On the Number of Elementary Submodels of an Unsuperstable Homogeneous Structure

Tapani Hyttinen^a and Saharon Shelah^{b 1)}

^a Department of Mathematics, P.O. Box 4, 00014 University of Helsinki, Finland

^b Institute of Mathematics, The Hebrew University, Jerusalem, Israel

Abstract. We show that if M is a stable unsuperstable homogeneous structure, then for most $\kappa < |M|$, the number of elementary submodels of M of power κ is 2^{κ} .

Mathematics Subject Classification: 03C52, 03C45, 03C35.

Keywords: Stable structure, Superstable structure, Homogeneous structure, Elementary submodel.

Throughout this paper we assume that M is a stable unsuperstable homogeneous model such that |M| is strongly inaccessible (= regular and strong limit). We can drop this last assumption if instead of all elementary submodels of M we study only suitably small ones. Notice also that we do not assume that Th(M) is stable. We assume that the reader is familiar with [3] and use all the notions and results of it freely. In [1] a strong nonstructure theorem was proved for the elementary submodels of Massuming the existence of Skolem-functions. In this paper we drop the assumption on the Skolem-functions and prove the following nonstructure theorem.

1 Theorem. Let λ be the least regular cardinal $\geq \lambda(M)$. Assume κ is a cardinal $(\langle |M|)$ such that $\kappa = cf(\kappa) > \lambda$. Then there are models (=elementary submodels of M) \mathcal{A}_i , $i < 2^{\kappa}$, such that for all $i < 2^{\kappa}$, $|\mathcal{A}_i| = \kappa$ and for all $i < j < 2^{\kappa}$, $\mathcal{A}_i \notin \mathcal{A}_j$.

Remark. By using the model construction of this paper and [5, Chapter III.5], we can improve Theorem 1. The assumption $\kappa = cf(\kappa) > \lambda$ can be replaced by the assumption $\kappa > |Th(M)|$.

See [1] for nonstructure results in the case M is unstable.

We prove Theorem 1 in a serie of lemmas. Let λ and κ be as in Theorem 1. By λ -saturated, λ -primary etc., we mean F_{λ}^{M} -saturated, F_{λ}^{M} -primary etc. Notice that M is λ -stable.

The notion λ -construction (i.e. F_{λ}^{M} -construction) is defined as general F-construction in [4].

 $^{^{1)}}$ The research of the second author was supported by the United States-Isreal Binational Science Foundation, Publ. 632.

2 Lemma. Assume $(C, \{a_i : i < \alpha\}, \{A_i : i < \alpha\})$ is a λ -construction and σ is a permutation of α . Let $b_i = a_{\sigma(i)}$ and $B_i = B_{\sigma(i)}$. If $B_i \subseteq C \cup \{b_j : j < i\}$ for all $i < \alpha$, then $(C, \{b_i : i < \alpha\}, \{B_i : i < \alpha\})$ is a λ -construction.

Proof. Exactly as [4, IV Theorem 3.3].

We write $\kappa^{\leq \omega}$ for $\{\eta : \alpha \longrightarrow \kappa : \alpha \leq \omega\}$; $\kappa^{<\omega}$ and $\kappa^{=\omega}$ are defined similarly. Let $J \subseteq \kappa^{\leq \omega}$ be such that it is closed under initial segments. If $\eta, \xi \in J$, then by $r'(\eta, \xi)$ we mean the longest element of J which is an initial segment of both η and ξ . If $u, v \in I = P_{\omega}(J)$ (=the set of all finite subsets of J), then by r(u, v) we mean the largest set R which satisfies

(i) $R \subseteq \{r'(\eta, \xi) : \eta \in u, \xi \in v\};$

(ii) if $u, v \in R$ and u is an initial sequent of v, then u = v.

We order I by $u \leq v$ if for every $\eta \in u$ there is $\xi \in v$ such that η is initial sequent of ξ , i.e. r(u, v) = r(u, u) (= { $\eta \in u : \neg(\exists \xi \in u) (\eta \text{ is a proper initial segment of } \xi)$ }).

3 Definition. Assume $J \subseteq \kappa^{\leq \omega}$ is closed under initial segments and $I = P_{\omega}(J)$. Let $\Sigma = \{A_u : u \in I\}$ be an indexed family of subsets of M of power $\langle |M|$. We say that Σ is strongly independent if

(i) for all $u, v \in I$, $u \leq v$ implies $A_u \subseteq A_v$;

(ii) if $u, u_i \in I$ for i < n, and $B \subseteq \bigcup_{i < n} A_{u_i}$ has power $< \lambda$, then there exists an automorphism $f = f_{(u,u_0,\ldots,u_{n-1})}^{\Sigma,B}$ of M such that $f \upharpoonright (B \cap A_u) = \mathrm{id}_{B \cap A_u}$ and $f(B \cap u_i) \subseteq A_{r(u,u_i)}$.

The model construction in Lemma 4 below is a generalized version of the construction used in [4, XII.4].

4 Lemma. Assume that $\Sigma = \{A_u : u \in I\}$, $I = P_{\omega}(J)$, is strongly independent. Then there are sets $A_u \subseteq M$, $u \in I$, such that

(i) for all $u, v \in I$, $u \leq v$ implies $\mathcal{A}_u \subseteq \mathcal{A}_v$;

(ii) for all $u \in I$, A_u is λ -primary over A_u , (and so by (i), $\bigcup_{u \in I} A_u$ is a model);

(iii) if $v \leq u$, then A_u is λ -atomic (= F_{λ}^M -atomic) over $\bigcup_{u \in I} A_u$ and λ -primary over $A_v \cup A_u$;

(iv) if $J' \subseteq J$ is closed under initial segments and $u \in P_{\omega}(J')$, then $\bigcup_{v \in P_{\omega}(J')} A_v$ is λ -constructible over $A_u \cup \bigcup_{v \in P_{\omega}(J')} A_v$.

Proof. Let $\{u_i : i < \alpha^*\}$ be an enumeration of I such that $u \leq v$ and $v \not\leq u$ implies i < j. It is easy to see that we can choose α , $\gamma_i < \alpha$ for $i < \alpha^*$, a_{γ} and B_{γ} for $\gamma < \alpha$, and $s : \alpha \longrightarrow I$ so that

(a) $\gamma_0 = 0$ and $(\gamma_i)_{i < \alpha^*}$ is increasing and continuous;

(b) if $\gamma_i \leq \gamma < \gamma_{i+1}$, then $s(\gamma) = u_i$;

(c) if $\gamma < \alpha$, $|B_{\gamma}| < \lambda$ and we write for $\gamma \leq \alpha$, $A_u^{\gamma} = A_u \cup \{a_{\delta} : \delta < \gamma, s(\delta) \leq u\}$, then $B_{\gamma} \subseteq A_{s(\gamma)}^{\gamma}$;

(d) for all $\gamma < \alpha$, if we write $A^{\gamma} = \bigcup_{u \in I} A_u^{\gamma}$, then $t(a_{\gamma}, B_{\gamma})$ λ -isolates $t(a_{\gamma}, A^{\gamma})$;

(e) for all $i < \alpha^*$, there are no a and $B \subseteq A_{u_i}^{\gamma_{i+1}}$ of power $< \lambda$ such that t(a, B) λ -isolates $t(a, A^{\gamma_{i+1}})$;

(f) if $a_{\delta} \in B_{\gamma}$, then $B_{\delta} \subseteq B_{\gamma}$.

For all $u \in I$, we define $\mathcal{A}_u = A_u^{\alpha}$. We show that these are as wanted:

(i) follows immediately from the definitions and for (ii) it is enough to prove the following claim (Claim (III) implies (ii) easily).

Claim. For all $i < \alpha^*$,

(I) $\Sigma_i = \{A_u^{\gamma_i} : u \in I\}$ is strongly independent, and we write $f_{(u,u_0,\ldots,u_{n-1})}^{i,B}$ instead of $f_{(u,u_0,\ldots,u_{n-1})}^{\Sigma_i,B}$;

(II) the functions $f_{(u,u_0,...,u_{n-1})}^{i,B}$ can be chosen so that if j < i, $u, u_k \in I$, k < n, $B \subseteq \bigcup_{i < n} A_{u_k}^{\gamma_i}$ has power $< \lambda$ and $a_{\gamma} \in B$ implies $B_{\gamma} \subseteq B$, and $B' = B \cap A^{\gamma_j}$, then $f_{(u,u_0,...,u_{n-1})}^{i,B} \upharpoonright B' = f_{(u,u_0,...,u_{n-1})}^{j,B'} \upharpoonright B';$ (III) if j < i, then $A_{u_j}^{\gamma_j+1}$ is λ -saturated.

Proof. Notice that if $a_{\gamma} \in A_{u}^{\delta} \cap A_{v}^{\delta}$, then $a_{\gamma} \in A_{r(u,v)}^{\delta}$. Similarly we see that the first half of (I) in the Claim is always true (i.e. if $u \leq v$, then for all $\delta < \alpha$, $A_{u}^{\delta} \subseteq A_{v}^{\delta}$.) We prove the rest by induction on $i < \alpha^{*}$. We notice first that it is enough to prove the existence of $f_{(u,u_{0},\ldots,u_{n-1})}^{i,B}$ only in the case when B satisfies the condition

(*) if $a_{\gamma} \in B$, then $B_{\gamma} \subseteq B$.

For i = 0, there is nothing to prove. If *i* is limit, then the Claim follows easily from the induction assumption (use (II) in the Claim). So we assume that the Claim holds for *i* and prove it for i + 1. We prove first (I) and (II). For this let $u, u_k \in I$ for k < n, and $B \subseteq \bigcup_{k < n} A_{u_k}^{\gamma_{i+1}}$ be of power $< \lambda$ such that (*) is satisfied. If for all $k < n, s(\gamma_i) \leq u_k$, then (I) and (II) in the Claim follow immediately from the induction assumption. So we may assume that $s(\gamma_i) \leq u_0$. Let $B' = B \cap (\bigcup_{k < n} A_{u_k}^{\gamma_i})$. By the induction assumption there is an automorphism $f = f_{(u,u_0,\dots,u_{n-1})}^{i,B'}$ of M such that $f \upharpoonright (B' \cap A_u^{\gamma_i}) = \operatorname{id}_{B' \cap A_u^{\gamma_i}}$ and $f(B' \cap A_{u_k}^{\gamma_i}) \subseteq A_{r(u,u_k)}^{\gamma_i}$. If $s(\gamma_i) \leq u$, then, by (*) and (d) in the construction, we can find an automorphism $g = f_{(u,u_0,\dots,u_{n-1})}^{i+1,B}$ of Msuch that $g \upharpoonright B' = f \upharpoonright B'$ and $g \upharpoonright (B - B') = \operatorname{id}_{B-B'}$. Clearly this is as wanted.

So we may assume that $s(\gamma_i) \leq u$. Since $s(\gamma_i) \leq u_0$, $u_0 \leq r(u, u_0)$. By the choice of the enumeration of I there is j < i such that $u_j = r(u, u_0)$. Then by the induction assumption (part (III)), $A_{u_j}^{\gamma_{i+1}} = A_{u_j}^{\gamma_i} = A_{u_j}^{\gamma_{j+1}}$ is λ -saturated, and by the choice of f, $f(B' \cap A_{u_0}^{\gamma_i}) \subseteq A_{u_j}^{\gamma_i}$. So by (d) in the construction and (*) there are no difficulties in finding the required automorphism $f_{(u,u_0,\dots,u_{n-1})}^{i+1,B}$.

So we need to prove (III): For this it is enough to show that $A_{u_i}^{\gamma_{i+1}}$ is λ -saturated. Assume not. Then there are a and B such that $B \subseteq A_{u_i}^{\gamma_{i+1}}$, $|B| < \lambda$ and t(a, B) is not realized in $A_{u_i}^{\gamma_{i+1}}$. Since $\lambda \ge \lambda(\mathbf{M})$, there are b and C such that $B \subseteq C \subseteq A_{u_i}^{\gamma_{i+1}}$, $|C| < \lambda$, t(b, B) = t(a, B) and t(b, C) λ -isolates $t(b, A_{u_i}^{\gamma_{i+1}})$. But since (I) in the Claim holds for i + 1, t(b, C) λ -isolates $t(b, A^{\gamma_{i+1}})$. This contradicts (e) in the construction.

Sn:632

Conditions (iii) and (iv) in Lemma 4 follow immediately from the construction, Claim (III) and Lemma 2. \Box

Since M is unsuperstable, by [3, Lemma 5.1], there are a and $\lambda(M)$ -saturated models \mathcal{A}_i , $i < \omega$, such that

(i) if $j < i < \omega$, then $\mathcal{A}_j \subseteq \mathcal{A}_i$;

(ii) for all $i < \omega$, $a \not \downarrow_{\mathcal{A}_i} \mathcal{A}_{i+1}$.

It is easy to see that we may choose the models \mathcal{A}_i so that they are λ -saturated and of power λ . Let \mathcal{A}_{ω} be λ -primary over $a \cup \bigcup_{i < \omega} \mathcal{A}_i$. As in [1, Section 1], for all $\eta \in \kappa^{\leq \omega}$, we can find \mathcal{A}_{η} such that

(a) for all $\eta \in \kappa^{\leq \omega}$, there is an automorphism f_{η} of M such that $f_{\eta}(\mathcal{A}_{\text{length}(\eta)}) = \mathcal{A}_{\eta}$;

(b) if η is an initial segment of ξ , then $f_{\xi} \upharpoonright \mathcal{A}_{\text{length}(\eta)} = f_{\eta} \upharpoonright \mathcal{A}_{\text{length}(\eta)}$;

(c) if $\eta \in \kappa^{<\omega}$, $\alpha \in \kappa$ and X is the set of those $\xi \in \kappa^{\leq \omega}$ such that $\eta^{-}(\alpha)$ is an initial segment of ξ , then $\bigcup_{\xi \in X} \mathcal{A}_{\xi} \downarrow_{\mathcal{A}_{\eta}} \bigcup_{\xi \in (\kappa^{\leq \omega} - X)} \mathcal{A}_{\xi}$.

For all $\eta \in \kappa^{=\omega}$, we let $a_{\eta} = f_{\eta}(a)$.

5 Lemma. Assume $\eta \in \kappa^{<\omega}$, $\alpha \in \kappa$ and X is the set of those $\xi \in \kappa^{<\omega}$ such that $\eta^{\sim}(\alpha)$ is an initial segment of ξ . Let $B \subseteq \bigcup_{\xi \in (\kappa \leq \omega - X)} \mathcal{A}_{\xi}$ and $C \subseteq \bigcup_{\xi \in X} \mathcal{A}_{\xi}$ be of power $< \lambda$. Then there is $C' \subseteq \mathcal{A}_{\eta}$ such that t(C', B) = t(C, B).

Proof. By [2, Lemma 8] (or [3, Lemma 3.15] plus little work) we can find $D \subseteq \mathcal{A}_{\eta}$ of power $\langle \lambda$ such that for all $b \in B$, $t(b, \mathcal{A}_{\eta} \cup C)$ does not split over D. So if we choose $C' \subseteq \mathcal{A}_{\eta}$ so that t(C', D) = t(C, D), then C' is as wanted. \Box

6 Lemma. Assume $J \subseteq \kappa^{\leq \omega}$ and $I = P_{\omega}(J)$. For all $u \in I$ let A_u be the set $\bigcup_{n \in u} A_n$. Then $\{A_u : u \in I\}$ is strongly independent.

Proof. This follows immediately from Lemma 5.

For each $\alpha < \kappa$ of cofinality ω , let $\eta_{\alpha} \in \kappa^{=\omega}$ be a strictly increasing sequence such that $\bigcup_{i < \omega} \eta_{\alpha}(i) = \alpha$. Let $S \subseteq \{\alpha < \kappa : cf(\alpha) = \omega\}$. By J_S we mean the set $\kappa^{<\omega} \cup \{\eta_{\alpha} : \alpha \in S\}$. Let $I_S = P_{\omega}(J_S)$ and \mathcal{A}_S be the model given by Lemmas 4 and 6 for $\{A_u : u \in I_S\}$.

7 Lemma.

(i) Assume $\eta \in \kappa^{<\omega}$, $u \in I_S$, $\alpha < \kappa$, $\{\eta\} \leq u$ and $\{\eta^{\wedge}(\alpha)\} \not\leq u$. Let X be the set of those $\xi \in J_S$ such that $\eta^{\wedge}(\alpha)$ is an initial segment of ξ . Then

 $\bigcup_{\xi\in X}\mathcal{A}_{\xi}\downarrow_{\mathcal{A}_{u}}\bigcup_{\xi\in J_{S}-X}\mathcal{A}_{\xi}.$

(ii) Assume $\alpha \in \kappa$, $u \in I_S$ and $v \in P_{\omega}(J_S \cap \alpha^{\leq \omega})$ is maximal such that $v \leq u$. Then

 $\mathcal{A}_u \downarrow_{\mathcal{A}_v} \bigcup_{w \in P_\omega(J_S \cap \alpha \leq \omega)} \mathcal{A}_w.$

Proof.

(i) Let $C = \bigcup_{\xi \in X} \mathcal{A}_{\xi}$. By (c) in the definition of \mathcal{A}_{ξ} , $\xi \in \kappa^{\leq \omega}$, there is C' such that $t(C', \bigcup_{\xi \in J_S - X} \mathcal{A}_{\xi}) = t(C, \bigcup_{\xi \in J_S - X} \mathcal{A}_{\xi})$ and $C' \downarrow_{\mathcal{A}_{\eta}} \mathcal{A}_{u} \cup \bigcup_{\xi \in J_S - X} \mathcal{A}_{\xi}$. So the claim follows from the first half of Lemma 4(iii).

(ii) By (i), $A_u \downarrow_{\mathcal{A}_v} \bigcup_{w \in P_\omega(J_S \cap \alpha \leq \omega)} A_w$, from which the claim follows by Lemma 4(iii) and (iv).

8 Lemma. Assume S, $R \subseteq \{\alpha < \kappa : cf(\alpha) = \omega\}$ are such that $(S-R) \cup (R-S)$ is stationary. Then \mathcal{A}_S is not isomorphic to \mathcal{A}_R .

Proof. Assume $\mathcal{A}_S \cong \mathcal{A}_R$. Let $f : \mathcal{A}_S \longrightarrow \mathcal{A}_R$ be an isomorphism. We write I_S^{α} for the set of those $u \in I_S$, which satisfy that for all $\xi \in u$, $\bigcup_{i < \text{length}(\xi)} \xi(i) < \alpha$. The set I_R^{α} is defined similarly. Then we can find α and α_i , $i < \omega$, such that $(\alpha_i)_{i < \omega}$ is strictly increasing, for all $i < \omega$, $f(\bigcup_{u \in I_S^{\alpha_i}} \mathcal{A}_u) = \bigcup_{u \in I_R^{\alpha_i}} \mathcal{A}_u$, and $\alpha = \bigcup_{i < \omega} \alpha_i$ belongs to $(S - R) \cup (R - S)$. Without loss of generality we may assume that $\alpha \in S - R$, and so $\eta_{\alpha} \in J_S$. Let $\mathcal{A}_S^{\alpha_i} = \bigcup_{u \in I_S^{\alpha_i}} \mathcal{A}_u$ and $\mathcal{A}_R^{\alpha_i} = \bigcup_{u \in I_R^{\alpha_i}} \mathcal{A}_u$. Then it easy to see that for all $i < \omega$ there is $j < \omega$ such that $a_{\eta_{\alpha}} \ell_{\mathcal{A}_S^{\alpha_i}} \mathcal{A}_S^{\alpha_j}$ (use [3, Lemma 3.8(iii)]). So there is $u \in I_R$ such that for all $i < \omega$ there is $j < \omega$ such that $\sigma_i \in J_S$.

We can now prove Theorem 1. By [4, Appendix 1, Theorem 1.3(2) and (3)], there are stationary $S_i \subseteq \{\alpha < \kappa : cf(\alpha) = \omega\}, i < \kappa$, such that for all $i < j < \kappa$, $S_i \cap S_j = \emptyset$. For all $X \subseteq \kappa$, let $\mathcal{A}_X = \mathcal{A}_{\cup_{i \in X} S_i}$. Then by Lemma 8, if $X \neq X'$, then \mathcal{A}_X is not isomorphic to $\mathcal{A}_{X'}$. Since clearly $|J_{\cup_{i \in X} S_i}| = \kappa$, $|\mathcal{A}_X| = \kappa$.

References

- HYTTINEN, T., On nonstructure of elementary submodels of an unsuperstable homogeneous structure. Math. Logic Quarterly 43 (1997), 134 142.
- [2] HYTTINEN, T., Generalizing Morley's theorem. Math. Logic Quarterly 44 (1998), 176 - 184.
- [3] HYTTINEN, T., and S. SHELAH, Strong splitting in stable homogeneous models. To appear.
- [4] SHELAH, S., Classification Theory. 2nd rev. ed. North-Holland Publ. Comp., Amsterdam 1990.
- [5] SHELAH, S., Universal classes. In: Classification Theory (J. BALDWIN, ed.), Lecture Notes in Mathematics 1292, Springer-Verlag, Berlin-Heidelberg-New York 1987, pp. 264 - 418.

(Received: December 12, 1996)

Sn:632