On the Number of Elementary Submodels of an Unsuperstable Homogeneous Structure

Tapani Hyttinen ${ }^{\text {a }}$ and Saharon Shelah ${ }^{\text {b 1) }}$

${ }^{\text {a }}$ Department of Mathematics, P. O. Box 4, 00014 University of Helsinki, Finland
${ }^{\text {b }}$ Institute of Mathematics, The Hebrew University, Jerusalem, Israel

Abstract

We show that if M is a stable unsuperstable homogeneous structure, then for most $\kappa<|M|$, the number of elementary submodels of M of power κ is 2^{κ}.

Mathematics Subject Classification: 03C52, 03C45, 03C35.
Keywords: Stable structure, Superstable structure, Homogeneous structure, Elementary submodel.

Throughout this paper we assume that \boldsymbol{M} is a stable unsuperstable homogeneous model such that $|\boldsymbol{M}|$ is strongly inaccessible (= regular and strong limit). We can drop this last assumption if instead of all elementary submodels of M we study only suitably small ones. Notice also that we do not assume that $\operatorname{Th}(\boldsymbol{M})$ is stable. We assume that the reader is familiar with [3] and use all the notions and results of it freely. In [1] a strong nonstructure theorem was proved for the elementary submodels of \boldsymbol{M} assuming the existence of Skolem-functions. In this paper we drop the assumption on the Skolem-functions and prove the following nonstructure theorem.

1 Theorem. Let λ be the least regular cardinal $\geq \lambda(\boldsymbol{M})$. Assume κ is a cardinal $(<|M|)$ such that $\kappa=\operatorname{cf}(\kappa)>\lambda$. Then there are models (=elementary submodels of $\boldsymbol{M}) \mathcal{A}_{i}, i<2^{\kappa}$, such that for all $i<2^{\kappa},\left|\mathcal{A}_{i}\right|=\kappa$ and for all $i<j<2^{\kappa}, \mathcal{A}_{i} \not \approx \mathcal{A}_{j}$.

Remark. By using the model construction of this paper and [5, Chapter III.5], we can improve Theorem 1. The assumption $\kappa=\operatorname{cf}(\kappa)>\lambda$ can be replaced by the assumption $\kappa>|\operatorname{Th}(\boldsymbol{M})|$.

See [1] for nonstructure results in the case \boldsymbol{M} is unstable.
We prove Theorem 1 in a serie of lemmas. Let λ and κ be as in Theorem 1. By λ-saturated, λ-primary etc., we mean $F_{\lambda}^{M^{M}}$-saturated, F_{λ}^{M}-primary etc. Notice that \boldsymbol{M} is λ-stable.

The notion λ-construction (i.e. F_{λ}^{M}-construction) is defined as general F-construction in [4].

[^0]2 Lemma. Assume ($C,\left\{a_{i}: i<\alpha\right\},\left\{A_{i}: i<\alpha\right\}$) is a λ-construction and σ is a permutation of α. Let $b_{i}=a_{\sigma(i)}$ and $B_{i}=B_{\sigma(i)}$. If $B_{i} \subseteq C \cup\left\{b_{j}: j<i\right\}$ for all $i<\alpha$, then $\left(C,\left\{b_{i}: i<\alpha\right\},\left\{B_{i}: i<\alpha\right\}\right)$ is a λ-construction.

Proof. Exactly as [4, IV Theorem 3.3].
We write $\kappa^{\leq \omega}$ for $\{\eta: \alpha \longrightarrow \kappa: \alpha \leq \omega\} ; \kappa^{<\omega}$ and $\kappa^{=\omega}$ are defined similarly. Let $J \subseteq \kappa^{\leq \omega}$ be such that it is closed under initial segments. If $\eta, \xi \in J$, then by $r^{\prime}(\eta, \xi)$ we mean the longest element of J which is an initial segment of both η and ξ. If $u, v \in I=P_{\omega}(J)$ ($=$ the set of all finite subsets of J), then by $r(u, v)$ we mean the largest set R which satisfies
(i) $R \subseteq\left\{r^{\prime}(\eta, \xi): \eta \in u, \xi \in v\right\}$;
(ii) if $u, v \in R$ and u is an initial seqment of v, then $u=v$.

We order I by $u \leq v$ if for every $\eta \in u$ there is $\xi \in v$ such that η is initial seqment of ξ, i. e. $r(u, v)=r(u, u)(=\{\eta \in u: \neg(\exists \xi \in u)(\eta$ is a proper initial segment of $\xi)\})$.

3 Definition. Assume $J \subseteq \kappa \leq \omega$ is closed under initial segments and $I=P_{\omega}(J)$. Let $\Sigma=\left\{A_{u}: u \in I\right\}$ be an indexed family of subsets of \boldsymbol{M} of power $<|\boldsymbol{M}|$. We say that Σ is strongly independent if
(i) for all $u, v \in I, u \leq v$ implies $A_{u} \subseteq A_{v}$;
(ii) if $u, u_{i} \in I$ for $i<n$, and $B \subseteq \bigcup_{i<n} A_{u_{i}}$ has power $<\lambda$, then there exists an automorphism $f=f_{\left(u, u_{0}, \ldots, u_{n-1}\right)}^{\Sigma, B}$ of M such that $f \upharpoonright\left(B \cap A_{u}\right)=\operatorname{id}_{B \cap A_{u}}$ and $f\left(B \cap u_{i}\right) \subseteq A_{r\left(u, u_{i}\right)}$.

The model construction in Lemma 4 below is a generalized version of the construction used in [4, XII.4].

4 Lemma. Assume that $\Sigma=\left\{A_{u}: u \in I\right\}, I=P_{\omega}(J)$, is strongly independent. Then there are sets $\mathcal{A}_{u} \subseteq M, u \in I$, such that
(i) for all $u, v \in I, u \leq v$ implies $\mathcal{A}_{u} \subseteq \mathcal{A}_{v}$;
(ii) for all $u \in I, \mathcal{A}_{u}$ is λ-primary over A_{u}, (and so by (i), $\bigcup_{u \in I} \mathcal{A}_{u}$ is a model);
 over $\mathcal{A}_{v} \cup A_{u}$;
(iv) if $J^{\prime} \subseteq J$ is closed under initial segments and $u \in P_{\omega}\left(J^{\prime}\right)$, then $\bigcup_{v \in P_{\omega}\left(J^{\prime}\right)} \mathcal{A}_{v}$ is λ-constructible over $\mathcal{A}_{u} \cup \bigcup_{v \in P_{\omega\left(J^{\prime}\right)}} A_{v}$.

Proof. Let $\left\{u_{i}: i<\alpha^{*}\right\}$ be an enumeration of I such that $u \leq v$ and $v \nless u$ implies $i<j$. It is easy to see that we can choose $\alpha, \gamma_{i}<\alpha$ for $i<\alpha^{*}, a_{\gamma}$ and B_{γ} for $\gamma<\alpha$, and $s: \alpha \longrightarrow I$ so that
(a) $\gamma_{0}=0$ and $\left(\gamma_{i}\right)_{i<\alpha^{*}}$ is increasing and continuous;
(b) if $\gamma_{i} \leq \gamma<\gamma_{i+1}$, then $s(\gamma)=u_{i}$;
(c) if $\gamma<\alpha,\left|B_{\gamma}\right|<\lambda$ and we write for $\gamma \leq \alpha, A_{u}^{\gamma}=A_{u} \cup\left\{a_{\delta}: \delta<\gamma, s(\delta) \leq u\right\}$, then $B_{\gamma} \subseteq A_{s(\gamma)}^{\gamma}$;
(d) for all $\gamma<\alpha$, if we write $A^{\gamma}=\bigcup_{u \in I} A_{u}^{\gamma}$, then $t\left(a_{\gamma}, B_{\gamma}\right) \lambda$-isolates $t\left(a_{\gamma}, A^{\gamma}\right)$;
(e) for all $i<\alpha^{*}$, there are no a and $B \subseteq A_{u_{i}}^{\gamma_{i+1}}$ of power $<\lambda$ such that $t(a, B)$ λ-isolates $t\left(a, A^{\gamma_{i+1}}\right)$;
(f) if $a_{\delta} \in B_{\gamma}$, then $B_{\delta} \subseteq B_{\gamma}$.

For all $u \in I$, we define $\mathcal{A}_{u}=A_{u}^{\alpha}$. We show that these are as wanted:
(i) follows immediately from the definitions and for (ii) it is enough to prove the following claim (Claim (III) implies (ii) easily).

Claim. For all $i<\alpha^{*}$,
(I) $\Sigma_{i}=\left\{A_{u}^{\gamma_{i}}: u \in I\right\}$ is strongly independent, and we write $f_{\left(u, u_{0}, \ldots, u_{n-1}\right)}^{i, B}$ instead of $f_{\left(u, u_{0}, \ldots, u_{n-1}\right)}^{\Sigma_{i}, B}$;
(II) the functions $f_{\left(u, u_{0}, \ldots, u_{n-1}\right)}^{i, B}$ can be chosen so that if $j<i, u, u_{k} \in I, k<n$, $B \subseteq \bigcup_{i<n} A_{u_{k}}^{\gamma_{i}}$ has power $<\lambda$ and $a_{\gamma} \in B$ implies $B_{\gamma} \subseteq B$, and $B^{\prime}=B \cap A^{\gamma_{j}}$, then $f_{\left(u, u_{0}, \ldots, u_{n-1}\right)}^{i, B} \mid B^{\prime}=f_{\left(u, u_{0}, \ldots, u_{n-1}\right)}^{j,,^{\prime}} \upharpoonright B^{\prime}$;
(III) if $j<i$, then $A_{u_{j}}^{\gamma_{j+1}}$ is λ-saturated.

Proof. Notice that if $a_{\gamma} \in A_{u}^{\delta} \cap A_{v}^{\delta}$, then $a_{\gamma} \in A_{r(u, v)}^{\delta}$. Similarly we see that the first half of (I) in the Claim is always true (i. e. if $u \leq v$, then for all $\delta<\alpha, A_{u}^{\delta} \subseteq A_{v}^{\delta}$.) We prove the rest by induction on $i<\alpha^{*}$. We notice first that it is enough to prove the existence of $f_{\left(u, u_{0}, \ldots, u_{n-1}\right)}^{i, B}$ only in the case when B satisfies the condition
(*) if $a_{\gamma} \in B$, then $B_{\gamma} \subseteq B$.
For $i=0$, there is nothing to prove. If i is limit, then the Claim follows easily from the induction assumption (use (II) in the Claim). So we assume that the Claim holds for i and prove it for $i+1$. We prove first (I) and (II). For this let $u, u_{k} \in I$ for $k<n$, and $B \subseteq \bigcup_{k<n} A_{u_{k}}^{\gamma_{i+1}}$ be of power $<\lambda$ such that (*) is satisfied. If for all $k<n, s\left(\gamma_{i}\right) \nless u_{k}$, then (I) and (II) in the Claim follow immediately from the induction assumption. So we may assume that $s\left(\gamma_{i}\right) \leq u_{0}$. Let $B^{\prime}=B \cap\left(\bigcup_{k<n} A_{u_{k}}^{\gamma_{i}}\right)$. By the induction assumption there is an automorphism $f=f_{\left(u, u_{0}, \ldots, u_{n-1}\right)}^{i, B^{\prime}}$ of M such that $f\left\lceil\left(B^{\prime} \cap A_{u}^{\gamma_{i}}\right)=\operatorname{id}_{B^{\prime} \cap A_{u}^{\gamma_{i}}}\right.$ and $f\left(B^{\prime} \cap A_{u_{k}}^{\gamma_{i}}\right) \subseteq A_{r\left(u, u_{k}\right)}^{\gamma_{i}}$. If $s\left(\gamma_{i}\right) \leq u$, then, by $(*)$ and (d) in the construction, we can find an automorphism $g=f_{\left(u, u_{0}, \ldots, u_{n-1}\right)}^{i+1, B}$ of \boldsymbol{M} such that $g \upharpoonright B^{\prime}=f \upharpoonright B^{\prime}$ and $g \upharpoonright\left(B-B^{\prime}\right)=\mathrm{id}_{B-B^{\prime}}$. Clearly this is as wanted.

So we may assume that $s\left(\gamma_{i}\right) \notin u$. Since $s\left(\gamma_{i}\right) \leq u_{0}, u_{0} \notin r\left(u, u_{0}\right)$. By the choice of the enumeration of I there is $j<i$ such that $u_{j}=r\left(u, u_{0}\right)$. Then by the induction assumption (part (III)), $A_{u_{j}}^{\gamma_{i+1}}=A_{u_{j}}^{\gamma_{i}}=A_{u_{j}}^{\gamma_{j+1}}$ is λ-saturated, and by the choice of f, $f\left(B^{\prime} \cap A_{u_{0}}^{\gamma_{i}}\right) \subseteq A_{u_{j}}^{\gamma_{i}}$. So by (d) in the construction and (*) there are no difficulties in finding the required automorphism $f_{\left(u, u_{0}, \ldots, u_{n-1}\right)}^{i+1, B}$.

So we need to prove (III): For this it is enough to show that $A_{u_{i}}^{\gamma_{i+1}}$ is λ-saturated. Assume not. Then there are a and B such that $B \subseteq A_{u_{i}}^{\gamma_{i+1}},|B|<\lambda$ and $t(a, B)$ is not realized in $A_{u_{i}}^{\gamma_{i+1}}$. Since $\lambda \geq \lambda(\boldsymbol{M})$, there are b and C such that $B \subseteq C \subseteq A_{u_{i}}^{\gamma_{i+1}}$, $|C|<\lambda, t(b, B)=t(a, B)$ and $t(b, C) \lambda$-isolates $t\left(b, A_{u_{i}}^{\gamma_{i+1}}\right)$. But since (I) in the Claim holds for $i+1, t(b, C) \lambda$-isolates $t\left(b, A^{\gamma_{i+1}}\right)$. This contradicts (e) in the construction. Claim

Conditions (iii) and (iv) in Lemma 4 follow immediately from the construction, Claim (III) and Lemma 2.

Since \boldsymbol{M} is unsuperstable, by [3, Lemma 5.1], there are a and $\lambda(\boldsymbol{M})$-saturated models $\mathcal{A}_{i}, i<\omega$, such that
(i) if $j<i<\omega$, then $\mathcal{A}_{j} \subseteq \mathcal{A}_{i}$;
(ii) for all $i<\omega, a ぬ_{\mathcal{A}_{i}} \mathcal{A}_{i+1}$.

It is easy to see that we may choose the models \mathcal{A}_{i} so that they are λ-saturated and of power λ. Let \mathcal{A}_{ω} be λ-primary over $a \cup \bigcup_{i<\omega} \mathcal{A}_{\boldsymbol{i}}$. As in [1, Section 1], for all $\eta \in \kappa^{\leq \omega}$, we can find \mathcal{A}_{η} such that
(a) for all $\eta \in \kappa^{\leq \omega}$, there is an automorphism f_{η} of M such that $f_{\eta}\left(\mathcal{A}_{\text {length }(\eta)}\right)=\mathcal{A}_{\eta}$;
(b) if η is an initial segment of ξ, then $f_{\xi} \upharpoonright \mathcal{A}_{\text {length }(\eta)}=f_{\eta} \backslash \mathcal{A}_{\text {length }(\eta)}$;
(c) if $\eta \in \kappa^{<\omega}, \alpha \in \kappa$ and X is the set of those $\xi \in \kappa^{\leq \omega}$ such that $\eta^{-}(\alpha)$ is an initial segment of ξ, then $\bigcup_{\xi \in X} \mathcal{A}_{\boldsymbol{\xi}} \downarrow_{\mathcal{A}_{\eta}} \bigcup_{\xi \in(\kappa \leq \omega-X)} \mathcal{A}_{\xi}$.
For all $\eta \in \kappa^{=\omega}$, we let $a_{\eta}=f_{\eta}(a)$.
5 Lemma. Assume $\eta \in \kappa^{<\omega}, \alpha \in \kappa$ and X is the set of those $\xi \in \kappa^{<\omega}$ such that $\eta^{-}(\alpha)$ is an initial segment of ξ. Let $B \subseteq \bigcup_{\xi \in(\kappa \leq \omega-X)} \mathcal{A}_{\xi}$ and $C \subseteq \bigcup_{\xi \in X} \mathcal{A}_{\xi}$ be of power $<\lambda$. Then there is $C^{\prime} \subseteq \mathcal{A}_{\eta}$ such that $t\left(C^{\prime}, B\right)=t(C, B)$.

Proof. By [2, Lemma 8] (or [3, Lemma 3.15] plus little work) we can find $D \subseteq \mathcal{A}_{\eta}$ of power $<\lambda$ such that for all $b \in B, t\left(b, \mathcal{A}_{\eta} \cup C\right)$ does not split over D. So if we choose $C^{\prime} \subseteq \mathcal{A}_{\eta}$ so that $t\left(C^{\prime}, D\right)=t(C, D)$, then C^{\prime} is as wanted.

6 Lemma. Assume $J \subseteq \kappa^{\leq \omega}$ and $I=P_{\omega}(J)$. For all $u \in I$ let A_{u} be the set $\bigcup_{\eta \in u} \mathcal{A}_{\eta}$. Then $\left\{A_{u}: u \in I\right\}$ is strongly independent.

Proof. This follows immediately from Lemma 5.
For each $\alpha<\kappa$ of cofinality ω, let $\eta_{\alpha} \in \kappa^{=\omega}$ be a strictly increasing sequence such that $\bigcup_{i<\omega} \eta_{\alpha}(i)=\alpha$. Let $S \subseteq\{\alpha<\kappa: \operatorname{cf}(\alpha)=\omega\}$. By J_{S} we mean the set $\kappa^{<\omega} \cup\left\{\eta_{\alpha}: \alpha \in S\right\}$. Let $I_{S}=P_{\omega}\left(J_{S}\right)$ and \mathcal{A}_{S} be the model given by Lemmas 4 and 6 for $\left\{A_{u}: u \in I_{S}\right\}$.

7 Lemma.
(i) Assume $\eta \in \kappa^{<\omega}, u \in I_{S}, \alpha<\kappa,\{\eta\} \leq u$ and $\left\{\eta^{-}(\alpha)\right\} \nless u$. Let X be the set of those $\xi \in J_{S}$ such that $\eta^{-}(\alpha)$ is an initial segment of ξ. Then

$$
\bigcup_{\xi \in X} \mathcal{A}_{\xi} \not \mathcal{A}_{u} \bigcup_{\xi \in J_{S}-X} \mathcal{A}_{\xi} .
$$

(ii) Assume $\alpha \in \kappa, u \in I_{S}$ and $v \in P_{\omega}\left(J_{S} \cap \alpha^{\leq \omega}\right)$ is maximal such that $v \leq u$. Then $\mathcal{A}_{u} \downarrow_{\mathcal{A}_{\nu}} \bigcup_{w \in P_{\omega}\left(J_{S} \cap \alpha \leq \omega\right)} \mathcal{A}_{w}$.
Proof.
(i) Let $C=\bigcup_{\xi \in X} \mathcal{A}_{\xi}$. By (c) in the definition of $\mathcal{A}_{\xi}, \xi \in \kappa^{\leq \omega}$, there is C^{\prime} such that $t\left(C^{\prime}, \bigcup_{\xi \in J_{\mathcal{S}}-X} \mathcal{A}_{\xi}\right)=t\left(C, \bigcup_{\xi \in J_{\mathcal{S}}-X} \mathcal{A}_{\xi}\right)$ and $C^{\prime} \downarrow \mathcal{A}_{\boldsymbol{\eta}} \mathcal{A}_{u} \cup \bigcup_{\xi \in J_{\mathcal{S}}-X} \mathcal{A}_{\xi}$. So the claim follows from the first half of Lemma 4(iii).
(ii) By (i), $A_{u} \downarrow_{\mathcal{A}_{v}} \bigcup_{w \in P_{\omega}\left(J_{s} \cap \alpha \leq \omega\right)} A_{w}$, from which the claim follows by Lemma 4(iii) and (iv).

8 Lemma. Assume $S, R \subseteq\{\alpha<\kappa: \operatorname{cf}(\alpha)=\omega\}$ are such that $(S-R) \cup(R-S)$ is stationary. Then \mathcal{A}_{S} is not isomorphic to \mathcal{A}_{R}.

Proof. Assume $\mathcal{A}_{S} \cong \mathcal{A}_{R}$. Let $f: \mathcal{A}_{S} \longrightarrow \mathcal{A}_{R}$ be an isomorphism. We write I_{S}^{α} for the set of those $u \in I_{S}$, which satisfy that for all $\xi \in u, \bigcup_{i<l e n g t h(\xi)} \xi(i)<\alpha$. The set I_{R}^{α} is defined similarly. Then we can find α and $\alpha_{i}, i<\omega$, such that $\left(\alpha_{i}\right)_{i<\omega}$ is strictly increasing, for all $i<\omega, f\left(\bigcup_{u \in I_{s}^{\alpha_{i}}} \mathcal{A}_{u}\right)=\bigcup_{u \in I_{R}^{\alpha_{i}}} \mathcal{A}_{u}$, and $\alpha=\bigcup_{i<\omega} \alpha_{i}$ belongs to $(S-R) \cup(R-S)$. Without loss of generality we may assume that $\alpha \in S-R$, and so $\eta_{\alpha} \in J_{S}$. Let $\mathcal{A}_{S}^{\alpha_{i}}=\bigcup_{u \in I_{S}^{\alpha_{i}}} \mathcal{A}_{u}$ and $\mathcal{A}_{R}^{\alpha_{i}}=\bigcup_{u \in I_{R}^{\alpha_{i}}} \mathcal{A}_{u}$. Then it easy to see that for all $i<\omega$ there is $j<\omega$ such that $a_{\eta_{\alpha}} \lambda_{\mathcal{A}_{S}}^{\alpha_{i}} \mathcal{A}_{S}^{\alpha_{j}}$ (use [3, Lemma 3.8(iii)]). So there is $u \in I_{R}$ such that for all $i<\omega$ there is $j<\omega$ such that $\mathcal{A}_{u} \downarrow_{\mathcal{A}_{R} \alpha_{i}} \mathcal{A}_{R}^{\alpha_{j}}$. Since $\alpha \notin R$, this contradicts Lemma 7(ii).

We can now prove Theorem 1. By [4, Appendix 1, Theorem 1.3(2) and (3)], there are stationary $S_{i} \subseteq\{\alpha<\kappa: \operatorname{cf}(\alpha)=\omega\}, i<\kappa$, such that for all $i<j<\kappa$, $S_{i} \cap S_{j}=\emptyset$. For all $X \subseteq \kappa$, let $\mathcal{A}_{X}=\mathcal{A}_{\mathrm{U}_{i \in X} S_{i}}$. Then by Lemma 8 , if $X \neq X^{\prime}$, then \mathcal{A}_{X} is not isomorphic to $\mathcal{A}_{X^{\prime}}$. Since clearly $\left|J_{U_{i \in X} S_{i}}\right|=\kappa,\left|\mathcal{A}_{X}\right|=\kappa$.

References

[1] Hyttinen, T., On nonstructure of elementary submodels of an unsuperstable homogeneous structure. Math. Logic Quarterly 43 (1997), 134-142.
[2] Hyttinen, T., Generalizing Morley's theorem. Math. Logic Quarterly 44 (1998), 176-184.
[3] Hyttinen, T., and S. Shelah, Strong splitting in stable homogeneous models. To appear.
[4] Shelah, S., Classification Theory. 2nd rev. ed. North-Holland Publ. Comp., Amsterdam 1990.
[5] Shelah, S., Universal classes. In: Classification Theory (J. Baldwin, ed.), Lecture Notes in Mathematics 1292, Springer-Verlag, Berlin-Heidelberg-New York 1987, pp. 264-418.
(Received: December 12, 1996)

[^0]: ${ }^{1)}$ The research of the second author was supported by the United States-Isreal Binational Science Foundation, Publ. 632.

