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Abstract. Assuming an inaccessible cardinalκ, there is a generic extension in
which MA + 2ℵ0 = κ holds and the reals have a∆2

1 well-ordering.

1 Introduction

The aim of this paper is to describe a technique that allows the encoding of an
arbitrary set of ordinals by a∆2

1 formula in a generic extension which is cofinality
preserving. This encoding is robust enough to coexist with MA (Martin’s Axiom).
Specifically, we will show, for any model of ZFC set theory with an inaccessible
cardinal κ, the existence of a cardinal preserving generic extension in which
2ℵ0 = κ + MA+ there is a ∆2

1 well-ordering ofR.
Let us explain what is meant by a∆2

1 well-order. We refer here to the
structure〈H ,∈〉 where H = H (ℵ1) is the collection of all hereditarily count-
able sets. AΣ2

k formula is a second-order formula of the form∃X1 ⊆ H ∀X2 ⊆
H . . . ϕ(X1, . . . ,Xk , a1 . . . , an) with k alternations of set quantifiers (unary pred-
icates,Xi ), and whereϕ is a first-order formula (in which quantification is over
H ) with predicate namesX1, . . . ,Xk , and variablesa1, . . . , an (which vary over
H ). A ∆2

k formula is one that is equivalent to aΣ2
k and to aΠ2

k formula. A
∆2

1 well-ordering is one that is given by a∆2
1 formula ψ(x, y) that defines a

well-ordering ofR. Obviously, aΣ2
1 linear ordering ofR is also aΠ2

1 ordering.
An alternative definition ofΣ2

k formulas, which connects to the usual defi-
nition of Σ1

n (projective) sets, is to look at third-order formulas over〈N,+, . . .〉,
that is, second order formulas overR.

Our result cannot be improved to give a projective well-ordering ofR because
of a theorem of Shelah and Woodin [4] which proves that there is no well-ordering
of R in L(R), assuming some large cardinal. Since any projective order is inL[R],
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288 U. Abraham, S. Shelah

and as a small extension, such as the one described here, will not destroy any
large cardinal aboveκ, the∆2

1 well-order cannot be improved to a projective
well-order.

Though this paper can be read independently, it is a continuation of our [1]
work where another coding technique is described which does not add any new
reals. Both that work and the present are motivated by a theorem of Woodin
[5] which shows that if CH holds and there is a measurable cardinal which is
Woodin, then there is noΣ2

1 well-order of the reals. In view of this result, a
natural question is what happens if the CH is removed? Woodin has obtained the
following result: Assuming an inaccessible cardinalκ, there is a c.c.c. forcing
extension in whichκ = 2ℵ0 and

1. there is a∆2
1 well-ordering ofR.

2. Martin’s axiom holds forσ-centered posets.

Since the poset used to get this extension has cardinalityκ, it does not destroy
whatever large cardinal properties the ground model has aboveκ, and hence the
assumption of CH is necessary for Woodin’s theorem.

The theorem proved in this paper is a slight improvement of this theorem in
that MA replaces the restricted version forσ-centered posets, but our main point
is to describe a different encoding technique.

We were also motivated by the following related result of Solovay:

There is a forcing poset of size 22ℵ0 such that the following holds in the
extension

1. 2ℵ0 = 2ℵ1 = ℵ2.
2. MA for σ-centered posets,
3. there is a∆2

1 well-ordering of the reals.

Let us emphasize that no inaccessible cardinal is needed for Solovay’s result.
Let us also mention here the main result of Abraham and Shelah [1]

There is a generic extensionthat adds no new countable setsin which
there exists aΣ2

2 well-order ofR.

The theorem proved in this paper will now be formally stated.

Theorem. Let κ be an inaccessible cardinal, and assume GCH holds belowκ.
Then there is a forcing extension that changes no cofinalities and in which

1. 2ℵ0 = κ+ Martin’s Axiom, and
2. there is a∆2

1 well-ordering ofR.

In a forthcoming work [2] we will show that the inaccessible is dispensable (but
the continuum isℵ2 in this work).
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2 Overview

The idea of the proof is quite simple, and we first give a general description.
The generic extension is a lengthκ mixed–support iteration consisting of two
components: The first component iterates c.c.c. posets with the aim of finally
obtaining Martin’s Axiom. The second component is doing the coding. Quite
arbitrarily, we have chosen the set (called lim) of limit ordinals belowκ to be
the support of the c.c.c. component, and the set of successor ordinals (succ)
to support the coding component. The iteration is a finite/Easton iteration. This
means that the domain of each condition is finite on the limit ordinals, and has
cardinality< ρ below every inaccessible cardinalρ ≤ κ.

For a regular cardinalλ, Fλ denotes the club filter onλ. We say that a family
H ⊆ Fλ generates Fλ iff ∀C ∈ Fλ ∃D ∈ H (D ⊆ C). The least cardinality
of a generating family forFλ is called here “the generating number forλ”. A
crucial question (in this paper) to ask about a regular cardinalλ is whether its
generating number isλ+ or higher: it is through answers to these questions that
the encoding works.

If 2λ = λ+, then the generating number forλ is λ+ of course, but it is easy
to increase it by forcing, say,λ++ new subsets ofλ with conditions of size< λ.
We denote withC(λ, µ) the poset that introducesµ subsets toλ with conditions
of size< λ.

C(λ, µ) = {f |dom(f) ⊆ λ× µ, range(f) = 2, | f |< λ}

where | f | is the cardinality of the functionf . Equivalently, one can demand
dom(f) ⊆ µ in the definition. ClearlyC(λ, µ) is λ-closed, and ifλ<λ = λ, then
it satisfies theλ+−c.c.

The closure inλ of each generic subset ofλ is a closed unbounded set that
contains no old club set. We will iterate such posets, varyingλ, and taking care
of MA as well.

In the final generic extension, 2ℵ0 = κ, Martin’s Axiom holds, and the se-
quence of answers to the questions about the generating numbers forλ < κ
encodes a well-ordering ofR which is ∆2

1. As will be explained below, these
questions are asked only for even (infinite) successors belowκ, that is, cardinals
of the formℵδ+2n whereδ > 0 is a limit ordinal and 1≤ n < ω (call this set of
even successor cardinalses). It is convenient to use an enumeration ofesthat uses
all the successor ordinals as indices:es={λj | j < κ is a successor ordinal}. So
λ1 = ℵ2 is the first infinite even successor,λ2 = ℵ4, . . . , λω+1 = ℵω+2, λω+2 = ℵω+4

etc. In general,

if α = δ + n + 1 whereδ ∈ lim and n < ω, thenλα = ℵδ+2(n+1).

In the final model, the well-ordering ofR is the sequence of reals〈rξ|ξ < κ〉
whererξ ⊆ ω is encoded by settingα = ωξ and

n ∈ rξ iff the generating number forλ = λα+n+1 is λ++.
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290 U. Abraham, S. Shelah

Why is it necessary to skip cardinals and to space theλα’s two cardinals
apart? Suppose thatr ⊆ ω is the first real we want to encode. If 0∈ r , then the
first coding poset isC(ℵ2,ℵ4). Recall thatGCH is assumed, and hence cardinals
are not collapsed, and 2ℵ2 = ℵ4 after this forcing. Now if 1∈ r , we may want
to continue forcing withc(ℵ3,ℵ5), but this will collapseℵ4 since 2ℵ2 = ℵ4. Thus
we must start the next iteration at least two cardinals apart, and forcing with
C(ℵ4,ℵ6) is fine. In general,λα+1 = λ++

α , enables the proof that cardinals are not
collapsed in the extension.

The coding component of our forcing will be an iteration of posets of type
C(λα, λ++

α ) for well chosenα’s. This choice will be made to obtain the desired
coding by determining the generating number forλ ∈ es.

Let us take a closer, but still informal, view of the forcing poset. If we denote
with Pα theαth stage of the iteration, then our final poset isPκ. For limit δ’s, Pδ
is the mixed support limit of〈Pi |i < δ〉 with finite/Easton support. This means
that f ∈ Pδ iff f is a partial function defined onδ such thatf � i ∈ Pi for
every i < δ, and dom(f ) contains only finitely many limit ordinals (this is the
c.c.c. component), and|dom(f) ∩ µ| < µ for any inaccessible cardinalµ (this is
the Easton support requirement of the coding component). At successor stages
Pj +1

∼= Pj ∗Qj is a two-step iteration, whereQj is a poset inV Pj characterized by
the following. For limit j < κ, Qj is in V Pj a c.c.c. forcing. And for successor
j < κ of the formδ + i , wherei ∈ ω andδ ∈ lim, Qj is either the trivial poset,
or C(λj , λ

++
j ) which is the poset for addingλ++

j many subsets toλj = ℵδ+2i . The
decision as to the character ofQj will be described later; the role ofQj is to
encode one bit of information about some real. This decision is made generically,
in V Pj , and it depends on the real inV Pj that is being encoded.

So P1 is some c.c.c. poset, andP2 is P1 followed by either the trivial poset
or by C(ℵ2,ℵ++

2 ). In the latter case, forcing withP2 makes 2ℵ2 = ℵ4.

The iteration continues in a similar fashion. To illustrate one of the main
points, let us see (only intuitively now) whyℵ1 is not collapsed. We will show
that every f : ω1 → On in V Pκ (where On is the class of ordinals) has a
countable approximation inV , that is, a functionf ′ such that, for everyα ∈ ω1,
f (α) ∈ f ′(α) wheref ′(α) is a countable set of ordinals.

Observe first that the Easton component ofPκ is < ℵ2 closed. This means
that if an increasing sequence〈pi |i < ω1〉 of conditions inPκ have the same
c.c.c. component (pi � lim = pj � lim), then there is an upper bound inPκ to the
sequence. We say thatp is a pure extension ofq if p extendsq and both have
the same restriction to lim (same c.c.c. component). Now, iff : ω1 → On is a
function in V Pκ , we define an increasing sequence〈pi |i < ω1〉 of conditions in
Pκ such thati < j ⇒ pj is a pure extension ofpi : To obtainpi +1 extendpi in
countably many steps; at each step find first an extensionq′ of the previous step
q that forces a new value forf (i ) (if there is one) and then take only the pure
extension ofq imposed byq′. It turns out that this process will never take more
than countably many steps, or else we get a contradiction to the assumption that
at limit stages c.c.c. posets are iterated. The upper boundp ∈ Pκ of this pure
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increasing sequence “knows”, for eachi < ω1, all the countable many possible
values forf (i ).

We arrange the iteration in such a way that for every realr ∈ V Pκ there is
a unique limit ordinalδ = δ(r ) so that, for everyk ∈ ω, k ∈ r iff the generating
number forλ = λδ+(k+1) is λ++, whereλ = ℵδ+2(k+1)).

Now the well-ordering onR is defined by

r1 ≺ r2 iff δ(r1) < δ(r2).

This formula is certainly first-order expressible inH (κ) (the collection of sets
of cardinality hereditarily< κ in the extension), but why is itΣ2

1? Why can
we reduce it to second–order quantification overH (ℵ1)? The point is that 2ℵ0 =
κ + MA, and we can speak correctly withinH (ℵ1) aboutH (κ), and it takes a
single second-order quantification to do that (this trick was used by Solovay in
his theorem cited above; we will outline it now, and it will be explained in more
detail later.) To expressr1 ≺ r2, just say:

There is a relationR over H = H (ℵ1), such that (H ,R) satisfies enough
of set theory (whenR interprets the membership relation∈), such thatR
is well-founded and such that every real is “found” in (H ,R); moreover,
(H ,R) satisfies the following statement: “every limit ordinal has the form
δ(r ) for some real r, andδ(r̂1) < δ(r̂2)”, where ˆr is the construction of
r ⊆ ω in the model (H ,R).

SinceR is well-founded, (H,R) is collapsed to some∈ structure,M , which turns
out to beH (κ) as we want. The main points to notice in order to prove this are
that (1)M cannot contain less thanκ ordinals because it contains all the reals, and
a definable well-ordering ofR. (2) WhatM considers to be a cardinal is really
a cardinal, because any possible collapsing function inH (κ) can be encoded
by a real (with the almost disjoint set technique which is applicable because of
Martin’s Axiom). Since this encoding real is inM ,H (κ) is included inM . (3)
M does not contain more ordinals thanκ. This is so since every limit ordinalδ
is connected to a single real which is encoded along the segment [ℵδ+2,ℵδ+ω) by
the characteristic of the club filters. ThusM is H (κ).

The details of this proof are written in the sequel.

3 Mixed support iteration

In this section we describe how to iterate, with mixed support (Mitchell’s type
support), c.c.c. posets andλ-complete posets, where the support of the c.c.c.
component is finite, and the support of the complete component is of Easton
type—bounded below inaccessibles.

Let κ be an inaccessible cardinal, andλ < κ a regular cardinal> ℵ1. The
non c.c.c posets in the iteration are all assumed to beλ closed. For definiteness
we have chosen the support of the c.c.c. posets to be the limit ordinals belowκ,
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denoted here lim (0 is in lim), and theλ-complete forcings are supported by the
successors belowκ, denoted “succ”.

For an ordinalµ ≤ κ, a mixed supportiteration of lengthµ is defined here
to be a sequence of posets〈Pi |i ≤ µ〉 such that

1. The members of eachPi are partial functions defined oni .
2. For limit δ ≤ µ, Pδ is the mixed supportlimit of 〈Pi |i < δ〉. This means the

following. Pδ consists of all the partial functionsf defined onδ such that
a) f � i ∈ Pi for every i < δ.
b) Dom(f) ∩ lim is finite.
c) In caseδ is inaccessible,|Dom(f ) ∩ succ|< δ.
The partial order onPδ is defined byf ≤ g iff for all i < δ f � i ≤ g � i in
Pi .

3. For successorsη + 1 ≤ µ, Pη+1 ' Pη ∗ Qη where Qη is a name of a
poset in the universe of termsV Pη . So f ∈ Pη+1 iff f � η ∈ P = Pη and
f � η 
P f (η) ∈ Qη. The partial order onPη+1 is defined as usual.

4. For any limit ordinalδ < µ, Qδ is in V Pδ a c.c.c. forcing (i.e., the empty
condition in Pδ forces that). For successorsα < µ, Qα is λ-closed inV Pα

(closed under sequences of length< λ).

The notation
η can be used for
Pη . It is convenient to define two conditions
p andq in P to beequivalentiff they are compatible with the same conditions
in P. However, it is customary not to deal with equivalence classes, and to write
p = q instead of [p] = [q], and we shall accept this convention.

For i < µ (µ is the length of the iteration) the restriction mapf 7→ f � i is a
projection ofPµ onto Pi . But for an arbitrary setA⊆ i , f � A is not necessarily
a condition, and, even when it is a condition, it is possible that [f ] = [g] and
f � A /= g � A. Therefore, the notationf � A refers to the functionf itself and not
to its equivalence class.

The set of functionsf � lim, for f ∈ Pµ, is called the “c.c.c. component” of
Pµ. And the functions of the formf � succ form the “complete component” ofPµ.
Let us say thatf2 is apureextension off1 in Pµ iff f1 ≤ f2 andf1 � lim = f2 � lim.
Thus, a pure extension off1 does not touch the c.c.c. component. (This definition
refers to the functionsf1 and f2 and not to their equivalence classes inPµ.)

The following lemma is an obvious consequence of the assumedλ-completeness
of the posets in the complete component.

Lemma 3.1. Pµ is < λ pure closed. That is, any purely increasing sequence
〈qi |i < τ〉 of lengthτ < λ (qj is a pure extension of qi for i < j ) has a least
upper bound in Pµ, which is a pure extension of each qi .

Suppose now thatq ∈ Pµ, andr is in the c.c.c. component ofPµ. Then the sum
h = q + r is the function defined by

h(i ) =

{
r (i ) if i ∈ dom(r)
q(i ) if i ∈ dom(q) \ dom(r)

.
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Whenever the notationh = q + r is used, it is tacitly assumed that for every
i , h � i 
i h(i ) ∈ Qi and r(i ) extends q(i ). Henceq + r ∈ Pµ extendsq. We
have the following two easy lemmas on pure extensions given with no proof.

Lemma 3.2. If p1 ≤ p2 in Pµ, then there is a pure extension q of p1 such that,
setting r = p2 � lim, we have

[p2] = [q + r ] .

Thus any extension is a combination of a pure extension with a finitely supported
c.c.c. component.

Lemma 3.3. If p0 + r is a condition and p1 is a pure extension of p0, then p1 + r
is a condition that extends p0 + r .

The c.c.c. component ofPµ is certainly not a c.c.c. iteration, but the following
quasi c.c.c. property still carries over from the usual argument that iteration with
finite support of c.c.c. posets is again c.c.c.

Lemma 3.4. Assume thatω1 is preserved by Pµ′ for everyµ′ < µ. Let {rξ|ξ <
ω1} be an uncountable subset of the c.c.c. component of Pµ. If q ∈ Pµ is such
that q + rξ ∈ Pµ can be formed for everyξ < ω1, then

1. For someξ1 /= ξ2, q + rξ1 and q+ rξ2 are compatible in Pµ.
2. There is some r in the c.c.c. component of Pµ such that q+ r ∈ Pµ and

q + r 
µ there are unboundedly manyξ < ω1

with q + rξ ∈ G (the generic filter).

Proof. Obviously, (2) implies (1) (because the posets are separative, andp 


“q + rξ ∈ G ” implies q + rξ ≤ p). So we will only prove (2), by induction onµ.
Recall first that for any c.c.c. posetQ and uncountable subsetA ⊆ Q there

is a conditiona ∈ A such thata 
Q A∩ G is uncountable. (Obvious warning:
This does not mean there are uncountably manya′ ∈ A with a′ ≤ a.)

If µ is limit, there is no problem in using the familiar∆-argument in case
cf (µ) = ω1, and the obvious application of the inductive assumption whencf (µ) /=
ω1. For example, in casecf (µ) = ω1, form a∆-system out of dom(rξ), ξ < ω1,
and letd ⊆ i0 < µ be the fixed finite core of the system. Then apply the inductive
assumption toq � i0 and tor ′ξ = rξ � d, for ξ in the∆-system. This gives some
r0 in the c.c.c. component ofPi0 which satisfies2 above forq � i0 and the
conditionsr ′ξ. It is not too difficult to see thatq + r0 is as required (use the fact
that the c.c.c component of every condition has a finite support).

In caseµ = j + 1 and j is a limit ordinal (for this is the interesting case),
then Pµ ' Pj ∗ Q(j ), whereQ(j ) is a c.c.c. poset inV Pj . Set q′ = q � j , and
r ′ξ = rξ � j . Apply induction to findr ′ such that
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q′ + r ′ 
j for unboundedly manyξ < ω1,
q′ + r ′ξ ∈ Gj (the generic filter over Pj ).

Then define a nameσ in V Pj of a subset ofω1 such that

[q ′ 
j ξ ∈ σ] iff q′ + r ′ξ ∈ Gj .

Since
(1) q′ + r ′ forces thatσ is unbounded inω1,
(2) ω1 is not collapsed inV Pj by our assumption,
(3) Q(j ) is c.c.c.,
there is, by the remark made at the beginning of the proof, a namea ∈ V Pj such
that q′ + r ′ 
j “a is some rξ(j ) for r ′ξ in Gj such that a
Q(j ) (for unboundedly
manyζ ∈ σ, rζ(j ) ∈ H ) ”. (H is theQ(j ) generic filter.

Now it is immediate to combiner ′ anda to a functionr which is as required.
ut

The main property of the mixed support iteration is the following.

Lemma 3.5. Assume Pµ is a mixed support iteration as described above of c.c.c.
and λ-complete posets. For every cardinalλ′ < λ, every f : λ′ → On in VPµ

has a countable approximation in V (that is, a functiong defined onλ′ such that
for everyα < λ′, g(α) is countable and f(α) ∈ g(α).)

Proof. By induction onµ. Observe first that the lemma implies that any set of
infinite cardinalityλ′ < λ in the extension is covered by a ground model set of
the same cardinality. Hence cardinals≤ λ are not collapsed inV Pµ . The lemma
also implies that, for regular uncountableλ′ < λ, any club subset ofλ′ in V Pµ

contains an old club set inV .
It is obvious that any c.c.c. extension orλ-complete extension has the prop-

erty described in the theorem, namely that functions onλ′ have countable ap-
proximations. Hence, in caseµ = µ0 + 1, the theorem is obvious: First get the
approximation inV Pµ0 (assume without loss of generality that the first approxi-
mation has the formg : λ′ × ℵ0 → On), and then use induction to get a second
approximation inV .

So assume thatµ is a limit ordinal, andf ∈ V Pµ is a function defined on
λ′ < λ. We are going to define a pure increasing sequence〈qξ|ξ < λ′〉 in Pµ
such that for everyα < λ′ there is a countable setg(α) and

qα+1 
 f (α) ∈ g(α).

If this construction can be carried on, then use the< λ pure completeness ofPµ to
find an upper boundq to this sequence. Thenq 
 g is a countable approximation
to f .

The definition ofqξ+1 is done by defining (1) a pure increasing sequence
〈q(α)|α < α0〉 whereq(0) = qξ, and (2) for eachα, a finite functionrα in the
c.c.c. component ofPµ so that, forα /= α′, q(α) + rα and q(α′) + rα′ force
different values forf (ξ). The definition of this sequence is continued as long as
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possible, and the following argument shows that it must stop for someα0 < ω1,
and thenqξ+1 is the pure supremum of this countable sequence, andg(ξ) is the set
of all values forced there to bef (ξ). Indeed, otherwise,q(α) can be defined for
everyα < ω1 and we letq be the upper bound of this pure increasing sequence
(recall thatℵ1 < λ). Thenq +rα is in Pµ for everyα < ω1 and it forces different
values forf (ξ). This contradicts the quasi c.c.c. Lemma 3.4.ut

4 Definition of the forcing extension

The description of the posetPκ, used for the coding proof, is given in this section
by defining a mixed-support iteration〈Pµ|µ ≤ κ〉 as outlined in Sect. 2.

At successor stages:Pµ+1
∼= Pµ∗Qµ whereQµ is a poset inV Pµ defined thus.

If µ = δ ∈ lim, then Qδ is in V Pδ a c.c.c. poset of cardinality, say,≤ ℵδ. (P1 is
a c.c.c. poset, say the countable Cohen poset.) The choice ofQδ is determined
by some bookkeeping function, aimed to ensure that Martin’s Axiom holds in
V Pκ . (The cardinality limitation is to ensure the right cardinalities to show that
cardinals are not collapsed.)

For successor ordinals of the formj = δ+i whereδ is limit and 0< i < ω, Qj

is defined to be inV Pj either the trivial poset (containing a single condition) or
the posetC(λj , λ

++
j ), whereλj = ℵδ+2i . To determine which alternative to take,

define a functiong that gives, for every limitδ < κ, a nameg(δ) ∈ V Pδ such
that, for everyα < κ, every real inV Pα is someg(δ) for δ ≥ α. Suppose
that g(δ) is interpreted asr ⊆ ω in V [Gδ] (the generic extension viaPδ); then
this determinesQj , for every j in the interval (δ, δ+ ω), which has the form
j = δ + i0 + 1, by

Qj is non-trivial iff i0 ∈ r .

In order to prove thatPκ possesses the required properties (such as not
collapsing cardinals), we decomposePκ at any stageα < κ, and writePκ ∼=
Pα ∗ Pα

κ , where Pα is the iteration up toα, and Pα
κ is the remainder of the

iteration. It is not hard to realize thatPα
κ is just like Pκ except thatλ1 = ℵ2

is replaced withλα+1 = ℵα+2. For this reason, we must first describePα
κ and

analyze its properties.
For each ordinalα < κ a mixed support iteration〈Pα

µ |α ≤ µ ≤ κ〉 will be
defined by induction onµ. The poset used to obtain the theorem isP0

κ, but the

Pα
κ are necessary as well since the decompositionP0

κ ' P0
α ∗ (Pα

κ )V P0
α is used

to show the desirable properties of the iteration. This may also explain why we
choose the indexµ of Pα

µ to start fromα and not from 0. The conditions inPα
µ

are functions defined on the ordinal interval [α, µ).
To begin with, Pα

α is the trivial poset{∅} containing only one condition
(the empty function). The definition ofPα

j +1 ' Pα
j ∗ Qα(j ) depends on whether

j ∈ lim or j ∈ succ. If j ∈ lim then Qα(j ) is in VPαj a c.c.c. poset of cardinality
≤ ℵj (for definiteness). The choice ofQα(j ) for j ∈ lim is determined by some
bookkeeping function which we do not specify now, the aim of which is to obtain
Martin’s Axiom in V P0

κ .
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If j is a successor ordinal of the formj = δ+i whereδ is limit and 0< i < ω,
we require thatQα(j ) is in VPαj either the trivial poset, orC(λj , λ

++
j ) where

λj = ℵδ+2i (all in the sense ofV Pαj ). The exact description ofQα(j ) (i.e., the
decision as to whether it is the trivial poset or the one that introducesλ++

j club
subsets toλj ) is not needed to prove that cardinals are not collapsed.

Lemma 4.1. For every successorα, Pα
µ is λα pure closed.

Proof. The complete component ofPα
µ consists of posets of the formC(λj , λ

++
j )

which areλj closed. Sinceλα ≤ λj for all thesej ’s, the lemma follows. ut
Lemma 4.2. For everyµ such thatα ≤ µ ≤ κ, Pα

µ changes no cofinalities and
hence preserves cardinals. In fact, this is deduced from the following properties
of the mixed support iteration Pαµ .

1. For limit µ ≤ κ, the cardinality of Pαµ is ≤ ℵ+
µ, and ifµ > α is inaccessible,

then|Pα
µ | = ℵµ.

2. If µ is successor,µ = j + 1, then Pαµ satisfies theλ+
j -c.c. and its cardinality

is ≤ λ++
j (whereλj = ℵδ+2i if j = δ + i for δ limit and 0 ≤ i < ω). Thus the

GCH continues to hold in VP
α
µ for λ+

j and higher cardinals.

3. For each i such thatα < i < µ Pα
µ
∼= Pα

i ∗ (Pi
µ)V ′

where V′ is VPαi .

Proof. Let us see first how 1,2,3 are used to show by induction thatPα
µ preserves

cofinalities. So letg : η → σ be a cofinal function inV Pαµ whereη is a regular
cardinal. We have to show thatcf (σ) ≤ η in V as well. Assume firstµ = j + 1
is a successor ordinal, and thenPα

µ
∼= Pα

j ∗ Qα(j ). The casej ∈ lim is obvious
sinceQα(j ) is then a c.c.c. poset. So assume thatj is a successor ordinal now,
andλj is thus defined. The caseλj ≤ η follows from theλ+

j -c.c of Pα
µ . In case

λj > η use theλj completeness ofQα(j ) and induction.
Now assume thatµ is limit. The proof divides into two cases. Suppose, for

some successorj with α ≤ j < µ, η < λj . ThenPα
µ
∼= Pα

j ∗ (Pj
µ)V ′

whereV ′

is V Pαj . Lemma 3.5 was formulated for quite a general mixed support iteration,
and it can be applied inV ′ to Pj

µ to yield that the functiong has a countable
approximation inV ′. We may then apply the inductive hypothesis.

In caseη ≥ λj for all suchj ’s, η ≥ ℵµ. Apply cardinality or chain condition
arguments: It follows in this case thatPα

µ satisfies theη+-c.c. and hence the
cofinality of σ in V is ≤ η.

So now we prove the three properties by induction onµ. The proof of1 and
2 are fairly standard, and uses, besides the definition of the Easton support, the
inductive assumptions and the restrictions on the cardinalities of the posets.

To prove3, we shall define a mapf 7→ 〈f � i , f /i 〉 of Pα
µ into Pα

i ∗ (Pi
µ)V ′

as follows. Clearly,f � i ∈ Pα
i . To define the namef /i in V Pαi , we assume a

V generic filter,G, over Pα
i , place ourselves inV [G ], and define the function

(f /i )[G ] which interpretsf /i (for every ξ ∈ dom(f), f /i [G ](ξ ) is a name in
(Pi

ξ)V [G ] naturally defined). Let us check that this map is onto a dense subset

of the two-step iteration. So let〈h, τ〉 ∈ Pα
i ∗ (Pi

µ)V ′
. By extendingh we may
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assume thath ‘knows’ the finite domain of the c.c.c. component ofτ . That is,
for some finite setE0 ⊆ µ, h 
i dom (τ) ∩ lim = E0. Let E1 = {η ∈ succ |
some extension ofh in Pα

i forcesη ∈ dom(τ)}. Because the cardinality ofPα
i

is < ℵi +ω, E1 is bounded below inaccessible cardinals, and can serve as Easton
support of a condition. ut

5 The proof of the theorem

All the technical machinery is assembled, and we only have to apply it. The
iteration has the formP0

κ and the definition of the functionh that decides the
value ofQ(j ) is made so that Martin’s Axiom holds inV P0

κ , and for every real
r in V P0

κ there is a unique limit ordinalδ(r ) such that

i ∈ r iff for j = δ(r ) + i + 1, Q(j ) is C(λj , λ
++
j ).

Lemma 5.1. For every successor j< κ, Q(j ) is C(λj , λ
++
j ) iff the club filter on

λj in V P0
κ has generating numberλ++

j .

To prove the lemma, observe that any functionf : λj → On has a countable
approximation inP0

j +1. This is so by Lemmas 4.1 and 3.5, becauseP0
κ = P0

j +1 ∗
(Pj +1

κ )V ′
, and Pj +1

κ is in V ′ a mixed support iteration of c.c.c. andλj +1-closed

posets. So every club subset ofλj in V P0
κ contains a club inP0

j ∗Q(j ), and then

the generating number ofλj in V P0
κ andV P0

j +1 are the same. But inV P0
j , 2λj = λ+

j

(by Lemma 4.2(2)), and hence the generating number inV P0
κ is determined in

P0
j ∗ Q(j ) as follows. If Q(j ) is trivial, then the generating number remainsλ+

j ,
and if Q(j ) is C(λj , λ

++
j ), then the generating number isλ++

j of course.

The definition of the well-ordering ofR in V P0
κ is now clear:r1 ≺ r2 iff

δ(r1) < δ(r2). Why is≺ aΣ2
1 relation? The answer was outlined in Sect. 2, and

now more details are given.
The “almost disjoint sets encoding technique” was introduced in Jensen and

Solovay [3], and the reader can find there a detailed exposition; we only give
an outline. Assumeµ is a cardinal, ands = 〈sξ|ξ < µ〉 a collection of pairwise
almost disjoint subsets ofω. Let X ⊆ µ be any subset. Then the following c.c.c.
posetP introduces a reala ⊆ ω such that, together withs, a encodesX. In fact,
ξ ∈ X iff sξ ∩ a is finite.

A condition (e, c) ∈ P is a pair such thate is a finite partial function from
ω to 2, andc ⊆ X is finite. The order relation expresses the intuition thate
gives finite information ona, and c is a promise that forξ ∈ c the generic
subset will not add any more members ofa ∩ sξ. So (e1, c1) extends (e2, c2) iff
e2 ⊆ e1, c2 ⊆ c1, and forξ ∈ c2, sξ ∩ E1 ⊆ E2 (whereEi = {k|ei (k) = 1}).

The intuitive meaning of this order relation becomes clear by the following
definition. LetG ⊆ P be generic; then set

a = {k|e(k) = 1 for some (e, c) ∈ G}.
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It can be seen that,a ∩ sξ is finite for ξ ∈ X, and is infinite forξ 6∈ X.
This almost disjoint set encoding is used to prove that theΣ2

1 definition
given in Sect. 2 is really equivalent to the well ordering≺. The main point is
this. Suppose Martin’s Axiom + 2ℵ0 = κ, and M is a transitive model of some
part of ZFC containing all the reals and a well-order of them (which is a class
in M ). Then M contains all the bounded subsets ofκ as well. Why? Well, let
X ⊆ µ < κ be any bounded set. SinceM contains a set ofµ reals, it also contains
a sequence ofµ pairwise almost disjoint subsets ofω (taken, for example, as

branches of 2
ω
^). By Martin’s Axiom, there is a seta ⊆ ω that encodesX. As

a ∈ M , X ∈ M as well.

6 A weakening of the GCH assumption

The theorem required GCH (belowκ) to ensure that cardinal are not collapsed.
In this section this assumption is weakened somewhat in demanding that 2µ = µ+

only on some closed unbounded set of cardinalsµ < κ.
To see this, let〈µi | i < κ〉 be an enumeration of a club set of limit cardinals,

such that 2µi = µ+
i , and cf(µi +1) > µ+

i , and (µi +1)≤µi = µi +1.
The construction is basically the same as before, butµi replacesλi and the

main point is this: For a successorj = δ + i , whereδ < κ is limit and 0< i < ω,
Pi +1 = Pi ∗Q(j ) whereQ(j ) is now a poset that adds eitherµj or µj +1 subsets to
µ+

j . Now if M is as before a transitive model that contains all the reals, then the
club sequence can be reconstructed by asking the questions about the generating
numbers. If one starts withµ0, then the original sequence is reconstructed; starting
with another cardinal may result in another club. However, this club intersects
the original sequence of theµi ’s, and hence both sequences have an equal end-
section. Hence we must demand that the well-ordering ofR is determined by
any end section of the club.
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