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Abstract

We strengthen the revised GCH theorem by showing, e.g., that for λ = cf(λ) > �ω , for all but finitely many regular κ < �ω , it
holds that “λ is accessible on cofinality κ” in some weak sense (see below).

As a corollary, λ = 2μ = μ+ > �ω implies that the diamond holds on λ when restricted to cofinality κ for all but finitely many
κ ∈ Reg ∩ �ω .

We strengthen previous results on the black box and the middle diamond: previously it was established that these principles
hold on {δ : δ < λ, cf(δ) = (�n)+} for sufficiently large n; here we succeed in replacing a sufficiently large �n with a sufficiently
large ℵn .

The main theorem, concerning the accessibility of λ on cofinality κ , Theorem 3.1, implies as a special case that for every regular
λ > �ω , for some κ < �ω , we can find a sequence 〈Pδ : δ < λ〉 such that u ∈ Pδ =⇒ sup u = δ & |u| < �ω , |Pδ | < λ, and
we can fix a finite set d of “exceptional” regular cardinals θ < �ω so that if A ⊆ λ satisfies |A| < �ω , there is a pair-coloring
c : [A]2 → κ so that for every c-monochromatic B ⊆ A with no last element, letting δ := sup B it holds that B ∈ Pδ—provided
that θ := cf(δ) is not one of the finitely many “exceptional” members of d.
c© 2005 Elsevier B.V. All rights reserved.
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0. Introduction

The main result of this paper is defining for any cardinal λ a set d0(λ) of regular cardinals < λ such that for the
strong limit θ < λ it holds that θ ∩ d0(λ) is finite, and for every κ ∈ Reg ∩ θ\d0(λ), in some sense λ has not too
many subsets of cardinality κ . It is our main aim here to use this to show: if cf(λ) > μ and κ ∈ Reg ∩ μ satisfies
λ = sup{α : κ /∈ d0(|α|)} then λ has a “good” sequence 〈Pα : α < λ〉,Pα ⊆ [α]≤κ and if λ = λμ, more (see 3.5, 3.8).

This gives as a main consequence that: if μ ≥ θ, λ = cf(2μ) then (λ, κ) has the BB (black box) and (a version of)
the middle diamond for all but finitely many κ ∈ Reg satisfying �ω(κ) ≤ μ. Also λ = 2μ = μ+ > θ ⇒ λ has the
diamond on cofinality κ for all regular κ for which �ω(κ) < λ except finitely many.

So this is part of pcf theory [17] continuing in particular [21]. The proof of the main theorem here is adapted to be
a shorter proof of the revised GCH theorem from [21] in Section 1 we present a short and self-contained proof of the
revised GCH and discuss its potential extensions.
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By pcf theory [17,21] a worthwhile choice of a definition of power for κ < λ regular is λ[κ] (or λ<κ>), the minimal
cardinality of a family of subsets of λ each of cardinality ≤ κ such that any other subset of λ of cardinality κ is equal
to (or is contained in) the union of < κ members of the family (see Definition 1.2).

This gives a good partition of the exponentiation as λκ = λ ⇔ 2κ ≤ λ& (∀σ)(σ = cf(σ ) ≤ κ ⇒ λ<σ> = λ). So
GCH is equivalent to: κ regular⇒ 2κ = κ+ and [κ < λ are regular⇒ λ<κ> = λ].

Let d+(λ) = {κ : κ be regular < λ and λ < λ<κ>}. In [21] the revised GCH theorem is proved:

� if λ > �ω then d+(λ) ∩ �ω is bounded, i.e., λ = λ<κ> for every sufficiently large regular κ < �ω.

We can replace �ω in the RGCH theorem by any strong limit cardinal θ .
The advances in pcf theory reveal several natural hypotheses. The Strong Hypothesis (pp(μ) = μ+ for every

singular μ) is very nice, but it implies the SCH and hence does not follow from ZFC. The status of the Weak
Hypothesis (somewhat more than {μ : cf(μ) < μ < λ ≤ pp(μ)} is at most countable) is not known but we are
sure that its negation is consistent though it has large consistency strength, but not sure about (∀a)(|a| ≥ |pcf(a)|).
Still better than � would be the following (which we believe, but do not know, particularly (2)):

Conjecture 0.1. (1) for every λ, d+(λ) is finite, or at least
(2) for every strong limit μ, λ ≥ μ ⇒ d+(λ) ∩ μ is finite.

Here we define a set d0(λ) ∩ θ whose finiteness and other results on it (see 3.1 and consequences) form a step in
the right direction and suffice to improve the results of [7]. In particular, the results allow us to use “κ = ℵn for some
n” rather than “some regular κ < �ω”. This looks like the right direction in infinite abelian group theory (as there are
non-free almost κ-free abelian groups of cardinality κ when κ = ℵn). So we can hope to get the right objects in each
cardinality ℵn , whereas consistently they may not exist for arbitrary κ = cf(κ) < �ω. However, at the moment the
results here do not suffice to get e.g. “there is an ℵn-free abelian group G for which Hom(G, Z) = {0}”; for this we
need κ = ℵ0 ∨ κ = ℵ1. It is quite “hard” for this to fail for every λ; see [25].

The work here continues also previous work on I [λ]. By [10], if λ = μ+ and μ is strong limit singular, then for
some A ∈ I [λ] and some c : [μ+]2 → cf(μ), if B ⊆ μ and c � [B]2 is constant (or just has bounded range),
δ = sup(B), cf(δ) �= cf(μ), then δ ∈ A.

By Džamonja and Shelah [2], using [21], if λ = μ+ and μ is strong limit singular, then for some κ < μ, for some
A ∈ I [λ], if for every A′ ⊆ A, |A′| < θ for some c : [A′] → κ , we have: if B ⊆ A′, c � [B] is constant, δ = sup[B],
cf(δ) > κ , then δ ∈ A. By [20, 5.20], conditions on TD help to prove that I [λ] is “large”.

On pcf theory and versions of the RGCH without the axiom of choice, see [19,9] and more in [24].
We tried to make this paper as self-contained as is reasonably possible.

Definition 0.2. (1) For an ideal J on a set X :
(a) J+ = P(X)\J ; we agree that J determines X so X = Dom(J ) — this is an abuse of notation when
∪{A : A ∈ J } ⊂ X but usually clear in the context;

(b) for a binary relation R on Y and an ideal J on X and for f, g ∈ X Y , let f RJ g mean {t ∈ X : ¬ f (t)Rg(t)} ∈ J ;
the relations we shall use are =, �=,<,≤.

(2) If D is a filter on X, J the dual ideal on X (i.e., J = {X\A : A ∈ D}) we may replace J by D in the notation
f RJ g.

(3) Let (∀J t)ϕ(t) mean {t : ¬ϕ(t)} ∈ J ; similarly ∃J ,∀D, ∃D .
(4) Let Sλ

κ = {δ < λ : cf(δ) = κ} and Sλ
<κ = {δ < λ : cf(δ) < κ}.

Definition 0.3. (1) Let Ā = 〈Ai : i ∈ X〉, D a filter on X , and for simplicity first assume i ∈ X ⇒ Ai �= ∅. We let
(a) T 0

D( Ā) = sup{|F | : F ⊆ 
 Ā and f1 �= f2 ∈ F ⇒ f1 �=D f2};
(b)

T 1
D( Ā) = Min{|F | :(i) F ⊆ 
( Ā) (1)

(ii) f1 �= f2 ∈ F ⇒ f1 �=D f2 (2)

(iii) F maximal under (i)+ (ii)}; (3)

(c) T 2
D( Ā) = Min{|F | : F ⊆ 
 Ā and for every f1 ∈ 
 Ā, for some f2 ∈ F we have ¬( f1 �=D f2)}.
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(2) If {i : Ai = ∅} ∈ J then we let T �
D( Ā) = T �

D�Y ( Ā � Y ) where Y = {i : Ai �= ∅}; note that if {i : Ai �= ∅} ∈ J then

T �
D( Ā) = 0.

(3) For f ∈ κOrd and � < 3 let T �
D( f ) mean T �

D(〈 f (α) : α < κ〉).
(4) If T 0

D( Ā) = T 1
D( Ā) = T 2

D( Ā) then we let TD( Ā) = T �
D( Ā) for � < 3; similarly TD( f ); we say that F witnesses

TD( Ā) = λ if it is as in the definition of T 1
D( Ā) = λ; similarly T 2

D( f ).

Remark 0.4. Actually the case Ā = λ̄ = 〈λα : α < κ〉 is enough, so we concentrate on it.

Claim 0.5. (0) If D0 ⊆ D1 are filters on κ then T �
D0

(λ̄) ≤ T �
D1

(λ̄) for � = 0, 2.

(1) T 2
D(λ̄) ≤ T 1

D(λ̄) ≤ T 0
D(λ̄); in particular T �

D(λ̄) is well defined.
(2) If (∀i)λi > 2κ then T 0

D(λ̄) = T 1
D(λ̄) = T 2

D(λ̄), so the supremum in 0.3(a) is obtained (so, e.g., T 0
D(λ̄) > 2κ

suffice; also (∀i)λi ≥ 2κ suffice).

Proof. (0) Check.
(1) T 1

D( Ā) is well defined as every family F satisfying clauses (i) + (ii) there can be extended to one satisfying (i)
+ (ii) + (iii), so as ∅ satisfies (i) + (ii) really T 1

D( Ā) is well defined. If F exemplifies the value of T 1
D(λ̄), it also

exemplifies T 2
D(λ̄) ≤ |F |; hence easily T 2

D(λ̄) ≤ T 1
D(λ̄) and so T 2

D(λ̄) is well defined. In the definition of T 0
D(λ̄) the

Min is taken over a non-empty set (as maximal such F exists), so T 0
D(λ̄) is well defined.

Lastly, if F exemplifies the value of T 1
D(λ̄) it also exemplifies T 0

D(λ̄) ≥ |F |, so T 1
D(λ̄) ≤ T 0

D(λ̄).
(2) Let μ be 2κ . Assume that the desired conclusion fails so T 2

D(λ̄) < T 0
D(λ̄), so there is F0 ⊆ 
λ̄ such that

[ f1 �= f2 ∈ F0 ⇒ f1 �=D f2], and |F0| > T 2
D(λ̄) + μ (by the definition of T 0

D(λ̄)). Also there is F2 ⊆ 
λ̄

exemplifying the value of T 2
D(λ̄). For every f ∈ F0 there is g f ∈ F2 such that¬( f �=D g f ) (by the choice of F2). As

|F0| > T 2
D(λ̄) + μ, for some g ∈ F2 the set F∗ =: { f ∈ F0 : g f = g} has cardinality > T 2

D(λ̄) + μ. Now for each
f ∈ F∗ let A f = {i < κ : f (i) = g(i)} clearly A f ∈ D+. Now f �→ A f /D is a function from F∗ into P(κ)/D;
hence, as μ ≥ |P(κ)/D|, it is not one to one (by cardinality consideration), so for some f ′ �= f ′′ from F∗ (hence
form F0) we have A f ′/D = A f ′′/D; but so

{i < κ : f ′(i) = f ′′(i)} ⊇ {i < κ : f ′(i) = g(i)} ∩ {i < κ : f ′′(i) = g(i)} = A f ′ mod D

and hence is �= ∅ mod D, so ¬( f ′ �=D f ′′), contradicting the choice of F0. �

Claim 0.6. Let J be a σ -complete ideal on κ .

(1) If Ā = 〈Ai : i < κ〉, λ̄ = 〈λi : i < κ〉, λi = |Ai | then T �
J ( Ā) = T �

J (λ̄) and if A ∈ J, B = κ\A then
T �

J (λ̄) = T �
J �B(λ̄ � B).

(2) TJ (λ̄) > 2κ iff (∀J t)(λt > 2κ); note that TJ (λ̄) > 2κ includes its being well defined.
(3) T �

J (λ̄1) ≤ T �
J (λ̄2) if (∀J t)(λ1

t ≤ λ2
t ).

(4) If Dom(J ) = ∪{Aε : ε < ζ }, ζ < σ and λi ≥ 2κ for i < κ then T 0
J (λ̄) = Min{T 0

J �Aε
(λ̄ � Aε) : ε < ζ and

Aε ∈ J+}.
(5) In part (4) if λ̄ = 〈λi : i < κ〉 then the following are equivalent:

(i) for every f ∈ ∏
i<κ

λi we have TJ ( f ) < λ;

(ii) for some ε < ζ, Aε /∈ J and for every f ∈ ∏
i<κ

λi we have TJ �Aε
( f � Aε) < λ.

Proof. For example (and the one we use):
(4) Let A′ε = Aε\ ∪ {Aξ : ξ < ε} for ε < ζ .

First assume that F ⊆ 
λ̄ and f1 �= f2 ∈ F ⇒ f1 �=J f2. Then for each ε < ζ satisfying Aε ∈ J+,
clearly F [ε] = { f � Aε : f ∈ F} satisfies |F [ε]| = |F | as f �→ f � Aε is one to one by the assumption on
F and F [ε] ⊆ ∏

i∈Aε

λi ; so |F | = |F [ε]| ≤ T 0
J �Aε

(λ̄ � Aε). As this holds for every ε < ζ for which Aε ∈ J+ we

get |F | ≤ Min{T 0
J �Aε

(λ̄ � Aε) : ε < ζ, Aε ∈ J+}. By the demand on F we get the inequality ≤ in part (4).

Second, assume μ < Min{T 0
J �Aε

(λ̄ � Aε) : ε < ζ, Aε ∈ J+}. So for each such ε there is Fε ⊆ ∏
i∈Aε

λi such that
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f �= g ∈ Fε ⇒ f �=J �Aε
g, |Fε| ≥ μ+. For each ε < ζ let f ε

α ∈ Fε be pairwise distinct for α < λ, and define
fα ∈ 
λ̄ for α < μ+ as follows: fα � A′ε = f ε

α when Aε ∈ J+; fα � A′ε is zero otherwise.
Now check. �

Definition 0.7. For λ regular uncountable and stationary S ⊆ λ let (D�)λ,S mean that we can find P̄ = 〈Pα : α ∈
S〉,Pα ⊆ P(α) of cardinality < λ such that for every A ⊆ λ the set {α ∈ S : A ∩ α ∈ Pα} is stationary.

Definition 0.8. For λ regular uncountable let I [λ] be the family of sets S ⊆ λ which have a witness (E, P̄) for
S ∈ I [λ], which means

(∗) E is a club of λ, P̄ = 〈Pα : α < λ〉,Pα ⊆ P(α), |Pα| < λ, and for every δ ∈ E ∩ S there is an unbounded subset
C of δ of order type < δ satisfying α ∈ C ⇒ C ∩ α ∈ ⋃

β<δ Pβ .

Claim 0.9 ([15]). (1) For λ regular uncountable, S ∈ I [λ] iff there is a pair (E, ā), E a club of λ, ā = 〈aα :
α < λ〉, aα ⊆ α such that β ∈ aα ⇒ aβ = aα ∩ β and δ ∈ E ∩ S ⇒ δ = sup(aδ) > otp(aδ) (or even
δ ∈ E ∩ S ⇒ δ = sup(aδ)), otp(aδ) = cf(δ) < δ.
(2) If κ+ < λ and λ, κ are regular, then for some stationary S ∈ I [λ] we have δ ∈ S ⇒ cf(δ) = κ .

Claim 0.10. (1) Assume that fα ∈ κOrd for α < λ, λ = (2κ)+ or just λ = cf(λ) and (∀α < λ)(|α|κ < λ) and
S1 ⊆ {δ < λ : cf(δ) > κ} is stationary. Then for some stationary S2 ⊆ S1 we have: for each i < κ the sequence
〈 fα(i) : α ∈ S2〉 is either constant or strictly increasing.
(2) If D is a filter on κ and fα ∈ κOrd for α < δ is <D-increasing and cf(δ) > 2κ then 〈 fα : α < δ〉 has a <D-eub
fδ ∈ κOrd, i.e.,

(i) α < δ ⇒ fα ≤D fδ ,
(ii) f ′ ∈ κOrd & f ′ <D Max{ f, 1κ}; then (∃α < δ)( f ′ <D fα).

Proof. Part (1) follows easily from the Erdős–Rado partition theorem (see 14.5 in [5]) as follows: color (α, β) for
α < β in S1 by the least i < κ such that fα(i) > fβ(i) if there is such i < κ and color (α, β) by κ otherwise. Since
for every color i < κ there is no homogeneous set with color i of cardinality ω, there is a homogeneous stationary set
S′ ⊆ S1 with color κ . Since for each i < κ there is club Ei so that either fα(i) is constant on S′ ∩ Ei or for every
α < β in Ei ∩ S′ it holds that fα(i) < fβ(i), by letting S2 = S1 ∩⋂

i<κ Ei we finish the proof of (i).
Part (2) is Remark 1.2A on page 44, which follows from the pcf Trichotomy Theorem, which is Claim 1.2 on p. 43

of [17]. �

Observation 0.11. Assume that J, J1, J2 are ideals on κ and J = J1 ∩ J2. If f ∈ κ(Ord \ ω) then T �
J ( f ) =

Min{T �
J1

( f ), T �
J2

( f )}.
Proof. As J ⊆ J� clearly TJ ( f ) ≤ TJ�( f ) for � = 1, 2. This proves the inequality ≤ in the observation. For the other
inequality use pairing functions for each i < κ . �

1. The revised GCH revisited

Here we give a proof of the RGCH which requires little knowledge; this is the main theorem of [21] — see also
[22, Section 1]. The presentation is self-contained; in particular, the pcf theorem is not used (hence proofs of some
pcf facts are repeated here in weak forms).

Definition 1.1. (1) For λ ≥ θ ≥ σ = cf(σ ) let λ[σ,θ] = Min{|P | : P ⊆ [λ]≤θ ; every u ∈ [λ]≤θ is the union of < σ

members of P}.
(2) Let λ[σ ] = λ[σ,σ ].
(3) For λ ≥ θ [σ,κ] let λ[σ,κ,θ] = Min{|P | : P ⊆ [λ]≤κ such that for every u ⊆ λ of cardinality ≤ θ we can find
i∗ < σ and ui ⊆ u for i < i∗ such that u = ∪{ui : i < i∗} and [ui ]≤κ ⊆ P}.
(4) We may replace θ by < θ with the obvious meaning (also < κ).

The following is a relative of Definition 1.1 not used in Section 1 but mentioned in 1.3.
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Definition 1.2. (1) For λ ≥ θ ≥ cf(σ ) = σ let λ<σ,θ> = Min{|P | : P ⊆ [λ]θ ; every u ∈ [λ]≤θ is included in the
union of < σ members of P}.
(2) Let λ<σ> = λ<σ,σ>.
(3) For λ ≥ θ<σ,κ> let λ<σ,κ,θ> = Min{|P | : P ⊆ [λ]≤κ such that for every u ⊆ λ of cardinality ≤ θ we can find
i∗ < σ and ui ⊆ u for i < i∗ such that u ⊆ ∪{ui : i < i∗} and (∀v ∈ [ui ]≤κ)(∃w ∈ P)(v ⊆ w)}.
(4) We may replace θ by < θ with the obvious meaning (also < κ).

Observation 1.3. Let λ > θ ≥ κ ≥ σ = cf(σ ).
(1) λ<κ> ≤ λ[κ] ≤ λ<κ> + 2κ .
(2) λ<σ,θ> ≤ λ[σ,θ] ≤ λ<σ,θ> + 2θ (but see (3)).
(3) If cf(θ) < σ then λ<σ,θ> = Σ {λ<σ,θ ′> : σ ≤ θ ′ < θ} and λ[σ,θ] = Σ {λ[σ,θ ′] : σ ≤ θ ′ < θ}.
(4) λ<σ,κ,θ> ≤ λ[σ,κ,θ] ≤ λ<σ,κ,θ> + 2κ .

Proof. Easy. �

The main claim of this section is

Claim 1.4. Assume

(a) ℵ0 < σ = cf(σ ) ≤ κ < ∂ ≤ θ ,
(b) J is a σ -complete ideal on κ ,
(c) λ̄ = 〈λi : i < κ〉 and ∂ < λi for any i < κ ,
(d) TJ (λ̄) = λ,
(e) λ

[∂,θ]
i = λi for i < κ (yes ∂ not ∂i !),

(f) if ∂i < ∂ for i < κ then
∏
i<κ

∂i < ∂ ,

(g) θ = θκ and 2θ ≤ λ.

Then λ[∂,θ] = λ.

Remark 1.5. (1) We may consider using a μ+-free family f̄ (see Section 2).
(2) Actually we use less than T 1

J (λ̄) = λ; we just use
(a) there are fα ∈ ∏

i<κ

λi for α < λ such that α < β ⇒ fα �=J fβ ,

(b) there are fα ∈ ∏
i<κ

λi for α < λ such that for every f ∈ ∏
i<κ

λi for some α,¬( f �=J fα).

(3) Actually, “ℵ0 < σ” is not used here.

Proof. Let f̄ = 〈 fα : α < λ〉 be pairwise J -different, fα ∈ ∏
i<κ

λi (i.e. α �= β ⇒ {i : fα(i) = fβ(i)} ∈ J ).

For each i < κ let Pi ⊆ [λi ]≤θ be of cardinality λi and witness λ
[∂,θ]
i = λi ; that is: every u ∈ [λi ]≤θ is the union

of < ∂ members of Pi ; such a family exists by assumption (e). Let M ≺ (H(χ),∈) be of cardinality λ such that
λ+ 1 ⊆ M and f̄ , 〈λi : i < κ〉, 〈Pi : i < κ〉, J,P(κ) belong to M .

Let P = M ∩ [λ]≤θ . We shall show that P exemplifies the desired conclusion. Now P is a family of ≤ ‖M‖ = λ

subsets of λ each of cardinality ≤ θ ; hence it is enough to show

(∗) if u ∈ [λ]≤θ then u is included in the union of < ∂ members of P (or equal to; equivalent here as 2θ ≤ λ hence
u1 ⊆ u2 ∈ P ⇒ u1 ∈ P).

Proof of (∗): For every i < κ let ui = { fα(i) : α ∈ u}; so ui ∈ [λi ]≤θ , and hence we can find 〈vi, j : j < ji〉 such that
vi, j ∈ Pi and ui = ∪{vi, j : j < ji} and 0 < ji < ∂ . For each η ∈ ∏

i<κ

ji let

wη = {α ∈ u : i < κ ⇒ fα(i) ∈ vi,η(i)}.
Clearly u = ∪{wη : η ∈ ∏

i<κ

ji} as for any α ∈ u for each i < κ we can define εi (α) < ji such that fα(i) ∈ vi,εi (α)

and let ηα = 〈εi (α) : i < κ〉, clearly ηα ∈ ∏
i<κ

ji and so α ∈ wηα . By the assumption (f) as i < κ ⇒ ji < ∂ , clearly

Sh:829



138 S. Shelah / Annals of Pure and Applied Logic 140 (2006) 133–160

| ∏
i<κ

ji | < ∂ and hence it is enough to prove that η ∈ ∏
i<κ

ji ⇒ wη ∈ P . As u ∈ M ∧ |u| ≤ θ ⇒ P(u) ⊆ M it is

enough to prove, for η ∈ ∏
i<κ

ji , that

� wη is included in some w ∈ M ∩ [λ]≤θ .

Proof of �: As i < κ ⇒ |Pi | = λi and TJ (λ̄) = λ by 0.6 there is G ⊆ ∏
i<κ

Pi satisfying |G| = λ and

(∀g ∈ ∏
i<κ

Pi )(∃g′ ∈ G)({i : g(i) = g′(i)} ∈ J+). As 〈Pi : i < κ〉 ∈ M without loss of generality G ∈ M

and as λ+1 ⊆ M we have G ⊆ M . Apply the choice of G to 〈vi,η(i) : i < κ〉 ∈ ∏
i<κ

Pi ; so for some g ∈ G ⊆ M the set

B =: {i < κ : vi,η(i) = g(i)} belongs to J+. Clearly B ∈ M (as B ⊆ κ,P(κ) ∈ M and |P(κ)| ≤ 2κ ≤ θκ ≤ λ ⊆ M)
and hence 〈vi,η(i) : i ∈ B〉 ∈ M hence w = {α < λ: for every i ∈ B we have fα(i) ∈ vi,η(i)} belongs to M .
Now |w| ≤ ∏

i∈B
|vi,η(i) | ≤ θκ = θ because α < β < λ ⇒ fα �=J fβ ⇒ fα � B �= fβ � B . Lastly wη ⊆ w as

α ∈ wη& i < κ ⇒ fα(i) ∈ vi,η(i) , so we are done. �

Remark 1.6. We could have used instead the w above the set w′ = {α < λ : {i : fα(i) ∈ vi,η(i)} ∈ J+}.
To make this section free of quoting the pcf theorem we use the following definition.

Definition/Observation 1.7. (1) For a set a of regular cardinals and σ = cf(σ ) ≤ cf(λ) let1

J σ
<λ[a] = {b ⊆ a : there is a set F ⊆ 
b of cardinality < λ (4)

such that for every g ∈
∏

b we can find j < σ and (5)

fi ∈ F for i < j satisfying θ ∈ b ⇒ (∃i < j)(g(θ) < fi (θ))}. (6)

(2) Clearly J σ
<λ[a] is a σ -complete ideal on a but possibly a ∈ J σ

<λ[a].
Remark 1.8. In fact, if Min(a) > |a|, J σ

<λ[a] = {b ⊆ a: pcfσ -complete(b) ⊆ λ} = {b ⊆ a : b is the union of < σ

members of J<λ[a]} can be proved, but this is irrelevant here.

For completeness we recall and prove Claims 1.9–1.12, used in the proof of 1.13, the revised GCH.

Claim 1.9. λ = λ[σ,<θ] when

(a) λ ≥ 2<θ ≥ σ = cf(σ ) > ℵ0 and cf(θ) /∈ [σ, θ),
(b) for every set a ⊆ Reg ∩ λ+\θ of cardinality < θ we have a ∈ J σ

<λ+[a].
Proof. Let χ be large enough; choose M ≺ (H(χ),∈,<∗χ ) of cardinality λ where <∗χ is any well ordering of H(χ)

such that λ+ 1 ⊆ M and let P = M ∩ [λ]<θ ; we shall prove that P exemplifies λ = λ[σ,<θ].
Clearly P ⊆ [λ]<θ has cardinality λ so let u ∈ [λ]<θ and as 2<θ ≤ λ it is enough to show that u is included in a

union of < σ members of P , thus finishing.
Let f be a one-to-one function from κ =: |u| onto u so κ < θ . By induction on n we shall choose fn, v̄n such that

� (a) fn is a function from κ to λ+ 1,
(b) v̄n = 〈vn,ε : ε < εn〉 is a partition of κ which satisfies

εn < σ and κ = ∪{vn,ε : ε < εn},
(c) f0(i) = λ for every i < κ ,
(d) fn+1(i) ≤ fn(i) for i < κ ,
(e) f (i) ≤ fn(i) and if f (i) < fn(i) then fn+1(i) < fn(i),
(f) fn � vn,ε ∈ M for each ε < εn .

1 See the use in 3.1. In the notation of [17] this means that: b∈ Jσ
<λ[a] ↔ pcfσ -comp(b) ⊆ λ.
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This is sufficient: {Rang( fn � vn,ε) : n < ω, ε < εn} is a family of < σ sets (as σ = cf(σ ) > ℵ0 and
n < ω ⇒ σ > εn) each belonging to P (as fn � vn,ε ∈ M) and their union includes u because for every
i < κ, fn(i) = f (i) for every n large enough (by clauses (d)+ (e) of �).

So, all we need to do is to show, by induction, that we can choose the elements of �. For n = 0, fn is constantly λ.
So assume n = m + 1 and fm is given; let,

un,0 = {i < κ : fm(i) = f (i)}
un,1 = {i < κ : fm(i) > f (i) and is a successor ordinal or just has cofinality < θ},

un,2 = κ\un,0\un,1.

As 2κ ≤ 2<θ ≤ λ, clearly the partition 〈un,0, un,1, un,2〉 of κ belongs to M , so it is enough to choose fn+1 � un,�

separately for � = 0, 1, 2.
Case 1: � = 0.
Let fn � un,0 = fm � un,0.
Case 2: � = 1.
Let C̄ = 〈Cα : α ≤ λ〉 ∈ M be such that C0 = ∅, Cα+1 = {α}, Cδ is a club of δ of order type cf(δ) for limit ordinal

δ ≤ λ. Let fn � un,1 be defined by fn(i) = Min(C fm(i)\ f (i)). For each ε < εm the function fn � (un,1∩vm,ε) belongs
to M and hence 〈C fm(i) : i ∈ un,1 ∩ vm,ε〉 belongs to M , and fn � (un,1 ∩ vm,ε) ∈ ∏

i∈un,1∩vm,ε

C fm(i); hence it is enough

to prove that
∏

i∈un,1∩vm,ε

C fm(i) is ⊆ M . But as un,1, vm,ε , C̄ and fm � vm,ε belong to M , clearly
∏

i∈un,1∩vm,ε

C fm(i)

belongs to M; hence it suffices to prove that it has cardinality ≤ λ.
Subcase 2A: cf(θ) > κ .
Note that sup{|C fm(i)| : i ∈ um,1 ∩ vm,ε} < θ , so as |un,1 ∩ vm,ε| ≤ κ < θ and 2<θ ≤ λ clearly

| ∏
i∈um,1∩vn,ε

C fm(i)| ≤ λ, so we are done.

Subcase 2B: cf(θ) ≤ κ ; hence cf(θ) < σ .
Let θ = Σ {θζ : ζ < cf(θ)}, θζ ∈ [κ, θ) increasing with ζ and let un,1,ζ = {i ∈ un,1 : |C fm(i)| < θζ }. So for each

ζ < cf(θ) we have (θζ )
κ ≤ 2<θ ≤ λ and fn � (un,1,ζ ∩ vm,ε) ∈ M . So we have a partition to cf(θ) < σ cases.

Case 3: � = 2.
It is enough to define fn � (vm,ε∩un,2) for each ε < εm . Let λn,i = cf( fm(i)), so that 〈λn,i : i ∈ vm,ε∩un,2〉 ∈ M

and hence there is a sequence 〈hn,i : i ∈ un,2 ∩ vm,ε〉 ∈ M where hn,i is an increasing continuous function from λn,i

onto some club of fm(i).
Let a = {λn,i : i ∈ un,2 ∩ vm,ε}. Applying assumption (b) and Definition 1.7(1) it is easy to finish.
In detail, as a ∈ J σ

<λ+[a] there is a set F ⊆ ∏
i
{λn,i : i ∈ un,2 ∩ vm,ε} of cardinality ≤ λ witnessing

it; without loss of generalityF ∈ M and hence F ⊆ M . Let g ∈ ∏{λn,i : i ∈ un,2 ∩ vm,ε} be such that
i ∈ un,2 ∩ vm,ε ⇒ hn,i (g(λn,i )) ≥ f (i) (e.g. g(λn,i ) is the minimal ordinal such that this occurs).

By the choice of the family F there are ζn,ε(∗) < σ and f ′m,ε,ζ ∈ F for ζ < ζn,ε(∗) such that (∀i ∈
un,2 ∩ vm,ε)(∃ζ < ζn,ε(∗))(g(λn,i ) < f ′m,ε,ζ (λn,i )).

Let vm,ε,ζ = {i ∈ vm,ε : ζ < ζn,ε(∗) is minimal such that g(λn,i ) < f ′m,ε,ζ (λn,i )}. Now we define fn � (un,2∩vm,ε)

by choosing fn � (un,2 ∩ vm,ε,ζ ) by ( fn � (un,2 ∩ vm,ε,ζ ))(i) = hm,i ( f ′m,ε,ζ (λn,i )). �

Claim 1.10. There is λ̄ = 〈λi : i < κ〉 and a σ -complete ideal J on κ such that TJ (λ̄) ≥ λ and i < κ ⇒ 2κ < λi < λ

when

� (a) 2κ < λ,ℵ0 < σ = cf(σ ) ≤ κ ,
(b) a ⊆ Reg ∩ λ\(2κ )+ has cardinality ≤ κ and a /∈ J σ

<λ[a].
Proof. Let λ̄ = 〈λi : i < κ〉 list a and let J = J σ

<λ[a], and by induction on α < λ we shall choose a function fα ∈ ∏
a

such that β < α ⇒ fβ <J fα . Arriving at α for every b ⊆ a let Fα
b = { fβ � b : β < α}; so by the definition of

J σ
<λ[a], for every b ∈ J+ := P(a)\J , there is gα

b ∈
∏

b witnessing it because the set Fα
b does not witness b ∈ J σ

<λ[a].
Let fα ∈ 
a be defined by fα(θ) = sup{gα

b(θ) : b ∈ J+ and θ ∈ b}. Now fα ∈ 
a as θ ∈ a ⇒ fα(θ) < θ which
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holds as |J+| ≤ 2|a| ≤ 2κ < θ . Also if β < α and we let bα
β =: {θ ∈ a : fβ(θ) ≥ fα(θ)}, then bα

β ∈ J+ implies easy

contradiction to the choice of gα
bα

β
(and fα). So we can carry on the induction and so 〈 fα : α < λ〉, fα ∈ ∏

λ̄ where

f ′α(i) = fα(λi ) exemplify TJ (λ̄) ≥ λ as required. �

Remark 1.11. This is the case Min(a) > 2|a| from [11, XIII].

Claim 1.12. If � below holds, then we can get equality in 1.10, i.e., there is λ̄′ = 〈λ′i : i < κ〉 such that

(α) 2κ < λ′i ≤ λi ,
(β) if f ∈ ∏

i<κ

λ′i then TJ ( f ) < λ,

(γ ) TJ (λ̄′) = λ,

where

� (a) 2κ < λ,ℵ0 < σ = cf(σ ) ≤ κ ,
(b) 2κ < λi < λ,
(c) J is a σ -complete ideal on κ ,
(d) TJ (λ̄) ≥ λ.

Proof. Clearly {i : λi ≤ (2κ)+n} ∈ J for n < ω (as ((2κ)+n)κ = (2κ)+n by 0.6(2)); so by 0.6(1) without loss of
generality i < κ ⇒ λi > (2κ)+2.

As (
∏
i<κ

(λi + 1,<J ) is well founded (i.e., has no (strictly) decreasing infinite sequence of members) and there

is f ∈ ∏
i<κ

(λi + 1) satisfying TJ ( f ) ≥ λ (i.e. λ̄ itself), clearly there is f ∈ ∏
i<κ

(λi + 1) for which TJ ( f ) ≥ λ

satisfying g ∈ ∏
i<κ

(λi + 1), g <J f implies TJ (g) < λ. Now as above {i < κ : f (i) ≤ (2κ)+2} ∈ J , so

without loss of generality i < κ ⇒ f (i) > (2κ)+2. Let λ′i = | f (i)|; hence λ̄′ satisfies demands (α) + (β)

of the desired conclusion, and TJ (λ̄′) = TJ ( f ) ≥ λ. So assume toward contradiction that it fails clause (γ ),
so by the last sentence we have TJ (λ̄′) > λ and we shall derive a contradiction, thus finishing. So there is
{ fα : α < λ+} ⊆ ∏

i<κ

λ′i such that α �= β ⇒ fα �=J fβ , and let uα =: {β : fβ <J fα}. Note that for

α < β < λ, (β ∈ uα ⇒ fα <J fβ) ≡ (β ∈ uα ⇒ fα ≤J fβ), as fα �=J fβ . If for some α < λ, |uα| ≥ λ,
then { fβ : β ∈ uα} exemplifies that TJ ( fα) ≥ λ and clearly fα <J λ̄′ ≤ f , a contradiction to the choice of f .
So α < λ+ ⇒ |uα| < λ. Hence by the Hajnal free subset theorem [5] there is S ⊆ λ+ of cardinality λ+ such that
(∀α �= β ∈ S)(β /∈ uα). So ∀α �= β from S¬( fα ≤J fβ), contradicting 0.10(1). �

The Revised GCH Theorem 1.13. If θ is strong limit singular then for every λ ≥ θ for some ∂ < θ we have
λ = λ[∂,θ].

Remark 1.14. (1) Hence for every λ ≥ θ for some n < ω and κ� < θ(� < n),ℵ0 = κ0 < κ1 < · · · < κn = θ for
each � < n, 2κ� ≥ κ�+1 or λ = λ[κ ′�,<κ�+1] where κ ′� = (2κ�)+.

(2) If σ ∈ (cf(θ), θ) and λ ≥ θ then λ[σ,θ] = λ[σ,<θ] = Σ {λ[σ,θ ′] : θ ′ ∈ [σ, θ)}.
(3) Note that 1.13 with λ = λ[∂,<θ] + 1.14(1) holds also for regular θ strong limit uncountable by the Fodor lemma.

Proof. We prove this by induction on λ ≥ θ .
Let σ =: (cf(θ))+ < θ .
Case 0: λ = θ .
Let P be the family of bounded subsets of θ , so |P | = θ and every u ∈ [θ ]≤θ is the union of ≤ cf(θ) members of

P ; hence (by Definition 1.1(1), (4)) we have λ[σ,θ] = λ.
Case 1: λ > θ and for every a ⊆ Reg ∩ λ\θ of cardinality < θ we have a ∈ J σ

<λ[a].
By 1.9, we have λ[σ,<θ] = λ (recalling cf(θ) < σ and 1.3).
Case 2: Neither Case 0 nor Case 1.
Trivially for every κ ∈ [σ, θ), clause (a) of � of 1.10 holds. As this is not Case 1, the assumption (b) of � of Claim

1.10 holds for some κ for which σ ≤ κ < θ , and hence the conclusion of 1.10 holds for some λ̄ = 〈λi : i < κ〉 and J ;
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we have 2κ < λi < λ and TJ (λ̄) ≥ λ where J is a σ -complete ideal on κ . So the assumption, i.e., � of Claim 1.12,
holds, and hence also its conclusion, which means that for some λ̄′ we have

� (i) J is a σ -complete ideal on κ ,
(ii) λ̄′ = 〈λ′i : i < κ〉,

(iii) 2κ < λ′i < λ (as λ′i ≤ λi ),
(iv) TJ (λ̄′) = λ,
(v) TJ ( f ) < λ if f ∈ ∏

i<κ

λ′i .

We can find an increasing sequence 〈θε : ε < cf(θ)〉 of regular cardinals from the interval (σ, θ) with limit θ . As we
can replace this sequence by 〈(θε)

κ : ε ∈ C〉 for any unbounded C ⊆ cf(θ), without loss of generality ε < cf(θ) ⇒
θκ
ε = θε. By the induction hypothesis, for each i < κ there is ε(i) < cf(θ) such that λ′i = (λ′i )[θε(i),<θ] ≥ θ or

λ′i ≤ θε(i). For ζ < cf(θ) define Aζ = {i < κ : λ′i ≥ θ and ε(i) = ζ } and Acf(θ)+ζ = {i < κ : λ′i < θ and ε(i) = ζ }.
So 〈Aε : ε < cf(θ)+ cf(θ)〉 is a partition of κ into < σ sets and hence by 0.6(4) we know that

T 0
J (λ̄′) = Min{T 0

J �Aε
(λ̄′ � Aε) : ε < cf(θ)+ cf(θ) and Aε ∈ J+}.

Hence by 0.6(2) for some ζ < cf(θ) + cf(θ) we have TJ (λ̄′) = TJ �Aζ
(λ̄′ � Aζ ) and Aζ ∈ J+, so by renaming

without loss of generality Aζ = κ . If ζ ≥ cf(θ) as κ < θ, θ strong limit we get TJ (λ̄′) ≤ ∏
i<κ

λ′i < (θζ )
κ < θ , a

contradiction, so ζ < cf(θ).
Now for each ξ ∈ (ζ, cf(θ)) we would like to apply Claim 1.4 with J, λ̄′, σ, κ, θ+ζ , θξ here standing for

J, λ̄, σ, κ, ∂, θ there. (But note that θ of 1.4 and θ of 1.13 are not the same.) Do the assumptions (a)–(g) of � of
1.4 hold?

Clause (a) there means ℵ0 < σ = cf(σ ) ≤ κ < θ+ζ ≤ θξ which holds as σ = (cf(θ))+, θκ
ζ = θζ and

ζ < ξ < cf(θ).
Clause (b) means J is a σ -complete ideal on κ which holds by clause (i) of � above.
Clause (c) there means λ̄′ = 〈λ′i : i < κ〉 which holds by clause (ii) of � above.
Clause (d) there says TJ (λ̄′) = λ which holds by clause (iv) of � above.

Clause (e) there means (λ′i )
[θ+ζ ,θξ ] = λ′i which holds as ε(i) = ζ , so by its choice (λ′i )[θζ ,<θ] = λ′i but

θζ < θ+ζ ≤ θξ < θ and hence, by the monotonicity in the definition, this gives (λ′i )
[θ+ζ ,θξ ] = λ′i as required.

Clause (f) means “if ∂i < θ+ζ for i < κ then
∏
i<κ

∂i < θ+ζ ” which holds as θκ
ζ = θζ .

Clause (g) means θκ
ξ = θξ .

So we get the conclusion of 1.4 which is λ
[θ+ζ ,θξ ] = λ. As this holds for every ξ ∈ (ζ, cf(θ)) and 〈θε : ε < cf(θ)〉

is increasing with limit θ , by 1.3(3) we get λ
[θ+ζ ,θ] = λ. As θ+ζ < θ , choosing ∂ =: θ+ζ we have finished. �

Concluding Remark 1.15. We can in 1.4 assume less. Instead of θ = θκ , it is enough (which follows from [18,
Section 3]; see 0.5) to assume:

� for every λ′ < λ we can find F ⊆ ∏
i<κ

λi of cardinality λ′ such that f �= g ∈ F ⇒ f �=J g.

This is seemingly a gain, but in the induction the case (∀a ⊆ Reg ∩ λ+\θ)(|a| ≤ κ ⇒ a ∈ Jℵ1
<λ+[a]) is problematic.

2. The finitely many exceptions

What here is needed in later sections? Only 2.10 is essential. Definition 2.14 + Observation 2.15 tells us what
the set of exceptional cardinals d0,μ(λ) for λ is; and 2.3 proves it is finite. We do not succeed in proving e.g.
λ ≥ ℵω ∧ ℵ0 < ℵn /∈ d0,μ(λ) ⇒ λ<ℵn> = λ; but we shall in Section 3 prove a consequence. Now all this is
used in Section 3 only if we like to say explicitly what the finite set of possible exceptions is, i.e., in 3.3, but it is not
used in 3.1 itself, which still uses Claim 2.10.

The rest clarifies the situation in various ways. In Definition 2.4 we define “λ̄ is a D-representation of λ” and
when such a representation is exact/true and in Definition 2.5 we give a name to the content of 2.3: i.e., we say that
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r = 〈(λη,Dη, Dη, κη) : η ∈ T 〉 is a representation. In 2.6 we spell out basic properties of representations; in 2.8 we
ask about possible improvements, which the rest supplies.

In 2.10, 2.11 we guarantee that every λη is regular if λ is. In 2.12 we deal with “TD+A(λ̄) = TD(λ̄) for every
A ∈ D+” and in 2.13 we deal with how close we can get to “Dη is a co-bounded filter on κη”. In 2.17, 2.18 we further
investigate the possible representations of λ (needed for 3.3).

In 2.1 we prove a relative of 1.4 assuming only i < κ ⇒ λ
<∂,μ,θ>
i = λi , replacing 2θ ≤ λ by 2κ ≤ λ and getting

λ<∂,μ,θ> = λ. But so far it has no conclusion parallel to 1.13. Note that Claim 2.1 is not needed for reading the rest
of the paper.

In full:

Claim 2.1. Assume

(a) ℵ0 < σ = cf(σ ) ≤ κ < ∂ ≤ μ ≤ θ ,
(b) J is a σ -complete ideal on κ ,
(c) λ̄ = 〈λi : i < κ〉,
(d) TJ (λ̄) = λ and moreover this is exemplified by a μ+-free family,

(e) λ
<∂,μ,θ>
i = λi for i < κ ,

(f) if ∂i < ∂ for i < κ then
∏
i<κ

∂i < ∂ ,

(g) θ = θκ and 2κ ≤ λ.

Then λ<∂,μ,θ> = λ.

Remark 2.2. (1) Recall that F ⊆ κOrd is (μ∗, J )-free when for every F ′ ⊆ F , |F ′| < μ∗ we can find
Ā = 〈A f : f ∈ F ′〉 such that A f ∈ J and f1 �= f2 ∈ F ′ ∧ i ∈ κ\(A f1 ∪ A f2) ⇒ f1(i) �= f2(i) (we can use
f1(i) < f2(i)).

(2) The addition to the assumption in clause (d) of 2.1 compared to clause (d) of 1.4 is mild.

Proof. Let f̄ = 〈 fα : α < λ〉 be μ+-free, fα ∈ ∏
i<κ

λi pairwise J -different (i.e., α �= β ⇒ {i : fα(i) = fβ(i)} ∈ J

exists by clause (d) of the assumption).
For each i < κ let Pi ⊆ [λi ]≤μ be of cardinality λi and witness λ

<∂,μ,θ>
i = λi ; that is: every u ∈ [λi ]≤θ is

included in the union of < ∂ members of

setθ,μ(Pi ) =: {v : v ∈ [λi ]≤θ and every w ∈ [v]≤μ is included in some member of Pi };
such a family exists by assumption (e). Let M ≺ (H(χ),∈) be of cardinality λ such that λ + 1 ⊆ M and
〈λi : i < κ〉, 〈Pi : i < κ〉, J,P(κ) belong to M .

Let P = M ∩ [λ]≤μ. We shall show that P exemplifies the desired conclusion. Now P is a family of ≤ ‖M‖ = λ

of subsets of λ each of cardinality ≤ μ; hence it is enough to show

(∗) if u ∈ [λ]≤θ then u is included in the union of < ∂ sets v ∈ setθ,μ(P).

Proof of (∗): Let ui = { fα(i) : α ∈ u}; so ui ∈ [λi ]≤θ , and hence we can find 〈vi, j : j < ji〉 such that
vi, j ∈ setθ,μ(Pi ) and ui = ∪{vi, j : j < ji } and 0 < ji < ∂ . For each η ∈ ∏

i<κ

ji let

wη = {α ∈ u : i < κ ⇒ fα(i) ∈ vi,η(i)}.
Clearly u = ∪{wη : η ∈ ∏

i<κ

ji} as for any α ∈ u for each i < κ we can choose εi (α) < ji such that fα(i) ∈ vi,εi (α)

and let ηα = 〈εi (α) : i < κ〉 clearly ηα ∈ ∏
i<κ

ji and α ∈ wηα . By the assumption (f), as i < κ ⇒ ji < ∂ , clearly

| ∏
i<κ

ji | < ∂ ; hence it is enough to prove that η ∈ ∏
i<κ

ji ⇒ wη ∈ setθ,μ(P). So it is enough to prove for η ∈ ∏
i<κ

ji

and w ∈ [wη]≤μ that

� w is included in some w′ ∈ M ∩ [λ]≤μ.

Sh:829



S. Shelah / Annals of Pure and Applied Logic 140 (2006) 133–160 143

Proof of �: As i < κ ⇒ |Pi | = λi and TJ (λ̄) = λ there is G ⊆ ∏
i<κ

Pi satisfying |G| = λ and (∀g ∈ ∏
i<κ

Pi )(∃g′ ∈
G)({i : g(i) = g′(i)} ∈ J+). As 〈Pi : i < κ〉 ∈ M , without loss of generality G ∈ M and as λ + 1 ⊆ M we have
G ⊆ M . For each i < κ we have Ai = { fα(i) : α ∈ w} is a subset of some A′i ∈ Pi . Apply the choice of G to
〈A′i : i < κ〉 ∈ ∏

i<κ

Pi ; so for some g ∈ G ⊆ M the set B =: {i : A′i = g(i)} belongs to J+. Clearly w′ = {α < λ:

for some Y ∈ J+ for every i ∈ Y we have fα(i) ∈ g(i)} belongs to M . Now |w′| ≤ μκ ; as α < β < λ ⇒ fα �=J fβ
but f̄ is μ+-free, we moreover have |w′| ≤ μ. Lastly, by the last two sentences w′ ∈ M ∩ [λ]≤μ = P ; also w ⊆ w′
because B ∈ J+ and α ∈ w& i ∈ B ⇒ fα(i) ∈ Ai ⊆ A′i = g(i), so we are done. �

Claim 2.3. If θ > σ = cf(σ ) > ℵ0, cf(θ) ∈ [σ, θ) and λ > θ∗ = 2<θ then there is 〈(λη,Dη, Dη, κη) : η ∈ T 〉 such
that

(a) T is a subtree of ω>θ (i.e. <>∈ T ⊆ ω>θ,T is closed under initial segments) with no ω-branch; let maxT be the
set of maximal nodes of T ,

(b) λη is a cardinal ∈ (2<θ, λ] and ν � η ⇒ λν > λη and λ<> = λ,
(c) κη is a regular cardinal ∈ [σ, θ) if η ∈ T \maxT and κη is zero or undefined if η ∈ maxT and η�〈α〉 ∈ T ⇔ α <

κη,
(d) if η ∈ maxT then

(∗)λη for no κ < θ and σ -complete filter D on κ and cardinals λi ∈ (2<θ , λη) for i < κ do we have
TD(〈λi : i < κ〉) ≥ λη,

(e) Dη is a σ -complete filter on κη when η ∈ T \maxT ,
(f) TDη

(〈λη�<α> : α < κη〉) = λη if η ∈ T \maxT ,
(g) if f ∈ ∏

α<κη

λη�<α> then TDη
( f ) < λη,

(h) Dη is the σ -complete filter on maxT ,η = {ν ∈ maxT : η � ν} such that
(α) if η ∈ maxT , Dη = {{η}},
(β) if η ∈ T \maxT then

Dη = {A ⊆ maxT ,η : the following set belongs to Dη (7)

{α < κη : A ∩maxT ,η�<α> ∈ Dη�<α>}}, (8)

(i) if cf(λ) > θ∗ then η ∈ T ⇒ cf(λη) > θ∗,
(j) we can replace “λ > θ∗” above by λη ≥ ∂ for any cardinal ∂ such that cf(∂) ≥ θ ∧ (∀γ < ∂)(∀α < ∂)|α||γ | < ∂ .

Proof. We leave clause (j) to the reader.
Case 1: Ignoring clause (i).
We prove this by induction for λ > 2<θ . If λ satisfies the requirement (∗)λ from clause (d) let T = {<>}; λη = λ

and κ<>, D<> are trivial. If λ fails that demand use claims 1.10+ 1.12 to find D, κ, λ̄ such that

(∗) κ ∈ [σ, θ),D is a σ -complete filter on κ, λ̄ = 〈λα : α < κ〉 and λα ∈ (2<θ, λ), a cardinal TD(λ̄) = λ, but
f ∈ ∏

α<κ

λα ⇒ TD( f ) < λ.

Now for each α < κ we can use the induction hypothesis to find 〈(λα
η , κα

η ,Dα
η , Dα

η ) : η ∈ Tα〉 as required in the claim
for λα . Now we let:

� (a) T = {<>} ∪ {〈α〉�η : η ∈ Tα},
(b) λ<> = λ, κ<> = κ ,
(c) λ〈α〉�η = λα

η and κ<α>�η = κα
η for α < κ, η ∈ Tα,

(d) D<> = D,
(e) D〈α〉�η = Dα

η for α < κ, η ∈ Tα ,
(f) D<> = {A : A ⊆ maxT ,<> and {α < κ : {η : 〈α〉�η ∈ A ∩maxTα,<>} ∈ Dα

<>} belongs to D},
(g) D〈α〉�η = {{〈α〉�ν : ν ∈ B} : B ∈ Dα

η }.
Easily, they are as required.

Case 2: Proving the claim with (i), so dealing with λ satisfying cf(λ) > θ∗.
If λ satisfies the requirement in clause (d) we finish as above. Otherwise, we can find κ ∈ [σ, θ),D, λ̄ such that
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(∗) (i) D is a σ -complete filter D on κ, λ̄ = 〈λα : α < κ〉 and λα ∈ (2<θ , λ),
(ii) λ ≤ TD(〈λα : α < κ〉).

By 1.12 without loss of generality
(iii) λ = TD(〈λα : α < κ〉) and f ∈ ∏

α<κ

λα ⇒ TD( f ) < λ.

Let B := {α : cf(λα) > θ∗}. If B ∈ D+ and TD�B( f � B) < λ for every f ∈ 
λ̄ (hence TD�B(λ̄ � B) = λ), then we
can use λ̄ � B,D � B (and renaming); hence we are done. So assume that this fails, i.e.,

� B /∈ D+ or B ∈ D+, TD�B( f � B) ≥ λ for some f ∈ 
λ̄.

In both cases λ̄ � (κ\B),D � (κ\B) are as required in (∗) (in the second case we use 0.6(5)), so by renaming, without
loss of generality B = ∅. For each α < κ let 〈λα,ε : ε < cf(λα)〉 be increasing continuous with limit λα , and let
f̄ = 〈 fζ : ζ < λ〉 witness TD(λ̄) ≥ λ. For each ζ < λ for some hζ ∈ ∏

α<κ
cf(λα) we have fζ < 〈λα,hζ (α) : α < κ〉.

What is the number of possible hζ ? At most
∏

α<κ
cf(λα) ≤ (θ∗)κ but θ∗ = 2<θ , σ ≤ κ < θ and cf(θ) = θ ∨ cf(θ)

< σ .
If cf(θ) = θ then (θ∗)κ = (2<θ)κ = 2<θ and so |{hζ : ζ < λ}| ≤ θ∗ < cf(λ). If cf(θ) �= θ then

cf(θ) < σ ; hence for each ζ < λ for some γζ < θ∗ the set Aζ = {α < κ : hζ (α) < γζ } belongs to D+, and
(∀ f ∈ ∏

α<κ

λα)(TD�Aζ
( f � Aζ )) < λ. As κ < θ and |{Aζ : ζ < λ}| ≤ 2κ ≤ 2<θ = θ∗, clearly for some pair (A, γ )

the set {ζ < λ : (Aζ , γζ ) = (A, γ )} has cardinality λ, so renaming, without loss of generality ζ < κ ⇒ Aζ = κ and
so again |{hζ : ζ < λ}| ≤ θ∗ < cf(λ).

So for some h, |{ζ : hζ = h}| = λ, a contradiction to clause (iii) of (∗) above.
We finish as in case (1). �

Definition 2.4. (1) We say that λ̄ = 〈λi : i < κ〉 is a D-representation of λ when:
(a) D is a filter on κ ,
(b) TD(λ̄) = λ,
(c) if f ∈ ∏

i<κ

λi then TD( f ) < λ.

(2) We say that λ̄ is an exact D-representation of λ when:
(a) D is a filter on κ ,
(b) TD+A(λ̄) = λ for A ∈ D+,
(c) if f ∈ ∏

i<κ

λi and A ∈ D+ then TD+A( f ) < λ.

(3) We say that the D-representation is true when:
(d) cf(λ) = tcf(
λ̄,<D).

(4) We can replace the filter by the dual ideal.

Definition 2.5. (1) We say 〈(λη,Dη, Dη, κη) : η ∈ T 〉 is a (∂, θ, σ )-representation if the conditions in Claim 2.3
hold; see clause (j) there. If ∂ = θ we may omit it. Writing just σ means θ = |T |+.
(2) We say it is an exact/true representation when each 〈λη�<α> : α < κη〉 is an exact/true Dη-representation of λη.

Claim 2.6. (1) Assume

� (a) λ̄∗ = 〈λi : i < κ〉 is a D∗-representation of λ,
(b) λ̄i = 〈λi, j : j < κi 〉 is a Di -representation of λi ,
(c) D is ΣD∗〈Di : i < κ〉, i.e., the filter on u = {(i, j) : i < κ, j < κi }

defined by D = {A ⊆ u : {i : { j < κi : (i, j) ∈ A} ∈ Di } ∈ D∗},
(d) cf(λ), cf(λi ) are > |u| and λ, λi , λi, j are > 2|u|.

Then λ̄ = 〈λi, j : (i, j) ∈ u〉 is a D-representation of λ.
(2) Like for exact representations, i.e., if in �(a), (b) we further assume that the representations are exact then also λ̄

is an exact D-representation of λ.
(3) Like for true representations: if λi = tcf(

∏
j<κi

λi, j ,<Di ), λ = tcf(
∏
i<κ

λi ,<D∗) then λ = tcf(
∏

(i, j )
λi, j ,<D).

Similarly for min-cf, etc.

Sh:829



S. Shelah / Annals of Pure and Applied Logic 140 (2006) 133–160 145

(4) Assume that D is an ℵ1-complete filter on κ, λ̄ = 〈λi : i < κ〉 and TD(λ̄) > λ > 2κ and i < κ ⇒ λi > 2κ . Then
we can find λ̄′ such that i < κ ⇒ 2κ ≤ λ′i < λi and λ̄′ is a D-representation of λ. If we demand only TD(λ̄) ≥ λ then
we know only λ′i ≤ λi .

Proof. (1)

(∗)1 λ = TD(〈λi, j : (i, j) ∈ u〉).
[Why? Let Gi = {gi

α : α < λi } witness that T 1
Di

(λ̄i ) = λi and let G∗ = {g∗α : α < λ} witness that

T 1
D∗(λ̄

∗) = λ. We now define G = {gα : α < λ} where gα ∈ ∏
(i, j )∈u

λi, j is defined by gα((i, j)) = gi
g∗α(i)( j)

and we can easily check that α < β < λ ⇒ gα �= gβ mod D, so G witnesses that T 1
D(λ̄) ≥ λ and so by clause

(d), TD(λ̄) ≥ λ. Now if g ∈ ∏
(i, j )∈u

λi, j then for each i the function (i.e. sequence) 〈g((i, j)) : j < κi 〉 belongs

to
∏

j<κi

λi, j , so for some γi < λi we have { j : g((i, j)) = gi
γi

( j)} ∈ D+i . Similarly for some β < λ we have

{i < κ : γi = g∗β(i)} ∈ D+∗ . Easily, {(i, j) ∈ u : gβ(i, j) = g(i, j)} ∈ D+, so G witness that TD(λ̄) = λ is as
required.]

(∗)2 If g ∈ 
{λi, j : (i, j) ∈ u} then TD(g) < λ.
[Why? Without loss of generality g((i, j)) > 0 for every (i, j) ∈ u. For each i < κ , let gi ∈ ∏

j<κi

λi, j be

defined by gi ( j) = g((i, j)). So gi ∈ ∏
j<κi

λi, j and hence μi =: TDi (gi ) < λi ; hence there is a sequence

〈hi
α : α < μi 〉 such that hi

α ∈ ∏
j<κi

gi ( j) and (∀h ∈ ∏
j<κi

gi( j))(∃α < μi )(¬(h �=Di hi
α)). Clearly

μ̄ = 〈μi : i < κ〉 ∈ ∏
i<κ

λi and hence μ∗ =: TD∗(μ̄) < λ; taking 〈g∗∗α : α < μ∗〉 exemplifies this. We

now define f ∗∗α ∈ ∏
(i, j )∈u

g((i, j)) by f ∗∗α ((i, j)) = hi
g∗∗α (i)( j) and it suffices to show that TD(g) ≤ μ∗(< λ) is

exemplified by { f ∗∗α : α < ν∗} which is proved as in (∗)1, the second half of the proof.]

So we are done.
(2) Similarly.
(3) By [17, I].
(4) Easy (and proved above). �

Remark 2.7. So if D is defined from D∗, 〈Di : i < κ〉, as in 2.6, and λ̄ = 〈λi, j : (i, j) ∈ u〉, λi = TDi (〈λi, j : j <

κi 〉), λ = TD∗(〈λi : i < κ〉), then λ = TD(λ̄).

Question 2.8. We may wonder whether, for Claim 2.3:
(1) If λ is regular can we add: Each λη is regular. Can we moreover get the representation to be true?
(2) Can we add the case of nice filters and get exact representations? (On nice filters/ideal, see [17, V], [15].)

See below 2.11, 2.12(2), but first

Observation 2.9. (1) Assume that

(a) J1, J2 are ideals on κ with intersection J .
(b) f ∈ κ (Ord\ω).

Then TJ ( f ) = Min{TJ1( f ), TJ2( f )}.
(2) If (a) above holds and λ̄ is a J -representation of λ, then for some � ∈ {1, 2}, λ̄ is a J�-representation of λ.
(3) Assume λ = TJ1(λ̄) and J1 a σ -complete ideal on κ, σ > ℵ0 and J2 = {A ⊆ κ : A ∈ J1 or A ∈ J+1 and
TJ1+(κ\A)(λ̄) > λ}. Then J2 is a σ -complete ideal on κ (extending J1 and, consequently, κ /∈ J2).

Proof. Easy; e.g.

(1) By using pairing functions. �
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Claim 2.10. If λ̄ = 〈λi : i < κ〉 is a J -representation of λ, λ ≥ cf(λ) > 2κ and λ > cf(λ) ⇒ cf(λ) > 22κ
and J is

an ℵ1-complete ideal on κ then for some ℵ1-complete ideal J ′ ⊇ J , the sequence λ̄ is a J ′-representation of λ and∏
i<κ

λi/J ′ has true cofinality cf(λ) (hence {i : λi singular} ∈ J ′ when λ is regular). We can replace ℵ1 by σ = cf(σ ).

Proof. First assume λ is regular. By the pcf theorem there is u∗ ⊆ κ such that λ /∈ pcf{cf(λi ) : i ∈ κ\u∗} and
cf(λ) ≥ cf(

∏
i∈u∗

λi ). First, assume that λ̄ is a (J + u∗)-representation of λ, so λ = TJ+u∗(λ̄), but this implies that for

some u ∈ (J + u∗)+ we have that
∏
i∈u

λi/((J + u∗) � u) has true cofinality cf(λ) by [20, 1.1], actually a variant of [20,

1.1](2); see the e-version.
[Why? Apply [20, 1.1](2) with J + u∗, 〈λi : i < κ〉, 2κ here standing for J, 〈 f (i) : i < κ〉, μ in the assumption there.
This is acceptable, as clearly the assumption there holds, so by the conclusion of [20, 1.1] there are u ∈ (J + u∗)+
and λ̄′ = 〈λ′i : i < κ〉 satisfying 2κ < λ′i = cf(λ′i ) ≤ λi such that λ = tcf(

∏
i∈u

λ′i ,≤J+u∗). By the choice of

u∗, {i ∈ u : λ′i = λi } ∈ J + u∗, a contradiction to “λ̄ is a (J + u)-presentation”.]
So “λ̄ is a (J + u∗)-representation of λ” is impossible. Hence by 2.9(3) we have λ̄ � u∗ is a (J � u∗)-representation

of λ, so without loss of generality u∗ = κ , so λ ≥ max pcf{λi : i < κ}. Let J1 = {u ⊆ κ : u ∈ J or u /∈ J and
P(u) ∩ J2 ⊆ J } where J2 = {u ⊆ κ : u ∈ J or for some v ∈ J we have λ > max pcf{λi : i ∈ u\v}}. Clearly
J1, J2 are ideals on κ extending J and by the definition we have J1 ∩ J2 = J . So by 2.9 for some � ∈ {1, 2}, λ̄ is a
J�-representation of λ.

Case 1: � = 1.
So λ = TJ1(λ̄) and hence by [20, 1.1](1) for some v ∈ (J1)

+ we have that
∏
i∈v

λi/(J1 � v) has true cofinality λ.

So if u ∈ J2\J , then for some u′ ⊆ u, u′ ∈ J and λ > max pcf({λi : i ∈ u\u′}), but by the definition of J1 we
have J1 � (u\u′) = J � (u\u′) and hence (v ∩ (u\u′)) ⋃

(v ∩ u′) = v ∩ u ∈ J . But this means v ∩ u ∈ J for every
u ∈ J2\J and hence v ∈ J1, a contradiction.

Case 2: � = 2.
By the pcf theorem,

∏
i<κ

λi/J2 has true cofinality λ.

So we have finished the proof for the case λ is regular; hence we are left with the case λ > cf(λ) > 22κ
. Let

〈λε : ε < cf(λ)〉 be an increasing sequence of regular cardinals > 2κ with limit λ. For every ε < cf(λ) there is
λ̄ε = 〈λε

i : i < κ〉 ∈ 
i<κλi such that TJ (λ̄ε) = λε and f <J λ̄ε ⇒ TJ ( f ) < λε . Hence there is an ℵ1-complete
ideal Jε on κ extending J such that TJε (λ̄

ε) = λε but f ∈ 
i<κ (λ̄ε) ⇒ TJε ( f ) < λε and tcf(
i<κλε
i ) = λε .

As we are assuming cf(λ) > 22κ
, clearly for some ideal J∗ on κ the set {ε < cf(λ) : Jε = J∗} is unbounded in

cf(λ).
Without loss of generality Jε = J∗ for every ε < cf(λ). Clearly ε < ζ ⇒ {i : λε

i = λ
ζ
i } ∈ J∗, so by 0.10(1) it

follows that without loss of generality 〈λ̄ε : ε < cf(λ)〉 is a ≤J∗-increasing sequence and hence by 0.10(2) it has a
lub f modulo J ; without loss of generality f is ≤ λ̄, and without loss of generality it is a sequence of cardinals —
call it λ̄′ = 〈λ′i : i < κ〉.

Clearly cf(
∏

i<κ λ′i/J∗) = cf(λ) and TJ (λ̄′) = λ = TJ∗(λ̄
′).

Let A = {i < κ : λ′i = λi }. Now if A ∈ (J∗)+ and I = J∗ + (κ \ A) satisfies f ∈ ∏
i<κ

λ′i ⇒ TI ( f ) < λ, i.e., I is

as required, we are done. Otherwise, by monotonicity TI (λ̄) > λ and there is f1 ∈ 
i<κλi satisfying TI ( f1) ≥ λ.
Note that if κ \ A ∈ J+∗ then TI+A(λ̄′) ≥ λ; hence letting f2 = ( f1 � A) ∪ (λ̄′ � (κ \ A)) we have f2 ∈ ∏

i<κ

λi

but TJ∗( f2) ≥ λ; but by the choice of f = λ̄′, for some ε < cf(λ) we have λ̄′ ≤ λ̄ε mod J . But we have
TJ∗(λ̄

ε) = λ′ε, TJ∗(λ̄
′) = λ > λε; contradiction. �

Conclusion 2.11. In 2.3 we can add:

(j) if λ is regular then every λη is regular and for η ∈ T \maxT we have λη = tcf(
∏

α<κη

λη�〈α〉/Dη).

Now 2.8(2) (and also 2.8(1)) are answered by:
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Claim 2.12. Assume2 that the pair (K[S], V) fails the covering lemma for every S ⊆ �2(κ) (or less). Then in 2.3 we
can add:
(1) If a ⊆ Reg ∩ λ\(2<θ )+ and |a| < θ and a ∈ J σ

<λ[a], λ > 2<θ then for some κ = cf(κ) ∈ [σ, θ) and κ-complete
ideal J on κ and λ̄ = 〈λi : i < κ〉 we have:

(a) cf(λ) > 2<θ ⇒ cf(λi ) > 2<θ ,
(b) 〈λi : i < κ〉 is an exact true J -representation of λ,
(c) if λ is regular then every λi is regular.

(2) For any normal filter D on κ we can further demand in part (1) that for some function ι : κ → κ the pair (J, ι) is
nice and A ∈ D ⇒ ι−1(κ\A) ∈ J .

(2A) If σ ≥ ∂ = cf(∂) > ℵ0 and D is a normal filter on ∂ we can add in part (1) that the pair (J, ι) is nice and
A ∈ D ⇒ ι−1(κ\A) ∈ J . Similarly for normal filters on [σ ]<∂ .
(3) So in 2.3, we can strengthen clauses (f), (g) to

(f)+ if A ∈ D+η , η ∈ T \maxT then TDη+A(〈λη�<α> : α < κη〉) = λη (and hence the parallel result for Dη),
(g)+ if η ∈ T \maxT , A ∈ D+η and f ∈ ∏

α<κη

λη�<α> then TDη+A( f ) < λη (and hence the parallel result for

Dη), this being an exact representation; see Definition 2.4(2),
(h)+ for each η ∈ T \maxT for some function ιη : κη → κη the pair (Dη, ιη) is nice,

(j) if λ is regular then every λη is regular.

Proof. By [15, Section 3], very close to [16].
(1) There are D a κ-complete filter on κ and λi < λ such that TD(〈λi : i < κ〉) ≥ λ (by the pcf theorem).

By the results quoted above without loss of generality D is a normal filter on κ × κ for the function ι defined by
ι(α, β) = α. Now we can choose (D, λ̄) such that D is a nice filter on κ × κ, TD(λ̄) ≥ λ and rk3

D(λ̄) is minimal. As
D1 ⊆ D2 ⇒ TD1(λ̄) ≤ TD2(λ̄) without loss of generality rk3

D(λ̄) = rk2
D(λ̄) and so A ∈ D+ ⇒ rk3

D+A(λ̄) =
rk2

D+A(λ̄) = rk3
D(λ̄) and TD+A(λ̄) ≥ TD(λ̄). If TD+A(λ̄) > λ then for some f ∈ ∏

λ̄, TD+A( f ) ≥ λ, let
λ̄′ = 〈 f (i) : i < κ〉, so λ̄′ <D λ̄; hence rk3

D+A(λ̄′) < rk3
D+A(λ̄) and we get a contradiction).

(2), (2A), (3) Left to the reader. �

Claim 2.13. We can add in 2.3

(k) for each η ∈ T \maxT , for every unbounded A ⊆ κη the set ∪{[ωα,ωα + ω) : α < κ} belongs to D+η .

Proof. By [17, VII, Section 1]. �

Definition 2.14. Assume ℵ1 ≤ cf(σ ) = σ < θ < λ.
(1) Let d0(λ) = d0

σ,θ (λ) = {κ : κ ∈ Reg ∩ θ\σ such that we cannot find 〈(λη,Dη, Dη, κη) : η ∈ T 〉 as in 2.3 with
Dη being κη-complete for η ∈ T satisfying κ /∈ {κη : η ∈ T }} (and so finite!; see below). If σ = ℵ1 we may omit it.
If σ = ℵ1, θ = λ we may omit both.

(2) Let d1(λ) = d1
σ,θ (λ) = {κ : κ = cf(κ) < λ and for arbitrarily large α < λ we have κ ∈ d0(|α|)}; note that if

cf(λ) > ℵ0 we can deduce the finiteness of d1(λ) from the finiteness of d0(λ).
(3) Let d′�(λ) = d′�,σ,θ (λ) = d�(λ) ∪ {ℵ0} for � = 0, 1; similarly d′�,θ (λ).

If we omit σ we mean σ = ℵ1.

Observation 2.15. (1) If ℵ1 ≤ σ = cf(σ ) < θ < λ then d0
σ,θ (λ) is finite.

(2) If cf(λ) > ℵ0 then d1
σ,θ (λ) is finite; we use 2.17(1), 2.18(4).

Proof. (1) Let 〈(λη,Dη, Dη, κη) : η ∈ T 〉 be as in 2.3. If d0
σ,θ (λ) is infinite we can find pairwise distinct κn ∈ d0

σ,θ (λ)

for n < ω. For every η ∈ maxT there is a finite wη ⊆ ω such that {κη�� : � < �g(η)}∩{κn : n < ω} ⊆ {κn : n ∈ wη};
in fact, |wη| ≤ �g(η).

By an easy partition theorem on trees we can finish. (That is, we use dpT : T → Ord which is defined by
dp(η) = ∪{dpT (η�〈α〉 : η�〈α〉 ∈ T }; it is well defined as T has no ω-branch (as η � ν ⇒ λη > λν). Now by
induction on the ordinal α we can observe that if ρ ∈ T and dpT (ρ) ≤ α then there is T ′ = T ′ρ ⊆ T and w ⊆ ω

2 Without this assumption much more follows; see [17, V].
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finite such that ρ ∈ T ′,T ′ closed under initial segments and ρ � ν ∈ T ′ ⇒ {α < κν : ν�〈α〉 ∈ T ′} ∈ D+ν and
maxT ′ ⊆ maxT and ν ∈ maxT ′ ⇒ wν = w. For ρ ∈ maxT this is trivial; otherwise use that D is ℵ1-complete. For
ρ =<> we get T ′ = T ′<>; let D′η = Dη � {ν : η � ν ∈ maxT ′ },D′η = Dη � {α : η�〈α〉 ∈ T ′} for η ∈ T ′, so that for

every n ∈ ω\w, 〈λη,D′η, D′η, κη : η ∈ T ′〉 exemplifies κn /∈ d0
σ,θ (λ) (on stronger partition theorems see [6]).

(2) Similar. �

Remark 2.16. Note that if 〈(λη,Dη, Dη, κη) : η ∈ T 〉 represent λ strictly (see Definition 2.17(1)), the regular
cardinal κ does not belong to {κη : η ∈ T } and 〈Ui : i < κ〉 is an increasing sequence of subsets of maxT , then
∪{Ui : i < κ} ∈ D+<> ⇒ (∃i < κ)(U1 ∈ D+<>). We can make this central.

Definition 2.17. Let r = 〈(λη,Dη, Dη, κη) : η ∈ T 〉 be a σ -representation of λ.

(1) We say r is strict if Dη is κη-complete for each η ∈ T (for η ∈ maxT this is uninteresting).
(2) We say that d̄ = 〈dη : η ∈ T 〉 is a strong/weak witness for r when:

(a) each dη is a set of regular cardinals,
(b) if θ ∈ Reg\dη and η ∈ T \ maxT then

stronger version: {α : α < κη and θ ∈ dη�<α> ∨ θ = ληˆ<α>} = ∅ mod Dη,
weak version: A = {α : α < κη and θ /∈ dη ∧ θ �= λη�<α>} belongs to D+η and TD∗

η+A(〈λη�<α> : α <

κη〉) = λη.
(3) We say above that d̄ is finitary when each dη is finite.
(4) We say that r has a d-witness if it has a finitary weak witness d̄ with d<> = d̄.

Observation 2.18. Assume θ > σ = cf(σ ) > ℵ0 and cf(θ) /∈ [σ, θ) and λ ≥ ∂ , cf(∂) ≥ θ and (∀α < θ)(∀β <

∂)(|β||α| < ∂).

(1) If r is a (∂, θ, σ )-representation of λ then for some s:
(a) s is a (∂, σ )-representation,
(b) T s = T r,
(c) Ds

η ⊇ Dr
η for η ∈ T r (moreover Ds

η = Dr
η + Aη for some Aη ∈ D+η ),

(d) s has a weak witness d̄.
(2) If we waive the moreover in clause (c) then we can add

(e) s is true.
(3) There is a sequence 〈d̄n : n < n∗〉 when n∗ < ω such that

(a) dn ⊆ Reg ∩ θ\σ is finite,
(b) λ has a (∂, θ, σ )-representation xn with dn-witness for each n (and moreover is true),
(c) if κ ∈ Reg ∩ θ\(σ ∪ d′σ,θ (λ)) then for some n, κ /∈ dn.

(4) λ has a strict (∂, θ, σ )-representation.

Proof. (1) We choose to proceed by induction on γ : for η ∈ T with dpT (η) = γ choose (Aη, dη) such that

(*) (a) dη is a finite subset of Reg ∩ θ\σ ,
(b) if η ∈ maxT then dη = Aη = ∅ (or is not defined),
(c) if η ∈ T \ maxT then
[(α) Aη ∈ D+η ,
(β) κη ∈ dη,
(γ ) if κ ∈ Reg ∩ θ\(σ ∪ dη) then λη = TDη+Aη

(〈λη�<α> : α < κη〉) and λη <

TDη+Aη+{α<κη :κ∈dηˆ<α>}(〈λη�<α> : α < κη〉).
If we succeed in that we define s as 〈(λη,Dη + Aη, D′η, κη) : η ∈ T r〉 with D′η computed from the rest and
d̄ = 〈dη : η ∈ T r〉, clearly they are as required.

So let us carry out the definition. If η ∈ maxT this is trivial. Otherwise 〈dη�<α> : α < κη〉 is well defined and
we let An

η = {α < κη : |dη�<α>| = n}, so 〈An
η : n < ω〉 is a partition of κη, but Dη is σ -complete, σ > ℵ0

and hence by 2.9 for some n = n(η) we have λη = TDη+An
η
(〈λη�<α> : α < κη〉). Now we can choose Aη from

{A : A ⊆ An
η, A ∈ D+η and λη = TDη+A(〈λη�<α> : α < κη〉)} such that ∩{dηˆ<α> : α ∈ Aη} has minimal size.

Lastly, let dη = ∩{dη�<α> : α ∈ Aη}; it is easy to check that it is as required.
(2) Use each time Claim 2.10 in the end.
(3) We try to choose dn by induction on n < ω such that
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� (a) dn ⊆ Reg ∩ θ\σ is finite,
(b) λ has a (∂, θ, σ )-representation with a dn-witness,
(c) if n > 0 then ∩{dm : m < n} � dn ,
(d) under (a) + (b)+ (c), the set ∩{dm : m ≤ n} has minimal size.

By part (1) and 2.3 we can choose d0 and clearly for some n∗ ≤ |d0| + 1, dn is defined iff n < n∗; so we are done.
(4) We repeat the proof of 2.3; however using 1.10 we need to ask there somewhat more: for some κ1 ∈ [σ, κ], the
ideal J is κ1-complete and κ\κ1 ∈ J (so we can use 〈λi : i < κ1〉. As in the proof of 1.10, we use [17] without loss
of generality κ1 = |a| is minimal. Now if a is not the union of any < κ1 member of {bθ [a] : θ ∈ λ ∩ pcf(a)}, let
〈λi : i < κ1〉 list a and let J be the κ1-complete ideal on κ1 generated by {{i < κ1 : λi ∈ bθ [a]} : θ ∈ λ ∩ pcf(a)}. If
a is ∪{bθε [a] : ε < ε∗} where ε∗ < κ1 and θε ∈ pcf(a) ∩ λ for ε < ε∗ then, by [17, I,Section 1], we can replace a by
{θε : ε < ε∗}. �

3. The main results (Pr�, Ps�)

In this section we prove the main theorem:

Theorem 3.1. Assume that μ > ℵ0 is strong limit and λ ≥ cf(λ) > μ. Then for some κ < μ and finite d ⊆ Reg ∩ μ

there is P̄ such that

(∗)λ,P̄ P̄ = 〈Pα : α < λ〉,Pα ⊆ [α]<μ and |Pα| < λ,Pα is increasing,

(∗)d,κ

λ,P̄,h
for every set A ⊆ λ of cardinality < μ there is c : [A]2 → κ such that:

if B ⊆ A has no last element, c � [B]2 is constant and δ = sup(B) satisfies cfδ /∈ d, then B ∈ Pδ.

The theorem states that for all cardinals λ with cofinality greater than μ, there is a “good” sequence 〈Pδ : δ < λ〉,
which, in spite of each Pδ being small, captures many small subsets of λ. “Many” here means that for every small set
A ⊆ λ there is a pair-coloring c : [A]2 → κ such that each monochromatic B ⊆ A with no last element and with
supremum δ belongs to Pδ — provided that cfδ is not one of the finitely many exceptional cofinalities.

Thus, if θ+ < μ is not one of the exceptional cofinalities for λ, then, by the Erdős–Rado theorem, for every A ⊂ λ

with (2θ )+ ≤ |A| < μ there is some B ∈ [A]θ+ with sup B = δ which belongs to Pδ , and, moreover, each of the
initial segments of B with no last element belongs to a suitable Pδ′ — provided that the cofinality of δ′ is not one of
the exceptional cofinalities.

Note that the theorem is closely related to the RGCH in the following way. By the RGCH, for some κ < μ there
is a family P ⊆ [λ]<μ of cardinality λ and closed under taking subsets such that every subset of λ of cardinality < μ

is the union of ≤ κ members of P . So if we define, for δ < λ of cofinality < μ, the family Pδ as the family of u ∈ P
which are unbounded subsets of δ, then we get |Pδ| ≤ λ and the sequence 〈Pδ : δ < λ〉 has a property stronger than
what we promise in the present theorem: if A ⊆ λ has cardinality < μ then there is a unary function c from A to κ

(obtained by partitioning A to κ cells from P) such that if B ⊆ A is c-monochromatic and without a last element then
B ∈ Psup B (with no exceptions on cf sup B).

So what we gain in the present theorem in comparison with the RGCH is mainly the strict inequality |Pδ| < λ. In
return we have to exclude finitely many “exceptional” cofinalities and settle for a weaker sense of “many subsets of
A” — rather than all monochromatic sets with respect to some unary coloring, we take all monochromatic sets with
respect to some binary coloring.

Remark 3.2. (1) The proof of 3.1 is simpler if λ is regular.
(2) The conclusion of 3.1 implies that for λ > μ, for all but finitely many κ = cf(κ) < μ, Pr1(λ,cf(λ), κ) holds (see
Definition 3.9(b)).

Similarly

Claim 3.3. In fact in 3.1 we can choose d = d′0,μ(λ); see Definition 2.14(1).

Proof of 3.1: Without loss of generality, cf(μ) = ℵ0 (this is no loss by the Fodor lemma; if μ is singular we may use
μ > cf(μ) or replace ℵ1 by (cf(μ))+).

We choose h : cf(λ) → λ such that
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�1 (a) If λ is regular then h is the identity.
(b) If λ is singular then 〈h(α) : α < cf(λ)〉 is an increasing continuous sequence of cardinals with limit λ.

We shall choose below P̄ = 〈Pα : α < cf(λ)〉 such that Pα ⊆ [h(α)]<μ, |Pα| < λ and Pα is increasing with α. Now
for each α < cf(λ) we can find P1

α ⊆ [h(α + 1)]<μ of cardinality < λ such that for some κ0(∗) < μ

�2 If A ⊆ h(α+ 1), |A| < μ, then there is c : A → κ0(∗) such that every B ⊆ A for which c � B is constant belongs
to P1

α.

We then, for γ < λ, let P ′γ = (Pα(γ ) ∪ P1
α(γ )

) ∩ [γ ]<μ where α(γ ) = Min{α < cf(λ) : γ ≤ h(α)}. Now

�3 for 〈P ′γ : γ < λ〉 to be as required it is enough that, for some κ < μ and P̄α and finite d ⊆ Reg ∩ μ, we have
(∗∗)λ,P̄ P̄ = 〈Pα : α < cf(λ)〉,Pα ⊆ [h(α)]<μ, |Pα| < λ,Pα increasing,

(∗∗)d,κ

λ,P̄,h
for every A satisfying A ⊆ cf(λ) or (more generally) A ⊆ λ& (∀α ∈ A)[Min(A\(α + 1)) <

Min(Rang(h)\(α + 1))] and satisfying |A| < μ there is c : [A]2 → κ such that:
if B ⊆ A has no last element, c � [B]2 is constant and δ = ∪{Min{(α + 1) : γ < h(α)} : γ ∈ B} has
cofinality ∈ (Reg ∩ μ\d) and so B ⊆ h(δ), then B ∈ Pδ.

So let us turn to proving (∗∗)λ,P̄ , (∗∗)d,κ

λ,P̄,h
.

We first prove the desired conclusions for cardinal λ such that

�λ a ⊆ λ ∩ Reg\μ& |a| < μ ⇒ a ∈ Jℵ1
<λ+[a].

Let M̄ = 〈Mα : α < cf(λ)〉 be such that

�1 (a) Mα ≺ (H(χ),∈) is increasing continuous,
(b) λ ∈ Mα, ‖Mα‖ < λ, h(α) ⊆ Mα ,
(c) 〈Mα : α ≤ β〉 ∈ Mβ+1,
(d) (α) if λ is regular then Mα ∩ λ ∈ λ,

(β) if λ is singular then λα + 1 ⊆ Mα+1,
where λα = Min{χ : if a ⊆ (h(α + 1)+ 1) ∩ Reg\μ

and |a| < μ

then a ∈ Jℵ1
<χ [a] and χ ≥ ‖Mα‖}.

We let Pα =: Mα+1 ∩ [h(α)]<μ and d = {ℵ0} and κ = ℵ0, and will show that 〈Pα : α < cf(λ)〉, d are as
required. Now (∗)λ,P̄ of the claim holds trivially. To prove (∗)d,κ

λ,P̄,h
let A ⊆ λ, otp(A) < μ be as there and

let {αε : ε < ε(∗)} list A in increasing order. Hence there is 〈βε : ε < ε(∗)〉 increasing continuous such that
βε < cf(λ), h(βε) ≤ αε < h(βε+1). By the assumption (and 1.9, i.e., [17, II,5.4]), if λ is regular then for
each ε < ε(∗) there is a set Pε ⊆ [h(βε)]<μ of cardinality < λ such that every a ∈ [h(βε)]<μ is equal to
the union of ≤ κ of them (by the choice of κ and �); hence without loss of generality Pε ∈ Mβε+1 and hence
Pε ⊆ Mβε+1 ∩ [h(βε)]<μ = Pβε . If λ is singular, using clause (d)(β) we get the same conclusion. So there is a
sequence 〈Aε,i : i < κ〉 such that Aε,i ∈ Pβε , A ∩ αε = A ∩ h(βε) = ∪{Aε,i : i < κ}. We defined c : [A]2 → κ as
follows: for ε < ζ < ε(∗), c({αε, αζ }) := Min{i : αε ∈ Aζ,i }. So assume B ⊆ A and c � [B]2 is constantly j < κ and
δ = sup(B) has cofinality θ ∈ Reg∩μ\d. Clearly αε ∈ B ⇒ αε∩B ⊆ {αζ : ζ < ε and c{αζ , αε} = j} ⊆ Aε, j ∈ Pβε .
But Pα = Mα+1 ∩ [h(α)]<μ is closed under subsets and hence αε ∈ B ⇒ αε ∩ B ∈ Pβε .

Now in Mδ+1 we can define a tree T ; it has otp(B) levels;

the i − level is {a ∈ Mδ : a ⊆ δ and otp(a) = i}
and the order is �, as they are initial segments.

So by the assumptions (and [20, Section 2]), as ℵ1 ≤ cf(δ) < μ, the number of δ-branches of T is < λ, so as
T ∈ Mδ+1, every δ-branch of T belongs to Mδ+1, and hence B ∈ Mδ+1, which implies that B ∈ Pδ, as required.

Now we prove the statement in general.
We prove this by induction on λ. For λ = μ+ this is trivial by the first part of the proof. So assume λ > μ+ and

the conclusion fails, but the first part does not apply.
In particular, for some a ⊆ Reg ∩ λ\μ, |a| < μ and a /∈ Jℵ1

<λ+[a]. Hence recalling cf(λ) > μ, by 1.10 + 1.12 +
2.3 + 2.10+ proof of 2.18(4), for some κ = cf(κ) ∈ [ℵ1, μ) we have:
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(∗)1 there is a sequence 〈λi : i < κ〉 and an κ-complete filter D on κ such that
(a) TD(

∏
i<κ

λi ) = λ,

(b) λi < λ and cf(λi ) > μ (see 2.3),
(c) if λ′i < λi for i < κ , then TD(〈λ′i : i < κ〉) < λ,
(d) tcf(

∏
i<κ

λi ,<D) = cf(λ).

Clearly we can find 〈hi : i < κ〉 such that

(∗)2 hi is an increasing continuous function from cf(λi ) to λi .

Let

D1 =
{

A :A ∈ D or A /∈ D, A ∈ D+ and (9)

TD+(κ\A)(λ̄
′) ≥ λ for some λ̄′ ∈

∏
i<κ

λi

}
. (10)

Clearly (by 2.9),

(∗)3 D1 is an ℵ1-complete filter on κ extending D and we can replace D by D + A whenever A ∈ D+1 .

By the induction hypothesis applied to λi , as λi > μ there is a pair (κi , di ) as in the conclusion. Without loss of
generality κκ

i = κi . So for some m(∗) < ω and κ(∗) < μ the set {i < κ : |di | = m(∗), κi ≤ κ(∗)} ∈ D+1 , so without
loss of generality

(∗)4 i < κ ⇒ |di | = m(∗)& κi = κ(∗).
By (d) of (∗)1 there is f̄ such that

(∗)5 f̄ = 〈 fα : α < cf(λ)〉 is <D-increasing and cofinal in
∏

i<κ

λi and if δ < cf(λ), cf(δ) < μ and f̄ � δ has a <D-

eub, then fδ is such a <D-eub and we let f ′α ∈
∏
i<κ

λi be f ′α(i) = Min(Rang(hi )\ fα(i)) and f ′′α ∈
∏
i<κ

cf(λi ) be

defined by f ′′α (i) = h−1
i ( f ′α(i)).

For each i let P̄ i = 〈P i
α : α < cf(λi )〉 be such that (∗∗)λi ,P̄ i + (∗∗)di ,κ(∗)

λi ,P̄ i ,hi
holds. We now choose Mα for α < cf(λ)

such that

�2 (a) Mα ≺ (H(χ),∈), Mα ∩ cf(λ) ∈ cf(λ)+ 1
(b) ‖Mα‖ < λ, Mα is increasing continuous, β < α ⇒ h(β) ⊆ Mα+1 and

β < α ⇒ 〈Mβ : β ≤ α〉 ∈ Mα+1,

(c) the following objects belong to Mα : 〈P̄ i : i < κ〉:
〈λi , hi : i < κ〉, f̄ , D and μ,

(d) if A ∈ D+1 , and so TD+A(〈|P i
fα(i)| : i < κ〉) < λ, then TD+A( fα)+ 1 ⊆ Mα+1

(remember cf(λ) > μ > 2κ).

Let d∗ = {θ : θ = κ or {i < κ : θ /∈ di } = ∅ mod D1}; it should be clear that |d∗| ≤ m(∗)+ 1.
Let Pα = Mα+1 ∩ [h(α)]<μ and P̄ = 〈Pα : α < cf(λ)〉.

It is enough now to prove that (∗)d∗,κ(∗)
λ,P̄,h

holds.

Let A ⊆ λ, |A| < μ be as in the assumption and we should find c : [A]2 → κ(∗) as required. For i < κ let
Ai = { fα(i) : α ∈ A}, so Ai ∈ [λi ]<μ and hence there is ci : [Ai ]2 → κ(∗) as required. Recalling that κ(∗)κ = κ(∗),
we can choose c : [A]2 → κ(∗) such that

�3 if α1 < β1, α2 < β2 are from A and c{α1, β1} = c{α2, β2} then
(i) if i < κ then fα1(i) < fβ1(i) ≡ fα2(i) < fβ2(i),

(ii) if i < κ then fα1(i) > fβ1(i) ≡ fα2(i) > fβ2(i),
(iii) if i < κ and fα1(i) < fβ1(i) then ci { fα1(i), fβ1(i)} = ci { fα2(i), fβ2(i)}.
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Let θ ∈ Reg ∩ μ\d∗ and let δ < cf(λ) and B ⊆ A ∩ h(δ) be such that c � [B]2 is constantly j and θ = cf(δ) and
δ = sup(B). We can replace D by D + {i < κ : θ /∈ di }. So for some set a ⊆ κ we have

�4 if α < β are from B then a = {i < κ : fα(i) < fβ(i)}.
Clearly a ∈ D and 〈 fα(i) : α ∈ B〉 is increasing for each i ∈ a. Note that by �4 for each i ∈ a the sequence
〈 fα(i) : α ∈ B〉 is increasing and let Bi = { fα(i) : α ∈ B}, so δi =: sup(Bi ) has cofinality θ and ci � [Bi ]2 is
constant. Hence by the choice of P̄ i clearly Bi ∈ P i

δi
. Also as a ∈ D by �4 and D being κ-compact f̄ � δ has a

≤D-eub f ′, f ′(i) =: ∪{ fα(i) : i ∈ B}, and hence3 a′ := {i ∈ a : fδ(i) = δi } belongs to D. Now |P i
fδ(i)
| < λi , and

hence TD(〈P i
fδ(i)

: i < κ〉) < λ, so there is F ⊆ ∏
i<κ

P i
fδ(i)

, |F | < λ such that for every g ∈ ∏
i<κ

P i
fδ(i)

there is g′ ∈ F

such that {i : g(i) = g′(i)} ∈ D+. So f̄ , P̄ ∈ M0 ⊆ Mδ+1 and hence fδ ∈ Mδ+1; hence without loss of generality
F ∈ Mδ+1. By the choice of Mδ+1, i.e., clause (b) of �2, it follows that F ⊆ Mδ+1. We can define g ∈ ∏

i<κ

P i
fδ(i)

by letting i ∈ a′ ⇒ g(i) = Bi . So there is g′ ∈ F ⊆ Mδ+1 such that b = {i : g(i) = g′(i)} ∈ D+ and hence
b ∩ a′ ∈ D+. That is b′ =: {i ∈ a′ : g′(i) = Bi } ∈ D+. Clearly b′ ∈ Mδ+1 (as μ ∈ Mδ+1 and hence H(μ) ⊆ Mδ+1)

and g′ ∈ Mδ+1; hence g′ � b′ ∈ Mδ+1, and hence also the set B∗ belongs to Mδ+1 where

B∗ =: {γ < λ : {i ∈ b′ : fγ (i) ∈ g′(i) = g(i) = Bi } ∈ D+}.
Now |B∗| ≤ ∏

i<κ

Bi < μ and α ∈ B ⇒ α ∈ B∗. But as B∗ ∈ Mδ+1 every subset of B∗ belongs to Mδ+1; hence

B ∈ Mδ+1 and so B ∈ Pδ , as required.
Proof of 3.3.

The proof is a variant of the proof of 3.1. In the case where �λ holds, recall that ℵ0 ∈ d(= d′0,μ(λ)), so what is
proved there suffices.

In the general case, when ¬�λ, there is 〈λi : i < κ〉 as in (∗)1, but we would like to choose a carefully. By 2.18
we can find d̄, λ̄n , d̄n for n < n∗ such that

� (a) d̄ = dn : n < n∗〉 where dn ⊆ Reg ∩ μ is finite,
(b) d′0,μ(λ) = ∩{dn : n < n∗},
(c) the λ̄n = 〈λn

i : i < κ〉 satisfy
(α) TD(

∏
i<κ

λn
i ) = λ,

(β) λn
i < λ and cf(λn

i ) > μ,
(γ ) if λ′i < λn

i for i < κ then λ > TD(〈λ′i : i < κ〉),
(δ) tcf(

∏
i<κ

λn
i ,<D) = cf(λ),

(d) d̄n = 〈dn
i : i < κ〉 satisfies

(e) if θ ∈ Reg ∩ μ\dn then {i < κ : θ ∈ dn
i } = ∅ mod D.

We then continue as there using f̄ n = 〈 f n
α : α < λ〉 for n < n∗ as there (so c{α, β} will be defined f n

α , f n
β for

n < n∗).

Discussion 3.4. (1) Note that in a sense what was done in [10], i.e., I [λ] large for λ = μ+, is done in 3.1 for any λ

with cf(λ) > μ.
(2) We may consider replacing d by {ℵ0} in 3.1. The base of the induction is clear (pcfℵ1-inaccessibility). So eventually
we have fδ for it as above 〈 fα : α ∈ B〉, the hard case is cf(otp(B)) = κ ; we have the induced h∗ ∈ κκ such that
α < κ ⇒ {i : d < h∗(i)} ∈ D, but (∀Di)[cf(h∗(i)) = ℵ0] (otherwise using niceness of the filter (which without loss
of generality holds), etc., we are done).

Note that this problem appears even in the simplest version of our problem: “assume μ is the strong limit of
cofinality ℵ1 (or κ ∈ [ℵ1, μ)) and 2μ = μ+; does it follow that ♦

Sμ+
cf(μ)

holds?” See [12], Cummings–Dzamonja–

Shelah [1], Dzamonja–Shelah [3]; and [23], Section 1, for a positive answer for a somewhat weaker property.
But if κ = cf(κ) > ℵ0 and in 2.14 we use D = Dκ + Sκℵ1

, for each α < κ we should consider ι(t); if D-positively
we have ι(t) ≤ h∗(t) we are done. But if ι(t) > h∗(t), D-positively, then on some A ∈ D+, h∗ � A is constant.

3 Note that here we use θ �= κ — in fact this is the only point that we use it at; if we could avoid it, then dcould be chosen as {ℵ0}.
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Conclusion 3.5. Assume μ < λ,μ is strong limit > ℵ0, λ is regular (or just cf(λ) > μ). Then for some κ < μ and
finite d ⊆ Reg ∩ μ to which ℵ0 belongs (in fact (d0

μ(λ) ∪ {ℵ0}) is acceptable), there is F̄ such that

�μ,d,κ

λ,F̄ (a) F̄ = 〈Fα : α < λ〉, |Fα| < λ for α < λ, E = λ if λ = cf(λ), E is a club of λ if cf(λ) < λ,

(b) Fα ⊆ { f : f a partial function from α to α, |Dom( f )| < μ},Fα closed under restriction,
(c) for every A ⊆ λ, |A| < μ and f : A → λ for some c : [A]2 → κ we have

�1 if B ⊆ A, δ = sup(B) ∈ E, c � [B]2 is constant,
[α ∈ B ⇒ f (α) < δ] and cf(δ) /∈ d then f � B ∈ Fδ

and α ∈ B ⇒ f � (B ∩ α) ∈ Fα.

Proof. We use the result of 3.1.
For clause (c) we use the pairing function pr on λ such that pr(α, β) < Max{ω, α + |α|, β + |β|} to replace the

function f in clause (c) by the set {pr(α, f (α)) : α ∈ A} and first we restrict ourselves to δ in some club E of λ (the
range of h in 3.1’s notation) such that δ ∈ E ⇒ |δ| divides δ (and hence δ is closed under pr); so if B ⊆ λ, sup(B) ∈ E
we are done. The other cases are easier as without loss of generality if α < δ ∈ E , then α + Min{χ : μ ≥ |α| and if
a ⊆ Reg ∩ χ+, |a| < μ, pcfχ+-comp(a) ⊆ μ+} < δ, and it is easy to finish as in the proof of 3.1. �

Conclusion 3.6. Assume that μ is strong limit, λ = λ<μ (equivalently λ = λμ) and c� : [λ]<μ → [λ]<μ satisfies for
notational simplicity c�(B) = ∪{c�(B ∩ (α + 1)) : α ∈ B} and B1 � B2 ⇒ B1 ⊆ c�(B1) ⊆ c�(B2).

Then in 3.5 we can add to (a), (b) and (c) also

(d) g is a function from { f � u : f ∈ λλ and u ∈ [λ]<μ} to λ,
(e) for every f : cf λ→ λ for some g f : [λ]<μ → λ (in fact g f (u) = g( f � c�(u)) we have

� for every A ⊆ cf λ of cardinality < μ such that α ∈ A ⇒ g f (A ∩ α) < α, for some function c : [A]2 → κ we
have

⊗ if B ⊆ A, c � [B]2 is constant and B has no last element,

δ = sup(B) has cofinality /∈ d then f � c�(B)

belong to Fδ and α ∈ B ⇒ f � c�(B ∩ α) ∈ ∪{Fβ : β < δ},
(f) if λ is regular then there is a sequence C̄ = 〈Cδ : δ ∈ S〉 such that

(α) S ⊆ S∗ = {δ < λ: cf(δ) ∈ [ℵ1, μ)},
(β) Cδ is a club of δ of order type cf(δ)

and in clause (e) we can add:
(γ ) f � c�(Cδ) ∈ Fδ and
(δ) α ∈ Cδ ⇒ f � c�(Cδ ∩ α) ∈ ⋃

β<δ

Fβ and

(ε) α ∈ nacc(Cδ1) ∩ nacc(Cδ2) ⇒ Cδ1 ∩ α = Cδ2 ∩ α,
(ζ ) if α < cf(λ) is limit, cf(α) /∈ d then {Cδ ∩ α : α ∈ acc(Cδ)} has cardinality < λ,
(η) if B ⊆ λ, |B| < μ then for some c : [B]2 → κ if B ′ ⊆ B has no last member and c � [B ′]2 is constant and cf

(sup(B ′))/∈ d then sup(B ′) ∈ S.

Proof. We repeat the proof of 3.1.
Choose h : cf(λ) → λ and 〈Mα : α < cf(λ)〉 as in the proof of 3.1 but add the requirement that c� ∈ M0 and still

use Fα = Mα+1 ∩ { f : f a partial function from α to α with domain of cardinality < μ}.
Choose g such that

� (a) g is a function from { f � u : f ∈ λλ and u ∈ [λ]<μ} onto λ,
(b) f1 ⊆ f2 ∈ Dom(g)⇒ g( f1) ≤ g( f2) and
(c) for each α < λ for some f ∈ Dom(g) we have g( f ) = α&

(∀ f ′)[g( f ′) = α ⇒ f ′ ⊆ f ]
(d) if f : B2 → λ and B1 � B2 then g(B1) < g(B2),
(e) g( f ) = α ⇒ Dom( f ) ⊆ α.
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Without loss of generality g ∈ M0, so clause (d) (of the conclusion of 3.6) holds trivially; let us prove clause
(e). As g has already been chosen, we are given A ⊆ cf(λ) of cardinality < μ and f : A → λ such that
α ∈ A ⇒ g( f � c�(A ∩ α)) < α.

Now α �→ g( f � c�(A ∩ α)) is an increasing function from A to λ; let A′ = {g( f � c�(A ∩ α)) : α ∈ A} and let
c′ : [A′]2 → κ be as proved to exist in 3.1 and by c : [A]2 → κ be defined by c{α, β} = c′{g( f � c�(A ∩ α)), g( f �
c�(A ∩ β))}.

It is easy to check that c is as required. We turn to proving clause (f) of the claim. Now there is a function
F : ωλ → λ such that for any ᾱ ∈ ωλ for every large enough n < ω there are m0 < m1 < m2 < . . . < ω

which are > n and αn = F(αm0 , αm1 , . . .), by [4]. For any u ∈ [λ]<μ we define c�∗(u) as follows: let
u+g = u ∪ {g(1v) : v ⊆ u ∩ α for some α ∈ u} and let c�∗(u) be the minimal set v such that u+g ⊆ v

and [δ = sup(v ∩ δ) < sup(u+g)& cf(δ) ≤ |u| ⇒ δ ∈ v] and [g(1w) ∈ v& |w| ≤ |u| ⇒ w ⊆ v] and
ᾱ ∈ ωv ⇒ F(ᾱ) ∈ v; so |c�∗(u)| ≤ (|u|+ + 2)ℵ0 .

In the proof above we can replace c� by c�∗ ◦ c�. Now if δ < λ,ℵ0 < cf(δ) < μ for some club C∗δ of δ of order
type cf(δ) we have: if C ⊆ C∗δ is a club of δ then c�∗ ◦ c�(C) = c�∗ ◦ c�(C∗δ ) (which exists by the choice of F).
Alternatively, let C ′δ = ∩{c�∗(C) : C a club of δ}; however, C ′δ seemingly has order type just < (cf(δ)ℵ0)+. Now if
C∗δ satisfies (∀α ∈ C∗δ )(g(1C∗δ∩α) < δ) then we can find C∗∗δ , Cδ such that:

�1 C∗∗δ ⊆ c�∗ ◦ c�(C∗δ ) is a club of δ of order type cf(δ) such that α ∈ nacc(C∗∗δ ) ⇒ sup((C∗∗δ ∪ {0}) ∩ α) <

g(1((C∗∗δ ∪{0})∩α)) < α,
�2 Cδ is {g(1((C∗∗δ ∪{0})∩α)) : α ∈ nacc(C∗∗δ )} ∪ acc(C∗∗δ ).

Clearly

�3 Cδ ⊆ c�∗(B) whenever B ⊆ δ = sup(B),
�4 if α ∈ nacc(Cδ1) ∩ nacc(Cδ2) then Cδ1 ∩ α = Cδ2 ∩ α.

We are done, as we have used c�∗ ◦ c� and

(∗) if δ < λ,ℵ0 < cf(δ) < μ and B is an unbounded subset of δ then Cδ ⊆ c�∗(B). �

Remark 3.7. (1) In 3.1, 3.5, 3.6 if λ is regular, then

AM̄ = {δ :δ < λ, cf(δ) < δ and there is (11)

u ⊆ δ = sup(u), otp(u) < δ and (∀α < δ)(u ∩ α ∈ Mα)} (12)

belongs to I [λ] and the δ mentioned in (∗)d,κ

λ,P̄ of 3.1,(c) of 3.5 necessarily belongs to AM̄ . So AM̄ , for ordinals of

cofinality ∈ Reg ∩ μ\d, contains “almost all of them” in the appropriate sense.

(2) We can use them to upgrade if {δ < ω2 : S
�
+
δ

κ ∈ I (�+δ )} then S
�+ω1
κ ∈ I [�+ω1+1] when κ = cf(κ) > ℵ1; see [20].

Main Conclusion 3.8. (1) If μ is strong limit and λ = λ<μ then for all but finitely many regular κ < μ (actually
κ /∈ d0

μ(λ) ∪ {ℵ0} is enough) we have Ps1(λ, κ), see Definition 3.9 below.
(2) We also get Ps1(cf(λ), λ, κ) when κ > ℵ0.

Proof. By 3.5, 3.6. �

Definition 3.9. (1) Ps1(λ, κ) means that Ps2(λ, S) for some stationary S ⊆ Sλ
κ .

(2) Ps2(λ, S) means that for some C̄ = 〈Cδ : δ ∈ S〉 we have Ps3(λ, C̄).
(3) Ps3(λ, C̄) means that for some F̄ we have Ps4(λ, C̄, F̄).
(4) Ps4(λ, C̄, F̄) means that for some S:

(a) S is a stationary subset of λ,
(b) C̄ has the form 〈Cδ : δ ∈ S〉,
(c) F̄ has the form F̄ = 〈Fα : α ∈ S〉,
(d) Cδ is a club of δ of order type cf(δ) and α ∈ nacc(Cδ1) ∩ nacc(Cδ2) ⇒ α ∩ Cδ1 = α ∩ Cδ2 ,
(e) Fδ is a set of functions from Cδ to δ of cardinality < λ,
(f) if f : λ→ λ then for stationarily many δ ∈ S we have f � Cδ ∈ Fδ.

(5) Ps4(λ, μ, h, C̄, F̄ ) is defined similarly (and λ is regular) except that
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(e)1 h is an increasing continuous function from λ to μ with limit μ,
(e)2 Fδ is a set of functions from δ to h(δ) of cardinality < μ,

(f) if f : λ→ μ then for stationarily many δ ∈ S we have f � Cδ ∈ Fδ .
(6) If in (5) we omit h we mean some h.
(7) Ps1(λ, μ, κ), Ps2(λ, μ, S), Ps3(λ, μ, C̄) are defined in parallel.

Definition 3.10. Pr� are defined similarly except not using C̄ and Fδ is a set of functions from some unbounded subset
of δ into δ (or h(δ)), that is:

(1) Pr1(λ, κ) means that Pr2(λ, S) for some stationary S ⊆ Sλ
κ .

(2) Pr2(λ, S) means that for some F̄ = 〈Fα : α ∈ S〉 we have Pr4(λ, F̄).
(3) Pr4(λ, F̄) means that for some S:

(a) S is a stationary subset of λ,
(b) F̄ has the form F̄ = 〈Fα : α ∈ S〉,
(c) Fδ is a set of cardinality < λ of functions from some unbounded subset of δ to δ,
(d) if f : λ→ λ then for stationarily many δ ∈ S we have f � A ∈ Fδ for some A ⊆ δ = sup(A).

(4) Pr4(λ, μ, h, F̄ ) is defined similarly except that
(c)1 h is an increasing continuous function from λ to μ with limit μ,
(c)2 Fδ is a set of cardinality < λ of functions from some unbounded subset of δ to h(δ),
(d) if f : λ→ μ then for stationarily many δ ∈ S we have f � A ∈ Fδ for some A ⊆ δ = sup(A).

(5) If in (4) we omit h we mean some h.

Observation 3.11. If Ps4(λ, C̄, F̄), λ1 = cf(λ) < λ, C̄ = 〈Cδ : δ ∈ S〉, (∀δ ∈ S)[cf(δ) > ℵ0], h : λ1 → λ is
increasing continuous with limit λ, S′ = {δ < λ1 : h(δ) ∈ S}, C ′δ = {α < δ : h(α) ∈ Cδ}, C̄ ′ = 〈C ′δ : δ ∈ S′},F ′δ =
{h ◦ f : f ∈ Fδ} then Ps4(λ1, λ, h, C̄ ′, F̄ ′).

BB: We may phrase what we have for the ideal I [λ].
Conclusion 3.12. (1) If λ = cf(λ) > μ > ℵ0, μ strong limit singular then for some A ∈ I [λ], κ < μ and finite
d ⊆ Reg ∩ μ (in fact d = d′0,μ(λ) we have:

(∗) for every κ(2) = κ(2)κ(1) < μ, κ(1) > κ and increasing continuous sequence 〈αε : ε < κ(2)+〉 we have: there is
a club C of κ(2)+ such that {α ∈ C : cf(α) /∈ d and cf(α) ≤ κ(1)+} ⊆ A.

(2) For above λ = λ<λ we can add: κ ∈ Reg∩μ\d ⇒ (D�)Sλ
κ

(and even (D�)S for any S ⊆ Sλ
κ which is �= ∅ modulo

for a suitable filter similarly to in (3)).

On diamond from instances of GCH and its history, see [21]. Whereas λ = μ+ a successor of regular cardinals
has strong partial squares [14, Section 4], for a successor of singular we have much less. If λ = μ+, μθ = μ for
cofinalities ≤ θ , we still have this.

Conclusion 3.13. Assume λ = cf(λ) > μ > ℵ0, μ strong limit and d = d′0,μ which is finite. If λ = χ+ = 2χ and
κ ∈ Reg ∩ μ\d then ♦Sλ

κ
.

Proof. Follows easily from 3.8. �

Recall that the previous approach gives 3.14. In particular if λ = 2μ is singular, see 3.15.

Claim 3.14. Assume μ > κ = cf(κ) is strong limit and cf(λ) > μ and h : cf(λ) → λ is increasing continuous with
limit λ. Then for any regular χ < μ large enough, (A)λ,μ,κ ⇒ (B)λ,μ,κ,h, and (B)+λ,μ,κ,h where

(A)λ,μ,κ there is Ā such that
(a) Ā = 〈Aα : α < cf (λ)〉,
(b) Aα ⊆ [h(α)]<μ has cardinality < λ (we can add A ∈ Aα ⇒A closed subset of sup(A); it does not

matter),
(c) if E is a club of cf(λ) then for some increasing continuous αε ∈ E for ε < χ we have
{ε < χ: cf(ε) = κ and {αζ : ζ < ε} ∈ Aαε } is a stationary subset of χ ,
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(B)λ,μ,κ,h there is F̄ such that
(a) F̄ = 〈Fα : α < cf(λ)〉,
(b) Fα ⊆ { f : f a partial function from α to h(α)} has cardinality < λ,
(c) for every club E of cf(λ) and function f : cf(λ) → λ there is an increasing continuous αε ∈ E for

ε < χ for which the set {ε < χ : f �{αζ : ζ < ε} ∈ Fαε } is a stationary subset of χ ,
(B)+λ,μ,κ,h there is F̄ such that

(a),(b) as above,
(c) if αε < cf(λ) for ε < χ1 and 〈αε : ε < χ1〉 is increasing continuous χ1 ∈ [χ,μ) and

f : {αε : ε < χ1} → λ and f (αε) < h(αε+1) for ε < χ1 for simplicity, then we can find
ū = 〈ui : i < χ〉 such that χ1 = ∪{ui : i < χ} and for every ε < χ1 and i < χ, f � {αζ : ζ < ε

and ζ ∈ ui } belongs to Fαε .

Conclusion 3.15. Assume μ > ℵ0 is strong limit, χ ≥ μ and λ = 2χ is singular. Then for every κ ∈ μ ∩ Reg\{ℵ0}
we have Ps1(cf(λ), λ, κ).

4. Middle diamonds and black boxes

We use Section 3 to improve the main results of [7]. The point is that there we use [21], while here we use Section 3
instead. Towards our aim we quote some results and definitions. See 4.4 and 4.3.

The Special Black Box Claim 4.0. Assume

(a) λ = cf(2μ), D is a μ+-complete filter on λ extending the club filter,
(b) κ = cf(κ) < λ and S ⊆ Sλ

κ ,
(c) C̄ = 〈Cδ : δ ∈ S〉, Cδ a club of δ of order type κ and λ = cf(2μ) = 2μ& δ ∈ S ⇒ λ > |{Cδ ∩ α : α ∈ nacc(Cδ)}|

and S ∈ D,
(d) 2<χ ≤ 2μ and θ ≤ μ,
(e) Ps1(λ, 2μ, C̄) (see Definition 3.9),
(f) Sep(μ, θ) (see Definition 4.1 below and 4.2 on sufficient conditions).

Then λ has the (κ, θ)-BB exemplified by some 〈C̄ � Si : i < λ〉 and C̄ has the (D, 2μ, θ)-Md-property (see
Definitions 4.3 and 4.4 below).

Proof. By the proof of [7, 1.10]. �

Definition 4.1. (1) Sep(μ, θ) means that for some f̄ and Υ :
(a) f̄ = 〈 fε : ε < μ〉,
(b) fε is a function from μθ to θ ,
(c) for every � ∈ μθ the set {ν ∈ μθ : for every ε < μ we have fε(ν) �= �(ε)} has cardinality < Υ ,
(d) Υ = cf(Υ ) ≤ 2μ.

(2) Sepσ (μ, θ) means that for some f̄ , R and Υ we have
(a) f̄ = 〈 f i

ε : ε < μ and i < σ 〉,
(b) f i

ε is a function from Rθ to μθ ,
(c) R ⊆ μθ; |R| = 2μ (if R = μθ we may omit it),
(d) Ī = 〈Ii : i < σ 〉,Ii ⊆ P(μ) and if A j ∈ I j for j < j∗ < σ then μ �= ∪{A j : j < j∗} (e.g. Ii is a

σ -complete ideal on μ),
(e) if η ∈ μθ and i < σ then Υ > |Solη| where

Solη = {ρ ∈ R : the set {ε < μ : if i < θ then ( f i
α(η))(ε) �= η(ε)} belong to Ii }.

We may wonder whether clause (f) of the assumption is reasonable; the following claim gives some sufficient
conditions for clause (f) to hold.

Claim 4.2. Clause (f) of 4.0 holds, i.e., Sep(μ, θ) holds, if at least one of the following holds:

(a) μ = μθ ,
(b) Uθ (μ) = μ+ 2θ ≤ μ,
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(c) UJ (μ) = μ where for some σ we have J = [σ ]<θ , θ ≤ σ, 2<σ < μ,
(d) μ is a strong limit of cofinality > θ ,
(e) μ ≥ �ω(θ).

Proof. This is [7, 1.11]. �

Definition 4.3. (1) We say that C̄ exemplifies Md+(λ, κ, θ,Υ , D) when
(a) λ > κ are regular cardinals, Υ an ordinal (or a function with domain λ or ω>λ in this case a function

f from X to Υ means that f is a function with domain X and f (x) ∈ Υ (x), so CΥ = { f :
f is a function with Dom( f ) = C and α ∈ C ⇒ f (α) ∈ Υ (α)}),

(b) C̄ = 〈Cδ : δ ∈ S〉, S a stationary subset of λ such that δ ∈ S ⇒ cf(δ) = κ ,
(c)+ Cδ is a club of δ disjoint from S and α ∈ nacc(Cδ1) ∩ nacc(Cδ2) ⇒ Cδ1 ∩ α = Cδ2 ∩ α so we may define

Cα = Cδ ∩ α when α ∈ nacc(Cδ),
(d) if F is a function from

⋃
δ∈S
{ f : f is a function from ω>(Cδ) to Υ } to θ then for some c ∈ Sθ for every

f ∈ λΥ the set {δ ∈ S : F( f � Cδ)) = c(δ)} ∈ D+.
(2) We write Md instead Md+ if we weaken (c)+ to

(c) Cδ is an unbounded subset of δ.
(3) We say C̄ has the (D,Υ , θ)-Md property when clauses (a), (b), (c), (d) above hold; we say λ has this property if

some C̄ = 〈Cδ : δ ∈ S〉 has it, S ⊆ Sλ
θ stationary.

The following is a variant of the silly black box (trying to reconcile the definitions of [13, III], [8, IV] with [7]).

Definition 4.4. (1) We say that λ has the (κ, θ)-SBB+ (= Special Black Box) property when there are C̄i = 〈Cδ :
δ ∈ Si 〉 for i < λ such that

�λ,κ

C̄
(a) Si are pairwise disjoint stationary subsets of λ,
(b) δ ∈ Si ⇒ cf(δ) = κ ,
(c) Cδ is a club of δ of order type κ and every α ∈ nacc(Cδ) is a successor ordinal,
(d) if α ∈ nacc(Cδ1) ∩ nacc(Cδ2) then Cδ1 ∩ α = Cδ2 ∩ α,
(e) C̄i has the θ -BB property which means that there is f̄ = 〈 fδ : δ ∈ Si 〉

such that fδ : ω>(Cδ) → θ and for every f ∈ ω>λ → θ for
stationarily many δ ∈ Si we have fδ = f � Cδ .

(2) We write SBB instead of SBB+ if we omit clause (d); we write SBB± if we replace “Cδ a club of δ” by
“Cδ ⊆ δ = sup(Cδ)” and SBB− if we make both changes.

Remark 4.5. (1) How strong is the demand that S can be divided into λ sets Si with the property? It is hard not to
have it.
(2) In 4.6 to have more than one exception is a heavy demand on H(μ).
(3) We can improve 4.6 including the case cf(μ∗) = ℵ0, even μ∗ = �α+ω. Then probably in part (2) we have to
distinguish λ a successor of regular (easy), successor of singular (harder), rest (hardest).

The Main Theorem 4.6. (1) If μ∗ is strong limit > ℵ0, μ ≥ μ∗ > θ, λ = cf(2μ) and Υ = 2μ then for all but finitely
many κ ∈ Reg ∩ μ∗ (even every κ ∈ Reg ∩ μ∗\d′0,μ∗(2

μ)), there is C̄ = 〈Cδ : δ ∈ S〉 exemplifies Md+(λ, κ, θ,Υ );
hence (κ, θ)-SBB+.
(2) Assume μ∗ is strong limit singular of uncountable cofinality and λ = cf(λ) > μ∗ is not strongly inaccessible.
Then for all but finitely many κ ∈ Reg ∩ μ∗ for every θ < μ∗, λ has (κ, θ)-SBB; hence (κ, θ)-SBB+ (moreover only
one of the exceptions depends on λ).

Proof. (1) Let d = d′0,μ∗(λ). So by Section 3 we have κ ∈ Reg∩μ∗\d ⇒ Ps1(λ, 2μ, C̄) for some C̄ satisfying clause
(c) of 4.0, and moreover clauses (c) and (d) of 4.4(1). So we apply 4.0.
(2) Let 〈μi : i < cf(μ∗)〉 be increasing continuous with limit μ∗; each μi is strong limit singular. For each i < cf(μ∗)
let di = d′0,μi

(cf(2μi )), so it is finite and let d = {κ : κ = cf(κ) < μ∗ and κ ∈ di for every i < cf(μ∗) large
enough}.
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Case 1: (∀α < λ)[|α|<μ∗ < λ].
So we can find μ < λ ≤ 2λ; let μ1 = ((μ)<μ∗)<μ∗ ; this cardinal is < λ and μ1 = (μ1)

μ∗ .
Now use [7, Section 2].

Case 2: (∃α < λ)[|α|<μ∗ ≥ λ].
As λ is regular for some κ < λ,μ < λ we have μκ ≥ λ. Let μ = Min{μ : μκ ≥ λ for some κ < μ∗}.

NOTE: Here getting λ pairwise disjoint Si should be done. Again we use [7, Section 2]. �

Remark 4.7. ℵ0 ∈ d as we need F : ωλ → λ as in Section 3!!

Definition 4.8. We say that C̄ exemplifies SBB0(λ, κ, θ) when

(a) λ > κ are regular,
(b) C̄ = 〈Cδ : δ ∈ S〉, S a stationary subset of λ such that δ ∈ S ⇒ cf(δ) = κ ,
(c) Cδ is an unbounded subset of δ disjoint from S such that α ∈ Cδ1 ∩ Cδ2 ⇒ Cδ1 ∩ α = Cδ2 ∩ α,
(d) assume τ0 ⊆ τ1 ⊆ τ2 are vocabularies of cardinality ≤ θ, τ1\τ0 has only predicates, τ2\τ1 has only function

symbols (allowed to be partial), B is a τ0-model with universe λ (but not individual constants), then we can find
〈Mδ : δ ∈ S〉 such that
(α) every M ∈Mδ is a τ2-model of cardinality θ expanding B � |Mδ|,
(β) if M ∈Mδ, F ∈ τ2\τ1 then F M has domain ⊆ Cδ (i.e., arity(F)(Dδ)),
(γ ) every M ∈Mδ has a universe which includes Cδ and is included in δ and the universe of M is the B-closure

of Cδ ∪ {F(ᾱ) : F ∈ τ2\τ1 and ᾱ ∈ arity(F)(Cδ)},
(δ) if M ′, M ′′ ∈Mδ then (M ′, γ )γ∈Cδ , (M ′′, γ )γ∈Cδ are isomorphic,
(ε) if B+ is a τ2-expansion of B then for stationarily many δ ∈ S for some M ∈Mδ we have:

(i) F ∈ τ2\τ1 ⇒ FB+ � Cδ = F M � Cδ (= F M ),
(ii) M � τ1 ⊆ B+ � τ1.

Observation 4.9. (1) In 4.8 if the order < on λ is a relation of B (which is no loss) then the isomorphism is unique
as it is necessarily the unique order preserving function from |M ′| onto |M ′′|.
(2) In 4.8, if the function Fi where α < β ∈ Cδ, α ∈ Cδ , otp(Cδ ∩ α) = i ⇒ Fi (β) = α, then for any
M ∈ ∪{Mδ : δ ∈ S} and δ, M ∩ Cδ is an initial segment of Cδ .

Definition 4.10. We say that C̄ exemplifies BB1(λ, κ, θ) when (a), (b), (d), (e) from 4.8 hold + (ε) below.
BB2(λ, κ, θ) holds when we add (ζ ) to clause (d) where

(ε) the isomorphism type of (M, γ )γ∈Cδ for M ∈Mδ depends on τ0, τ1, τ2 but not on B,
(ζ ) if M ′, M ′′ ∈Mδ and 
 is an isomorphism from M ′ onto M ′′ and δ′, δ′′ ∈ S, Cδ′ ⊆ M ′, Cδ′′ ⊆ M ′′ and 
 maps

Cδ′ onto Cδ′′ , then for any N ′ ∈Mδ′, N ′′ ∈Mδ′′ we have (N ′, γ )γ∈Cδ′
∼= (N ′′, γ )γ∈Cδ′′ .

Claim 4.11. If μ > ℵ0 is strong limit and λ = cf(2μ) or λ > 22μ
is not strongly inaccessible then for all but finitely

many κ ∈ Reg ∩ θ (κ ∈ Reg ∩ μ\d′0(2μ)) for every θ < μ, BB1(λ, κ, θ) holds.

Proof. Use also 4.13 below. �

Observation 4.12. (1) If C̄ exemplifies BB�(λ, κ, θ) then for some pairwise disjoint 〈Sε : ε < λ〉 we have that each
C̄ � Sε exemplifies BB�(λ, κ, θ).
(2) If λ = λθ we can allow in τ1\τ0 individual constants.
We delay their proof as we first use them.

Now we turn to proving 4.11, 4.12.

Claim 4.13. (1) If C̄ exemplifies SBB(λ, κ, 2θ , λ) then C̄ exemplifies BB1(λ, κ, θ). [Rethink: if we use C ∗χ, χ = �κ

enough to have many guesses.]
(2) C̄ exemplifies BB1(λ, κ, θ) when there are λ1, C̄1:

(a) C̄ exemplifies SBB(λ, κ, 2θ , λ) (hence C̄1 = 〈C1
δ : δ ∈ S1〉 exemplifies BB1(λ, κ, θ) but apparently we need

more),
(b) h̄ = 〈hδ : δ ∈ S1〉 where hδ is an increasing function from Cδ onto some γ = γ (δ) ∈ S1,
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(c) for every club C of λ there is an increasing continuous function g from λ1 into C such that α ∈ S1 ⇒ g(α) ∈
S& γg(α) = α.

(3) If C̄ exemplifies MD(λ, κ, 2θ ) then C̄ exemplifies BB2(λ, κ, θ).

Proof. (1) C̄ has the (D, 2μ, θ)-Md-property (which is like the desired conclusion except that we write Fδ(ν � Cδ)

instead of F(ν � Cδ, C̄ � Cδ). But let β = α/θ mean that θβ ≤ α < θβ + 1. But define F ′δ(ν) = Fδ(〈ν(α)/θ : α ∈
Cδ〉, 〈ν(α) − θ(ν(α)/θ) : α ∈ Cδ〉). So for 〈F ′δ : δ ∈ S〉 we have C̄ as required in the original requirement; the same
C̄ is as required for our F̄ .
(2), (3) Left to the reader. �

Conclusion 4.14. If λ = cf(λ) > �ω+3 is not strongly inaccessible, then for every regular κ < �ω except possibly
finitely many we have:

� for some topological space X and C̄ = 〈Cδ : δ ∈ S〉 we have
(a) X is Hausdorff having λ points with a clopen basis set,
(b) every Y ⊆ X of cardinality < κ is closed,
(c) every point has a neighborhood of cardinality≤ κ ,
(d) there is f : X → κ such that:

if X = ⋃
α<β

Xα, β < κ then some non-isolated point x has a neighborhood included in X f (x) (so f (x) < β).

Remark 4.15. It is natural to add in Definition 2.14 (but is not useful here): For regular λ let d2(λ) = d2
σ,θ,θ∗(λ)

be defined as in part (1) of 2.14 omitting clauses (d), (f) and (g) of 2.3 adding (j) of 2.11 and: if η ∈ maxT , a ⊆
Reg ∩ λη \ θ∗ and |a| < θ then λη /∈ pdfσ -com(a) (it too is finite).
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