
Annals of Pure and Applied Logic 59 (1993) 219-238 

North-Holland 
219 

More on simple forcing notions 
and forcings with ideals 

M. Gitik 
School of Mathematical Sciences, Raymond and Beverly Sackler, Faculty of Exact Sciences, 
Tel Aviv University, Ramat-Aviv, Tel Aviv 69978, Israel 

S. Shelah” 
The Institute of Mathematics, The Hebrew University, Jerusalem, Israel 

Communicated by T. Jech 

Received 22 August 1991 

Abstract 

Gitik, M. and S. Shelah, More on simple forcing notions and forcings with ideals, Annals of 

Pure and Applied Logic 59 (1993) 219-238. 

(1) It is shown that cardinals below a real-valued measurable cardinal can be split into 

finitely many intervals so that the powers of cardinals from the same interval are the same. This 

generalizes a theorem of Prikry [9]. 

(2) Suppose that the forcing with a K-complete ideal over K is isomorphic to the forcing of 

l-Cohen or random reals. Then for some t < K, A’& 2” and 15 2’” implies that 2” = 2” = 

cov(L, K, r+, 2). In particular, if 2°C rctm, then A = 2”. This answers a question from [3]. 

(3) If A,, A,, , A,,, are sets of reals, then there are disjoint sets B,,, B,, , B,, 
such that B, GA, and p*(B,) = p*(A,) for every n > w, where p* is the Lebesgue outer 

measure. For finitely many sets the result is due to N. Lusin. 

(4) Let (P, C) be a u-centered forcing notion and (A, 1 n < w) subsets of P witnessing this. 

If P, A,‘s and the relation of compatibility are Borel, then P adds a Cohen real. 

(5) The forcing with a K-complete ideal over a set X, 1x12 K cannot be isomorphic to a 

Hechler real forcing. This result was claimed in [3], but the proof given there works only for X 

of cardinality K. 

In Section 1, we deal with powers of cardinals below a real-valued measurable. 

The result stated in the abstract and stronger ones in a similar direction are 

proven. 

The rest of the paper may be viewed as a continuation of [3]. In addition to the 

generic ultrapowers we are using cardinal arithmetics techniques and notions like 
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220 M. Gitik. S. Shelah 

pseudopowers, true cofinalities and covering number. These notions were 

introduced by the second author, see [lo]. We shall state the definitions in 

appropriate places throughout the paper. 

In Section 2, we deal with a question on the number of Cohen or random reals 

needed forcing with ideal. The principal result is stated in the abstract. Some 

knowledge of [3] is needed for this section, as well as for the next one. 

Section 4 is devoted to the study of the Hechler forcing notion. Statement (4) 

of the abstract is proved there as well. 

The results of Section 4 are due solely to the second author and the rest is 

mainly joint. 

We are grateful to P. Komjath for raising a question which led to Theorem 3.1. 

We would like to thank D. Fremlin too for his remarks on the first draft of the 

paper. 

1. On powers of cardinals below a real-valued measurable 

An ideal I is u-saturated if every pairwise disjoint collection of sets in I+ is at 

most countable. 

A cardinal K is real-valued measurable if there exists a u-additive probability 

measure ~1 on K such that: 

(i) all subsets of K are measurable, 

(ii) all singletons {a} have measure zero, 

(iii) the ideal of null sets is K-complete (p is K-additive), 

it is called nowhere prime or atomlessly real-valued measurable if in addition the 

following holds: 

(iv) for every A c K, if p(A) # 0, then there are disjoint A,, Al c A such that 

O< /-G,J, ~164,) < y(A). 
Further everywhere we mean by a real-valued measurable an atomlessly 

real-valued measurable. 

If K is a real-valued measurable cardinal, the ideal of null subsets of K is a 

o-saturated K-complete ideal. Solovay [19] starting from a measurable cardinal 

constructed a model with a real-valued measurable cardinal. In fact 2’” can be 

real-valued measurable. If K is a real-valued measurable or carries a o-saturated 

rc-complete ideal, then 2’” 2 K. 

Prikry [9] showed that the presence of a real-valued measurable cardinal (or 

u-saturated ideal) has an influence on powers of cardinals below it: 

Theorem 1.1 (Prikry). If 2”O is real-valued measurable (or carries a u-saturated 
2”“-complete ideal), then for every k < 2%, 2’ = 2’0. 
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More on simple forcing notions 221 

The purpose of this section will be to prove the following: 

Theorem 1.2. Suppose K is a real-valued measurable (or carries a o-saturated 
K-complete ideal), then the cardinals below K can be split into finitely many 
intervals so that the powers of cardinals from the same interval are the same. 

Actually the theorem that we shall prove will give more information and will 

generalize Prikry’s theorem. Using forcing constructions we shall show that any 

finite number of intervals is possible. 

The proof will combine the idea of Prikry with Shelah’s cardinal arithmetics. 

Let us recall the definitions of the pseudopower and covering numbers which 

were introduced in [14]. 

Definition 1.3. (1) For cof d C K < A the pseudopower pp,A- is the supremum of 

the cofinalities of the ultraproducts na/% associated with a set a of at most 

K-regular cardinals below A and an ultrafilter 9 on a containing no bounded 

subsets of A. 

(2) PP@) is ppcod~). 

(3) PPi-ce,v, (A) is the supremum of the cofinalities of the products n a/9 
associated with a set of cardinality less than ~3 consisting of regular cardinals 

below 13 and a Y-complete filter g on a containing no bounded subsets of il. 

(4) The covering number cov(il, K, 8, a) is the least p so that there exists a 

family 9, 191 = ~1, of subsets of il. of cardinality less than K (i.e. C?? E 9(n)) so 

that 

Note that cov(A, K, K, 2) is the least size of an unbounded subset of pK((n). If 

il < K, then cov(& K, 8, a) = 1 for any 8, o. If K+ C h < K+~ then 

cov(l2, K, 8, 2) = A for every 8 6 K. 

Lemma 1.4. Suppose that K carries a K-complete o-saturated ideal. Let A0 < A < K. 
Suppose that for every cardinal il’, AC,< A’ <h, 2A’ = 2&j. Then 2’= 
COV(2&, K, il+, K,). 

Remark. If K = Xx0, then this holds by Theorem 1.1. 

Proof. Suppose otherwise. Let ;1,, < jl be cardinals witnessing this. Then 

2*> COV(2”‘, K, il+, x,). 

Note that such il is a regular cardinal. For every (Y < h, LYZ ;1,,. Let us fix 

f,:2”+-+2&“. For XE~ we define Gx:h+2&“xil by setting G,(a)=(f,(Xn 
a), a}. Then G>(A) E ??,+(2’” X A). By our assumption, COV(~~“, K, A’, X,) < 2*. 
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222 M. Gitik, S. Shelah 

Denote COV(~~, K, jl+, X,) by 6. There exists a family (Ni ( i < d) of elementary 
submodels of (E&h)++, E, (f. 1 (Y-CA), ho, . . .) such that 

(a) INiI < KY 
(b) every subset a of 2b x A. of cardinality <A is contained in a countable union 

of elements of {Ni 1 i -=C S}. 

Just pick a family witnessing cov(2*‘, K, A+, Xl) = 6 and close each member of 
it by Skolem functions of the structure. 

So for every X c h, (XI = A, there is i < 6 such that IN, fl G&(n)] = A. Hence, 
for unboundedly many a’s below il, X n a E Ni. But (f, 1 y < A) E Ni, so 
X fl a! E Ni implies X II p E Ni and fa(X fl /3) E Ni for every /3 < LY. Hence 
G>(A) 5 Ni. This implies that there are S s P(A), JSI 3 K and i* < 6 so that 
Ni* 2 G;(A) for every X E S. 

Define a partition F of S2 

F({X, Y})=min{cY<6 IXfIa#Yncr}. 

By Solovay [19], there exists S* c S, IS*J = K such that IF”([S*]*)l <X,. Set 
(Y* = sup{a 1 for some X, YES*, F(X, Y) = a}. Then (Y* < il, since cf A = A. But 
this means that for every X E S*, Xn(Y*ENi. and l{Xna* IXES*}I=K. 

Which is impossible, since INi* < K. Contradiction. •i 

Proof of 1.2. Suppose now that there are AO < il, < . . . < il,, -K. * * < K so that 
25<2’1<-..<2’n<-.-. Suppose also that A,+, is the least above A, such that 
2i”+I > 2h”. Then by Lemma 1.4 

2h”<2*’ = COV(2*", K, &+, xl)< 2” 

= COV(2*', K, il:, HI)<-. * < 2”‘+’ 

= COV(2hn, K, A;+,, i-t,)< * * - . 

We are going to use the following theorems proved in [12,14,15]. 

Theorem A. Suppose that 6 < x G x’ c ~1, %I < cf x, cf x’ < 0 and pprcH, K,j(~) a 

P. Then PPr~edX) 2 PPrwdX’). 

TheoremB. Let @<K~x, K,<cfx<e. Ifforeveryx’, KsX'<X, X,<cfX’< 

6 PPW,W(X’) <PPW,,(X) (or equivalently <x), then pprce,&) = 
PPr((ctx)+,dX). 

Theorem C. Let p 2 K 3 8. Then COV(Y, K, 8, X,) = s~p{pp~~~,~,)(x) ( K s x s p, 
rC”<CfX< e>. 

The next proposition follows from Theorems A, C and Lemma 1.4. 

Proposition 1.5.0. For every m < 0, cov(24), K, AZ,,, X,) = . . . = cov(2’*, K, 

;l;+l, i+,)= 2hm+1 = COV(2*'"+', K, A-;,,, xl). 
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More on simple forcing notions 223 

SO COV(2&, K, ;1:, i$)<COV(2Ao, K, A;, i$)<-. *<COV(2'", K, ;1;, xl)<. * * . 

The next theorem is a non-GCH analog of the Hajnal-Shelah Theorem [5], 

[ll, 2.121 saying that the set {p” 1 2’< ,u} is finite. 

Theorem 1.5. Suppose that y > K. Then the set {cov(u, K, 8, X,) 1 8 < K} is finite. 

Proof. Suppose otherwise. Let (8, 1 n < o) be an increasing sequence so that for 

every n < w 
(a) 8, < K, and 

(b) cov(~, K> e,, %) <cov(P, K, %+I, XI). 
Since p > K, by [14,5.3], cov(p, K, e,, Xl) 3 p, for every n < o. Hence, by (b) 

for all but finitely many it, cov(~, K, I$,, X,) > p. W.1.o.g. let us assume that this 

holds for every n. Then, by Theorem C, for every n < o there is x, K G x G p, 

Cf x < en but CL ~PP~v.I,,N,)(x). 
Let II < cc). Set 

xn=min{xIKQ x c P, Cfx < en and PP~(~,,~,)(x) 2 ~1. 

Then (xn 1 II < co) is nonincreasing. So w.1.o.g. xn =x* for some x* for every 

n <w. Hence, K Gx <x*, HI CcfX < 8, implies pprcH,,+,(X) <X* for every 

n < w. By Theorem B, then pp w,,w(x*) = PPI-(w*)+,&x*). BY Theorem C, 
coV(uu, K, @z, HI) = SUP{PPr(e”,qj(X) 1 K s x~p, X, scfx < 19,) and by Theorem 

A, for every x, x* c x d P, X1 c cf x < 6, PP~(~,.~,)(x*) s PP~(~,,~,)(x). So 
cov(p, K, 0,, K,) = cov(u, K, enfl, X,). Contradiction. 0 

Now, Theorem 1.2 follows from Lemma 1.4 and Theorem 1.5. 0 1.2 

Theorem 1.2 and Lemma 1.4 imply: 

Corollary 1.6. Suppose that K carries a K-complete o-saturated ideal. Let 
ilO < il, < K be such that 2&” < 2” and for every a, A,, s IX < A,, 2&l = 29 Then there 
exists a cardinal 6, K < 6 G 2&" of cofinality A,. 

PrOOf. SUppOSe otherwise. By Lemma 1.4, 2’l = cov(2&“, K, A:, X,). Let r, KC 

t S 2k be the least cardinal such that cov(r, K, A:, X,) > 2&l. Since 

COV(K, K, A:, 8,) = K, r > K. By our assumption cf t < A,. It is easy to see that 

cov(r, K, A:, i-4,) C ~a<r~~~(~cx[, K, A:, Xl). Which is impossible. Cl 

Corollary 1.7. Suppose that K carries a K-complete o-saturated ideal. If 2K0< 
K +w', then for every A < K, 2' = 2"". 

Corollary 1.8. Suppose that K carries a K-complete o-saturated ideal. Then there is 
A,, < K such that for every A, &, =S A < K, 2” = 2k. 
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224 M. Gitik, S. Shelah 

It will be interesting to replace cov(p, K, 8, K,) by cov(p, K, 8, 2) in Theorem 

1.5. It will provide the ‘right’ generalization of the Hajnal-Shelah Theorem to 

non-GCH situations. Unfortunately we do not know whether this is true. 

Conjecture. The set {cov(p, K, 8, 2) 1 8 <K} is always finite. 

Using arguments similar to 1.5 it is possible to prove the following. 

Theorem 1.9. Let p > K. Then there is no (8, 1 n < CO) so that for every n < w 

(a) &I < %+I < cf K, 
and 

(b) coV(P, K, ‘%z, 2)“” < cov(p, K, ‘%+,, 2), 
or an even weaker statement 

(b-) coV(coV(P, K, %, 2), K, #I, 2) <co+ K, &+I, 2). 

Fremlin [l] asked if the least size of an unbounded subset of LPx,(~) is always K, 

for a real-valued measurable cardinal K. In our notation the least size of an 

unbounded subset of Px,(~) is COV(K, X,, X1, 2). Since K is a real-valued 

measurable it is regular. So 

COV(K, x1, HI, 2) = c COV(& bt,, &, 2). 
A<K 

It is trivial that for A < K cov(il, i$, x1, 2) # K. So the equivalent formulation of 

Fremlin’s question is as follows: 

For a real-valued measurable K, is there il< K such that cov(A, X1, x1, 2) > K? 

We have the following partial results related to this problem. 

Proposition 1.10. Suppose that K carries a o-saturated ideal. Then for every A < K, 

PP (A) < K. 

Proof. Suppose otherwise. Let A be the least cardinal witnessing this. First note 

that it is impossible to have pp(A) > K. By [14, 1.5.A], there exist a E A consisting 

of regular cardinals, !a( = cf A and an ultrafilter 9 on a so that cf(n a/s) = K. 
Now, in a generic ultrapower, cf(n a/s) =j(~) > K, also cfj(K) > K. But this is 

impossible since the ultrapower is formed by c.c.c.-forcing. 

So pp(il) = K. Work in a generic ultrapower. Then pp(A) = I > K and K is 

regular. So for some a 5 h consisting of regular cardinals, Ial = cf A, K E pcf(a) 

where pcf(a) is the set of all possible cofinalities for a. Since the forcing used to 

form the generic ultrapower is c.c.c.-forcing, there is b E V, b G A, consisting of 

regular cardinals (bl = cf A and b 2 a. Then pcf(b) 2 pcf(a). So in the ultrapower 

K E pcf(b). Back in V this means that K s maxpcf(b). By [14], then there are 

c c h consisting of regular cardinals, ICI = cf A and an ultrafilter 9 on a so that 

cf(ll c/9) = K. Which is impossible as is shown above. 0 
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More on simple forcing notions 225 

By [16, 3.7(5), 3.81, for p < A, if there is no fixed point for the Kfunction in the 

interval (,u, A), then pp(A) = cov(A, (cl)‘, (p’), 2). Hence the following holds. 

Corollary 1.11. Suppose that K carries a o-saturated ideal. Then for every A, 
below the first fixed point of the X-function, cov(A, X,, Hz, 2) < K. 

Let us show now that it is impossible to improve the conclusion of Theorem 

1.2. 

Proposition 1.12. Let n < CO, K be a measurable cardinal and let there be n strong 
cardinals above K. Then there exists a generic extension VP satisfying the 
following: 

(a) K is a real-valued measurable, 
(b) 2”” < 2”’ < . . . < 2’n. 

Proof. We use the forcing of [4] to construct a generic extension V, of V 

satisfying the following: 

(1) K is a measurable cardinal, 

(2) for some A, A < A”” < A”’ < . . . < A”n. 

Now, add to V, A-random reals. Then 2’0 = AKo, 2”’ = A)\‘l, . . . , 2X” = A”n. 0 

Let us show now that a result similar to 1.2 holds if &, is a nonstrong limit 

Jonsson cardinal. Recall that a cardinal A is Jonsson, if every algebra with 

countably many operations of cardinality A, has a proper subalgebra of the same 

cardinality. 

Theorem 1.13. Suppose that NE, is a nonstrong limit Jonsson cardinal; then the set 

{2Kn I n < o} is finite. 

Proof. Pick an elementary submodel M of Hc2~wj++ such that ]M II &,,I = K, and 

M fl X, # X,. Since each X, (n < CO) is not Jonsson there is no so that for every 

nan,,, JMflK,I<i$,. 
Suppose now that for n 2 no, 2”n > X, and m is the least number such that 

2xm > 2xn. By Theorem 1.3 it is enough to show that 2”“1= COV(~“~, X,, XL, X,). 

We proceed as in Lemma 1.4. 

Suppose that 2Km > COV(~‘~, X,, XL, X,) = 6. Let (fm ] a < K,), ( Gx 1 X G X,), 

(Ni 1 i < S), be as in 1.4 and belong to M. There are S E g(K,), ISI = X, and 

i* < 6 so that IV,* 2 Gg(X,) for every X E S. So there are such sets in M. Since 

IM fl K,j = NCO, Iifl SI = X,. Denote (Y* = sup(M fl rC,>. Then (Y* < X, and for 

every X # YE M n S, X fl a* # Y fl a*. By the choice of N,*, every X rl a* E ZVj* 

for X ES and INi*l <X,. But already M fI S has X, different intersections with 

(Y*. Contradiction. 0 
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2. On the number of Cohen or random reals 

It was shown in [3] that the forcing with a K-complete ideal over a cardinal K 

cannot be isomorphic to the forcing of less than Kc-Cohen or random reals. A 

natural question is if one can replace K+ by 2”. It was raised in [3] and also by 

Fremlin and Kamburelis [8]. Clearly, there are obvious limitations. Thus, start 

with a model having a measurable cardinal K and satisfying GCH. Add 

K +O-Cohen (or random) reals. Then 2” will be K+~+’ but the forcing with the 

ideal generated in the natural way by a measure over K is isomorphic to the 

forcing for adding K+ w- Cohen (or random) reals. It is possible as well to have the 

number of Cohen (or random) reals less than 2” but still regular. Just start with 

usual model for 1SCH satisfying the following: “K is a measurable, 2” = K+, K+~ 

is a strong limit and 2r+m= K+O+~“. Add K+“+‘-Cohen (or random) reals. Then 

2” will be K+O+~ but the forcing with the ideal generated by a measure over K will 

be isomorphic to the forcing of K+O+~ -Cohen (or random) reals. The above shows 

that the number of reals needed for the forcing with an ideal over K is connected 

with powers of singular cardinals above K. One can ask what happens if 2” < K+~, 

i.e., when such an influence disappears. It will follow from the theorem below 

that in this case the number of reals is exactly 2”. 

Throughout this section let us assume that 1 is a normal ideal over K and the 

forcing with it is isomorphic to the forcing of A-Cohen or random reals. We deal 

with the Cohen reals case. The reader familiar with [3] will be able to fill in the 

changes needed for the random reals case. 

Let V[ (r, 1 a < A)] be a generic extension by forcing with I-positive sets. Let 

j : V + M be the corresponding generic elementary embedding. 

Lemma 2.1. Fur every z < K, cov(il, K, z+, 2) 3 2”. 

Proof. Suppose otherwise. By [3], il> K+. So cov(A, K, z+, 2) 3 A2 K+. Let 

6 = (COV(& K, Z+, 2))+. By the assumption 6 < 2”. Pick in V a sequence 

(+ 1 p < S) of distinct subsets of r. Apply j to the sequence. Then, in M, 

j(& I P<S)) = (43 I /W(W). C onsider only the 6 first members of the 

extended sequence, i.e. (xb 1 p < 6). Note that for every p < 6, cf p = K, xb is a 

new subset of r. 

For every 0 < 6, cf /3 = K, there is a E p’,+(h) such that X; E V[(r, 1 (Y E a)]. 

Since 6 > cov(il, K, t+, 2), there exist A c (6 < 6 1 cf p = K}, IAl = 6 and 6 E 

?&(A) such that for every /3 E A, x; E V[(r, ( a E b)]. For simplification of the 

notation let us assume that A = {p < 6 ( cf /3 = S}. Collasping lb ( to X0, we obtain 

that one Cohen real r adds all of (xb \ p < 6, cf /3 = K). Once more, in the 

random reals case one should deal with less than K random reals. 

Let us force now a box sequence (C, I t < 6, cf r < K), i.e. a sequence such 

that 

(a) C, is a closed unbounded subset of r of cardinality SK, 

(b) for every t, < r2 < 6, if r, is a limit point of C,, then C,, = C,, fl rl. 
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The forcing conditions are an approximation to such a sequence of cardinality 

<6. Such forcing is (K+, cc)-distributive and it would not effect the ideal 1. 

Namely, the generic embedding j extends easily after the forcing of a box 

sequence. 

Let us assume for simplification of notation that there is a box sequence 

(C, ( z < 6, cf r < K) in V. Pick a set of reals ( rf3 1 p < K) representing r in M. 

Let us fix in V a sequence (T, 1 a < 6, cf a = K) of canonical names of the reals 

(x”~(~) 1 a < 6, cf cy = K). For every a < 6, cf (Y = K, let us consider a set 

A, = {rP ( p < K, there exists y E C, such that T,(rL3) =x,}. 

Claim. For every (Y < 6, cf (Y = K, A, is a set of the second category. 

Proof. Note that, in M, j(Tm) = T,, T,(r) =xU~~~(~) and since C, is a club in (Y, 

IJ j”(a) E j(C,). q Claim. 

Now, as in [3], there is $-(a) < K so that the set A, r E(a) = {rO EA, 1 p < 

E(a)} is of the second category. Find a limit point p(a) of C, so that for every 

rs E A, 1 c(a) there is y E C, fl p(a) so that T,(rp) =x,. Note that C, f~ p(a) = 

C p(aI. Replacing 6 by its stationary subset if necessary, we can assume that there 

are E* <K and p* < 6 so that for every a< 6, cf (Y = K, 5((u) = E* and 

P(M) = p”. Hence, for every such (Y the range of T, r (An 1 E*) is contained in 

the set {x, ( y E C,.}. Since (C,*l GK, j”(C,*) is in M. Therefore, the following 

set belongs to M: E = {(u I 1y < 6, cf (Y = j(K), r EA,, A, r if* is of the second 

category and for /3 < E* with ra E A, there is y E j”(C,*) satisfying T,(rO) = xY}. 

Notice that Xi(r) = xy. Pick some a* E E\j”(6). As in [3], the values of T,* can 

be decided in V on a set of the second category. And the contradiction is derived 

now exactly as in [3]. 0 

Lemma 2.2. If j(K) 3 (2”)“, then 2” = cov(A, K, x1, 2). 

Proof. Suppose otherwise. Let (x, 1 cy < K) be a sequence of distinct reals in V. 
Applying j to (x, I a < K), we obtain a longer sequence of distinct reals 

(x, I LY < j(K)) in M or equivalently in V[G]. The reals (x, 1 K c a < j(K)) are all 

new. For every a < (2”)’ there is a countable b, G A so that X, is added by the 

Cohen reals with indexes in b,. Now use (2”)” > cov(il, K, X1, 2) and cf((2”)“) > 

K. So we are in the situation where less than K-many Cohen reals are coding at 

least K+-many reals which are in the image of K-many, i.e., in j((xa ) a< K)). 

Arguments of [3, Theorem 1.2, 2.61 can be applied now in order to derive the 

contradiction. 0 

The next proposition characterizes ordinals moved by an elementary 

embedding. 
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Proposition 2.3. Let K, 6 be cardinals and j: V-, M = {j(f)(~) ( f E “V fl V} be 
an elementary embedding, probably generic but using a forcing satisfying less than 
K-C.C, crit(j) = K. Then for any cardinal 6 # j(~), cf 6 2 K, j(s) > 6 ifs for some 

cardinal p G 6, cf ,u = K, 6 <j(p). 

Proof. Let j(s) > 6. Pickf : K--, 6 such that 6 = j(f)(~). Since 6 is a cardinal, we 

can assume that f( a) is a cardinal for every (Y < K. Set p = sup{f( a) ) cx < K}. If f 

is not almost constant, then cf ,M = K and j(p) > 6. Suppose otherwise. Then 

6 = j(p), for a cardinal p < 6. Note that such 6 must be a singular cardinal, since 

cfp>~ implies lJj”p =j(y) = S, i.e. cf 6Gp< 6, cfj_4<K implies cf 6 = 

cf j(p) = cf p and cf p = K implies 6 = cf 6 = cf j(p) G j(K). In the last case the 

only possibility is ,U = K and 6 = j(K). Consider now j~+~; if ,u+~< 6, then 

cf CL +K = K and j(,utK) > 6. Otherwise for some (Y < K, 6 = ,u+? But this is 

impossible since cf 6 s K. 0 

We do not know if it is possible to remove the assumptions “cf 6 2 K" and 

“j(K) # 6” from 2.3. Our conjecture is that this is possible. The positive answer 

to the following question will be sufficient for removing “cf 6 2 K". 

Is it true that for every r, 1 j(j(r))l = 1 j(r)], where j is an embedding of a 

K-complete w,-saturated ideal over K or just K is a measurable and j is the 

embedding of a measure over K? 

Is it possible to have a measurable K and an embedding j of a measure over K 

such that for some r, j(r) > t and j(t) is a cardinal? 

Is it possible to have a K-complete o,-saturated ideal over K such that 0 It “j(K) 

is a cardinal”? or more specific 0 IF “j(K) = K++“? 

We can deduce now the following: 

Theorem 2.4. Suppose that the forcing with a K-complete ideal over K is 
isomorphic to the forcing of A-Cohen or random reals. Then 

(1) Zf2K<K+“‘, then h=2”. 
(2) Zf 2°C K+K, then 2” = cov(A, K, HI, 2) or for some z < K, 2” = 2” and 

2” = COV(il, K, Z+, 2) 

Proof. If j(K) 3 2”, then by Lemma 2.2, 2” = cov(A, K, K1, 2) = A. If in addition 

2°C K+O, then also A < K+ w. Hence cov(h, K, X1, 2) = A. If j(K) < 2”, then 

j(2”) = (2”)” by Proposition 2.3, since 2°C K+“. Hence, in M, (2”)” =j(2”) = 

2jcK). Since P”(K) EM, (2”)M 3 (2”)‘. So, in M, 2”= (2”)” = 2”“‘. By elemen- 

tarity of j, back in V, for some r < K, 2” = 2”. This proves (2) of the theorem, 

since by Lemma 2.1, 2” G cov(& K, r+, 2) < A” = 2: For (1) note that 2“ < K+~ 

implies cov(A, K, z+, 2) = A. 0 

The following generalizes a result of Jech-Pikry [6]. 
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Theorem 2.5. Suppose that the forcing with a K-complete ideal over K is 
isomorphic to the forcing of A-Cohen or random reals. Let z be the least Y < K such 
that 2’ = 2” Y Then 

(a) n5=2K, 

(b) il~2’” implies that 2” = 2” = cov(h, K, z+, 2). 

Remark. By 1.8, z defined above exsists. 

Proof. Force with the ideal. Let j: V + M c V[G] be the generic elementary 

embedding. Since 2” = 2’“, by elementarity of j, the same is true in M with K 

replaced by j(K). Then (2”)M = (2”)M z= (2”)“. But we forced with A-Cohen or 

random reals, so (2”)M = (2’)“tG1 6 (A”)“. Hence, (2”)” < (A”)“, which proves 

(a). (b) follows also since 2”= 2<” and 2°C cov(A, K, z+, 2) by 2.1. 0 

2.6. Some forcing constructions. It is easy to arrange a situation when 2” = A. > 

2 <K. Just start with a measurable K and add K-Cohen or random reals. As was 

noted in [3], it is possible to have k < 2’O. Add Kfw-Cohen or random reals to a 

model with a measurable K satisfying GCH. Working harder it is possible to 

construct a model satisfying A. < 2’” < 2”’ = 2”. Thus start with a model having a 

measurable K and a strong limit cardinal Y > K such that cf Y = Xi, 2” = Y+~+*, 
(yfw)*l = y+“‘+i_ Add y+w Cohen or random reals. Then A will be Y+~, 
2”” = y+O+l and 2”’ = 2” = Y+~+*. Using [4], it is possible to arrange also finitely 

many jumps, for example A < 2”O < 2”’ <. . . < 2K7 = 2”. Let us present now 

another construction, showing that A may be above 2*:“, say 2X0 < A < 2” = 2”. 

Once more, using [4] it is possible to put A. between 2K5 and 2Xh. Start with a GCH 

model having a measurable cardinal K and a supercompact or strong cardinal v 

above it. Blow up the power of Y to v+K+3 and change its cofinality to X1, without 

adding subsets to K. Then the elementary embedding of K of V extends to 

elementary embedding in the generic extension. Let us denote it by j. In 

particular, v+K+’ < j(vwK) < v+~+‘. Add now Y+~ Cohen or random reals. Then 
2x0 = y+“, 2”’ = 2” = v+K+3 and il will be j(2%) = j(v’“). 

We do not know whether it is possible to have 2<” < h < 2”, more precisely: 

Question. Is it consistent that there exists a K-complete ideal over K such that the 

forcing with it is isomorphic to the forcing for adding A-Cohen or random reals 

and 2’” <il<2”? 

Note that by 2.5(a), A” = 2” for the least z with 2” = 2’“. 

3. On splitting into sets of the same Lebesgue outer measure 

Peter Komjath deduced the following from [3]: If A,, . . . , A,, . . . are subsets 

of the real line, then there are disjoint B, E A,, such that for every interval I, 

Z fl A, is of the second category iff I n B, is such. 
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He suggested that the dual question for measure may follow from [3]. We are 

going to show here that this is the case. Namely, the following holds: 

Theorem 3.1. Zf A”, A,, . . . , A,, . . . are sets of reals, then there are disjoint sets 
Bo,B ,,..., B, ,... such that B, 5 A,, and p*(B,) = p*(An) for every n > w. 
Here p* denotes the Lebesgue outer measure. 

Proof. It is enough to show that always there is B GA,), ii*(B) > 0, so that for 

every Bore1 set C and for every n > 0, A, fl C is not of measure zero iff 

(An \B) fl C is such. 

Suppose otherwise. Then for every nonempty set B G A0 there is a Bore1 set C 

and II > 0 so that B almost contains C fl A, and ;l*(C f7 A,) > 0. Let I be the ideal 

for all sets of reals having the measure zero intersection with A(). The forcing with 

Z is isomorphic to the random real forcing (if, for example, all A,, = AI (n 2 1)) or 

to the product of random with Cohen forcings. Both cases are impossible by [3, 

2.3 and 4.31. More precisely, the proof there is given for the Cohen*random 

case, but it works for the product and actually for any finite iteration of this 

forcing notion. 0 

Problem. Find an elementary proof of Theorem 3.1. 

P. Komjath wrote to us that for finitely many sets A,, . . . , A, the result is due 

to N. Lusin. 

4. On Hechler reals 

The main purpose of the present section will be to prove the following: 

Theorem 4.1. The forcing with a K-complete ideal over a set X, (X( 3 K, cannot 
be isomorphic to a Hechler real forcing. 

Remark. This result was claimed in [3] but the proof given there works only for 

X of cardinality K. 

Proof. Suppose otherwise. Let Z be a K-complete (and non K+-complete) ideal 

over a set X witnessing this. Force with the Hechler real forcing and let V[G] be 

a generic extension, j : V+ M s V[G] the corresponding elementary embedding. 

Split the embeding in the usual fashion where i is generated by a normal ideal Z 

M 

V k 
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over K. (We are picking a function f :X + K representing K in M and projecting I 

via f). Then P(K)/J is isomorphic to a complete subalgebra of the Hechler 

forcing. Let us denote it by (2. 

Let us split the result of the proof into a number of lemmas some of them, 

probably, of independent interest. 

Lemma 4.2. Let D be a filter on o in V which is L(R)-definable. Then there are 

2”~ almost disjoint D-positive sets. 

Proof. Let Q, be a formula defining D in L(R). Force a Cohen real r E w. Then, 

if q(r) (or iv(r)) is true, i.e., r E D in the extension, then also q(cc)\r) is true, 

since for every n, (o \r\n) U (r fl n) is Cohen as well over V. This is impossible. 

So both r and w\r are D-positive. Since one Cohen real produces 2Xo almost 

disjoint Cohen reals over V, we obtain 2Ko-almost disjoint D-positive sets in a 

Cohen extension of V. 

Now, a Hechler real-forcing adds a Cohen real (see Truss [20]). So in M, using 

homogeneity of the forcing, DM = {x c o 1 L(R) k q(x)} has 2”“-almost disjoint 

positive sets. By the elementarity of i, the same is true in V. 0 

Remark 4.2A. (1) The ‘L(R)-definability’ can be replaced by any absolute 

enough definition. 

(2) Without using the hypothesis of 4.1 still similar lemmas hold: 

(a) If r, o\r satisfy ~1, then in V[r] k(!lx)(q~(x) A q(o\x)). Hence, this holds 

in V, if q is 2;. 

(b) BY (a), if Q, is 2; we can find in V[r] a perfect set P of pairwise almost 

disjoint x c o such that lq(m\x). Hence V[r] k 3P vx E P (q(x) A ~Q~(o\x)), 

which is a Z&statement. If Q, was Ei, then it is a E&statement and so is true in V. 

(3) If in (b) we like to have only h*,, pairwise disjoint sets, then we need 

absoluteness of (3h)(h: co- w A A,, lq(w\h-‘({n}). Which is OK if ~1 is D:. 

So 9, being Ai is enough for (a) + (b), i.e. for the lemma. 

(4) If (Vr E R”) ( r# exists), then we do have more absoluteness. 

Now we would like to show that the forcing with Q (the subalgebra of Hechler 

forcing defined above) adds a Cohen real. Let us prove a more general result. 

Proposition 4.3. Let (P, S) be a u-centered forcing notion and (A, 1 n < O.I) 

subsets of P witnessing this. Suppose that both (P, =z) and (A, 1 n < w) have 

‘simple’ definitions. Then P adds a Cohen real. 

Remark. (1) The exact meaning of ‘simple’ will be clear from the proof; see also 

Remark 4.3A for precise computation. It will include Bore1 forcing and the 

forcing notion Q of our prime interest. Note that in our case, for every real r E V 
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there is r# E V, so we have more absoluteness. A general class of ‘simple’ forcing 

notions was worked out in Judah-Shelah [7]. 

(2) The Mathias forcing with ultrafilter is o-centered but does not add a Cohen 

real. 

Proof. It is well known that a o-centered forcing adds a new real. 

Let r be a name of a new real added by P. For every p E P and n < w let us 

consider Tp = (7 E “‘2 1 p UC (11 is not an initial segment of r} and T, = n { Tp 1 p E 

Ad. 

Claim 1. T, has an infinite brunch. 

Proof. Suppose otherwise. Then T, E “‘2 for some m < w. For every n E “2 

there is p,, E A, so that ps It (11 is not an initial segment of r). Find some p E A,, 
above all {p, 1 q E “2). Then p It (r has not initial segment in “2) which is 

impossible. Contradiction. q Claim 1 

Let r],, be an o-branch of T,. For every p E A, define 

b(p, a) = {k < w 1 for some q sp, q II (r n rn = qn r k)}. 

Notice that q1 s q2 implies b(q,, q,J 2 b(q,, qn). 

Claim 2. For each n, {b(p, qn) ( p E A,} U {co - k I k E o} generates a filter 
over 0. 

Proof. For every ql, . . . , qr EA, (I < CO) and m < O.I pick p EA, such that 

P~41,..-, qI. Since T],, 1 m E Tp, there is q 2p such that q IF r 1 m = qn 1 m. But 

0 II-r # qn. Hence there are q’ > qandk>msuchthatq’ll-(rnn,=r), lk). •i 
Claim 2 

Let nE be an o-branch of T,. For every p E A,, define 

b(p, q,J = {k < w ( for some q sp, q It (r ~7 q,, = qn / k)}. 

Notice that q, =S q2 implies b(q,, q,J 2 b(q2, qn). 

Claim 3. For each n, {b(p, Q) I p EA,} U {w - k 1 k E o} generates a filter 
over w. 

Proof. For every ql, . . . , qr E A, (I < CO) and m < o pick p E A,, such that 

P==41,..., q,. Since n,, 1 m E T,, there is q sp such that q Itr 1 m = q,, 1 m. But 

0 It r # qn. Hence there are q’ 2 qandk>msuchthatq’It(rnn,=q, lk). Cl 
Claim 3 

Let us denote this filter by 0,. 
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Now using the simplicity of (P, s ) and (A, ( n < o), it is possible to find 2’” 

almost disjoint D,-positive sets. Then it is not hard to split o into disjoint subsets 

(ai ) i < co) which will be D,-positive for every n < o. (First find disjoint 

(b, 1 n < co) such that b, is D,-positive and then split each of bi’s.) 
Define by induction a sequence (k,, 1 n < u) so that the sets 

B,,=={?In 1l(k,&l<w} 

will be disjoint if qn Z n,,, and equal otherwise. Let B = U,,,,, B,. Then 

0 It Vf Elm 2 I r 1 rn E B. We shall use this below in order to define a name v of a 

Cohen real. Let (pi ) i < co) be an enumeration of “‘2 so that each sequence 

appears infinitely many times. 

Let r be a generic real. Define in V[r] a real V. Pick the first I,< w so that 

r 1 lo E B. Let rzo be the least n so that r 1 I,, E B,. Pick the first m. > IO so that 

r rmo$&,. There exists k,, < w so that m,, E Q,,. Continue, pick the first I1 3 m 

so that Y 1 I, E B. Find n, so that r 1 I, E B,,. Define m, and kl as above. Continue 

in the same fashion. This process defines a sequence (ki ) i -=c co). Set u to be 

Let us show that v is a Cohen real over V. Work in V. Let v be a name of V. Let 

T E “‘2 be a nowhere dense set. For every p E P we shall find q *p such that 

q Itv is not a branch of T. Let p E P. Find n < w so that p E A,. Let us try to 

interpret v using qn instead of r. The process will work up to some stage i < w, so 

that q,, r I,, E B,. Denote P~,,-P~~-P~,_, by p*. There is p so that p*-p E “‘2\T. 

Find also k < co so that p = ok. Consider the set E = {m < o 1 m > 1, and for some 

q ap, q Itr II qn = qn r m}. It belongs to 0,. So there is m E E II uk. Pick q sp 

such that q It r fl gn = qn / m. Then q It p*-pk is an initial segment of v. But this 

means that q It v is not a branch of T. 0 4.3 

Remark 4.3.A. What should be the definition of (P, G ) and An’s for the proof 

to work? For applying 4.2 in just ZFC we need “0, is X:“. 

Let I’ = (rf 1 i < o) be the maximal antichain of P, rf Ikr(f) = h’(i), h’: co+ 

(0, l} for every I< o. Now y E D, iff 

3(P,, . . . 9 Pk > ,& Pi E An * (vm E 0 \Y)(&,‘i,,> . 
[ 

. ,i,,<o) 

l(h’(i,) = ~~(0) A . * - A hm-l(i,,_,) = q,(m - 1) A hm(i,) # q,(m) 

A comp(plj . . . , pkr r& . . . , I;>)] 

where comp{q,, . . . , qn} means that this set has an upper bound in P. 
So for proving 4.3 in ZFC the following is enough: “The sets P, A,, (n < co) are 

Ei and camp is Hi”. 

The next lemma which deals purely with Hechler forcing is sufficient in order to 

complete the proof of 4.1. 
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Lemma 4.4. There exists a name z in Cohen forcing such that: 

(a) bhen “r i.s a name in Hechler forcing of a member of ow”. 
(b) If e E V is a Hechler name of a member of Oar, V* is a countable submodel 

of a large enough portion of V such that e E V* and r is a Cohen real over V*, 
then 

It Hechler “z(r) is not dominated by e”. 

Proof of 4.1 from Lemma 4.4. By Lemma 4.2 and Proposition 4.3, Q adds a 

Cohen real r over V. Since the projection .Z of Z concentrates over K, we can pick 

a sequence (r, ) a < K) E V representing r in the generic ultrapower. 

By elementarity of i, for every countable elementary submodel V* of a large 

enough portion of V, {a < K 1 r, is not Cohen over V*} E J. 
Since there is a Hechler over V real in M and j is an elementary embedding, for 

every R G (“w)” of cardinality less than K there exists f E (“w)” dominating every 

function of R. Then in M, for every R c wo, ]RJ = K, there exists f E Ow 
dominating every function of R. 

Let z be as in Lemma 4.4 and let h E M be the Hechler real over V generating 

everything. Consider, in M, R = {x(rE)(h) 1 a < K}. Then, there exists e E Ow 17 

M which dominates R. Let e be a Hechler name of e in V. Pick in V a countable 

submodel V* such that e E V*. By the above, almost all (modJ) r,‘s are Cohen 

over V*. But this is impossible by 4.4(b). Contradiction. 0 

Let us turn to the proof of Lemma 4.4. It will be more convenient to deal only 

with strictly increasing sequences in the definition of Hechler forcing further. 

Also wpw will be understood in the same way. We shall interpret the Cohen 

forcing as Cohen’ = {(h, g) 1 (a) h is a finite function from O’w to (0, l}; (b) 

dom h is closed under initial segments; (c) dom g = {t-(k) 1 t-(k) E dom h and 

h(t) = 0; (d) rngg c_ o}. Let (h, g) be a generic object of Cohen’. Then 

h: w’g+ (0, l}, g: {t’-.(k) ( t-(k) E O’o, h(t) = O}+ w. Define now a Hechler 

name cr. For a Hechler real f E ww let k, be the nth member of {k 1 h(f 1 k) = O}. 

Set o[f I(n) = g(f r (k, + 1)). 
Suppose that there is a condition ((h, g), (t, f)) E Cohen’ * Hechler and e E V 

such that ((h, g), (t,f) IF “there is n* such that for every n > n*, o [Hechler real] 

(n) <e [Hechler real] (n)“. 
Extending (h, g) if necessary, we may assume that for some t* and n*, t = i* 

and n* = ii*. 

Let us pick an elementary submodel N of a large enough fragment of V such 

that e E N. Then for every n there is a predense set rn E N such that N k r, dense 

open, and every p E z, decides the value of e(n). Let f * E V be Hechler over N. 

Define a set tz E N[f *] as in [3,3.2], i.e., for every (t, g) E z, find k < o so that 

k 3 length t and f*(m) > g(m) for every m 3 k. Take all possible extensions of 

(t, g) to conditions of the form (t’, g) with t’ of length k. Change g by f * in each 
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of them. Let t,* be a set consisting of such conditions. Repeating the proof of 

Claim 3.2.1 from [3] we obtain the following: 

Claim 4.4.1. For every n < w and (t,, fi) E Hechler there is s G= t, such that 
(.s,f*) E z,* and (.s,f*), (t,, h,) are compatible. 

W.1.o.g. we can assume that (h, g) ItcohCn,f(n)2f*(n) for every II 2 

length(t*). Let 1, = {(t, f*) E r,* 1 t 2 t*}. 

Let 12 be above max(length(t*), n*) + 1. We extend (h, g) and t* to (h,,, go) 

and t, so that (ho, g,,) a (h, g ), (ho, g,,) It (to, f) 2 (t *, f) and to determines 

exactly the first II - 1 members of {k ) h<)(Hechler 1 k) = O}. Let k,_, be the nth 

member of this set. The exactness (or to is such of the minimal possible length) 

implies length(t,,) = k, _, . Let us explain the idea of the rest of the proof by 

dealing with two particular cases. 

Case 1. to E 1,. 

Extend (h,,, go) to a condition (h& gb) determining the value f(kn-l). We 

choose some i above all the elements of the set rng to U {f(kn_,)} U 

U{rngq 1 qEdomhl,}. Let t, =tOU{(k,_,, i), (k,_, f 1, i+ l)}. Extend hi, to 

h, by adding t, 1 k,-, + 1 and tl to its domain, and set h,(t, r k,_, + 1) =O. 

Finally, we extend g; to g, by adding t, 1 k,*_, + 1 and t, to its domain and setting 

g,(t,) = the value (to, f*) forces on e(n). Then the condition ( (h,, g,), (t, ,f)) 

is stronger than ( (ho, g,,), (to, f) ) and it forces “a[Hechler](n) = e[Hechler](n)” 

which is impossible. 

Case 2. There are m > k,_, and (tf, 1 tf, E ‘no, i < o) such that 

(a) 4 2 to, 
(b) tb(length to) 2 i, 

Cc) Ml, f*) E L. 

We extend first (h,,, g,,) to a condition (hi,, g,,) determining f 1 m + 1. Then 

we shall pick i < o above all the elements of the set rng t, U (f(m)} U 

L_J {rng q ( q E h;,}. Extend ho to h, by adding all the initial segments s of t{, such 

that t,<.s < tf, and setting h,(s) = 1. Extend g[, to g, by adding t{, r (k,,, + 1) to 

its domain. We already may reach the contradiction by setting gi(t{, 1 (kN_, + 1)) 
to be the value (tb, f*) forces on e(n - l), but let us instead proceed on one 

more step and deal with the situation which will arise in the general case. So we 

extend tt to tl by adding {(m, max(rngtj,) + l), (m + 1, max(rngt&) +2)}. 

Extend h, to h: by adding t, 1 m + 1 and f, to its domain and setting 

hT(t, 1 m + 1) = 0. We extend g, to g: as follows: add t, to its domain and set 

gT(tJ to be the value (&f*) forces on e(n). As in Case 1, we obtain now a 

contradiction. In order to deal with the general case we introduce a notion of 

rank. 
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Definition 4.4.2. Let t E O’o and A 5 @“co. Define by induction rk(t, A). 
(a) rk(t, A) = 0 iff for some k < length(t), t 1 k E A. 
(b) rk(t, A) = a iff there is no p < ct such that rk(t, A) = p, but there are 

m < w and (tk ) k < o) such that for every k < co: t c tk, tk E mu, &(length(t)) 2 

k, and for some /Ik < (Y, rk(t,, A) = Pk. 

Claim 4.4.3. Let (t*,f*) E Hechler, Z 5 {(t,f*) 1 (t,f*) E Hechler} be a predense 
set in the Hechler forcing and A = {t ( (t, f*) E Z}. Then rk(t*, A) < 0,. 

Proof. Suppose otherwise. Let A* = {t ) t 2 t* and rk(t, A) < w,}. Consider a set 

S=MF w>g, (q,f*) > (t*,f*) and there is no t EA* such that length(t) G 

length(q) and for every i < length(t), t(i) <q(i)}. Then t* ES and S is closed 

under initial segments. Notice that S has no o-branches. Since, if (ql ( i < u) is 

such a branch, then (l*, &-,qi) 3 (t*,f*) so for some t EA, (t, LJiCw qi) 2 
(t*, iJj<, qi) (it is impossible to have t d t*, since then rk(t*, A) = 0). But then 

there is io< w such that i. = length t; Id length t implies t(Z) > qi,,(l) which 

contradicts the definition of S. Hence S has a maximal element. Let q be such an 

element. Then q-(k) $ S for every k, actually only k’s above max(rng q) are 

relevant, but for simplification of the notation we shall ignore these. So there is 

tk E A* witnessing q-(k) 4 S. Then length(&) s length(q) + 1. It is impossible to 

have strict inequality, since then tk will witness q $ S. So length(&) = length(q) + 

1. Now, there are 5 E m~, length t* s m 6 length q and infinite set B G w such that 

for every k E B, tk 1 m = 7 and {&(m) 1 k E B} are pairwise distinct. It is easy to 

rename B now and (tk 1 k E B) in order to obtain a sequence (tl 1 k < 0) 
witnessing rk(?) < 0,. But then i will witness q $ S. Contradiction. 0 4.4.3 

Let A be {t 1 (t,f*) E I,}. By Claim 4.4.3, then rk(t”, A) < ol. The cases 

rk(t,,, A) = 0 or 1 correspond to Cases 1 and 2 above. We shall define by 

induction a sequence tl, fz, . . . , t,, . . . such that to < r, < t2 <. . * < t, < * * . and 

rk(t,, A) > rk(t,, A) > * - . . Since ordinals are well-founded, after finitely many 

stages the process will terminate. Let us describe the construction of t,. The rest 

is similar. Let rk(t,, A) = (Y. By the definition of the rank, there are m > 

length(t,) and (th 1 i < o, th E “0) such that 

(1) rf, 2 r0, 
(2) tb(length(tJ) 2 i, and 

(3) rk(t&) < (Y. 

Extend now (ho, g,) to a stronger condition (hh, gh) determining f [ m. Pick 

i < w to be above all the elements of the set rng to U rngf r m U U {q ( q E 
dom hh}. Let t1 be t;l. Extend (h& 81) to (h,, gl) as follows. Add each s, 

c,,<s ccl, to the domain of hi, and set h,(s) = 1. Add c, r length(t,) + 1 to the 

domain of g, and give to gl(tl 1 length(t,) + 1) any value. 

Now we continue and using t,, (h,, g,) define tZ, ( h2, g2) and so on. After 

finitely many stages rank 1 or rank 0 is reached. Then the contradiction is derived 

as in Cases 1 or 2. 0 
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5. Open problems 

237 

Let us list here the problems mentioned in this paper. 

Problem 1. Is the set {COV(,U, K, 8, 2) ( 0 < K} always finite? 

It is related to the Hajnal-Shelah Theorem saying that the set {K@ 1 2@< K} is 

always finite. We conjecture that the answer is affirmative. 

Problem 2 (Fremlin). Let K be a real-valued measurable. Is there A < K such that 

COV(& 8,, h’, , 2) > K?' 

By 1.11, cov(A, Hi, Xi, 2) <K for every d below the first fixed point of the 

&function. 

Problem 3. Suppose that the forcing with a K-complete ideal over K is isomorphic 

to the forcing for adding A-Cohen or random reals. Is it possible that 

2’“<A<2”? 

By Theorem 2.5, A” = 2” for the least t such that 2” = 2’“. But we do not know 

even the simplest case: 2”” = 2’” = K, A = K+@ and 2” = K+‘*+‘. 

Let K be a measurable cardinal and j be an elementary embedding of a measure 

over rc. 

Problem 4. Is ] j( j(r))1 = ] j(r)1 for every ordinal t? 

Problem 5. Is there an ordinal r such that j(r) > t and j(r) is a cardinal? 

Problem 6. It is possible to have a K-complete o,-saturated ideal over K such 

that 

0 lt “j(K) is a cardinal”? 

or even 0 It “j(K) = K++"?, where j is the generic embedding. 

If we replace “o,-saturated” by “precipitous” then [2] provides the affirmative 

answer. 

Problem 7. Can the forcing with a a-ideal be isomorphic to a Bore1 forcing 

notion, or to one having a simple absolute definition? 

This question was raised in [3]. Note that the proof for the Hechler real in 

Section 4 may be used for every simple forcing for which it is possible to define 

the notion of rank. 

' "No", to appear in Shelah [18]. 
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