j{A2i41 11 < &} (for @ < 1) be just such thak, ¢ {hg : B < a}, SOA =: {2i :
i <cf(uw}, (ga [A:a < cf(L)), (he | (K\A) : @ < A) are as required?).
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2) Let{y; :i < cf(1)) be anincreasing continuous sequence of cardinals such that

® L=2 ctoy Xis
e xo0 =0, cf(h) < x1 and eacly; 1 is regular.

Fora < A letj(«) < cf(d) besuchthat € [x(), Xj@+1) andletfy € [];_s 2; be such
that:
Jo TA=gj@ and Ja [ (B\A) = hq.

Now forn > 1 we define a Boolean Algebi, (eachB, will be an example):
it is generated byx, : o < A} freely except:

@ ifieAm<w v el liyrinu (ve)<fa, fork <m, € <2n+ 1), and
w € m, and

£<2n&kem\w = Ve < Vir+l,
kew = ar, =ag2nt1,

and there are no repetitions in the sequepwge k < m), andt; € {0, 1},
t t
then mk<m xﬂll;c.n = UZi?)?ﬁ»l mk<m xﬂl’jc,k'

wherextisx if t = 1, and—x if t = 0.

CLAIM 4.2.1. sT(B,) < A, hd"™(B,) < A, hLT(B,) < A.

Proof of the Claim. Assume toward contradiction that the sequege: g < A) C
B, \{0} exemplifies the failure. Without loss of generality, = (,_,,, x;((%%, where
L<m<mg = a(B,£) #a(B,m). For each < cf(1) we chooses; < [x;, xi+1), and
gi(x) < 8, m" < w, t[i, €] € {0,1}, j[i, ] < cf(r) (for £ < m?) such that (note that we
can permutéo (B, £) : £ < mg)):

(i) S;is unbounded iry; 1,
(i) forall B € S; we have
mp=m' & (VL <m")(t(B, £) =t[i, €] & j(a(B. ) = jli. £]),
(i) ((@(B,0): € <m'):p esS;)isaA-system with hearta[i, €] : £ < k'), so

BeSi&t<k = aB, ) =alil], and
a(fr, 1) = (B2, l2) = (BL=P2& l1 =12V ({1 =Ls < k'),

(iv) for g € §;, there are no repetitions in the sequenfgg ¢ [ i (%) : £ < m') and it
does not depend g,
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(v) foreveryp* € S; ande < § the set
(BeSii (Ve <m)(fupe | &= fapro) | )
is unbounded ir$;.
Note that necessarily
(i) j[i, €] =ifore e[ki,m').
Next pick a sets e [cf (1)]¢'™ such that:

(o) foralli € S we haven' = m*, k' = k*,t[i, €] = t[€], &; (%) = &(%),
B) {afi, €] : € < k*):i e S)isaA-system with hearfx(¢) : £ < £*), SO

ieS&L<t* = afi,f] =al),

(y) also((j[i, €] : £ < m*) :i € §)is aA-system with heart;j[¢] : ¢ € w*), where
w* C m*.

Note that ther* C w* C k* (the first inclusion is a consequence(gf, the second one
follows from (vi)).
Also by further shrinking of the set§ (for i < cf(1)) andS we may require that

(A) if i1 < ip are fromS, thenjj[i1, £] < i (for £ < m*),
(B) if i1 # ip are fromS andpy € S;; andpz € S;,, then

{a(Br, €)1 £ <m™ yN{a(B2,£) 1 £ <m™} C {a(f) : £ < £*},
(C) ifip e S, y1 € Sy, then

(V& < 8)ATMi € 8§)(F+1y € SV < m™) (futyt) 1§ = futro) | £)-

Choosey; € S; fori € S. Look atfi = (fy(y.0 & £ < m*).
We can (as in [9, Chapter Il, 4.10A]) find < § and f = (fo, ..., fm*—1) such that
g€ A &> e(x)and:

(x) forevery; < A, thereisi € S such that:

(Ve <m™)(fagio) [ €= fe le) and (V€ € m™\w™)(fa(y.0)(8) > ¢).

So we can choose inductively, iy (for k < 2n) such that; € S, ¢ < A, and

(Ve <m®)(fawy, .0l = fe T e) and (YEem™ \w*) (G < faw,.0() < Skta).

Note that, ag € A, we have

(V€ € W) (fa(y, .0 (&) = &, .0)(8) = gjle(e)
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for eachk < 2n. It follows from clause (v) above that we may pigke S;, \{yi,} such that
(V€ < m*)(fay.0) | € = fa(y,.0) | €)- By our choicesq(y;,, £) = a(y, ¢) for £ < k* (so
in particular for¢ € w*). Now, by the definition oB,,, we clearly haveg, < Ueﬁ?ﬁl ag,,
wheref, = y;, for £ < 2n andpz,+1 = y, finishing the proof fos. -

Now for hd, hL use clause (C) above. O

CLAIM 4.2.2. s7(B,,) > x;+1, more specificallfix, : @ € [xi, x;+1)} are independent
as ideal generators.

Proof of the Claim.Let a* € [x;, xi+1)- We define a functiothy, = h @ {x4 1 @ <
A} —> {0, 1} by:
ifa =a*,
if £g(fo N for) € 8\A,
if Lg(fo N fur) € A, fo(lg(fa N fox)) > far(€g(fou N fur)),
if Lg(fo N for) € A, fo(lg(fa N fur)) < far(Lg(fu N fur)).
We claim that the functioi respects the equations in the definitionBaf To show this
suppose that € A, t; € {0, 1}, v € [[;r_; Air, k< fwy, (for k < m, € < 2n + 1) and
w C m are as in the assumptions@. Now we consider three cases.

CASE 1. fox i ¢ {vr 1 k < m}.
Then, by the way: is defined/i(xy, ) = h(xy, ) for each? < 2n + 1 andk < m. Hence
easily

() hGa)™ = | [ G )™

k<m t#n, k<m
<2n+1

h(xq) =

O Ok

and we are done.

CASE 2. fyx [ i = v, k* € m\w.
THUS fup o) < < fau, () < -+ < fapu () BN h(xag ) = h(Xgy,) OF
h(Xqp 5,) = h(xgu. ). Let £* be 0 in the first case and:2n the second. Note that
also fork < m, k # k* we haveh(xy, ,) = h(xy,,) forall £ < 2n + 1. Hence

() Ay ) = R )% 0[] 2y, ) = ) 7, )%

k<m k#k*, k<m
k<m

and we are done.

CASE 3foc* [l = \)k*, k* e w.
Thusags , = o 2041 (SOh(Xgys ) = h(Xays 5,,,)) @nd also foik < m, k # k* we have
h(xg,,) = h(xq ,,.,)- Hence

ﬂ h(xotk.n)tk = ﬂ h(xak,211+l)tk9

k<m k<m

and we are done.
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Consequently the functioh can be extended to a homomorphigrfrom B, to {0, 1}.
Clearlyh(xyx) = 1 andh(x,) = Oforalla € [x;, xi+1)\{a*}. (Rememberf, | A = g;
fora € [x;, xi+1), and hence

if a# B €xi, xi+1) thenLeg(fo N fp) € 5\A.)
Thus we are done.

3) We can get the assumptions of part (2). O

REMARK 4.3. 1. We cannot really prove in ZFC that there is a Boolean Alg&bra
such that ™ (B) is singular & s(B) singular not obtained) as"(B) cannot be strong limit
singular.

2. Note that the deman@uw)[n < cf(r) < A < 2#]is necessary by [7]. The construc-
tion is like the one in [3, 87]. Earlier see [8, 4.14].

3. Of course, the proof of 4.2(2) shows that we have the respective result for finite
variantss,, of spread, as well as for hdhL,, (if m > 3,i.e.,m = 2n + 1). We refer
the reader to [4, 81] for the definitions of these cardinal invariants (see also [3] for
discussion and some independence results,0omore relevant results can be found
in [13]).

4. Clearly we can put more restrictions i@ () as long as they are satisfied in the end of
the proof of 4.2.1.

So we can give examples to 4.1 if we can have(idy) of 4.2.

PROPOSITION 4.4. 1If « is strong limit singular cardinal2“ > X+, then we have
examples of,, x < cf(h) < A < 2¢ with (X,) (0f4.2), e.g.,A = R +!

2. 1F 8(%) = (26)T«™), Ry < 2" then also there is. € (2¢,2¢"), cf(h) €
[2¢, (29)*™) as needed i#.2(3), and hence[ ).

3. If k is inaccessible (possibly weaky«) = (2<K)+K+4 and®;) < 2¢ then we can
find A € [2=K, 2¢), cf(X) € [27¥, (2<K)+K+4), as in4.2(2), and hence€X,) holds.
Similarly if « is a singular cardinal, or a successor cardinal by p&2).

4. E.g., if¥y,,, < 2%, then fori = Ry, ,, we have an example for this cardinal.
Generally, ifu > cf(u) = 8o, cf(A) = ut andr < 2%, then there is an example
inA.

Proof. 1) Should be clear. (Note that ppc) > R,+,1 by [10, 5.9, p. 408]).
2) First, for some clulf of k4 (for € C = « limit) we have

seC&cf®) <k = pp((29)T% < (2¢)+ Min(C\G+1)) ()1
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(By [10, 84]). Hence (again by [9])

SeC&cf(®) <k = ((29F) < () minC\G+1) (%)2
We can for anys € acqC) with cf(§) = «* do the following: we can find a strictly
increasing sequencg.; : i < «T) of regular cardinals with limit2<)*, 2¢ < A;,
tef ([T, e+ 2i)/JP8 = (29741 (if we assume p@2)*?) > (2)*+1 we can find more
examples).

Note:

i<kt = H)»,- < (297

i<j
(by (¥)2), as the ideal i °%; without loss of generality

[]r <2 (%)3

i<j

Solet(g, 1 a < (29)t5+1y pe <Jb$—increasing and cofinal if], _ .+ A; and letA = {2i :

i<k
i <kt

Now assume’? > A > cf(h) = (2¢)+3+1; suchx exists by the assumption. We can
find hy € <" 2 (fora e [(2¢)3+1, 1)) with no repetitions.

Note |{g,, [ i, h, [i:a <A} < |]'[j<i A1, which has cardinality< 2;. So we can
apply Theorem 4.2(3).

3),4) Same. O

DISCUSSION 4.5. 1. If Cardinal Arithmetic is too close to GCH (% N+ for
everyx), no example exists as by [7], ZF& 2°f¢7®) ~ |B|. [Why? If B is
a counterexample, lét = s*(B) = s(B) (bring a counterexample); clearlyis a
limit cardinal, so 8'® > |B| > A > R, a contradiction.]
If Cardinal Arithmetic is far enough from GCH (even just for regulars), then there
is an example.
| consider it a semi-ZFC answer — see [6] and [11].

2. There are some variants of Problem 4.1 related to various versions of the (equivalent)

definitions ofs, hd, hL. Fors all versions are equivalent [1, p. 175]. Concerning

hd, hL see the discussion of the attainment relations for the equivalent definitions of

hd in [1, pp. 196, 197] and of hL in [1, p. 191]. On the remaining cases see also in
[2, 84].

PROBLEM 4.1. Doe$,, < 2% imply that an example fok = R,,, exists?
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