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The stationary set splitting game is a game of perfect information of length ω1 between two players, unsplit
and split, in which unsplit chooses stationarily many countable ordinals and split tries to continuously divide
them into two stationary pieces. We show that it is possible in ZFC to force a winning strategy for either player,
or for neither. This gives a new counterexample to Σ2

2 maximality with a predicate for the nonstationary ideal
on ω1, and an example of a consistently undetermined game of length ω1 with payoff definable in the second-or-
der monadic logic of order. We also show that the determinacy of the game is consistent with Martin’s Axiom
but not Martin’s Maximum.
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1 Introduction

The stationary set splitting game (SG) is a game of perfect information of length ω1 between two players, unsplit
and split. In every round α, unsplit either accepts or rejects α. If unsplit accepts α, then split puts α into one
of two sets A and B. If unsplit rejects α, then split does nothing. After all ω1 many rounds have been played,
split wins if unsplit has not accepted stationarily often, or if both of A and B are stationary.

In this note we prove that it is possible to force a winning strategy for either player in SG, or for neither, and we
also show that the determinacy of SG is consistent with Martin’s Axiom but not Martin’s Maximum [4]. We also
present two guessing principles, Cs (club for split) and Du (diamond for unsplit), which imply the existence of
winning strategies for split and unsplit, respectively (and are therefore incompatible; see Theorems 2.5 and 2.8).
These principles may be of independent interest.

2 Winning strategies

2.1 Strategies for split

A collection X of countable sets is stationary if for every function F : [
⋃X ]<ω −→ ⋃X there is an element

of X closed under F . A set X of countable sets is projective stationary [2] if for every stationary S ⊂ ω1 the set
of X ∈ X with X ∩ ω1 ∈ S is stationary. We note that a partial order P is said to be proper if forcing with P
preserves the stationarity (in the sense above) of stationary sets from the ground model (see [11]).

The following statement holds in fine structural models such as L. It is a strengthening of the principle (+)
used in [8]. Justin Moore has pointed out to us that his Mapping Reflection Principle [9] implies the failure of (+).
We note also that in the statement of (+), “projective stationary” can be replaced with “club” without strengthe-
ning the statement. We do not know if that is the case for C+.
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188 P. B. Larson and S. Shelah: The stationary set splitting game

Definition 2.1 Let C+ be the statement that there is a projective stationary set X consisting of countable ele-
mentary substructures of H(ℵ2) such that for all X, Y in X with X ∩ ω1 = Y ∩ ω1, either for each club C ⊂ ω1

in X there is a club D ⊂ ω1 in Y with D ∩ Y ⊂ C ∩ X , or for each club D ⊂ ω1 in Y there is a club C ⊂ ω1

in X with C ∩ X ⊂ D ∩ Y .
Given a partial run of SG of length α, we let Eα be the set of β < α accepted by unsplit, and we let Aα, Bα

be the partition of Eα chosen by split.
Theorem 2.2 If C+ holds, then split has a winning strategy in SG.

P r o o f. Let X be a set of countable elementary submodels of H(ℵ2) witnessing C+, and for each α < ω1

let Xα be the set of X ∈ X with X ∩ ω1 = α. Let Z be the set of α < ω1 such that Xα is nonempty (since X is
projective stationary, this set contains a club).

Play for split as follows. In round α ∈ Z, if unsplit accepts α, let Yα be the set of all X ∈ Xα such that X
contains a stationary subset of ω1, EX , such that EX ∩ α = Eα. If Yα = ∅, put α ∈ Aα+1. Otherwise, since ev-
ery club subset of ω1 in every member of Yα intersects Eα, there cannot be two club subsets of ω1 in

⋃Yα, one
disjoint from Aα and one disjoint from Bα, since some club subset of ω1 in

⋃Yα would be contained in both of
these clubs. If any member of Yα contains a club subset of ω1 disjoint from Aα, put α in Aα+1, and if any member
of Yα contains a club subset of ω1 disjoint from Bα, put α in Bα+1. If neither case holds, put α ∈ Aα+1.

Let E be the play by unsplit in a run of SG where split has played by this strategy, and let A and B be the
corresponding play by split. Let C be a club subset of ω1 and supposing that E is stationary, fix X ∈ X contai-
ning E, A, B, and C with X ∩ ω1 ∈ E ∩ C. Then we have that if A ∩ C ∩ X ∩ ω1 = ∅, then X ∩ ω1 ∈ A ∩ C,
and if B ∩ C ∩ X ∩ ω1 = ∅, then X ∩ ω1 ∈ B ∩ C, which shows that C does not witness that unsplit won this
run of the game.

The following fact, in conjunction with Theorem 2.2, shows that Martin’s Axiom is consistent with the exis-
tence of a winning strategy for split.

Theorem 2.3 The statement C+ is preserved by forcing with c. c. c. partial orders.

P r o o f. Let P be a c. c. c. forcing and let X witness C+. Let γ be a regular cardinal greater than ℵ2 and 2|P |.
Let G ⊂ P be a V -generic filter, and let

X [G] = {X[G] ∩ H(ℵ2)V [G] | X ≺ H(γ)V , X ∩ H(ℵ2)V ∈ X}.

Since every club subset of ω1 in V [G] contains one in V , in order to show that X [G] witnesses C+ in V [G],
it suffices to show that X [G] is projective stationary there. Fix a P -name � for a function from [H(ℵ2)V [G]]<ω

to H(ℵ2)V [G]. For any countable X ≺ H(γ) with X ∩ H(ℵ2) ∈ X and � ∈ X , X[G] ∩ H(ℵ2)V [G] is in X [G]
and closed under the realization of �. Fix a P -name τ for a stationary subset of ω1 and a condition p ∈ P . Let S be
the set of countable ordinals forced to be in τ by some condition below p. Then there exist a countable X ≺ H(γ)
with X ∩ H(ℵ2) ∈ X , X ∩ ω1 ∈ S, and � ∈ X , and a condition q below p forcing that X[Ġ] ∩ ω1 (where Ġ is
the name for the generic filter) is in the realization of τ . By genericity, then, X [G] is projective stationary.

We do not know how to force C+, however, and use a different principle to force the existence of a winning
strategy for split.

Definition 2.4 Let Cs be the statement that there exist cα (α < ω1 limit) such that each cα is a sequence

〈aα
β : β < γα〉

(for some countable γα) of cofinal subsets of α of ordertype ω and
1. for all limit α < ω1 and all β < β′ < γα, aα

β′ \ aα
β is finite;

2. for every club C ⊂ ω1 and every stationary E ⊂ ω1 there exists aα
β with α ∈ E such that aα

β \ C is finite
and aα

β ∩ E is infinite.

The principle Cs also holds in fine structural models such as L. The winning strategy for split given by Cs is
very similar to the one given by C+.
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Theorem 2.5 If Cs holds, then split has a winning strategy in SG.

P r o o f. Let aα
β (α < ω1 limit, β < γα) witness Cs. Play for split as follows. In round α, α a limit, if unsplit

has accepted α and some aα
β intersects Aα infinitely and Bα finitely, then put α in Bα+1. If some aα

β intersects Bα

infinitely and Aα finitely, then put α in Aα+1. Since the aα
β ’s (β < γα) are ⊂-decreasing mod finite1), both cases

cannot occur. If neither case occurs, put α in Aα+1.
Let E be the play by unsplit in a run of SG where split has played by this strategy, and let A and B be the

corresponding play by split. Let C be a club subset of ω1 and supposing that E is stationary, fix aα
β with α ∈ E

such that aα
β \ C is finite and aα

β ∩ E is infinite. Then if A ∩ aα
β is finite, then α ∈ A ∩ C, and if B ∩ aα

β is finite,
then α ∈ B ∩ C, which shows that C does not witness that unsplit won this run of the game.

A partial order P is said to be strategically ω-closed if there exists a function f : P<ω −→ P(P ) such that
whenever 〈pi : i ≤ n〉 is a finite descending sequence in P , f(〈pi : i ≤ n〉) is a dense subset below pn, and
whenever 〈pi : i < ω〉 is a descending sequence in P such that for each n there is j with pj ∈ f(〈pi : i ≤ n〉),
the sequence has a lower bound in P . It is easy to see that strategic ω-closure is equal to the property that for
every countable X ≺ H((2|P |)+) and every (X, P )-generic filter g contained in X there is a condition in P ex-
tending g.

Let us say that a set a captures a pair E,C if a \ C is finite and a ∩ E is infinite. Given A ⊂ ω1, let C(A)
be the partial order which adds a club subset of A by initial segments. We force Cs by first adding a potential
Cs-sequence by initial segments, and then iterating to kill off every counterexample.

We refer the reader to [11] for background on countable support iterations of proper forcing.
Theorem 2.6 Suppose that CH and 2ℵ1 = ℵ2 hold. Let P̄ = 〈Pη, Q

∼ η : η < ω2〉 be a countable support iter-
ation such that P0 is the partial order consisting of sequences 〈cα : α < δ limit〉, for some countable ordinal δ,
such that each cα is a sequence 〈aα

β : β < γα〉 (for some countable ordinal γα) of cofinal subsets of α of order-
type ω, decreasing by mod finite inclusion (and P0 is ordered by extension). Suppose that the remainder of P̄ sa-
tisfies the following conditions.

1. For each nonzero η < ω2 there is a Pη-name τη for a subset of ω1 such that if (τη)Gη
(where Gη is the

restriction of the generic filter to Pη) is stationary in the Pη-extension and there exists a club C ⊂ ω1 in this
extension such that no aα

β with α ∈ τGη captures the pair τGη , C, then Q
∼ η is C(ω1 \ (τη)Gη ) (and otherwise,

Q
∼ η is C(ω1)).

2. For every pair E,C of subsets of ω1 in any Pη-extension (η < ω2), if E is stationary in this extension
and C is club and no aα

β with α ∈ E captures E,C, then there is � ∈ [η, ω2) such that if E is stationary in the
P�-extension, then Q

∼ � is C(ω1 \ E).

Then P̄ is strategically ω-closed, and Cs holds in the P̄ -extension. Furthermore, in the P̄ -extension, �(S) holds
for every stationary S ⊂ ω1.

P r o o f. Let X be a countable elementary submodel of H((2|P̄ |+)) with P̄ ∈ X , let g be an X-generic filter
contained in P̄ ∩ X . Let γX∩ω1 be the ordertype of X ∩ ω2, and for each β < γX∩ω1 , let ηβ be the βth member
of X ∩ ω2. For each β < γX∩ω1 , let aX∩ω1

β be a cofinal subset of X ∩ ω1 of ordertype ω such that, letting gη

denote the restriction of g to Pη,
(a) for all β′ < β < γX∩ω1 , aX∩ω1

β \ aX∩ω1
β′ is finite;

(b) aα
β is eventually contained in every club subset of ω1 in X[gηβ

] and intersects infinitely every stationary
subset of ω1 in every X[gηβ′ ], β′ ∈ [β, γX∩ω1).

It remains to see that we can extend g to a condition whose first coordinate is given by adding

cX∩ω1 = 〈aα
β : β < γX∩ω1〉

to the union of the first coordinates of the elements of g, and whose ηth coordinate, for each nonzero η ∈ X ∩ ω2,
is the condition given by the union of {X ∩ ω1} and the set of realizations of the ηth coordinates of the members
of g. We do this by induction on η, letting g′η be our extended condition in Pη.

1) Given sets x and y, we say that x ⊂ y mod finite if x \ y is finite.
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For each η ∈ ω2 ∩ X , there is a Pη-name σ ∈ X for a club subset of ω1 such that if in the Pη-extension,
(τη)Gη

is stationary and there is a club C such that τGη
, C is not captured by any aα

β with α ∈ (τη)Gη
, then σGη

is such a C. However, in this case the realizations of τη and σ by g are captured by aX∩ω1
o. t.(η∩ω2)

, so g′η forces that the

pair τGη
, σGη

is captured by aX∩ω1
o. t.(η∩ω2)

. It follows that g′η forces that either Q
∼ η is C(ω1), or X ∩ ω1 is not in τGη

.
In either case, the union of the members of g ∩ Q

∼ η be can extended to a condition in Q
∼ η by adding {X ∩ ω1}.

To see that �(S) holds for every stationary S ⊂ ω1 in the P̄ -extension, fix such an S in the Pα-extension for
some α < ω2. Since P̄ is (ω,∞)-distributive, there exists in this extension a sequence 〈eδ

β : δ, β < ω1〉 such
that for each δ < ω1 and each x ⊂ δ there are uncountably many β with eδ

β = x. Then, letting T ∈ P(ω1)V [Gα]

be the set such that the realization of Q
∼ α is C(T ), Q

∼ α adds a �-sequence 〈bδ : δ ∈ S〉 defined by letting bδ be eδ
β ,

where the βth element of T above β is the first element of the generic club for Q
∼ α above δ. That this is a �-se-

quence can be seen as follows: note that since S is stationary in the P̄ -extension, there exist stationarily many ele-
mentary submodels X of any sufficiently large H(θ)V [G] in this extension with X ∩ ω1 ∈ S. Then X ∩ (G/Gα)
is an (X ∩ V [Gα], P̄ /Pα)-generic filter which can be extended to a condition in P̄ /Pα by adding X ∩ ω1 to each
coordinate, and extended again to make any element of T \ ((X ∩ ω1) + 1) the least element of the generic club
for Q

∼ α above X ∩ ω1. That 〈bβ : β ∈ S〉 is a �-sequence then follows by genericity.

Section 3 shows that proper forcing does not always preserve the existence of a winning strategy for split.

2.2 A strategy for unsplit

In this section we show that it is consistent for unsplit to have a winning strategy in SG. We do this via the fol-
lowing guessing principle.

Definition 2.7 Let Du be the statement that there is a �-sequence 〈σα : α < ω1〉 such that for every E ⊂ ω1

there is a club C ⊂ ω1 such that

either (∀α ∈ C)((E ∩ α = σα) ⇒ α ∈ E) or (∀α ∈ C)((E ∩ α = σα) ⇒ α �∈ E).

Theorem 2.8 If Du holds, then unsplit has a winning strategy in SG.

P r o o f. Let 〈σα : α < ω1〉 witness Du. Play for unsplit by accepting α if and only if σα = Aα. At the end
of the game, the set of α such that σα = Aα is stationary, and there is a club C such that either for all α in C,
if σα = Aα, then α is in A, or for all α in C, if σα = Aα, then α is in B. In either case, split has lost.

Our iteration to force Du employs the same strategy as the iteration for Cs before. We first force to add a �-se-
quence 〈σα : α < ω1〉 by initial segments, and we then iterate to make this sequence witness Du, iteratively for-
cing a club through the set of those α < ω1 for which σα �= E ∩ α or α ∈ E for each E ⊂ ω1 such that both the
sets {α ∈ E | σα = E ∩ α} and {α ∈ ω1 \ E | σα = E ∩ α} are stationary.

More specifically, we have the following. Given a sequence Σ = 〈σα : α < ω1〉 such that each σα is a subset
of α, and given E ⊂ ω1, let A(Σ, E) be the set of α ∈ E such that σα = E ∩ α, and let B(Σ, E) be the set
of α ∈ ω1 \ E such that σα = E ∩ α.

Theorem 2.9 Suppose that CH + 2ℵ1 = ℵ2 holds, and let P̄ be a countable support iteration

〈Pα, Q
∼ α : α < ω2〉

such that P0 is the partial order consisting of sequences 〈σβ : β < γ〉, for some countable ordinal γ, such that
each σβ is a subset of β, ordered by extension. Let Σ be the sequence added by P0 and suppose that the remainder
of P̄ satisfies the following conditions.

1. Each Q
∼ α is either C(ω1) or C(ω1 \ B(Σ, E)) for some E ⊂ ω1 such that A(Σ, E) and B(Σ, E) are both

stationary.
2. For every E ⊂ ω1 in any Pα-extension (α < ω2) there is γ ∈ [α, ω2) such that if A(Σ, E) and B(Σ, E)

are both stationary in the Pγ-extension, then Q
∼ γ is C(ω1 \ B(Σ, E)).

Then P̄ is strategically ω-closed, and in the P̄ -extension, Du holds. Furthermore, in the P̄ -extension, �(S) holds
for every stationary S ⊂ ω1.
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P r o o f. The iteration P̄ is clearly strategically ω-closed, since for any countable X ≺ H((2|P̄ |)+) and any
(X, P̄ )-generic filter g contained in X , one can extend g to a condition by making σX∩ω1 unequal to the real-
ization by g of any name in X for a subset of ω1, and adding X ∩ ω1 to all the clubs being added by the Q

∼ α’s,
α ∈ X ∩ ω2. It is clear also that in the P̄ -extension there is no E ⊂ ω1 such that A(Σ, E) and B(Σ, E) are both
stationary.

To see that at least one of A(Σ, E) and B(Σ, E) is stationary for each E ⊂ ω1, we first note the following.
Claim 2.9.1 Suppose that E ⊂ ω1 is a member of the Pα-extension, for some α < ω2, and A(Σ, E) is sta-

tionary in this extension. Then A(Σ, E) remains stationary in the P̄ -extension.

Note that A(Σ, E) has countable intersection with B(Σ, F ), for every F ⊂ ω1. Fix X ≺ H(((2|P̄ |)+)V )V [Gα]

(where Gα is the restriction of the generic filter G to Pα) with X ∩ ω1 ∈ A(Σ, E) and A(Σ, E) ∈ X . Then any
(X, P̄/Pα)-generic filter contained in X can be extended to a condition by adding X ∩ ω1 to the clubs being
added at every stage of P̄ after the first.

Similar reasoning shows the next two facts, which complete the proof that Σ witnesses Du in the P̄ -extension.
Claim 2.9.2 Suppose that E ⊂ ω1 is a member of the Pα-extension, for some α < ω2, and not a member of

the Pγ-extension, for any γ < α. Then A(Σ, E) ∪ B(Σ, E) is stationary in the Pα-extension.
To see Claim 2.9.2, let τ be a Pα-name for a subset of ω1 which is forced to be unequal to any such subset in

any Pγ-extension, for any γ < α. Fix X ≺ H(((2|P̄ |)+))V with τ ∈ X . Let g be an (X, Pα)-generic filter, and
note that then the realization of τ � (X ∩ ω1) by g is different from the realizations of � � (X ∩ ω1) by g for any
Pγ-name � ∈ X for a subset of ω1, for any γ ∈ X ∩ α. It follows that adding the realization of τ � (X ∩ ω1) by g
to the union of the first coordinate projection of g gives a condition in P0 which forces that X ∩ ω1 is not in
any Σ(B, �Gγ

), for any Pγ-name � ∈ X for a subset of ω1, for any γ ∈ X ∩ α. Therefore, we can add X ∩ ω1

to the clubs being added in every other stage of P̄ in X ∩ α, and get a condition extending every condition in g.
Claim 2.9.3 Suppose that E ⊂ ω1 is a member of the Pα-extension, for some α < ω2, and A(Σ, E) is non-

stationary in this extension. Then B(Σ, E) remains stationary in the P̄ -extension.
This is similar to the previous claims, noting that every subsequent stage of P̄ forces a club through the com-

plement of a set with countable intersection with B(Σ, E).
The proof that �(S) holds for every stationary S ⊂ ω1 in the P̄ -extension is (literally) the same as in the proof

of Theorem 2.6.

Note that that the iterations P̄ in Theorems 2.6 and 2.9 are strategically ω-closed.

2.3 Σ2
2 maximality

The statements that split and unsplit have winning strategies in SG are each Σ2
2 in a predicate for NSω1 , and

they are obviously not consistent with each other. Woodin (see [6]) has shown that if there is a proper class of
measurable Woodin cardinals, then there exists in a forcing extension a transitive class model of ZFC satisfying
all Σ2

2 sentences ϕ such that ϕ + CH can be forced over the ground model. The results here show that this result
cannot be extended to include a predicate for NSω1 . This was known already, in that �∗ (in the sense of [7]) and
“the restriction of NSω1 to some stationary set is ℵ1 dense” were both known to be consistent with � (the second
of these is due to Woodin, uses large cardinals, and is unpublished, though a related proof, also due to Woodin, ap-
pears in [3]). Our example is simpler and does not use large cardinals; it also gives (we believe, for the first time)
a counterexample consisting of two sentences each consistent with “�(S) holds for every stationary set S ⊂ ω1”.

2.4 A determined variation

There are many natural variations of SG. We show that one such variation is determined.
Theorem 2.10 Let G be the following game of length ω1. In round α, player I puts α into one of two sets E0

and E1, and player II puts α into one of two sets A0 and A1. After all ω1 rounds have been played, II wins if one
of the following pairs of set are both stationary:

1. E0 ∩ A0 and E0 ∩ A1,
2. E1 ∩ A0 and E1 ∩ A1.

Then II has a winning strategy in G.

www.mlq-journal.org c© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Sh:902
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P r o o f. Let B00, B01, B10, and B11 be pairwise disjoint stationary subsets of ω1. In round α, if α is in Bij ,
let II put α in Ai if I put α in E0 and in Aj otherwise. Then after all ω1 many rounds have been played, suppose
that Ai ∩ E0 is nonstationary. Then Bi0, Bi1 are both contained in E1 modulo NSω1 , which means that E1 ∩ A0

and E1 ∩ A1 are both stationary. Similarly, if Ai ∩ E1 is nonstationary, then B0i, B1i are both contained in E0

modulo NSω1 , which means that E0 ∩ A0 and E0 ∩ A1 are both stationary.

3 Indeterminacy from forcing axioms

The axiom PFA+2 says that whenever P is a proper partial order, Dα (α < ω1) are dense subsets of P , and σ1, σ2

are P -names for stationary subsets of ω1, there is a filter G ⊂ P such that G ∩ Dα �= ∅ for each α < ω1, and such
that {α < ω1 | (∃p ∈ G)(p � α̌ ∈ σi)} is stationary for every i ∈ {1, 2}. Theorems 2.6 and 2.9 together show
that PFA+2 implies the indeterminacy of SG. Furthermore, a straightforward argument shows that the following
statement implies the nonexistence of a winning strategy for unsplit in SG, where Add(1, ω1) is the partial order
that adds a subset of ω1 by initial segments: for any pair σ1, σ2 of Add(1, ω1)-names for stationary subsets of ω1,
there is a filter G ⊂ Add(1, ω1) realizing both σ1 and σ2 as stationary sets. This statement is trivially subsumed
by PFA+2, but also holds in the collapse of a sufficiently large cardinal to be ω2, and thus is consistent with CH.

The axiom Martin’s Maximum [4] says that whenever P is a partial order such that forcing with P preserves
stationary subsets of ω1 and Dα (α < ω1) are dense subsets of P , there is a filter G ⊂ P such that G ∩ Dα �= ∅
for each α < ω1.

Theorem 3.1 Martin’s Maximum implies that SG is undetermined.

P r o o f. Fix a strategy Σ for unsplit in SG, and let E, A, and B be the result of a generic run of SG where
unsplit plays by Σ (the partial order consists of countable partial plays where unsplit plays by Σ, ordered by
extension). If the complement of E has stationary intersection with every stationary subset of ω1 in the ground
model, one can force to kill the stationarity of E in such a way that the induced two step forcing preserves
stationary subsets of ω1 and produces a run of SG where unsplit plays by Σ and loses. If the complement of E
does not have stationary intersection with some stationary F ⊂ ω1 in the ground model, then there is a partial
run of the game p and a name τ for a club such that p forces that E will contain F ∩ τG. Then there exists in
the ground model a run of SG extending p in which unsplit plays by Σ and loses: split picks a pair of disjoint
stationary subsets F0, F1 of F , and plays so that

1. for every α < ω1, some initial segment of the play forces some ordinal greater than α to be in τ ;
2. whenever unsplit accepts α ∈ F , split puts α in A if α ∈ F0 and puts α ∈ B if α ∈ F1.
Now fix a strategy Σ for split in SG, and generically add a regressive function f on ω1 by initial segments.

Let Eα = f−1(α) and let Aα, Bα be the responses given by Σ to a play of Eα by unsplit. Note that each Eα

will be stationary.
Suppose that there exist α < ω1 and stationary sets S, T in the ground model such that both (S ∩ Eα) \ Aα

and (T ∩ Eα) \ Bα are nonstationary. Then there is a condition p in our forcing (i. e., a regressive function on
some countable ordinal) such that p forces (S ∩ Eα) ⊂ Aα and (T ∩ Eα) ⊂ Bα, modulo nonstationarity (and so
in particular S and T have nonstationary intersection). Let τ be a name for a club disjoint from (S ∩ Eα) \ Aα

and (T ∩ Eα) \ Bα. Extend p to a filter f (identified with the corresponding function) realizing τ as a club sub-
set of ω1, at successor stages extending to add a new element to the realization of τ , and at limit stages (when
for some β < ω, f � β has been decided and f(β) has not, and β is forced by f � β to be a limit member of the
realization of τ ) extending so that f(β) = α if and only if β ∈ S. Then the run of SG corresponding to f−1(α)
is winning for unsplit, since the corresponding set Bα is nonstationary.

If there exist no such α, S, T , there is a function h on ω1 such that each h(α) ∈ {Aα, Bα} and the forcing
to shoot a club through the set of β such that f(β) = α ⇒ β ∈ h(α) preserves stationary subsets of the ground
model. Then Martin’s Maximum applied to the corresponding two step forcing produces a run of SG (the run for
any f−1(α) which is stationary) where split plays by Σ and loses.

Theorem 3.1 leads to the following question.
Question 3.2 Does the Proper Forcing Axiom imply that SG is not determined?
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The following question is also interesting. The consistency of the ℵ1-density of NSω1 (relative to the consis-
tency of ADL(R)) is shown in [13].

Question 3.3 Does the ℵ1-density of NSω1 decide the determinacy of SG?

4 MLO games

The second-order Monadic Logic of Order (MLO) is an extension of first-order logic with logical constants =, ∈,
and ⊂ and a binary symbol < as the only non-logical constant, allowing quantification over subsets of the domain.
Every ordinal is a model for MLO, interpreting < as ∈.

Given an ordinal α, an MLO game of length α is determined by an MLO formula ϕ with two free variables
for subsets of the domain. In such a game, two players each build a subset of α, and the winner is determined by
whether these two sets satisfy the formula in α.

Büchi and Landweber [1] proved the determinacy of all MLO games of length ω. Recently, Shomrat [12] ex-
tended this result to games of length less than ωω, and Rabinovich [10] extended it further to all MLO games of
countable length. The stationary set splitting game is an example of an MLO game of length ω1 whose determi-
nacy is independent of ZFC.

We thank Assaf Rinot for pointing out to us the connection between SG and MLO games.
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Tetsuya Ishiu for helpful conversations on this topic. The research of the second author is supported by the United States-Israel
Binational Science Foundation. This is the second author’s publication 902. Some of the research in this paper was conducted
during a visit by the first author to Rutgers University, supported by NSF grant DMS-0600940.

References
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