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An infinitary version of the notion of free products was introduced and
investigated by Higman [1]. LeG; (i € I) be groups andk;cx G; the free
product ofG; (i € X) for X € I and pxy : *;cy G; — *;cx G; the canonical
homomorphism forX C Y € I. (X € I denotes thak is a finite subset of .)
Then, the unrestricted free product is the inverse limiti#m x G;, pxy: X C
Y € I). We remarkk; s G; = {e}. Let Z,, be a copy of the integer group and
8, be its generator. We use a set theoretic conventien{(0,1,...,n — 1} fora
natural numbern < w. Sincew is the set of natural numbers and the setre
cofinal in the family of finite subsets af, we have

Lm(* Zi, pxy: XEY@w) 2@( % Zi, pmn: m<n <a)>-
ieX i<m

For sake of simplicity, we abbreviate limits li®;cx Gi, pxy: X C Y € 1)
and imGk; < Zm, pmn' m <n < w) by lim* G; and limx Z,, respectively, in
the sequel. Sincé, can be regarded as a subgroup_of 4i%,, we regards,
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as an element of likkZ,. An elementu of lImCk;ex Gi, pxy: X €Y € 1)

is canonically presented as a map such th&) € *;cx G; and pxy (u(Y)) =
u(X)forx CY el. ForSCl,let ps:lim*G; — lim*G; be the canonical
projection induced by the homomorphisms obtained by composing the map
pxns,x and the inclusionk;cxns Gi < *;ex G; for X € I, i.e., ps(x)(X) =
x(XNnS) forxel.

An uncountable cardinak is measurable if there exists a-complete
non-principal ultrafilter onk [2, p. 297]. The following is well known [2,
Lemma 27.1]: Letx be the least cardinal on which there exists a countably
complete non-principal ultrafilter. Thenis a measurable cardinal.

Theorem 1.1. Let F be a free group. Then for each homomorphistim xG; —

F there exist countably complete ultrafilters, ..., u,, on I such thath =

h - pygu...uu,, foreveryUp € uo, ..., Uy € u,. Consequently, if the cardinality of
the index sef is less than the least measurable cardinal, then there exists a finite
subsetXg of 7 and a homomorphisi: *;cx, G; — F such thath = & - px,.

Previously the second author showed the failure of the Specker phenomenon
in the uncountable case in a different situation [3]. (See also [4].) We explain
the difference between this result and Theorem 1.1 of the present paper. There
is a canonical subgroup of the unrestricted free product, which is called the free
complete product and denoted by.; G;. When an index sef is countable,
according to the Higman theorem (Lemma 1.2 and its varianifor,, Z, [1,

p. 80]), a homomorphism from limG; or X;c; G; to a free group factors
through a finite free product;cr G;. On the other hand, when the index get

is uncountable and ead}y is non-trivial, there exists a free retractxf.; G; of

large cardinality and there are homomorphisms not factoring through any finite
free productk;cr G;, which contrasts with the case whéns countable. This

also contrasts with an abelian case, which is known as ttetheorem [5].
Theorem 1.1 says that differing from the case of the free complete products the
non-commutative Specker phenomenon holds for the unrestricted free products
similarly as in the abelian case.

Since the following lemma holds for the freeproductx?_; Z; instead of
afree groupF [6], Theorem 1.1 also holds for it. (We remax_; Z; = X;c; Z;,
when/ is countable.)

Lemma 1.2 (Higman [1]).For each homomorphisi: lim x Z, — F there exists
m < w and a homomorphism : x;_,, Z; — F such thath = h - p,,, where
DPm - Lim * Zp — kn<m Zy is the canonical projection.

Lemmal.3.Let! = J{l,: n <w}withl, C I,41andx, € lim % G; be such that
p1,(xz) = e. Then there exists a homomorphigmlim % Z, — lim % G; such
thate(s,) = x, for eachn < w.
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Proof. We definey,,,x : skx<m Zi — *kiex Gi bY ¥ x (81) = px (xx). LetX € I,.
Since px (xx) = e for k > m, we havey,,x - pmn = ¥ux for n > m and con-
SequenthInX *Pm = an *Pn- Deﬁne(pX : L@ * L — *iex G; as WmX * Pm
and letX C Y € I,. Sincepxy - Yy = ¥nx, We havepxy - oy = pxy - ¥y -

Pn = V¥nx - pn = @x. By the universal property of the inverse limit we have
go:l(iﬂ *Zp — Lim * G; such thatpy - ¢ = ¢x for X € I and hence(s,) = x,
foreachm <w. O

For a homomorphism:ljm % G; — F, let
supph) = {X € I: px(g) = e impliesh(g) = 0 for eachg}.

In the sequel we assume thais non-trivial. We remark the following facts:

(1) px-pr=pxnrforX,Y C I,
(2) supggh) ={X C I: h(g) = h(px(g)) for eachg};
(3) supph) is afilter onI.

Lemmal4. LetA, CA,y1 ST andA = J{A,;: n<w}andB,41 S B, C I
and B = ({Bn: n < w}. If A, ¢ supph) for eachn, then A ¢ supph) and if
B, € supph) for eachn, thenB € supfh).

Proof. Suppose tha#t € supgh). Take g, so thath(g,) # 0 andpa,(g,) =e

for eachn and letu, = pa(g,). Sincel = [ J{A, U \ A): n < w} and
PAu\A) Un) = pa,(gn) = e, by Lemma 1.3 we have a homomorphism
@:lim % Z, — lim % G; such thai(8,) = u, for eachn < . Thenk - ¢(3,) #0

for eachn, which contradicts Lemma 1.2.

To show the second proposition by contradiction, supposeBhasupph).
Then we have € lim x G; such thatpg(g) = e buth(g) # 0. Letv, = p3,(g).
Since I = J{BU (I \ B,): n <w} and ppu\s,) (va) = pp - PB,(8) = e,
we apply Lemma 1.3 and have a homomorphigniim % Z, — lim % G; such
that ¢ (8,) = v, for eachn < w. Then we have a contradiction similarly as the
above. O

Lemma 1.5. Let Ag ¢ suph). Then there existt satisfying the following

(1) Ao C A ¢ supph);
(2) for X € I, AU X ¢ supgh) imply (I \ X) U A € supph).

Proof. We constructA,, ¢ suppgh) by induction as follows. Suppose that we
have constructedi,, ¢ supgh). If A, satisfies the required properties af

we have finished the proof. Otherwise, there exigtC A,,.1 € I such that

Ap+1 ¢ supph) and (I \ A,+1) U A, ¢ supgh). We claim that this process
finishes in a finite step. Suppose that the process does not stop in a finite step.
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Then we haveA,’s and so letA = | J{A,: n < w}. Then A ¢ supph) by
Lemma 1.4. Sincd \AC I\ A,y1, (I \ A) U A, ¢ supgh) for eachn < w.
Now I = J{(I \ A)UA,: n <w} and hencd ¢ supph) by Lemma 1.4, which
is a contradiction. O

Proof of Theorem 1.1. Let ~:lim % G; — F be a non-trivial homomorphism.
Apply Lemma 1.5 tadp = ¢, then we haved. We defineug as follows.

X eup if and only if AU X € supgh) for X € I. Thenug is a countably
complete ultrafilter on/ by Lemma 1.4. We letlp = 1 \ A, then obviously
I\ Ip ¢ supph).

When Ig € supph), thenh = h - py, for every Up € ug and we have
finished the proof. Otherwise, we constriigk suppz) and countably complete
ultrafiltersu, on I with I, € u, by induction as follows. Suppose tHaf/_, /; ¢
supph), we apply Lemma 1.5 talo = J/_o /i ¢ supph) and get a countably
complete ultrafiltet,,.1 on I with I,41 € u,+1 so thatl \ 1,11 ¢ supgh).

To show that this procedure stops in a finite step, suppose the negation. Since
(I\UrZo It) Ui —o Ik is disjoint from 7, 11, (1 \ Ug—o I) Y Uj—o Ik ¢ Supph)
for eachn. Then we havd ¢ supgh) by Lemma 1.4, which is a contradiction.

Now we have pair-wise disjoint subsets..., I, of I suchthatlgU---U1, €
supph). By the constructionX € uy if and only if Ui# I; U X € supgh) and
henceU#k I; U Uy € supgh) for Uy € uy (0 < k < n). Since supfh) is a filter,
Ui—o Uk € supfih) and we have the first proposition.

If each u; contains a singletori,}, we haveXg = {io,...,i,} € Supgh).
Then we have a homomorphisms;cx, G; — F such that: =& - px,. When
the cardinality of/ is less than the least measurable cardinal, every countably
complete ultrafilters on I is principal by the well-known fact mentioned just
before Theorem 1.1 and, hence,contains a singletorji} for somei € I.
Consequently we have the second proposition.

Remark 1.6. (1) As explained before, when index sets are uncountable, the
unrestricted free products and the free complete products behave differently with
respect to the Specker phenomenon. The parts of the proof of Theorem 1.1 that
do not generalize are applications of of Lemma 1.3. Proposition 1.9 of [7] is an
analogue of Lemma 1.3 for the free complete products, but has some restricting
hypotheses, which preventits use.

(2) In[6, Theorem 1.2] we showed the Specker phenomenon holds for general
inverse limits over a countable index sktand in [6, Remark 2, p. 102] we
demonstrated by an example that this is not trueiff uncountable.

(3) Inthe abelian case i), x Ai, pxy: X C Y €I) is isomorphic to the
direct producf [;.; A; and we can analyze homomorphisms frpfr.,; A; to Z
using ultraproducts when the cardinality of the index/sistgreater than the least
measurable cardinal [5]. We have not found a way to analyze homomorphisms in
Theorem 1.1 so far.
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