Sh:458

Arch. Math. Logic (1996) 35: 287-298 Archive for .
Mathematical
Logic

© Springer-Verlag 1996

Martin’s axiom and A? well-ordering of the reals

Uri Abraham 1, Saharon ShelaR*

1 Department of Mathematics and Computer Science, Ben Gurion Universiéy; Beva, Israel
2 |nstitute of Mathematics, The Hebrew University, Jerusalem, Israel

Received May 6, 1993

Abstract. Assuming an inaccessible cardingl there is a generic extension in
which MA + 2% = ; holds and the reals haveZ well-ordering.

1 Introduction

The aim of this paper is to describe a technique that allows the encoding of an
arbitrary set of ordinals by 42 formula in a generic extension which is cofinality
preserving. This encoding is robust enough to coexist with MA (Martin’s Axiom).
Specifically, we will show, for any model of ZFC set theory with an inaccessible
cardinal k, the existence of a cardinal preserving generic extension in which
2% = i + MA+ there is a AZ well-ordering of .

Let us explain what is meant by aA? well-order. We refer here to the
structure(H , €) whereH = H(R;) is the collection of all hereditarily count-
able sets. AY2 formula is a second-order formula of the fofX; C H ¥X; C
H... o(Xg,..., X, a1...,8,) with k alternations of set quantifiers (unary pred-
icates,X;), and wherep is a first-order formula (in which quantification is over
H) with predicate nameXy, ..., Xy, and variablesy, . . ., a, (which vary over
H). A A2 formula is one that is equivalent to 52 and to all? formula. A
A? well-ordering is one that is given by aA? formula ¥(x,y) that defines a
well-ordering ofR. Obviously, a¥? linear ordering of® is also all? ordering.

An alternative definition of2? formulas, which connects to the usual defi-
nition of X} (projective) sets, is to look at third-order formulas ovVer, +, .. .),
that is, second order formulas ovér

Our result cannot be improved to give a projective well-ordering because
of a theorem of Shelah and Woodin [4] which proves that there is no well-ordering
of R in L(R), assuming some large cardinal. Since any projective orderLigih
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and as a small extension, such as the one described here, will not destroy any
large cardinal above:, the A? well-order cannot be improved to a projective
well-order.

Though this paper can be read independently, it is a continuation of our [1]
work where another coding technique is described which does not add any new
reals. Both that work and the present are motivated by a theorem of Woodin
[5] which shows that if CH holds and there is a measurable cardinal which is
Woodin, then there is n&? well-order of the reals. In view of this result, a
natural question is what happens if the CH is removed? Woodin has obtained the
following result: Assuming an inaccessible cardinalthere is a c.c.c. forcing
extension in whichs = 2% and

1. there is aA7 well-ordering ofIR.
2. Martin’s axiom holds fowr-centered posets.

Since the poset used to get this extension has cardinalitydoes not destroy
whatever large cardinal properties the ground model has abosed hence the
assumption of CH is necessary for Woodin's theorem.

The theorem proved in this paper is a slight improvement of this theorem in
that MA replaces the restricted version forcentered posets, but our main point
is to describe a different encoding technique.

We were also motivated by the following related result of Solovay:

There is a forcing poset of size2 such that the following holds in the
extension

1, o= =,
2. MA for o-centered posets,
3. there is aA? well-ordering of the reals.

Let us emphasize that no inaccessible cardinal is needed for Solovay’s result.
Let us also mention here the main result of Abraham and Shelah [1]

There is a generic extensidhat adds no new countable sets which
there exists a5 well-order of R.

The theorem proved in this paper will now be formally stated.

Theorem. Let x be an inaccessible cardinal, and assume GCH holds below
Then there is a forcing extension that changes no cofinalities and in which

1. 2% = g+ Martin’s Axiom, and
2. there is aA? well-ordering of R.

In a forthcoming work [2] we will show that the inaccessible is dispensable (but
the continuum i, in this work).
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2 Overview

The idea of the proof is quite simple, and we first give a general description.
The generic extension is a lengthmixed—support iteration consisting of two
components: The first component iterates c.c.c. posets with the aim of finally
obtaining Martin’s Axiom. The second component is doing the coding. Quite
arbitrarily, we have chosen the set (called lim) of limit ordinals belowo be
the support of the c.c.c. component, and the set of successor ordinals (succ)
to support the coding component. The iteration is a finite/Easton iteration. This
means that the domain of each condition is finite on the limit ordinals, and has
cardinality < p below every inaccessible cardinak x.

For a regular cardinal, F, denotes the club filter oh. We say that a family
H C F, generates k iff VC € F, 3D € H (D C C). The least cardinality
of a generating family folF, is called here “the generating number fgt. A
crucial question (in this paper) to ask about a regular cardinal whether its
generating number i&* or higher: it is through answers to these questions that
the encoding works.

If 2* = \*, then the generating number faris \* of course, but it is easy
to increase it by forcing, say\** new subsets ok with conditions of size< .
We denote withC (A, ) the poset that introduces subsets to\ with conditions
of size < A.

C(\ ) = {f|dom(f) C A x 1, range()=2,|f |< A}

where| f | is the cardinality of the functiori. Equivalently, one can demand
dom(f) C y in the definition. ClearlyC (), 1) is A-closed, and ifA<* = ), then
it satisfies thex*—c.c.

The closure in\ of each generic subset ofis a closed unbounded set that
contains no old club set. We will iterate such posets, varyingnd taking care
of MA as well.

In the final generic extension}2 = x, Martin’s Axiom holds, and the se-
guence of answers to the questions about the generating numbeks <ok
encodes a well-ordering @t which is A2. As will be explained below, these
guestions are asked only for even (infinite) successors bejdhat is, cardinals
of the form N1, whered > 0 is a limit ordinal and < n < w (call this set of
even successor cardinas). It is convenient to use an enumeratioesthat uses
all the successor ordinals as indices={}; | j < « is a successor ordinal}. So
A1 = Ny is the first infinite even successol = Ny, ..., Au+1 = Nuio, A2 = Ny+a
etc. In general,

if a=6+n+1whered €lim andn < w, then\, = Rgions1).

In the final model, the well-ordering ok is the sequence of reals:|{ < k)
wherer; C w is encoded by setting = w¢ and

n € r¢ iff the generating number fok = A\p4ne1 iS AT
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Why is it necessary to skip cardinals and to space)hs two cardinals
apart? Suppose thatC w is the first real we want to encode. If@r, then the
first coding poset i€ (N2, N4). Recall thatGCH is assumed, and hence cardinals
are not collapsed, and*2= R, after this forcing. Now if 1 r, we may want
to continue forcing withc(Rs, Ns), but this will collapseR, since 2'2 = X4. Thus
we must start the next iteration at least two cardinals apart, and forcing with
C (R4, Ng) is fine. In general),+1 = AL', enables the proof that cardinals are not
collapsed in the extension.

The coding component of our forcing will be an iteration of posets of type
C (M, AL") for well chosena’s. This choice will be made to obtain the desired
coding by determining the generating number fo€ es.

Let us take a closer, but still informal, view of the forcing poset. If we denote
with P, the ath stage of the iteration, then our final posePjs For limit ¢'s, Ps
is the mixed support limit of P;|i < 6) with finite/Easton support. This means
thatf € Ps iff f is a partial function defined oh such thatf [ i € P; for
everyi < ¢, and domf{) contains only finitely many limit ordinals (this is the
c.c.c. component), anglom(f) N x| < u for any inaccessible cardinal (this is
the Easton support requirement of the coding component). At successor stages
Pj+1 > Pj*Q is a two-step iteration, whei®, is a poset iV " characterized by
the following. For limitj < x, Q is in VP a c.c.c. forcing. And for successor
j <k of the formé +i, wherei € w andé € lim, Q; is either the trivial poset,
or C(Aj, A") which is the poset for adding/™ many subsets t9; = Rs.2i. The
decision as to the character @ will be described later; the role @@ is to
encode one bit of information about some real. This decision is made generically,
in VP, and it depends on the real \n” that is being encoded.

SoP; is some c.c.c. poset, ari®p is P; followed by either the trivial poset
or by C(X, R3*). In the latter case, forcing witR, makes 32 = ;.

The iteration continues in a similar fashion. To illustrate one of the main
points, let us see (only intuitively now) why; is not collapsed. We will show
that everyf : w; — On in VP~ (where On is the class of ordinals) has a
countable approximation ¥, that is, a functiorf’ such that, for everyx € wy,

f(a) € f/(c) wheref’(a) is a countable set of ordinals.

Observe first that the Easton componentpfis < N, closed. This means
that if an increasing sequengp;|i < w;) of conditions inP, have the same
c.c.c. component | lim = p; | lim), then there is an upper bound it to the
sequence. We say thptis a pure extension ofg if p extendsq and both have
the same restriction to lim (same c.c.c. component). Now,:ifv; — On is a
function in VP~ we define an increasing sequenipgli < w;) of conditions in
P. such thati < j = p; is a pure extension gfi: To obtainp;.; extendp; in
countably many steps; at each step find first an extertpiarf the previous step
g that forces a new value fdi(i) (if there is one) and then take only the pure
extension ofg imposed byg’. It turns out that this process will never take more
than countably many steps, or else we get a contradiction to the assumption that
at limit stages c.c.c. posets are iterated. The upper bpuadP, of this pure
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increasing sequence “knows”, for eaichc w;, all the countable many possible
values forf (i).

We arrange the iteration in such a way that for every realV P~ there is
a unique limit ordinald = 6(r) so that, for everk € w, k € r iff the generating
number for\ = As++1) IS A™, wherel = Ngioke1)).-

Now the well-ordering orik is defined by

rp < roiff 8(ry) < 6(ro).

This formula is certainly first-order expressible lih(x) (the collection of sets

of cardinality hereditarily< » in the extension), but why is i£2? Why can

we reduce it to second-order quantification oMgiR1)? The point is that =

k + MA, and we can speak correctly withith(X;) aboutH (), and it takes a
single second-order quantification to do that (this trick was used by Solovay in
his theorem cited above; we will outline it now, and it will be explained in more
detall later.) To express, < r», just say:

There is a relatiorR overH = H(R;), such that i, R) satisfies enough
of set theory (wherR interprets the membership relatie), such thaR

is well-founded and such that every real is “found” i ,[R); moreover,
(H, R) satisfies the following statement: “every limit ordinal has the form
6(r) for some real r, and5(f1) < ()", wherer”is the construction of

r C w in the model A, R).

SinceR is well-founded, (H R) is collapsed to some structure M, which turns
out to beH (x) as we want. The main points to notice in order to prove this are
that (1)M cannot contain less thanordinals because it contains all the reals, and
a definable well-ordering ak. (2) WhatM considers to be a cardinal is really
a cardinal, because any possible collapsing functioi (&) can be encoded
by a real (with the almost disjoint set technique which is applicable because of
Martin’s Axiom). Since this encoding real is M, H (x) is included inM. (3)
M does not contain more ordinals thanThis is so since every limit ordindl
is connected to a single real which is encoded along the segmgnatRs..,) by
the characteristic of the club filters. Thiv is H (k).

The details of this proof are written in the sequel.

3 Mixed support iteration

In this section we describe how to iterate, with mixed support (Mitchell's type
support), c.c.c. posets andcomplete posets, where the support of the c.c.c.
component is finite, and the support of the complete component is of Easton
type—bounded below inaccessibles.

Let x be an inaccessible cardinal, and< x a regular cardinat- X;. The
non c.c.c posets in the iteration are all assumed ta bsed. For definiteness
we have chosen the support of the c.c.c. posets to be the limit ordinals kelow
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denoted here lim (0 is in lim), and thecomplete forcings are supported by the
successors below, denoted “succ”.

For an ordinalu < k, a mixed supporiteration of lengthy is defined here
to be a sequence of posé® |i < p) such that

1. The members of eadR are partial functions defined dn

2. For limit 6 < p, Ps is the mixed suppottimit of (P;|i < §). This means the
following. Ps consists of all the partial functiorfsdefined oné such that
a)f [i € P for everyi < 6.
b) Dom(f) N lim is finite.
c) In cases is inaccessible|Dom(f) N succ|< §.
The partial order orP; is defined byf < g iffforall i <&f [i <g[iin
P;.

3. For successorg +1 < u, P ~ P, *Q, whereQ, is a name of a
poset in the universe of terméP». So f € P4y iff f | n € P = P, and
f | nlkp f(n) € Q,. The partial order orP,+; is defined as usual.

4. For any limit ordinals < u, Qs is in VP a c.c.c. forcing (i.e., the empty
condition inPs forces that). For successatis< 1, Q, is A-closed inV P«
(closed under sequences of length\).

The notatioriF,, can be used fdtp, . Itis convenient to define two conditions
p andq in P to beequivalentiff they are compatible with the same conditions
in P. However, it is customary not to deal with equivalence classes, and to write
p =g instead of p] = [qg], and we shall accept this convention.

Fori < u (i is the length of the iteration) the restriction map- f [ i is a
projection ofP,, ontoP;. But for an arbitrary seA C i, f | Ais not necessarily
a condition, and, even when it is a condition, it is possible that=[[¢] and
f | A#g | A. Therefore, the notatioh | A refers to the functior itself and not
to its equivalence class.

The set of function$ [ lim, for f € P, is called the “c.c.c. component” of
P,.. And the functions of the forrh | succ form the “complete component” Bf,.
Let us say that, is apureextension ofy in P, iff f; < f, andfy | lim =1, | lim.
Thus, a pure extension &f does not touch the c.c.c. component. (This definition
refers to the function$, andf, and not to their equivalence classesPi.)

The following lemma is an obvious consequence of the assutainpleteness
of the posets in the complete component.

Lemma 3.1. P, is < A pure closed. That is, any purely increasing sequence
(gili < ) of lengthT < X (q; is a pure extension ofidor i < j) has a least
upper bound in R, which is a pure extension of each q

Suppose now thaj € P, andr is in the c.c.c. component &f,. Then the sum
h =q +r is the function defined by

hiye [ T ifiedom()
(')‘{ q(i) if i edom(g\dom(r) -
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Whenever the notatioh = q +r is used, it is tacitly assumed that for every
i, hlilk h(i)eQ and r(i) extends §). Henceq +r € P, extendsg. We
have the following two easy lemmas on pure extensions given with no proof.

Lemma 3.2. If p; < po in P, then there is a pure extension g aof guch that,
setting r=p; | lim, we have

[P2] =[q+r].

Thus any extension is a combination of a pure extension with a finitely supported
c.c.c. component.

Lemma 3.3. If pp +r is a condition and p is a pure extension ofgpthen p +r
is a condition that extends,p-r.

The c.c.c. component d?, is certainly not a c.c.c. iteration, but the following
quasi c.c.c. property still carries over from the usual argument that iteration with
finite support of c.c.c. posets is again c.c.c.

Lemma 3.4. Assume that is preserved by P for everyy’ < p. Let{r¢|¢ <
w1} be an uncountable subset of the c.c.c. component,offR) € P, is such
that g+ r¢ € P, can be formed for every < wy, then

1. For somety # &, q +r¢, and g+rg, are compatible in B.
2. There is some r in the c.c.c. component pfsach that g+ r € P, and

g+rlF, there are unboundedly magy< wy
with g +r¢ € G (the generic filter).

Proof. Obviously, (2) implies (1) (because the posets are separative, @i
‘0 +re € G” implies g +re < p). So we will only prove (2), by induction op.

Recall first that for any c.c.c. pos& and uncountable subsatC Q there
is a conditiona € A such thata IFq AN G is uncountable. (Obvious warning:
This does not mean there are uncountably mang A with a’ < a.)

If p is limit, there is no problem in using the familiat-argument in case
cf (u) = wy, and the obvious application of the inductive assumption vdiém) #
wy. For example, in casef (1) = w1, form a A-system out of domg), { < wy,
and letd C ip < u be the fixed finite core of the system. Then apply the inductive
assumption tay | ip and torg =r¢ | d, for £ in the A-system. This gives some
ro in the c.c.c. component dP;, which satisfies2 above forq | ip and the
conditionsré. It is not too difficult to see thag +rq is as required (use the fact
that the c.c.c component of every condition has a finite support).

In casep = j +1 andj is a limit ordinal (for this is the interesting case),
thenP, ~ Pj « Q(j), whereQ(j) is a c.c.c. poset ivP. Setq’ =q [ j, and
re =re [j. Apply induction to findr’ such that
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Q' +r’lr for unboundedly many < wi,
q'+ Fé € Gj (the generic filter over P.

Then define a name in VP of a subset ofv; such that
[’ Ik & coliff g +rfeGj.

Since
(1) g’ +r’ forces thats is unbounded invy,
(2) w1 is not collapsed iV P by our assumption,
(3) Q(j) is c.c.c.,
there is, by the remark made at the beginning of the proof, a rram¥ P such
thatg’ +r’ Ik “a is some g(j) for r¢ in Gj such that altq() (for unboundedly
many¢ € o, re(j) € H) ". (H is theQ(j) generic filter.
Now it is immediate to combing’ anda to a functionr which is as required.
O

The main property of the mixed support iteration is the following.

Lemma 3.5. Assume R is a mixed support iteration as described above of c.c.c.
and A\-complete posets. For every cardingl < \, every f: X’ — On in VP«

has a countable approximation in V (that is, a functipdefined on\’ such that
for everya < X, g(«) is countable and (o) € g(«).)

Proof. By induction onu. Observe first that the lemma implies that any set of
infinite cardinality\’ < X in the extension is covered by a ground model set of
the same cardinality. Hence cardinals\ are not collapsed iV P+. The lemma
also implies that, for regular uncountablé < \, any club subset ok’ in VP«
contains an old club set ¥ .

It is obvious that any c.c.c. extension drcomplete extension has the prop-
erty described in the theorem, namely that functions\bave countable ap-
proximations. Hence, in cage = u + 1, the theorem is obvious: First get the
approximation inV P« (assume without loss of generality that the first approxi-
mation has the forng : ) x Xg — On), and then use induction to get a second
approximation inV .

So assume that is a limit ordinal, andf € VP~ is a function defined on
X < X We are going to define a pure increasing sequeneg < \') in P,
such that for everyy < )\’ there is a countable sg{«) and

Qo+1 IF f (@) € g(a).

If this construction can be carried on, then use4hg pure completeness &, to
find an upper bound to this sequence. Theqit ¢ is a countable approximation
to f.

The definition ofge+1 is done by defining (1) a pure increasing sequence
(9(a)|a < ap) whereq(0) = q¢, and (2) for eachy, a finite functionr,, in the
c.c.c. component oP,, so that, fora # o', q(a) +r, andq(e’) +r, force
different values foif (). The definition of this sequence is continued as long as
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possible, and the following argument shows that it must stop for sagne w,,

and thergg.1 is the pure supremum of this countable sequencegéf)ds the set

of all values forced there to big¢). Indeed, otherwiseg(«) can be defined for
everya < wi and we letq be the upper bound of this pure increasing sequence
(recall that¥; < ). Theng+r, isin P, for everya < w; and it forces different
values forf (¢). This contradicts the quasi c.c.c. Lemma 3.4

4 Definition of the forcing extension

The description of the pos&;, used for the coding proof, is given in this section
by defining a mixed-support iteratiof?, |« < x) as outlined in Sect. 2.

At successor stageB;,.1 = P, xQ, whereQ,, is a poset irv P+ defined thus.
If =6 ¢ lim, thenQ;s is in VP a c.c.c. poset of cardinality, say, Ns. (Py is
a c.c.c. poset, say the countable Cohen poset.) The choi@ ©f determined
by some bookkeeping function, aimed to ensure that Martin’s Axiom holds in
VP« (The cardinality limitation is to ensure the right cardinalities to show that
cardinals are not collapsed.)

For successor ordinals of the fojnF 6+i whered is limitand 0< i < w, Q
is defined to be i/ " either the trivial poset (containing a single condition) or
the posetC (), )\J-++), where); = Ns.pi. To determine which alternative to take,
define a functiory that gives, for every limi$ < », a nameg(é) € VP such
that, for everya < k, every real inVP~ is someg(d) for 6 > a. Suppose
that g(6) is interpreted as C w in V[Gs] (the generic extension ViRs); then
this determinegy;, for everyj in the interval (¢, 6+ w), which has the form
j=6+ig+1, by

Q; is non-trivial iff ig € r.

In order to prove thaP, possesses the required properties (such as not
collapsing cardinals), we decompoBg at any stagex < x, and writeP,, =
P, *x P2, whereP, is the iteration up ton, and PS¢ is the remainder of the
iteration. It is not hard to realize th&% is just like P,, except that\; = X,
is replaced with\,+1 = N,+2. For this reason, we must first descriBg¢ and
analyze its properties.

For each ordinah < x a mixed support iteratiofP;|o < p < r) will be
defined by induction om. The poset used to obtain the theorenPf5 but the

P2 are necessary as well since the decomposifn~ P? x (P,g‘)VPg is used
to show the desirable properties of the iteration. This may also explain why we
choose the index of P to start froma and not from 0. The conditions iR
are functions defined on the ordinal interval [:).

To begin with, P¢ is the trivial poset{(}} containing only one condition
(the empty function). The definition d¥7; ~ P x Q“(j) depends on whether
j elimorj e succ. Ifj € limthenQ*(j)is in VP a c.c.c. poset of cardinality
< X; (for definiteness). The choice @§*(j) for j € lim is determined by some
bookkeeping function which we do not specify now, the aim of which is to obtain
Martin’s Axiom in VPx.
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If j is a successor ordinal of the foljm= §+i whereé is limitand 0< i < w,
we require thatQ(j) is in VP either the trivial poset, oC (A, \™) where
Aj = Rsezi (all in the sense o/ P"). The exact description a“(j) (i.e., the
decision as to whether it is the trivial poset or the one that introdafeslub

subsets to\;) is not needed to prove that cardinals are not collapsed.
Lemma 4.1. For every successar, Py is A, pure closed.

Proof. The complete component & consists of posets of the for@(};, Aj“
which are); closed. Since\, < ); for all thesegj’s, the lemma follows. O

Lemma 4.2. For everyu such thate < p < &, Py changes no cofinalities and
hence preserves cardinals. In fact, this is deduced from the following properties
of the mixed support iteration P

1. For limit u < &, the cardinality of B is < N; and if u > « is inaccessible,
then|Pg| =R,,.

2. If p is successory = j + 1, then P satisfies the)\f-c.c. and its cardinality
is < )\j++ (Where)j = Ngypi if j =6 +i for § limitand0 <i < w). Thus the
GCH continues to hold in ¥ for A and higher cardinals.

3. For each i such that <i < p PS> P2« (P!)V" where V' is VP,

Proof. Let us see first how 1,2,3 are used to show by inductionRfjapreserves
cofinalities. So lely : 7 — o be a cofinal function iV "= wheren is a regular
cardinal. We have to show thaf(c) < n in V as well. Assume first, =j +1
is a successor ordinal, and thBff = P)* «+ Q*(j). The casg € lim is obvious
sinceQ<(j) is then a c.c.c. poset. So assume fha a successor ordinal now,
and ) is thus defined. The casg < 5 follows from the \/-c.c of P;. In case
Aj > n use the); completeness oQ*(j) and induction.

Now assume that is limit. The proof divides into two cases. Suppose, for
some success@rwith a <j < u, n < Aj. ThenPg = P (PL)V/ whereV’
is VP". Lemma 3.5 was formulated for quite a general mixed support iteration,
and it can be applied iV’ to PL to yield that the functiory has a countable
approximation inV’. We may then apply the inductive hypothesis.

In casen > ) for all suchj’s, n > X,,. Apply cardinality or chain condition
arguments: It follows in this case th&; satisfies then-c.c. and hence the
cofinality of o in V is < n.

So now we prove the three properties by inductionuohe proof ofl and
2 are fairly standard, and uses, besides the definition of the Easton support, the
inductive assumptions and the restrictions on the cardinalities of the posets.

To prove3, we shall define a map— (f [ i, f/i ) of P} into P x (PL)V’
as follows. Clearlyf | i € P®. To define the namé/i in V7", we assume a
V generic filter,G, over P, place ourselves iV [G], and define the function
(f /1)IG] which interpretsf /i (for every ¢ € dom(f), f/i[G](£) is a name in
(P{)VIC] naturally defined). Let us check that this map is onto a dense subset
of the two-step iteration. So léh,7) € P> (PL)V'. By extendingh we may
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assume thah ‘knows’ the finite domain of the c.c.c. componentafThat is,

for some finite se€y C u, h IF dom (7) N lim = Ep. Let E; = {n € succ|

some extension dfi in P forcesn € dom(7)}. Because the cardinality ¢t

is < N+, E;is bounded below inaccessible cardinals, and can serve as Easton
support of a condition. O

5 The proof of the theorem

All the technical machinery is assembled, and we only have to apply it. The
iteration has the fornP? and the definition of the functioh that decides the
value of Q(j) is made so that Martin’s Axiom holds MP:, and for every real

r in VP2 there is a unique limit ordinai(r) such that

i erifffor j =6(r)+i+1, Q) is CO\, A™).

Lemma 5.1. For every successor £ x, Q(j) is C();, /\j““) iff the club filter on
Aj in VP2 has generating numbex™ .

To prove the lemma, observe that any functfon \; — On has a countable

approximation inPj°+l. This is so by Lemmas 4.1 and 3.5, becaB§e= Pj0+1 *

(PI*HV', and Pi*1 is in V/ a mixed support iteration of c.c.c. ang-closed
posets. So every club subsetXfin VPX contains a club irPJ-O xQ(j), and then
the generating number of in VP: andV P are the same. But i Pio, 2N = A

(by Lemma 4.2(2)), and hence the generating numbey ff is determined in

Pjo *Q(j) as follows. IfQ(j) is trivial, then the generating number remaijs
and if Q(j) is C(\;, \™), then the generating number is* of course.

The definition of the well-ordering ol in VP2 is now cleariry < ry iff
6(r1) < 6(r2). Why is < a X% relation? The answer was outlined in Sect. 2, and
now more details are given.

The “almost disjoint sets encoding technique” was introduced in Jensen and
Solovay [3], and the reader can find there a detailed exposition; we only give
an outline. Assume is a cardinal, and = (s¢|{ < ) a collection of pairwise
almost disjoint subsets of. Let X C i be any subset. Then the following c.c.c.
posetP introduces a reah C w such that, together with, a encodesX. In fact,
£ e X iff e Nais finite.

A condition (e c) € P is a pair such thae is a finite partial function from
w to 2, andc C X is finite. The order relation expresses the intuition that
gives finite information oma, andc is a promise that fo € c the generic
subset will not add any more memberseofi s;. So i, ¢1) extends &, ¢,) iff
e C e, ¢ Ccy, and foré € ¢, s NE1 C E;, (whereE; = {k|e (k) = 1}).

The intuitive meaning of this order relation becomes clear by the following
definition. LetG C P be generic; then set

a = {k|e(k) = 1 for some é,c) € G}.
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It can be seen thag N s is finite for { € X, and is infinite for§ & X.

This almost disjoint set encoding is used to prove that Xfedefinition
given in Sect. 2 is really equivalent to the well orderirg The main point is
this. Suppose Martin’s Axiom +2 = k, andM is a transitive model of some
part of ZFC containing all the reals and a well-order of them (which is a class
in M). ThenM contains all the bounded subsets+ofs well. Why? Well, let
X C u < k be any bounded set. Sinb& contains a set gf reals, it also contains
a sequence ofi pairwise almost disjoint subsets of (taken, for example, as

branches of 5). By Martin’s Axiom, there is a sed C w that encodeX. As
aeM, XeM as well.

6 A weakening of the GCH assumption

The theorem required GCH (belom) to ensure that cardinal are not collapsed.
In this section this assumption is weakened somewhat in demanding'thgt 2
only on some closed unbounded set of cardinais .

To see this, lety; | i < ) be an enumeration of a club set of limit cardinals,
such that 2 = g, and cffuiv) > 47, and (i) <H = piea.

The construction is basically the same as before,/bueplaces\; and the
main point is this: For a succesgor § +i, where$ < x is limit and 0< i < w,
Pi+1 = P xQ(j) whereQ(j) is now a poset that adds either or ;+1 subsets to
Mj+- Now if M is as before a transitive model that contains all the reals, then the
club sequence can be reconstructed by asking the questions about the generating
numbers. If one starts witly, then the original sequence is reconstructed; starting
with another cardinal may result in another club. However, this club intersects
the original sequence of thg's, and hence both sequences have an equal end-
section. Hence we must demand that the well-orderindt 0§ determined by
any end section of the club.
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