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An infinitary version of the notion of free products was introduced and
investigated by Higman [1]. LetGi (i ∈ I) be groups and∗i∈X Gi the free
product ofGi (i ∈ X) for X � I andpXY :∗i∈Y Gi → ∗i∈X Gi the canonical
homomorphism forX ⊆ Y � I. (X � I denotes thatX is a finite subset ofI .)
Then, the unrestricted free product is the inverse limit lim←−(∗i∈X Gi,pXY : X ⊆
Y � I). We remark∗i∈∅Gi = {e}. Let Zn be a copy of the integer groupZ and
δn be its generator. We use a set theoretic conventionn= {0,1, . . . , n− 1} for a
natural numbern < ω. Sinceω is the set of natural numbers and the setsn are
cofinal in the family of finite subsets ofω, we have

lim←−
(∗
i∈X

Zi , pXY : X⊆ Y � ω
)
� lim←−

( ∗
i<m

Zi , pmn: m � n < ω
)
.

For sake of simplicity, we abbreviate limits lim←−(∗i∈XGi,pXY : X ⊆ Y � I)

and lim←−(∗i<m Zm, pmn: m � n < ω) by lim←−∗Gi and lim←−∗Zn, respectively, in
the sequel. SinceZn can be regarded as a subgroup of lim←−∗Zn, we regardδn
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as an element of lim←−∗Zn. An elementu of lim←−(∗i∈XGi,pXY : X ⊆ Y � I)

is canonically presented as a map such thatu(X) ∈ ∗i∈X Gi andpXY (u(Y )) =
u(X) for X ⊆ Y � I . For S ⊆ I , let pS : lim←−∗Gi → lim←−∗Gi be the canonical
projection induced by the homomorphisms obtained by composing the map
pX∩S,X and the inclusion∗i∈X∩S Gi ↪→ ∗i∈XGi for X � I , i.e., pS(x)(X) =
x(X ∩ S) for X � I .

An uncountable cardinalκ is measurable if there exists aκ-complete
non-principal ultrafilter onκ [2, p. 297]. The following is well known [2,
Lemma 27.1]: Letκ be the least cardinal on which there exists a countably
complete non-principal ultrafilter. Thenκ is a measurable cardinal.

Theorem 1.1. LetF be a free group. Then for each homomorphismh : lim←−∗Gi→
F there exist countably complete ultrafiltersu0, . . . , um on I such thath =
h ·pU0∪···∪Um for everyU0 ∈ u0, . . . ,Um ∈ um. Consequently, if the cardinality of
the index setI is less than the least measurable cardinal, then there exists a finite
subsetX0 of I and a homomorphismh :∗i∈X0 Gi→ F such thath= h · pX0.

Previously the second author showed the failure of the Specker phenomenon
in the uncountable case in a different situation [3]. (See also [4].) We explain
the difference between this result and Theorem 1.1 of the present paper. There
is a canonical subgroup of the unrestricted free product, which is called the free
complete product and denoted by×i∈I Gi . When an index setI is countable,
according to the Higman theorem (Lemma 1.2 and its variant for×n<ω Zn [1,
p. 80]), a homomorphism from lim←−∗Gi or×i∈I Gi to a free group factors
through a finite free product∗i∈F Gi . On the other hand, when the index setI

is uncountable and eachGi is non-trivial, there exists a free retract of×i∈I Gi of
large cardinality and there are homomorphisms not factoring through any finite
free product∗i∈F Gi , which contrasts with the case whenI is countable. This
also contrasts with an abelian case, which is known as the Łoś theorem [5].
Theorem 1.1 says that differing from the case of the free complete products the
non-commutative Specker phenomenon holds for the unrestricted free products
similarly as in the abelian case.

Since the following lemma holds for the freeσ -product×σ
i∈I Zi instead of

a free groupF [6], Theorem 1.1 also holds for it. (We remark×σ
i∈I Zi =×i∈I Zi ,

whenI is countable.)

Lemma 1.2 (Higman [1]).For each homomorphismh : lim←−∗Zn→ F there exists
m < ω and a homomorphismh :∗k<m Zk → F such thath = h · pm, where
pm : lim←−∗Zn→∗n<m Zn is the canonical projection.

Lemma 1.3. LetI =⋃{In: n < ω} with In ⊆ In+1 andxn ∈ lim←−∗Gi be such that
pIn(xn) = e. Then there exists a homomorphismϕ : lim←−∗Zn → lim←−∗Gi such
thatϕ(δn)= xn for eachn < ω.
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Proof. We defineψmX :∗k<m Zk→∗i∈X Gi byψmX(δk)= pX(xk). LetX � Im.
SincepX(xk) = e for k � m, we haveψmX · pmn = ψnX for n � m and con-
sequentlyψmX · pm = ψnX · pn. DefineϕX : lim←−∗Zn→ ∗i∈XGi asψmX · pm

and letX ⊆ Y � In. SincepXY · ψnY = ψnX , we havepXY · ϕY = pXY · ψnY ·
pn = ψnX · pn = ϕX . By the universal property of the inverse limit we have
ϕ : lim←−∗Zn→ lim←−∗Gi such thatpX · ϕ = ϕX for X � I and henceϕ(δn) = xn
for eachn < ω. ✷

For a homomorphismh : lim←−∗Gi→ F , let

supp(h)= {
X ⊆ I : pX(g)= e impliesh(g)= 0 for eachg

}
.

In the sequel we assume thath is non-trivial. We remark the following facts:

(1) pX · pY = pX∩Y for X,Y ⊆ I ;
(2) supp(h)= {X ⊆ I : h(g)= h(pX(g)) for eachg};
(3) supp(h) is a filter onI .

Lemma 1.4. Let An ⊆ An+1 ⊆ I andA =⋃{An: n < ω} andBn+1 ⊆ Bn ⊆ I

andB =⋂{Bn: n < ω}. If An /∈ supp(h) for eachn, thenA /∈ supp(h) and if
Bn ∈ supp(h) for eachn, thenB ∈ supp(h).

Proof. Suppose thatA ∈ supp(h). Takegn so thath(gn) �= 0 andpAn(gn)= e

for each n and let un = pA(gn). Since I = ⋃{An ∪ (I \ A): n < ω} and
pAn∪(I\A)(un) = pAn(gn) = e, by Lemma 1.3 we have a homomorphism
ϕ : lim←−∗Zn→ lim←−∗Gi such thatϕ(δn)= un for eachn < ω. Thenh · ϕ(δn) �= 0
for eachn, which contradicts Lemma 1.2.

To show the second proposition by contradiction, suppose thatB /∈ supp(h).
Then we haveg ∈ lim←−∗Gi such thatpB(g)= e but h(g) �= 0. Let vn = pBn(g).
Since I = ⋃{B ∪ (I \ Bn): n < ω} and pB∪(I\Bn)(vn) = pB · pBn(g) = e,
we apply Lemma 1.3 and have a homomorphismϕ : lim←−∗Zn→ lim←−∗Gi such
that ϕ(δn) = vn for eachn < ω. Then we have a contradiction similarly as the
above. ✷
Lemma 1.5. LetA0 /∈ supp(h). Then there existA satisfying the following:

(1) A0⊆A /∈ supp(h);
(2) for X ⊆ I , A∪X /∈ supp(h) imply (I \X) ∪A ∈ supp(h).

Proof. We constructAn /∈ supp(h) by induction as follows. Suppose that we
have constructedAn /∈ supp(h). If An satisfies the required properties ofA,
we have finished the proof. Otherwise, there existAn ⊆ An+1 ⊆ I such that
An+1 /∈ supp(h) and (I \ An+1) ∪ An /∈ supp(h). We claim that this process
finishes in a finite step. Suppose that the process does not stop in a finite step.
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Then we haveAn’s and so letA = ⋃{An: n < ω}. Then A /∈ supp(h) by
Lemma 1.4. SinceI \ A ⊆ I \ An+1, (I \ A) ∪ An /∈ supp(h) for eachn < ω.
Now I =⋃{(I \A)∪An: n < ω} and henceI /∈ supp(h) by Lemma 1.4, which
is a contradiction. ✷
Proof of Theorem 1.1. Let h : lim←−∗Gi → F be a non-trivial homomorphism.
Apply Lemma 1.5 toA0= ∅, then we haveA. We defineu0 as follows.

X ∈ u0 if and only if A ∪ X ∈ supp(h) for X ⊆ I . Thenu0 is a countably
complete ultrafilter onI by Lemma 1.4. We letI0 = I \ A, then obviously
I \ I0 /∈ supp(h).

When I0 ∈ supp(h), then h = h · pU0 for every U0 ∈ u0 and we have
finished the proof. Otherwise, we constructIn /∈ supp(h) and countably complete
ultrafiltersun on I with In ∈ un by induction as follows. Suppose that

⋃n
i=0 Ii /∈

supp(h), we apply Lemma 1.5 toA0 =⋃n
i=0 Ii /∈ supp(h) and get a countably

complete ultrafilterun+1 on I with In+1 ∈ un+1 so thatI \ In+1 /∈ supp(h).
To show that this procedure stops in a finite step, suppose the negation. Since

(I \⋃∞k=0 Ik)∪
⋃n

k=0 Ik is disjoint fromIn+1, (I \⋃∞k=0 Ik)∪
⋃n

k=0 Ik /∈ supp(h)
for eachn. Then we haveI /∈ supp(h) by Lemma 1.4, which is a contradiction.

Now we have pair-wise disjoint subsetsI0, . . . , In of I such thatI0∪ · · ·∪ In ∈
supp(h). By the construction,X ∈ uk if and only if

⋃
i �=k Ii ∪ X ∈ supp(h) and

hence
⋃

i �=k Ii ∪Uk ∈ supp(h) for Uk ∈ uk (0 � k � n). Since supp(h) is a filter,⋃n
k=0Uk ∈ supp(h) and we have the first proposition.
If each uk contains a singleton{ik}, we haveX0 = {i0, . . . , in} ∈ supp(h).

Then we have a homomorphismh :∗i∈X0 Gi → F such thath = h · pX0. When
the cardinality ofI is less than the least measurable cardinal, every countably
complete ultrafilteru on I is principal by the well-known fact mentioned just
before Theorem 1.1 and, hence,u contains a singleton{i} for some i ∈ I .
Consequently we have the second proposition.✷
Remark 1.6. (1) As explained before, when index sets are uncountable, the
unrestricted free products and the free complete products behave differently with
respect to the Specker phenomenon. The parts of the proof of Theorem 1.1 that
do not generalize are applications of of Lemma 1.3. Proposition 1.9 of [7] is an
analogue of Lemma 1.3 for the free complete products, but has some restricting
hypotheses, which prevent its use.

(2) In [6, Theorem 1.2] we showed the Specker phenomenon holds for general
inverse limits over a countable index setI and in [6, Remark 2, p. 102] we
demonstrated by an example that this is not true ifI is uncountable.

(3) In the abelian case lim←−(
⊕

i∈X Ai, pXY : X ⊆ Y � I) is isomorphic to the
direct product

∏
i∈I Ai and we can analyze homomorphisms from

∏
i∈I Ai to Z

using ultraproducts when the cardinality of the index setI is greater than the least
measurable cardinal [5]. We have not found a way to analyze homomorphisms in
Theorem 1.1 so far.
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