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Abstract

We strengthen the revised GCH theorem by showing, e.g., that for A = cf(A) > 3, for all but finitely many regular « < 3,,, it
holds that “A is accessible on cofinality «” in some weak sense (see below).

As acorollary, A = 2#* = ut > 3, implies that the diamond holds on A when restricted to cofinality « for all but finitely many
k € RegN .

We strengthen previous results on the black box and the middle diamond: previously it was established that these principles
hold on {8 : § < A, cf(8) = (J,) T} for sufficiently large n; here we succeed in replacing a sufficiently large J, with a sufficiently
large Ny,.

The main theorem, concerning the accessibility of A on cofinality «, Theorem 3.1, implies as a special case that for every regular
A > 3y, for some k < J,,, we can find a sequence (Ps : § < A) such that u € Py = supu = 8 & |u| < Ty, |Ps| < A, and
we can fix a finite set @ of “exceptional” regular cardinals 6 < J,, so that if A C A satisfies |[A| < J,,, there is a pair-coloring
¢: [A]? > & so that for every c-monochromatic B C A with no last element, letting § := sup B it holds that B € Ps—provided
that 6 := cf(§) is not one of the finitely many “exceptional” members of 0.
© 2005 Elsevier B.V. All rights reserved.
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0. Introduction

The main result of this paper is defining for any cardinal A a set 9g9(X) of regular cardinals < A such that for the
strong limit & < A it holds that & N dp(X) is finite, and for every k € Reg N 6\0p(X), in some sense A has not too
many subsets of cardinality . It is our main aim here to use this to show: if cf(1) > u and k € Reg N u satisfies
A = supf{a : « ¢ 0o(|a|)} then A has a “good” sequence (Py : o < A), Py C [a]=¥ and if A = A*, more (see 3.5, 3.8).

This gives as a main consequence that: if . > 6, A = cf(2") then (A, «) has the BB (black box) and (a version of)
the middle diamond for all but finitely many « € Reg satisfying J,, (k) < u. Also A = 2# = u* > 6 = X has the
diamond on cofinality « for all regular « for which 3, (k) < A except finitely many.

So this is part of pcf theory [17] continuing in particular [21]. The proof of the main theorem here is adapted to be
a shorter proof of the revised GCH theorem from [21] in Section 1 we present a short and self-contained proof of the
revised GCH and discuss its potential extensions.
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By pcf theory [17,21] a worthwhile choice of a definition of power for k < A regular is A1) (or A<¥>), the minimal
cardinality of a family of subsets of A each of cardinality < « such that any other subset of A of cardinality « is equal
to (or is contained in) the union of < k members of the family (see Definition 1.2).

This gives a good partition of the exponentiation as A = A < 2 < A& (Vo)(o = cf(o) <k = A=~ = 1). So
GCH is equivalent to: « regular = 2° = T and [k < A are regular = A<~ = A].

Let 0t(A) = {k : k be regular < A and A < A=¥>}. In [21] the revised GCH theorem is proved:

® if A > 3, then 97 (1) N 3, is bounded, i.e., A = A<¥> for every sufficiently large regular x < J,,.

We can replace J,, in the RGCH theorem by any strong limit cardinal 6.

The advances in pcf theory reveal several natural hypotheses. The Strong Hypothesis (pp(i1) = u™ for every
singular p) is very nice, but it implies the SCH and hence does not follow from ZFC. The status of the Weak
Hypothesis (somewhat more than {i : cf(u) < u < A < pp(w)} is at most countable) is not known but we are
sure that its negation is consistent though it has large consistency strength, but not sure about (Ya)(|a| > |pcf(a)]).
Still better than ® would be the following (which we believe, but do not know, particularly (2)):

Conjecture 0.1. (1) for every A, 0 () is finite, or at least
(2) for every strong limit w, . > u = 9T (L) N w is finite.

Here we define a set 99(X) N 6 whose finiteness and other results on it (see 3.1 and consequences) form a step in
the right direction and suffice to improve the results of [7]. In particular, the results allow us to use “k = R, for some
n” rather than “some regular ¥ < 3,,”. This looks like the right direction in infinite abelian group theory (as there are
non-free almost k -free abelian groups of cardinality « when k¥ = R,). So we can hope to get the right objects in each
cardinality X,, whereas consistently they may not exist for arbitrary k = cf(x) < 3,. However, at the moment the
results here do not suffice to get e.g. “there is an R,-free abelian group G for which Hom(G, Z) = {0}”; for this we
need k = Ry V k = Ry. Itis quite “hard” for this to fail for every A; see [25].

The work here continues also previous work on I[A]. By [10], if A = u* and w is strong limit singular, then for
some A € I[A] and some ¢ : [/L+]2 — cf(u),if B € pandec | [B]2 is constant (or just has bounded range),
8 = sup(B), cf(8) # cf(u), then s € A.

By DZamonja and Shelah [2], using [21], if A = ™ and p is strong limit singular, then for some « < u, for some
A € I[A], if forevery A’ C A, |A’| < 0 forsomec : [A’'] — k, we have: if B C A’, ¢ | [B] is constant, § = sup[B],
cf(8) > k,then § € A. By [20, 5.20], conditions on Tp help to prove that I[A] is “large”.

On pcf theory and versions of the RGCH without the axiom of choice, see [19,9] and more in [24].

We tried to make this paper as self-contained as is reasonably possible.

Definition 0.2. (1) For an ideal J on a set X:
(@) JT = P(X)\J; we agree that J determines X so X = Dom(J) — this is an abuse of notation when
U{A : A € J} C X but usually clear in the context;
(b) for abinary relation R on Y and an ideal J on X and for f, g € XY,let fR;gmean{t € X : = f(t)Rg(t)} € J;
the relations we shall use are =, #, <, <.
(2) If D is a filter on X, J the dual ideal on X (i.e., J = {X\A : A € D}) we may replace J by D in the notation
fRyg.
(3) Let (V/1)p(t) mean {r : —¢(t)} € J; similarly 3/, vP 3P,
(4) Let S,i‘ ={6 < A :cf(6) =«}and S)<‘K ={6 < A :cf(d) < «}.

Definition 0._3. (1) Let A= (Aj:i € X), D afilter on X, and for simplicity first assume i € X = A; # . We let
(a) Tp(A) =sup{|F|: F C A and fi # f» € F = fi #p fo};

(b)
ThH(A) = Min{|F| :() F < M1(A) (1)
i) NH#fLeF=fNi#p 2 (2)
(i) F maximal under (i) + (ii)}; 3)

(©) le)(A) = Min{|F| : F C 1A and for every f] € T1A, for some f» € F we have =(fi #p f)}.
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() If{i : A; = ¥} € J then we let T/ (A) = T;;rY(A | 'Y) where Y = {i : A; # @}; note that if {i : A; # ¢} € J then
T5(A) = 0.

(3)For f € “Ord and ¢ < 3 let T/ (f) mean T/ ((f(a) : & < k).

@It TB(A) = ll)(f{) = le)(A_) then we let Tp(A) = Tf)(A) for £ < 3; similarly Tp(f); we say that F witnesses
Tp(A) = A if itis as in the definition of T} (A) = A; similarly T3 (f).

Remark 0.4. Actually the case A = A = (A, : @ < k) is enough, so we concentrate on it.

Claim 0.5. (0) If Dy € D are filters on k then T;;O ) < T;;l (L) for £ =0, 2.
(1) T3 < TR < T (L), in particular TS (L) is well defined.
(2) If (Vi)A; > 2 then TH(A) = T(A) = TA(X), so the supremum in 0.3(a) is obtained (so, e.g., TH(A) > 2¢
suffice; also (Vi)A; > 2¥ suffice).

Proof. (0) Check.
@))] Tll)(A) is well defined as every family F satisfying clauses (i) + (ii) there can be extended to one satisfying (i)
+ (ii) + (iii), so as ¢ satisfies (i) + (ii) really Tll)(fi) is well defined. If F exemplifies the value of Tll)():), it also
exemplifies T3 (%) < |F|; hence easily T3(1) < T (1) and so T3 (%) is well defined. In the definition of 75 (%) the
Min is taken over a non-empty set (as maximal such F exists), so Tg (1) is well defined.

Lastly, if F exemplifies the value of Tll) (1) it also exemplifies Tg *) > | F], so Tll) \) < T[O) ).
(2) Let u be 2. Assume that the desired conclusion fails so le)(i) < T[O)():), so there is Fo € IIA such that
[fi # f» € Fo = fi #p fl and [Fo| > TH(R) + p (by the definition of TH(%)). Also there is 7> € IIA
exemplifying the value of le) (i). Forevery f € Fythereis g € JF, such that =(f #p gr) (by the choice of F3). As
|Fol > le) (L) + , for some g € F> the set F* =: {f € Fp : g = g} has cardinality > Tl% (1) + 1. Now for each
feFrletAr ={i <«k: f(i) =g@)}clearly Ay € D*.Now f > Ay/D is a function from F* into P(x)/D;
hence, as i > |P(x)/D|, it is not one to one (by cardinality consideration), so for some f/ # f” from F* (hence
form Fo) we have Ay//D = A /D; but so

i<w:ffO=f"Oy2{i <w: flO)=gd)N{i <«:f"()=g@)}=Ap modD
and hence is # @ mod D, so =(f' #p f”), contradicting the choice of Fy. O

Claim 0.6. Let J be a o-complete ideal on k.

(DIfFA = (A ti <k)h=(:i<k)r = |Ajlthen TH(A) = Ti(X) and if A € J,B = «\A then
Tf(%) =T} (A | B). )
2) Ty ()_\) > 2K ljﬁ‘_(VJt)(A, > 2°); note that T; (L) > 2¥ includes its being well defined.
3) T/ = T; ) if (V)0 <7
@) If Dom(J) = U{A, : ¢ < ¢}, ¢ < o and ki > 2° fori < «k then TY()) = Min{T})[Ag(i | Ag) : & < ¢ and
AseJT)
(5) Inpart (4) if . = (A; 1 i < «) then the following are equivalent:
(i) for every f € [] A we have T;(f) < A;
i<k
(ii) for some ¢ < ¢, A; ¢ J and for every f € [] A; we have Tya,(f 1 Ag) < A
i<k
Proof. For example (and the one we use):
(4)Let Ay = A\ U{Ag 1 & <e}fore <¢.
First assume that & C TIA and f; # f» € F = fi #; f2. Then for each ¢ < ¢ satisfying A, € JT,

clearly FI¥) = {f | A; : f € F} satisfies |FI¥/| = |F|as f +— f | A is one to one by the assumption on
F and Flel c [T Ai; so |F| = |Flel < T})MO‘ I Ag). As this holds for every ¢ < ¢ for which A, € J* we
i€A, ¢

get |F| < Min{T})rA (A | Ae) : & < ¢, A; € Jt}. By the demand on F we get the inequality < in part (4).

Second, assume u < Min{T})M ()1 [ Ag) 1 & < ¢, A; € JT}. So for each such ¢ there is F, C [T Ai such that
¢ icA;
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f#egeFe=fF#na &l1Fel = wut. For each ¢ < ¢ let ff € F, be pairwise distinct for @ < A, and define
fo € Mk fora < u™ asfollows: fy | AL = f£ when A, € J*; f, | AL is zero otherwise.
Now check. O

Definition 0.7. For X regular uncountable and stationary S C X let (D), s mean that we can find P=(Py:ae
S), Pu € P(w) of cardinality < A such that for every A C A the set{a € § : A N« € P,} is stationary.

Definition 0.8. For A regular uncountable let /[A] be the family of sets S € A which have a witness (E, 75) for
S € I[)\], which means

(¥) Eisaclubof A, P = (Py : o < 1), Py C P(c), |Pal < A, and for every § € E N S there is an unbounded subset
C of § of order type < § satisfyingae € C = CNa € Uﬁ<8 Ps.

Claim 0.9 (/15]). (1) For A regular uncountable, S € I[A] iff there is a pair (E,a), E a club of A,a = {(ay :
a < A),ay € o suchthat p € ap = ag = agNPands € ENS = § = sup(as) > otp(as) (or even
8§ € ENS = § =suplas)), otp(as) = cf(§) < 4.

(2) If k™ < A and A, k are regular, then for some stationary S € I[A] we have § € S = cf(8) = «.

Claim 0.10. (1) Assume that fy, € “Ord for a < A, A = 2°)" or just A = cf(A) and Va < V) (|| < L) and
S1 € {6 < A :cf(8) > k} is stationary. Then for some stationary S» C S| we have: for each i < «k the sequence
(fa() 1 @ € $7) is either constant or strictly increasing.
() If D is a filter on k and f, € “Ord for « < § is <p-increasing and cf(§) > 2¥ then (f, : « < 8) has a <p-eub
fs €40rd, i.e.,

Da<d8= fo<p fs

(ii) f/ € ¥Ord & f' <p Max{f, 1,}; then Qa < 8)(f' <p fa).

Proof. Part (1) follows easily from the Erdé6s—Rado partition theorem (see 14.5 in [5]) as follows: color («, 8) for
a < fin 81 by the least i < « such that f, (i) > fg(i) if there is such i < « and color («, B) by k otherwise. Since
for every colori < « there is no homogeneous set with color i of cardinality w, there is a homogeneous stationary set
S’ C 8} with color k. Since for each i < « there is club E; so that either f, (i) is constant on §’ N E; or for every
o < Bin E; N S it holds that f, (i) < fg(i), by letting S» = S1 N(),_, E; we finish the proof of (i).

Part (2) is Remark 1.2A on page 44, which follows from the pcf Trichotomy Theorem, which is Claim 1.2 on p. 43
of [17]. O

Observation 0.11. Assume that J, J1, Jo are ideals on k and J = Jy N Jo. If f € “(Ord \ w) then TJK(f) =
Min{T} (f), T7,(f)}.

Proof. As J C Jy clearly T;(f) < Ty,(y) for £ = 1, 2. This proves the inequality < in the observation. For the other
inequality use pairing functions foreachi < x. O

1. The revised GCH revisited

Here we give a proof of the RGCH which requires little knowledge; this is the main theorem of [21] — see also
[22, Section 1]. The presentation is self-contained; in particular, the pcf theorem is not used (hence proofs of some
pcf facts are repeated here in weak forms).

Definition 1.1. (1) For A > 0 > o = cf(o) let A%% = Min{|P| : P € [A]=%; every u € [A]=? is the union of < o
members of P}.

(2) Let Alol = plowol,

(3) For & > 0lo<l et Alox01 = Min{|P| : P € [A]=* such that for every u C A of cardinality < 6 we can find
i*<oandu; Cufori <i*suchthatu = U{u; :i < i*}and [u;]=¢ C P}.

(4) We may replace 6 by < 6 with the obvious meaning (also < «).

The following is a relative of Definition 1.1 not used in Section 1 but mentioned in 1.3.
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Definition 1.2. (1) For A > 6 > cf(c) = o let A<??> = Min{|P| : P C [A]?; every u € [A]=? is included in the
union of < o members of P}.

(2) Let A<C> = ) <0.0>

(3) For A > 0<%%> let A<®%9> = Min{|P| : P C [A]= such that for every u C A of cardinality < 6 we can find
i*<oandu; Cufori <i*suchthatu C Ufu; :i < i*}and (Vv € [4;15)@w € P)(v C w)}.

(4) We may replace 6 by < 0 with the obvious meaning (also < «).

Observation 1.3. Let L. > 0 > k > o = cf(0).

(1) A<~ < Alxd < ASK> 40K,

(2) 1=00> < Alo0l < 3<0.0> 4 20 (hys see (3)).

(3) If cf(0) < o then A<70> = Y{1<00"> . 5 < 0’ < 0} and Mo = L (M09 . 5 <9 < 9).
(4) k<0,/<,0> < k[c,/(,@] < k<0,/<,0> +2K.

Proof. Easy. O
The main claim of this section is

Claim 1.4. Assume

(@ Ro<o=cf(c) <k <d <0,
(b) J is a o-complete ideal on «,
(©) A= (A :i<k)andd < Aj foranyi < «,
(d T;(A) = A,
(e) )\53’0] = Aj fori < k (yes d not 9;!),
(f) ifd; < dfori <« then [] 9; <9,
1<K

(g) 0 =0 and 2’ < .
Then A9:01 = ),

Remark 1.5. (1) We may consider using a 1 *-free family f (see Section 2).
(2) Actually we use less than T]1 (A) = A; we just use
(a) there are fy € [] A; fora < A suchthata < B = fy #J f3,
i<k
(b) there are f, € [] A; for @ < A such that for every f € [] A; for some o, =(f #J fa)-
i<k i<k

(3) Actually, “N¢ < o is not used here.

Proof. Let f = (f, : @ < A) be pairwise J-different, f, € [T2i Gea#B={i: fuli)=fp@)} € J).
1<K
Foreachi < « let P; C [A]1=Y be of cardinality A; and witness Al[a,o] = A;; thatis: every u € [2:1=? is the union
of < d members of P;; such a family exists by assumption (e). Let M < (H(x), €) be of cardinality A such that
A+1CS Mand f, (A i <k),(Pi:i <k),J,P(k) belong to M.
Let P = M N [A]=Y. We shall show that P exemplifies the desired conclusion. Now P is a family of < | M| = A
subsets of A each of cardinality < 6; hence it is enough to show

() ifu € [)»]5‘9 then u is included in the union of < d members of P (or equal to; equivalent here as 29 < X hence
Uy Cuy € P=u; €P).

Proof of (): Foreveryi < k letu; = {fy(i) : ¢ € u};sou; € [1:1=?, and hence we can find (vi,j © J < Ji) such that
vi,j € Piandu; = Ufv;j : j < jitand 0 < j; < d.Foreachn € [] ji let
i<k

wy={aecu:i <= foi) €viyupl-

Clearly u = U{wy, : n € [] ji} as forany o € u foreach i < k we can define ¢; («) < j; such that fi (i) € Vi ()
i<k
and let ny = (gi () : i < k), clearly ny € [] ji and so @ € wy,. By the assumption (f) as i < k = j; < 9, clearly

i<k
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| [T jil < 9 and hence it is enough to prove that n € ] ji = wy, € P.Asu € M A |u| <0 = Pu) C M itis
i<k i<k
enough to prove, for n € [] Ji, that

i<k

® wy is included in some w € M N A]=9.

Proof of ®: As i < k = |P;| = A; and T;(A) = X by 0.6 there is G < [] P; satisfying |G] = A and

i<k
(Vg € [I1P)Eg € O){i : gli) = g'()} € JT). As (P;i : i < k) € M without loss of generality G € M
i<k
andasA+1 S M wehave G € M. Apply the choice of G to (v; ) 11 < k) € I1 Pi; soforsome g € G € M the set

i<k
B =:{i <« :vjyi = g(i)} belongs to JT.Clearly B € M (as B C k, P(k) € M and |P(k)| <2 <6¥ <A C M)
and hence (v; ;) : i € B) € M hence w = {@ < A: for every i € B we have f,(i) € vy} belongs to M.
Now |w| < [T lvipa)| < 0 =0 becausear < B < X = fo #7 f8 = fo | B # fg | B.Lastlyw, C w as

ieB
a€wy&i <k = fu(i) € viyi),so we are done. [
Remark 1.6. We could have used instead the w above the set w’ = {o < A : {i : fo (i) € vini)} € JTY).

To make this section free of quoting the pcf theorem we use the following definition.

Definition/Observation 1.7. (1) For a set a of regular cardinals and o0 = cf(0) < cf(}) let!

ng[a] = {b C a: thereis aset F C I1b of cardinality < X (@)
such that for every g € l_[ b we can find j < o and 5)
fi € Ffori < jsatisfying6 € b = (Ji < j)(g(0) < fi(0))}. (6)

(2) Clearly JZ, [a] is a o -complete ideal on a but possibly a € JZ, [a].

Remark 1.8. In fact, if Min(a) > |a|, JZ,[a] = {b C a: pCfa—complete([’) C A} = {b C a: bis the union of < o
members of J_,[a]} can be proved, but this is irrelevant here.

For completeness we recall and prove Claims 1.9-1.12, used in the proof of 1.13, the revised GCH.

Claim 1.9. » = A%< ywhen

(@) A > 2<% > o6 =cf(0) > Rg and cf(0) ¢ [0, 0),
(b) for every set a € Reg N AT\O of cardinality < 6 we have a € JZ, +lal.
Proof. Let x be large enough; choose M < (H(x), €, <j‘() of cardinality & where <j‘( is any well ordering of H ()
suchthat A +1 € M and let P = M N [A]<Y; we shall prove that P exemplifies A = Al%><¢1,

Clearly P € [A]1<? has cardinality A so let u € [A]<? and as 2<% < Aitis enough to show that u is included in a
union of < o members of P, thus finishing.

Let f be a one-to-one function from ¥ =: |u| onto u so k < 6. By induction on n we shall choose f,,, v, such that

® (a) fyis afunction from« to A 4 1,
(b) v, = (vp¢ 1 € < &) is a partition of « which satisfies
en <oandk =U{v, e 1 & < &},
(¢) foi) = Aforeveryi < «,
(d) far1() = fu@) fori <«,
(€) @) < fu(i) andif f(i) < f, (i) then frr1G) < fu(Q),
() fu | vne € M foreache < g,.

1 See the use in 3.1. In the notation of [17] this means that: b € JZ, lal < pefo-comp(B) S A
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This is sufficient: {Rang(f, | vye) : n < w,& < &} is a family of < o sets (as 0 = cf(o) > Ny and
n < w = o > g,) each belonging to P (as f, | vpe € M) and their union includes u because for every
i <k, fu(i) = f(@) for every n large enough (by clauses (d) + (e) of ®).

So, all we need to do is to show, by induction, that we can choose the elements of ®. For n = 0, f;, is constantly A.
So assume n = m + 1 and f, is given; let,

uno ={i <k fu@)= f@)}
up1 =1{i <k : fim(i) > f(i) and is a successor ordinal or just has cofinality < 6},
Un,2 = K\Un,0\Un,1-

As2¢ <250 <), clearly the partition (u, 0, Un,1, Un,2) Of k belongs to M, so it is enough to choose f,+1 [ un,¢
separately for £ =0, 1, 2.

Case 1: £ =0.
Let fn [ Upo= fm [ Un,0-
Case 2: ¢ = 1.

Let C = (Cy : @ < A) € M be such that Cop = 0, Cy4+1 = {ae}, Cs is a club of § of order type cf(§) for limit ordinal
8 < A.Let fy [ un,1 bedefined by f,(i) = Min(Cy,;»\ f(i)). Foreach e < g, the function f;; | (tn,1MNvy,e) belongs
to M and hence (Cy, i) : i € Un,1 NUp,e) belongsto M, and f;, [ (un,1 Nm,e) € I1 Cy,(»; hence it is enough

i€y, 1NV e
to prove that [I Cy.i)is S M. Butas u, i, ve, C and f, | vn. belong to M, clearly [T Crao
i€y, 1NV e i€y, 1NV e
belongs to M; hence it suffices to prove that it has cardinality < A.
Subcase 2A: cf(0) > «.
Note that sup{|Cr,i)| : i € um1 N Vmel < 6, 50 as |up1 Nvmel < k < 6 and 2<0 < ) clearly

| Il Cp.@l <A, s0we are done.
i€Up, 1NV e

Subcase 2B: cf(6) < «; hence cf(9) < o.

Let0 = X{0; : ¢ < cf(0)}, 0 € [k, 0) increasing with ¢ and let uy,,1,; = {i € un1 :1Cy,, ;)| < 0¢}. So for each
¢ < cf(f) we have (6;)° < 2<% < X and Su T (un,1,6 N Ume) € M. So we have a partition to cf(f) < o cases.

Case3: ¢ =2.

It is enough to define f;, [ (Ve Nup2) foreache < g,. Let Ay, = cf(fi(i)),sothat (Ap; : i € vy eNup2) €M
and hence there is a sequence (h,; : i € up2 Nuvye) € M where hy, ; is an increasing continuous function from A, ;
onto some club of f;, (7).

Leta={A,;:i € uy2 N vy} Applying assumption (b) and Definition 1.7(1) it is easy to finish.

In detail, as a € JZ, [a] there is a set F < [T{dni = i € up2 N vpye} of cardinality < A witnessing

1
it; without loss of generality# € M and hence F C M. Let g € [[{Ani : i € upn2 N vy} be such that
i €up2Nupme = hyi(ghn,i)) = f(i) (e.g. g(An,;) is the minimal ordinal such that this occurs).
By the choice of the family JF there are ¢, (%) < o and fn’w@ € F for { < &ne(x) such that (Vi €
Up,2 NV e)(FE < En,e () ((n,i) < fy;l,s,;()\n,i))~
Let vy ec =1{i € Ume : { < u,¢(*) is minimal such that g (A, ;) < fn’ﬁgyg(kn,,»)}.Now we define f;, | (4 2NVy.¢)

n

by choosing fu [ (un,2 N Vm,e,c) bY (fu | (Un2 N Ume,e)) @) = hm,i(f,;,gyg()\n,i)) U

Claim 1.10. Thereis » = (A; : i < k) and a o-complete ideal J on k such that Ty(X) > »andi < k = 25 < X; < A
when

® (a) 2¥ < A, Rg <0 =cf(0) <k,
(b) a € Reg N A\(2)™ has cardinality < k and a ¢ JZ, la].

Proof. Let A = (); :i < «)listaandlet J = JZ, [a], and by induction on @ < A we shall choose a function f, € [1a
such that B < o = fg <y fu. Arriving at o forevery b C alet 7§ = {fg | b : B < «}; so by the definition of
JZ,[a], forevery b € JT :=P(a)\J, there is gy € [ ] b witnessing it because the set Fg does not witness b € JZ, [a].
Let fo € Ila be defined by fo(0) = sup{gp(0) : b € JT and 9 € b}. Now f, € Tlaas O € a = f,(0) < 6 which
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holds as [J*] <2/ < 2¢ < 0. Alsoif B < @ and we let b% =: {0 € a: f3(9) > fu(H)}, then b € J 7T implies easy
contradiction to the choice of gy« (and fy). So we can carry on the induction and so (fy : @ < A), fo € I1 A where
B

fol) = fa (i) exemplify T (1) > A as required. [
Remark 1.11. This is the case Min(a) > 2!9 from [11, XIII].

Claim 1.12. If ® below holds, then we can get equality in 1.10, i.e., there is X' = (X} 11 < «) such that
(o) 2 < Al < A,
(B) if f € T1 A; then Ty (f) < &,
| <
) TJ(X/)1=K)»,

where

® (a) 2¥ < A, ¥9 <o =cf(o) <k,
(b) 2 < A; < A,
(c) J is a o-complete ideal on «,
@ T;(2) =

Proof. Clearly {i : 1; < (25)™} € J forn < w (as ((2°)T")* = (2¥)*" by 0.6(2)); so by 0.6(1) without loss of
generality i < x = A; > (2)72.
As (] (A + 1, <) is well founded (i.e., has no (strictly) decreasing infinite sequence of members) and there

i<k

is f e [ + 1) satisfying Ty (f) > X (ie. A itself), clearly there is f € [] (& + 1) for which T;(f) > A
i<k i<k

satisfying ¢ € ] (A + 1), g <y f implies Tj(g) < A. Now as above {i < « : f(i) < (2")*2} e J, so

i<k

without loss of generality i < « = f(@{) > (2)*2. Let A = |f(@)]; hence A/ satisfies demands (o) + (B)

of the desired conclusion, and T ()_J )_= T;(f) = X So assume toward contradiction that it fails clause (y),

so by the last sentence we have T;(A') > A and we shall derive a contradiction, thus finishing. So there is

{(fo @ < At} € [l Al suchthat e # B = fo #5 fp, and let uy =: {B : fg <y fo}. Note that for

1<K
a<B<ABecuy = fo<y fg) =B €uy = fo <y fg),as fo #; fp. Il forsome o < A, |ug| > A,
then {fg : B € uy} exemplifies that T;(fy) > A and clearly f, <y A < f, a contradiction to the choice of f.
Soa < AT = |ug| < A. Hence by the Hajnal free subset theorem [5] there is § € AT of cardinality AT such that
(Vo # B € S)(B ¢ ug). SoVa # B from S—(fu <; fp), contradicting 0.10(1). O

The Revised GCH Theorem 1.13. If 0 is strong limit singular then for every A > 6 for some 0 < 0 we have
A= AL

Remark 1.14. (1) Hence for every A > 6 forsomen < w and ky < (€ < n),Rg = ko < k] < -+ < k, = 6 for
each? < n,2¥ > kyrjork = Ak <kert] where Kk, = (20T,

() If o € (cf(®),0) and A > 0 then Al70) = Alo<f] = y (3100 . 9/ ¢ [, 0)).

(3) Note that 1.13 with A = A[%<1 4 1.14(1) holds also for regular 6 strong limit uncountable by the Fodor lemma.

Proof. We prove this by inductionon A > 6.

Let o =: (cf(0)T < 6.

Case 0: A = 6.

Let P be the family of bounded subsets of 8, so |P| = 6 and every u € [61=Y is the union of < c¢f(#) members of
P; hence (by Definition 1.1(1), (4)) we have A1%f] = i,

Case 1: A > 6 and for every a € Reg N A\@ of cardinality < 6 we have a € JZ, [a].

By 1.9, we have A%< = ) (recalling cf(9) < o and 1.3).

Case 2: Neither Case 0 nor Case 1.

Trivially for every k € [0, 0), clause (a) of ® of 1.10 holds. As this is not Case 1, the assumption (b) of ® of Claim
1.10 holds for some « for which o < k < 6, and hence the conclusion of 1.10 holds for some A = (Mi 1i <k)and J;
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we have 2 < A; < A and Ty ()_\) > A where J is a o-complete ifleal on k. So the assumption, i.e., ® of Claim 1.12,
holds, and hence also its conclusion, which means that for some A’ we have

® (1) J is a o-complete ideal on «,

(i) M =) i <«k),

(iii) 2° < A} < A (as A} < A;),

(iv) Ty (V) = A,

V) Ty(f) < rif fe [ AL

1<K

We can find an increasing sequence (6, : ¢ < cf(6)) of regular cardinals from the interval (o, 6) with limit 6. As we
can replace this sequence by ((6;)* : ¢ € C) for any unbounded C C cf(#), without loss of generality ¢ < cf(6) =
0% = 0,. By the induction hypothesis, for each i < « there is £(i) < cf(6) such that A} = (A;)[9€<i>’<9] > 6 or
A: < 0g(y. For ¢ < cf(9) define Ay = {i <« : 1 >0 ande(i) = ¢} and Actoyre = (i <k A < 6@ande(i) = ¢).
So (As : € < cf(0) + cf(0)) is a partition of k into < o sets and hence by 0.6(4) we know that

V0 = Min{T;)MS()_J I Ag) s e < cf(®) + cf() and A, € JT}.

Hence by 0.6(2) for some ¢ < cf(6) + cf(f) we have TJ()_J) =Ty [A ()_J [ Ag) and A; € Jt, so by renaming

without loss of generality A, = «.If ¢ > cf(f) as k < 6, 0 strong limit we get T ) < I A< () <6,a
1<K
contradiction, so ¢ < cf(6).

Now for each £ € (¢, cf(9)) we would like to apply Claim 1.4 with J, X/, 0, «, 9;,95 here standing for
J, X, 0,k, 0,0 there. (But note that 6 of 1.4 and 6 of 1.13 are not the same.) Do the assumptions (a)—(g) of ® of
1.4 hold?

Clause (a) there means 8o < 0 = cf(o) < ¥k < 9; < 0¢ which holds as 0 = (cf(ON™, 92‘ = 0; and
. <& < cf(h).

Clause (b) means J is a o-complete ideal on « which holds by clause (i) of ® above.

Clause (c) there means A’ = (A :i < k) which holds by clause (ii) of ® above.

Clause (d) there says 7;(1) = A which holds by clause (iv) of ® above.

i
Clause (e) there means (k;)[ei el A; which holds as (i) = ¢, so by its choice (k;)wl <0l — A but
+
O < 0; < 6¢ < 6 and hence, by the monotonicity in the definition, this gives (A;)wr el A as required.
Clause (f) means “if 9; < 9; fori <« then [] 9; < 9;” which holds as 92‘ = 0.

i<k

Clause (g) means 6 = 6.

So we get the conclusion of 1.4 which is k[aj,eg] = A. As this holds for every & € (¢, cf(9)) and (0, : € < cf(0))
+
is increasing with limit 6, by 1.3(3) we get A% = ) As 9; < 6, choosing 9 =: 0§+ we have finished. O

Concluding Remark 1.15. We can in 1.4 assume less. Instead of 6 = 6%, it is enough (which follows from [18,
Section 3]; see 0.5) to assume:
® forevery A’ < A we can find F C [] A; of cardinality A’ such that f # g € F = f #; g.

i<k

This is seemingly a gain, but in the induction the case (Va € RegNAT\O)(ja| <k = a € Jﬁh[a]) is problematic.
2. The finitely many exceptions

What here is needed in later sections? Only 2.10 is essential. Definition 2.14 + Observation 2.15 tells us what
the set of exceptional cardinals 0¢ ,(A) for A is; and 2.3 proves it is finite. We do not succeed in proving e.g.
AZRAR) < R, &0, 0) = A<8n> — 2. but we shall in Section 3 prove a consequence. Now all this is
used in Section 3 only if we like to say explicitly what the finite set of possible exceptions is, i.e., in 3.3, but it is not
used in 3.1 itself, which still uses Claim 2.10.

The rest clarifies the situation in various ways. In Definition 2.4 we define “A is a D-representation of A” and
when such a representation is exact/true and in Definition 2.5 we give a name to the content of 2.3: i.e., we say that
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r = ((Ay, Dy, Dy, k) : n € T) is a representation. In 2.6 we spell out basic properties of representations; in 2.8 we
ask about possible improvements, which the rest supplies.

In 2.10, 2.11 we guarantee that every A, is regular if A is. In 2.12 we deal with “Tpya(d) = Tp(A) for every
A € DT and in 2.13 we deal with how close we can get to “Dy, is a co-bounded filter on k. In 2.17, 2.18 we further
investigate the possible representations of A (needed for 3.3).

In 2.1 we prove a relative of 1.4 assuming only i < x = Afa’“’9> = A;, replacing 2¢ < A by 2° < A and getting
A<0:1m0> — ) But so far it has no conclusion parallel to 1.13. Note that Claim 2.1 is not needed for reading the rest
of the paper.

In full:

Claim 2.1. Assume

@ Ny<o=cfloc) <k <d<uc<bé,

(b) J is a o-complete ideal on «,

() A= {(Ai:i <k),

(d) Ty(A) = A and moreover this is exemplified by a 1+ -free family,
(e) Afa’“’9> = A fori <k,

(f) ifd; < dfori <« then []0; <0,

i<k

(2) 0 = 6% and 2 < i.

Then A<0:1:0> — )

Remark 2.2. (1) Recall that 7 € “Ord is (u*, J)-free when for every F < F,|F| < wp* we can find
A= (Af: feF)sachthat Ay € Jand fi # fr € F'ANi € k\(Af, UAp) = fi(i) # f2(i) (we can use
f1@) < f2@0)).

(2) The addition to the assumption in clause (d) of 2.1 compared to clause (d) of 1.4 is mild.

Proof. Let f = (f, : @ < A) be ut-free, f, € [T Ai pairwise J-different (i.e., ¢ # B = {i : fo(i) = fg(i)} € J
i<k

exists by clause (d) of the assumption).

<0,u,0>

i

For each i < « let P; € [A;]=# be of cardinality A; and witness A = X;; that is: every u € [ki]fg is

included in the union of < 0 members of
setg, (P;) =: (v : v € [4]= and every w € [v]=" is included in some member of P;};

such a family exists by assumption (e). Let M < (H(x), €) be of cardinality A such that A + 1 € M and
(M@ <k),(Pi:i <k),J,Pk) belong to M.

Let P = M N [A]=*. We shall show that P exemplifies the desired conclusion. Now P is a family of < || M| = A
of subsets of A each of cardinality < u; hence it is enough to show
(%) if u € [A]=Y then u is included in the union of < 9 sets v € setg, u (P).

Proof of (x): Let u; = {fy(i) : ¢ € u}; sou; € [1:1=¢, and hence we can find (vi,j : j < Ji) such that
v;,j € setg ,(P;)andu; =U{v;j : j < ji}and 0 < j; < 9. Foreachn € IT Jjilet

i<k
wy=f{acu:i<k= foli) € vk

Clearly u = Uf{wy, : n € [] ji} asforany o € u foreachi < x we can choose ¢; () < j; such that f, (i) € vi g ()

1<K
and let ny = (gi(a) : i < k) clearly ny € ] jiand @ € Wy, - By the assumption (f), as i < k = j; < 9, clearly
i<k
| TT jil < 9; hence it is enough to prove that n € ] ji = w, € setg ,(P). So it is enough to prove for n € [] ji

i<k i<k i<k
and w € [w,]=* that

® w is included in some w’ € M N [A]=H.
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Proof of ®: Asi < k = |P;| = A; and Ty(L) = A there is G C [] P; satisfying |G| = A and (Vg € [] P;,)(3g’ €
i<k i<k
i :gli) =g'G)} € JN). As (P; :i < k) € M, without loss of generality G € M and as A + 1 € M we have
G C M. Foreachi < k we have A; = {fy(i) : @ € w} is a subset of some A; € P;. Apply the choice of G to
(Al :i <k) €[] Pi;soforsomeg € G S M theset B=:{i: Al = g(i)} belongs to J*. Clearly w' = {or < A:
i<k

for some Y € JT foreveryi € Y we have f, (i) € g(i)} belongs to M. Now |w'| < u*;asa < B <A = fu #7 f3
but f is u*-free, we moreover have |w’| < w. Lastly, by the last two sentences w’ € M N [A]=# = P; alsow C w’
because B € JT anda €c w& i € B = f,(i) € A; C A; = g(i), so we are done. [

Claim 2.3. If0 > o = cf(c) > Ry, cf(0) € [0,0) and ) > 0, = 2<Y then there is ((Ay, Dy, Dy, ky) 1 € T) such
that

(a) T is a subtree of ®> 0 (i.e. <>€ T C ®>0,7 is closed under initial segments) with no w-branch; let maxt be the
set of maximal nodes of T,

(b) Ay is a cardinal € Q2<% Alandv < n= A >Apand ko> = A,

(c) &y is a regular cardinal € [0, 0) if n € T\maxy and k) is zero or undefined if n € maxy andn (o) € T & o <
K,

(d) if n € maxy then
(¥)a, for no k < 0 and o-complete filter D on k and cardinals ; € <7, Ap) for i < « do we have

Tp({hi i < k) = Ay,

(e) Dy is a o-complete filter on ky when n € T \maxT,

() TDU(<)L17”<(1> to < Ky)) = Ay ifn € T\ maxr,

@ if f € T] dy-<a> then Tp, (f) < Ay,

a<kp
(h) D) is the o-complete filter on maxt , = {v € max7 : n < v} such that
(@) if 1 € maxz, Dy = {{n}},
(B) ifn € T\max then

Dy = {A C maxT , : the following set belongs to Dy @)
{@ <&y ANMaxy - g~ € Dy~ca=}} (®)

() ifcf(L) > Oy thenn € T = cf(Xy) > 0,
(j) we can replace “A > 0, above by A, > 0 for any cardinal d such that cf(3) > 6 A (Vy < 3)(Va < 8)|oc||7/| < 0.

Proof. We leave clause (j) to the reader.

Case 1: Ignoring clause (i).

We prove this by induction for A > 2<Y If ) satisfies the requirement (%), from clause (d) let 7 = {<>}; A, = A
and k-~ , D_- are trivial. If X fails that demand use claims 1.10 + 1.12 to find D, «, A such that

(%) k € [0,0),D is a o-complete filter on Ko o= Ay 1 @ < k) and Ay € (2<9,A), a cardinal TD(X) = A, but
f eIl *« = Tp(f) < A

a<K

Now for each o < « we can use the induction hypothesis to find (A}, k', Dy, Dy) : n € 7Ty) as required in the claim
for Ay. Now we let:

® (@) T ={<>}U{{)"n:n €T},
(b) Acs = A, ks =k,
©) Moy~ = )\;)7‘ and K cq>—~y = K,‘;‘ fora < «,n €7y,
(d D> =D,
() Digy~y = Dg fora < «,n €1y,
(f) Des ={A: ACmaxy .- and {@ <« : {n: ()" n € ANmaxy, ..} € DX_} belongs to D},
(8) Digy~n ={{{@)"v:veB}:Be D}
Easily, they are as required.
Case 2: Proving the claim with (i), so dealing with A satisfying cf(X) > 6.
If X satisfies the requirement in clause (d) we finish as above. Otherwise, we can find « € [0, 0), D, X such that
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(%) (1) Dis a o-complete filter D on «, *={h:a <k)and ry € 2%, 1),
(i) A < Tp({hg : @ < K)).
By 1.12 without loss of generality
(i) A =Tp({(ry : @ < k) and f € [] 2o = Tp(f) < A.
a<K
Let B := {a : cf(Ay) > 64}. If B € DT and Tpip(f I B) < Aforevery f € I1X (hence TD[B()_L [ B) = X), then we
canuse A | B, D | B (and renaming); hence we are done. So assume that this fails, i.e.,

X B ¢ D" orBe DT, Tpip(f | B) > A for some f € IA.

In both cases A | («\B), D | (k\B) are as required in (*) (in the second case we use 0.6(5)), so by renaming, without
1(_)ss of generality B = (. For_each o < klet (Aye 1 € < cf(Ay)) be increasing continuous with limit A, and let
f = {fc : ¢ < ) witness Tp(A) > . Foreach ¢ < A for some i, € [] cf(Ay) we have f; < Mg (@)t < K).

a<kK

What is the number of possible 4,? At most [] cf(rq) < (65)° but 6, = 2<% o <k <6 andcf(®) =6 Vv cf(®)
a<kK
<o.

If cf(0) = 6 then (0) = 2<% = 2<% and so |{hy : ¢ < A}| < 6. < cf(r). If cf(@) # O then
cf(6) < o; hence for each ¢ < A for some y; < 0, the set Ay = {@ < « : hy(a) < y,} belongs to DT, and
~vfel l )LO,)(TDM{ (fTA) <A Ask <B@and [{A; : ¢ < A} <2F < 2<0 = g,, clearly for some pair (A, y)

o<k

the set { < A : (A¢, ¥r) = (A, y)} has cardinality A, so renaming, without loss of generality { < x = A; =k and
soagain |{h; : { < A} <0, < cf(A).

So for some h, |{¢ : hy = h}| = A, a contradiction to clause (iii) of (x) above.

We finish as in case (1). O

Definition 2.4. (1) We say that A = (}; : i < «) is a D-representation of A when:
(a) D is afilter on «,
(®) Tp(A) = 2,
(c) if f € ] »i then Tp(f) < A.
1<K
(2) We say that X is an exact D-representation of A when:
(a) D is afilter on «,
(b) Tpya(X) = A for A € DT,
(c)if f € J] Aiand A € D™ then Tpa(f) < A.
1<K
(3) We say that the D-representation is true when:
(d) cf(r) = tef(TIx, <p).
(4) We can replace the filter by the dual ideal.

Definition 2.5. (1) We say ((A,, Dy, Dy, k) : n € T) is a (9, 6, o)-representation if the conditions in Claim 2.3
hold; see clause (j) there. If 8 = 6 we may omit it. Writing just o means 6 = |7|*.
(2) We say it is an exact/true representation when each (A~ .o~ : o < ky) is an exact/true D, -representation of A,;.

Claim 2.6. (1) Assume

® (a) A= (Ai 11 < k) is a Dy-representation of A,
(b) M= (Ai,j : J < ki) is a Dj-representation of A,
(¢) Dis Xp,(D; :i < k), ie., the filteronu = {(i, j) 1 i <k, ] <k;}
definedby D ={A Cu:{i:{j <«ki:(i,j)e A} e D;} € D,},
(d) cf(X), cf(r;) are > |ul and X, X;, \; j are > 2lul,

Then & = (Ai,j : (i, J) € u) is a D-representation of A.

(2) Like for exact representations, i.e., if in ®(a), (b) we further assume that the representations are exact then also X

is an exact D-representation of A.

(3) Like for true representations: if »; = tcf( [ Aij, <p,), A = tef([] Ai, <p,) then . = tcf([] Aij, <p).
J<ki i<k (i,7)

Similarly for min-cf, efc.
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(4) Assume that D is an R-complete filter on «, X = (A 11 <«k)and Tp(A) > A >2andi < k = A > 2. Then
we can find X such thati < k = 2° < X! < A; and )" is a D-representation of A. If we demand only Tp (L) > A then
we know only A; < A;.

Proof. (1)

()1

(¥)2

A=Tp((hij - (G, J) €u). -
[Why? Let G' = {g,, : « < A;} witness that Tll)i()J) = X; and let G* = {g} : @ < A} witness that
T})*(X*) = A. We now define G = {go : @ < A} where g, € [] A is defined by go((i, j)) = g;z(i)(j)
(i, j)eu
and we can easily check thata < B < A = g4 # gp mod D, so G witnesses that Tll) () > A and so by clause
(d), Tp(A) = A.Now if g € [ 2;; then for each i the function (i.e. sequence) (g((i, j)) : j < ki) belongs
(i, j)eu
to [] A;j, so for some y; < A; we have {j : g((i, j)) = gj/i(j)} € Dl.+. Similarly for some 8 < A we have
J<ki
i <k:yi=gg)}e Dy . Easily, {(i, j) € u : gg(i, j) = g(i, j)} € DT, so G witness that Tp(X) = A is as
required.]
If g € II{A; ; : (i, j) € u} then Tp(g) < A.
[Why? Without loss of generality g((i, j)) > 0 for every (i, j) € u. Foreachi < «,letg; € [] A;; be
J<ki
defined by g;(j) = g((i, j)). So gi € [ Ai; and hence u; =: Tp,(gi) < A;; hence there is a sequence
J<ki
(hi, © @ < ;) such that hl, € T[] g(j) and (VA € [] g(j)Ba < wu)(—=(h #p, h.)). Clearly
J<ki J<ki
o= (i :i < k) € [] A and hence u, =: Tp, (1) < A; taking (g}* : a < wu.) exemplifies this. We
i<k
now define f;* € (‘]:[ g((@, j)) by f((, j)) = h;y(i)(j) and it suffices to show that Tp(g) < u.(< A) is
i,j)EU
exemplified by { f;* : @ < v,} which is proved as in (x)1, the second half of the proof.]

So we are done.

(2) Similarly.

(3)By [17,1].

(4) Easy (and proved above). O

Remark 2.7. So if D is defined from Dy, (D; : i < k), as in 2.6, and A = (Aijj 2 G, ) €u)y,ri =Tp,({Aij i ] <

Ki)),

A =Tp,((Ai :i <«)), then . = Tp(R).

Question 2.8. We may wonder whether, for Claim 2.3:

(1) If M is regular can we add: Each L, is regular. Can we moreover get the representation to be true?

(2) Can we add the case of nice filters and get exact representations? (On nice filters/ideal, see [17, V], [15].)
See below 2.11, 2.12(2), but first

Observation 2.9. (1) Assume that

(a) Ji, Jo are ideals on «k with intersection J.

(b) f € “(Ord\w).

Then T; (f) = Min{Ty, (). 1, ()}. )

(2) If (a) above holds and X is a J-representation of A, then for some £ € {1,2}, A is a Jy-representation of A.

(3) Assume A = Ty, (A) and Ji a o-complete ideal on k,0 > Rogand J = {A Ck : A e JiorA e J1+ and
Ty, +00\a)(A) > A} Then J is a o -complete ideal on k (extending Ji and, consequently, k & J>).

Proof. Easy; e.g.

(1) By using pairing functions. O
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Claim 2.10. If A = (A; : i < &) is a J-representation of A, A > cf(A) > 2 and » > cf(L) = cf(}) > 22 and J is

an N1-complete ideal on k then for some R-complete ideal J' D J, the sequence X is a J'-representation of % and

[1 2i/J has true cofinality cf()) (hence {i : A; singular} € J' when X is regular). We can replace R by o = cf(o).

1<K

Proof. First assume A is regular. By the pcf theorem there is ™ C « such that A ¢ pcf{cf(X;) : i € x\u*} and

cf(x) = cf( [ Ai). First, assume that Xisa (J + u*)-representation of A, so A = Ty ,* (A), but this implies that for
i€eu*

some u € (J +u*)™ we have that [T %i/((J +u™) | u) has true cofinality cf(1) by [20, 1.1], actually a variant of [20,

1.1](2); see the e-version. -

[Why? Apply [20, 1.1](2) with J +u*, (A; : i < k), 2" here standing for J, (f(i) : i < k),  in the assumption there.

This is acceptable, as clearly the assumption there holds, so by the conclusion of [20, 1.1] there are u € (J + u*)™

and 2/ = (A; : i < k) satisfying 2 < A; = cf(A]) < A; such that A = tcf(J] A}, <j4u*). By the choice of

LEU

u*,{iecu: k; = A;} € J +u*, a contradiction to “Lisa (J + u)-presentation”.]

So“risa (J+ u*)-representation of 1 is impossible. Hence by 2.9(3) we have Xlu*isa(J | u*)-representation
of A, so without loss of generality u™ = «x,s0 A > maxpcf{A; : i < «k}.LetJ; ={u C«x:ue€ Joru ¢ J and
Pm)NJy € J}where J» = {u C k : u € J or for some v € J we have A > max pcf{); : i € u\v}}. Clearly
J1, Jo are ideals on « extending J and by the definition we have J;1 N J» = J. So by 2.9 for some ¢ € {1, 2}, Xisa
Je-representation of A.

Case 1: £ =1.

So A =Ty, (1) and hence by [20, 1.1](1) for some v € (J1)* we have that [] A;/(J; | v) has true cofinality A.

1S
So if u € Jr\J, then for some u’ C u,u’ € J and A > max pcf({A; : i € u\u'}), but by the definition of J; we
have J; | (u\u') = J | (u\u') and hence (v N (u\u')) J(w Nu’) = vNu € J.But this means v Nu € J for every
u € J>\J and hence v € Jp, a contradiction.
Case 2: £ = 2.
By the pcf theorem, [] A;/J> has true cofinality A.
1<K

So we have finished the proof for the case A is regular; hence we are left with the case A > cf(X) > 22 Let
(Ae 1 € < cf(X)) be an increasing sequence of regular cardinals > 2* with limit A. For every € < cf(}) there is
A€ = (A{ 11 < k) € i< A such that T;(X°) = A and f <; A* = T;(f) < Ae. Hence there is an Rj-complete
ideal J¢ on k extending J such that T, (A€) = Aebut f € [T (A€) = T (f) < de and tef(IT; <, A7) = Ae.

As we are assuming cf(A) > 22K, clearly for some ideal Ji on « the set {¢ < cf(}) : Jo = Ji} is unbounded in
cf(L).

Without loss of generality J. = Ji forevery € < cf(d). Clearly e < ¢ = {i : 1] = kf} € Jy, so by 0.10(1) it
follows that without loss of generality (A€ : € < cf())) is a <y, -increasing sequence and hence by 0.10(2) it has a
lub f modulo J; without loss of generality f is < A, and without loss of generality it is a sequence of cardinals —
callit A = (A, :i < k).

Clearly cf([];_, A}/ Jx) = cf(A) and Ty (X') = A = T;, (V).

Let A={i <« :A =%} Nowif A € (J)Tand I = J, + (v \ A) satisfies f € [[ A} = T7(f) < A, ie., [is

1<K
as required, we are done. Otherwise, by monotonicity 77 (X) > A and there is f1 € T1; < A satisfying T7(f1) > A.
Note that if « \ A € J; then T;; (1) > A; hence letting f> = (fi [ A)U Q' | (k \ A)) we have f» € [] A
1<K
but 7;,(f2) > A; but by the choice of f = A, for some ¢ < cf(1) we have A’ < A° mod J. But we have
Ty, (A*) = AL, Ty, (X)) = A > A¢; contradiction. [J

Conclusion 2.11. In 2.3 we can add:

(j) if A is regular then every A, is regular and for € 7\ max7 we have A, = tcf( [[ Ay~)/Dy).

a<kp

Now 2.8(2) (and also 2.8(1)) are answered by:
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Claim 2.12. Assume? that the pair (K[S1, V) fails the covering lemma for every S € Dy (k) (or less). Then in 2.3 we
can add:
() Ifa € RegNA\QR<D*t and |a| < 0 and a € JS la], A > 2<Y then for some k = cf(«) € [0, 0) and k-complete
ideal J onk and » = (A; 1 i < k) we have:

(@) cf(h) > 2<% = cf(r;) > 2<°,

(b) (A; i < k) is an exact true J -representation of A,

(c) if A is regular then every ); is regular.
(2) For any normal filter D on k we can further demand in part (1) that for some function v : k — « the pair (J, 1) is
niceand A € D = 1" (k\A) € J.

2A) If 0 = 0 = cf(0) > Rg and D is a normal filter on 9 we can add in part (1) that the pair (J, t) is nice and
A € D = 17 (k\A) € J. Similarly for normal filters on [o]<?.
(3) So in 2.3, we can strengthen clauses (f), (g) to

OTifA e D;, n € T\maxg then Ip,+a({(Ap~<a> : & < ky)) = Ay (and hence the parallel result for Dy),

(@1 ifn e T\maxy, A € Df and f € [] hy<a> then Tp, 1 A(f) < A, (and hence the parallel result for

(Y<Kn
Dy,), this being an exact representation; see Definition 2.4(2),
(h)T for each n € T\ maxg for some function v, : ky — ky the pair (Dy, 1) is nice,
() if A is regular then every X, is regular.

Proof. By [15, Section 3], very close to [16].

(1) There are D a k-complete filter on k and A; < X such that Tp({A; : i < k)) > A (by the pcf theorem).
By the results quoted above without loss of generality D is a normal filter on ¥ x « for the function ¢ defined by
(a, B) = a. Now we can choose (D, 1) such that D is a nice filter on ¥ x &, Tp(%) > A and rk> (A) is minimal. As
Dy € D, = Tp, \) < TDZ(A) without loss of generality k3 (A) rk%(k) and so A € D+ = rkD+A(k) =
rkD+A(k) = rk%(k) and TD+A(A) > TD(X) If TD+A()\) > X then for some f € ]_[k Tp+a(f) = A, let

= (f(@i):i <«k),s0 A <p A;hence rkD+A(A ) < 1k +A(}\) and we get a contradiction).

(2), (2A), (3) Left to the reader. [

Claim 2.13. We can add in 2.3
(k) for each n € T\maxr, for every unbounded A C i, the set U{[wa, wo 4+ w) : o < k'} belongs to D;.

Proof. By [17, VII, Section 1]. O

Definition 2.14. Assume R < cf(o) =0 <0 < A.

(1) Let og(A) = Dgye(k) = {k : k € Reg N O\o such that we cannot find ((X,;, Dy, Dy, ky) : n € T) asin 2.3 with
D, being «,-complete for n € 7 satistying « ¢ {k, : n € T}} (and so finite!; see below). If o = ®| we may omit it.
If o = N1, 60 = A we may omit both.

(2) Letd; (1) = 0! oo(A) = {k : k = cf(k) < A and for arbitrarily large @ < A we have k € 0¢(|c|)}; note that if
cf()) > Rg we can deduce the finiteness of 01 (1) from the finiteness of 0g(1).

(3) Let o, (1) = 0’&0’9()&) = 0¢(A) U {Ro} for £ = 0, 1; similarly D’M(A).

If we omit 0 we mean o = K.

Observation 2.15. (1) Ile <o =cf(o) <6 < A then d° o0 is finite.
(2) If cf(X) > Rg then ol 0()») is finite; we use 2.17(1), 2.18(4).

Proof. (1) Let ((A,, Dy, Dy, ky) : n € T) be asin 2.3. If 0279 (X) is infinite we can find pairwise distinct k" € 0279 Q)
forn < w.Forevery n € maxy there is a finite w, C w such that {«;;¢ : £ < Lg(M}N{c" :n < @} C{c" :n € wy};
in fact, |wy| < £g(®).

By an easy partition theorem on trees we can finish. (That is, we use dpy : 7 — Ord which is defined by
dp(n) = U{dpr(ner) : n{a) € T}; it is well defined as 7 has no w-branch (as n <v = 1, > 1,). Now by
induction on the ordinal & we can observe that if p € 7 and dp7(p) < « then there is 7' = 7;! CTandw C w

2 Without this assumption much more follows; see [17, V].
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finite such that p € 7', 7’ closed under initial segments and p < v € 7' = {a < ky : v (@) € 7'} € D and
max7» € maxg and v € max7s = w, = w. For p € max7 this is trivial; otherwise use that D is 81-complete. For
p=<>wegetT =T_._;let D;7 =Dy l{vinQve maxT},D,’7 =D, I {a: na) € T’} forn € T, so that for
every n.e w\w, {Ay, D%, D;, Kky 11 € T') exemplifies k" ¢ ag’g(k) (on stronger partition theorems see [6]).

(2) Similar. O

Remark 2.16. Note that if ((A,, D,, Dy, k) : n € T) represent A strictly (see Definition 2.17(1)), the regular
cardinal ¥ does not belong to {x;, : n € T} and (I4; : i < k) is an increasing sequence of subsets of max7, then
Ul :i <k} e DI = (3i <k)U; € DE_). We can make this central.

Definition 2.17. Letr = ((A,;, D;, Dy, ky) : n € T) be a o-representation of A.

(1) We say r is strict if Dy, is «y,-complete for each n € T (for n € max7 this is uninteresting).
(2) We say that 0 = (0, : n € T) is a strong/weak witness for r when:
(a) each 0y is a set of regular cardinals,
(b) if & € Reg\d, and n € 7\ max7 then
stronger version: {o : @ < Ky and 0 € V;~cq> V 0 = Ay} =P mod Dy,
weak version: A = {o : @ < kyand 0 & 0, A O # Ay~<q>} belongs to Dn+ and TD;JFA(()L,]A@D o<
Kn)) = Ap.
(3) We say above that 9 is finitary when each 0,, is finite.
(4) We say that r has a d-witness if it has a finitary weak witness 0 with 9. = 0.

Observation 2.18. Assume 6 > o = cf(o) > Rg and cf(0) ¢ [0,0) and L > 9, cf(3) > 6 and Vo < 0)(VB <
(|81 < 9).

(1) Ifrisa (9,0, 0)-representation of A then for some s:
(a) sisa (9, 0)-representation,
(b) T°=T",
(c) Dy, 2 Dj, forn € T* (moreover D; = Dy + Ay for some A, € Dnﬂ,
(d) s has a weak witness 9.
(2) If we waive the moreover in clause (c) then we can add
(e) s is true.
(3) There is a sequence (3, : n < ny) when n, < w such that
(a) 9, S Reg NO\o is finite,
(b) A has a (9, 8, o)-representation X, with 0,-witness for each n (and moreover is true),
(c) ifk € RegNO\(o U, ,(1)) then for some n, K ¢ 0.
(4) A has a strict (9, 6, o)-representation.

Proof. (1) We choose to proceed by induction on y: for n € 7 with dp7 (1) = y choose (A,, 9,) such that

(*) (a) 0, is a finite subset of Reg N 6\o,
(b) if n € max7 then 0, = A;; = ¥ (or is not defined),
(c) if n € T\ maxg then
[(x) Ay € D,;r,
(B) ky €0y,
(y)if « € Reg N O\(c U dy) then A; = TD,,+AH(()\nA<a> Doa < ky) and A, <
TDU+An+{a<KUZKEDn”<a>}(<)\'T7A<Cl> o< Kn>)-
If we succeed in that we define s as ((A;, Dy + Ay, Dy, ky) : n € TF) with D) computed from the rest and
0 = (0, : n € T"), clearly they are as required.

So let us carry out the definition. If » € maxy this is trivial. Otherwise (0;~<¢> : @ < &) is well defined and
we let A;; = {a < ky : |dy-<a>| = n}, s0 (A?7 i n < w) is a partition of k;, but D, is o-complete, o > Ry
and hence by 2.9 for some n = n(n) we have A, = TDU+A77(()\,7A<O,> i o < ky)). Now we can choose A; from
{A:AC A{;, Ae D;r and Ay = Tp,+A((Ay~<a> : @ < ky))} such that N{d,° <o~ @ o € Ay} has minimal size.

Lastly, let 9,; = N{0~<o> : @ € Ay}; itis easy to check that it is as required.

(2) Use each time Claim 2.10 in the end.
(3) We try to choose 9, by induction on n < w such that
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® (a) 9, € Reg N H\o is finite,
(b) X hasa (9, 0, o)-representation with a 0,,-witness,
(c) if n > 0 then N{d,, : m < n} € 0y,
(d) under (a) + (b) + (c), the set N{d,, : m < n} has minimal size.

By part (1) and 2.3 we can choose 0g and clearly for some n* < 09| + 1, 9, is defined iff n < n*; so we are done.
(4) We repeat the proof of 2.3; however using 1.10 we need to ask there somewhat more: for some «; € [o, k], the
ideal J is k1-complete and k\x1 € J (so we can use (A; : i < k7). As in the proof of 1.10, we use [17] without loss
of generality k1 = |a| is minimal. Now if a is not the union of any < x1 member of {bg[a] : 8 € A N pcf(a)}, let
(Ai i < k1) list a and let J be the kj-complete ideal on «1 generated by {{i < 1 : X; € bg[a]} : 0 € AN pcf(a)}. If
ais U{bg,[a] : ¢ < &*} where e* < k1 and 6, € pcf(a) N A for e < &* then, by [17, I,Section 1], we can replace a by
{6 :e <™}, O

3. The main results (Pr;, Psy)

In this section we prove the main theorem:

Theorem 3.1. Assume that p > Ry is strong limit and . > cf(L) > w. Then for some k < p and finite d C Reg N u
there is P such that

(), p P =(Py:a<An), Py C[a]* and |Py| < X, Py is increasing,

(*)3';5 f for every set A C A of cardinality < u thereisc : [A1? — « such that:
if B C A has no last element, ¢ | [B]? is constant and 8 = sup(B) satisfies cf8 ¢ 0, then B € Ps.

The theorem states that for all cardinals A with cofinality greater than u, there is a “good” sequence (Ps : § < A),
which, in spite of each Ps being small, captures many small subsets of L. “Many” here means that for every small set
A C X there is a pair-coloring ¢ : [A]2 — « such that each monochromatic B € A with no last element and with
supremum & belongs to Ps — provided that cfé is not one of the finitely many exceptional cofinalities.

Thus, if 87 < w is not one of the exceptional cofinalities for A, then, by the Erd6s—Rado theorem, for every A C A
with (29)F < |A| < u there is some B € [A]thr with sup B = § which belongs to Ps, and, moreover, each of the
initial segments of B with no last element belongs to a suitable Py — provided that the cofinality of & is not one of
the exceptional cofinalities.

Note that the theorem is closely related to the RGCH in the following way. By the RGCH, for some « < p there
is a family P € [A]=* of cardinality A and closed under taking subsets such that every subset of A of cardinality < u
is the union of < ¥ members of P. So if we define, for § < X of cofinality < u, the family Ps as the family of u € P
which are unbounded subsets of §, then we get |Ps| < A and the sequence (Ps : § < A) has a property stronger than
what we promise in the present theorem: if A C A has cardinality < u then there is a unary function ¢ from A to «
(obtained by partitioning A to k cells from P) such that if B C A is c-monochromatic and without a last element then
B € Pgyp p (With no exceptions on cf sup B).

So what we gain in the present theorem in comparison with the RGCH is mainly the strict inequality [Ps| < A. In
return we have to exclude finitely many “exceptional” cofinalities and settle for a weaker sense of “many subsets of
A” — rather than all monochromatic sets with respect to some unary coloring, we take all monochromatic sets with
respect to some binary coloring.

Remark 3.2. (1) The proof of 3.1 is simpler if A is regular.
(2) The conclusion of 3.1 implies that for A > p, for all but finitely many k = cf(kx) < w, Pri(A,cf(}X), x) holds (see
Definition 3.9(b)).

Similarly
Claim 3.3. In fact in 3.1 we can choose d =, M(A); see Definition 2.14(1).

Proof of 3.1: Without loss of generality, cf(i) = R (this is no loss by the Fodor lemma; if p is singular we may use
w > cf(p) orreplace 8 by (cf(u))™).
We choose & : cf(A) — A such that
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1 (a) If A is regular then £ is the identity.
(b) If A is singular then (h(«) : @ < cf(A)) is an increasing continuous sequence of cardinals with limit A.

We shall choose below P = (P, : a < cf())) such that Py, C [h(a)]<*, |Py| < A and P, is increasing with o. Now
for each @ < cf(A) we can find Pl Ch (o + 1)]=* of cardinality < A such that for some ko () < p

th If A C h(e+1), |A] < u, thenthereisc: A — ko(x) such thatevery B € A for which ¢ | B is constant belongs
to Poll.

We then, for y < A, let 77)’, = (Puy U P;(y)) N [y]1=* where a(y) = Min{a < cf(X) : y < h(a)}. Now

(13 for (P; : ¥ < A) to be as required it is enough that, for some ¥ < u and P, and finite d C Reg N u, we have
(%), p P = (Po:a < cf(V)), P C [h(@)]"H, |Pal < A, Py increasing,
(**)S’%h for every A satisfying A C cf(L) or (more generally) A € A& (Vo € A)[Min(A\(«¢ + 1)) <

Min(Rang(h)\(x + 1))] and satisfying |A| < w thereis ¢ : [A]> — « such that:
if B C A has no last element, ¢ | [B]? is constant and § = UMin{(e + 1) : ¥y < h(a)} : y € B} has
cofinality € (Reg N n\?) and so B C h(5), then B € Ps.

. 0,k
So let us turn to proving (**)A,P’ (**)A P

We first prove the desired conclusions for cardinal A such that
Ky aCAinN Reg\u&k lal<pu=ac J<x+[ al.
Let M = (M, : a < cf())) be such that

®1 (a) My < (H(x), €) is increasing continuous,

() A € My, Myl < A, h(a) S M,

(©) (Mo 10 < B) € Mgy,

(d) (@) if A is regular then My NA € A,

(B) if A is singular then A, + 1 € My41,
where Ay = Min{x:ifa C (h(a + 1) + 1) N Reg\p
and |a] < u

thena € J! [a] and x > [|My ).

We let P, =: My4+1 N [A(x)]™* and 0 = {Ro} and « = Ry, and will show that (P, : @« < cf(A)),0 are as
required. Now (*))L p of the claim holds trivially. To prove (>x<) let A C A, otp(A) < p be as there and
let {o : € < e(x)} list A in increasing order. Hence there is (ﬂg : € < ¢&(x)) increasing continuous such that
Be < cf(A),h(Bs) < ar < h(Bet+1). By the assumption (and 1.9, i.e., [17, 11,5.4]), if A is regular then for
each ¢ < g(x) there is a set P° C [h(Be)]"" of cardinality < A such that every a € [h(B:)]=" is equal to
the union of < « of them (by the choice of ¥ and X); hence without loss of generality P° € Mg, 41 and hence
Pe C Mg, 41 N[h(Be)I™H = Pg,. If A is singular, using clause (d)(B) we get the same conclusion. So there is a
sequence (Ag; : 1 < k) suchthat A;; € Pg,, AN, = ANh(B:) = U{Ag; : 1 < «}. We defined ¢ : [A]? = « as
follows: fore < ¢ < (), c({oe, oz }) := Min{i : o € Ay ;}. Soassume B € Aandc | [B]?is constantly j < « and
8 = sup(B) has cofinality & € RegNu\d. Clearly ay € B = a.NB C {a; : ¢ < eandcfog, o) = j} € Ag j € Pg,.
But Py = My41 N [A(a)]=* is closed under subsets and hence oz € B = oz N B € Pg,.
Now in Msy| we can define a tree 7 ; it has otp(B) levels;

thei — levelis {a € M5 : a C § and otp(a) =i}

and the order is <, as they are initial segments.

So by the assumptions (and [20, Section 2]), as 81 < cf(§) < u, the number of §-branches of 7 is < A, so as
T € Mg, every 8-branch of 7 belongs to Ms4 1, and hence B € Ms41, which implies that B € Ps, as required.

Now we prove the statement in general.

We prove this by induction on A. For A = u this is trivial by the first part of the proof. So assume A > u™ and
the conclusion fails, but the first part does not apply.

In particular, for some a € Reg N A\, |a] < pand a ¢ JS)'\Jr[a]. Hence recalling cf(A) > p, by 1.10 + 1.12 4
2.3 4 2.10 + proof of 2.18(4), for some k = cf(k) € [R®1, u) we have:



Sh:829

S. Shelah / Annals of Pure and Applied Logic 140 (2006) 133—160 151

(%)1 thereis a sequence (}; : i < k) and an k-complete filter D on « such that
@ Tp(JT 1) =4,
1<K
(b) A; < Aandcf(A;) > u (see 2.3),
(¢) if A, < A; fori < «,then Tp((X} 1 i < «k)) < A,
(d) tef(J] Ai, <p) = cf(n).
i<k
Clearly we can find (h; : i < «) such that

(*)2 h; is an increasing continuous function from cf(};) to A;.

Let
D1={A:AeDorA¢D,AeD+and )
Tpi(e\a) ()_»/) > ) for some A’ € 1_[ Ai } (10)
i<k
Clearly (by 2.9),

(x)3 Dj is an ¥j-complete filter on « extending D and we can replace D by D + A whenever A € Df.

By the induction hypothesis applied to A;, as A; > p there is a pair (k;, 9;) as in the conclusion. Without loss of
generality /c;‘ = kj. So for some m(x) < wand k(x) < pwtheset {i <« : |0;| = m(x),k; < k(x)} € D', so without
loss of generality

()4 i <k = |0;]| =mx)& ki = k(*).
By (d) of (x); there is f such that
(*%)5 f = (fy : @ < cf())) is <p-increasing and cofinal in [] A; and if § < cf(X), cf(§) < u and f [ §hasa <p-

i<k

eub, then f; is such a <p-eub and we let f;, € [] A; be f,(i) = Min(Rang(h;)\ fo(})) and f;/ € [] cf(%;) be
i<k i<k
defined by £7/(i) = h; ' (fL ().

For each i let P! = (Pé ca < cf(A;)) be such that (**)M,ﬁ" + (k)
such that

®2 (@) My < (H(x), €), My, Ncf(A) € cf(A) + 1
(b) || Myl < A, M, is increasing continuous, 8 < o = h(8) € My+1 and
B<a= (Mp:p<a)e Map,
(c) the following objects belong to My : (P! :i < k):
(Ai, hi i <«k), f, D and pu,
(d) if A € DY, and 5o Tpa((IP, )| 1 i < ) < A, then Tpia(fu) + 1 S Mo
(remember cf(A) > u > 29).

f’ '7‘5(,*)}, holds. We now choose M,, fora < cf(})

Letd* ={0:0 =« or{i <« :6 ¢ 0;} =¥ mod Di}; it should be clear that [0*| < m(*) + 1.
Let Py = My4+1 N[h()]“* and P = (Py : a < cf(X)).
It is enough now to prove that (*)Tg (;) holds.

Let A € A,|A|] < w be as in the assumption and we should find ¢ : [A]2 — Kk (*) as required. For i < « let
Ai = {fu(@) :a € A},s0 A; € [A;]°* and hence there is ¢; : [A;]? — Kk (x) as required. Recalling that « (x)“ = k (x),
we can choose ¢ : [A]2 — k(x) such that

@3 if a1 < B1, ap < By are from A and c{x, B1} = ¢{az, B2} then
() if i <« then fy, () < f3, (1) = fo, (i) < [fp, (i),
(i) if i <« then fo, () > fp, () = fo, (V) > [fp, (),
(iii) if i < & and fu, (1) < fp, () then €i{ fuy (D), o (D) = il far (), f3, (D).
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Let & € Reg N u\o* and let § < cf(r) and B € A N h(5) be such that ¢ | [B]? is constantly j and 6 = cf(§) and
8 = sup(B). We canreplace D by D 4 {i < « : 6 ¢ 0;}. So for some set a C k we have

@4 ifa < Barefrom Bthena = {i <« : fo (i) < fa(i)}.

Clearly a € D and (fy(i) : « € B) is increasing for each i € a. Note that by ®4 for each i € a the sequence
(fa@) : @ € B) is increasing and_let Bi = {fa(i) : @ € B}, s08; =: sup(B;) has cofinality 6 and ¢; | [Bi]? is
constant. Hence by the choice of P’ clearly B; € Pgi. Also as a € D by ®4 and D being k-compact f | § has a
<p-eub f', f'(i) =: U{fy(i) : i € B},and hence® @’ := {i € a : f5(i) = &;} belongs to D. Now |P€‘;s(i)| < Aj, and
hence TD(<P§‘5(i) 10 < Kk)) < A, sothereis F C i]}( Pji;(i)’ |F| < A such that for every g € i]:!{ Pj%(i) thereis g’ € F

such that {i : g(i) = ¢’(i)} € D*.So f,P € My € Ms,| and hence f; € Ms,1; hence without loss of generality
F € Mjs4. By the choice of Ms.1, i.e., clause (b) of ®,, it follows that F € Ms ;. We can define g € [] P}S(i)
i<k

by letting i € a’ = g(i) = B;. Sothereis g’ € F C Msyq such that b = {i : g(i) = g'(i)} € D* and hence
bNa € DT.Thatisb’ =: {i €a’ : g’(i) = B;} € D*. Clearly b’ € Ms; (as u € Ms and hence H(u) € Msy1)
and g’ € Ms41; hence g’ | b’ € Ms.1, and hence also the set B* belongs to M5 where
B*=:{y <i:{ieb : f,(i)eg'(i)=g()=Bi}e D).
Now |[B*| < [[ Bi < pand ¢ € B = o € B*. But as B* € Ms every subset of B* belongs to M5, ; hence
i<k

B € Ms41 and so B € Ps, as required.
Proof of 3.3.

The proof is a variant of the proof of 3.1. In the case where X, holds, recall that Ry € 0(= 06 M(k)), so what is
proved there suffices.

In the gener_al case, when —[X,, there is (A; : i < k) as in ()1, but we would like to choose a carefully. By 2.18
we can find 9, A,,, d, for n < n* such that
X (a) 0 =0y, : 1 < n*) where 0, € Reg N 1 is finite,

(b) 25, (M) =Nfon :n < n},

(c) the &, = (A :i < k) satisfy

(@) Tp(JT A1) =2,
i<k
(B) A < Aand cf(A]) > p,
(y)if A; < AP fori <« then i > Tp((A; 1i < k),
(&) tef([T AY, <p) = cf(h),

_ i<k
(d) dy = (d! :i < k) satisfies
(e) if 0 € RegN u\dy, then {i <« :0 €d'} =@ mod D.

We then continue as there using " = ( fi o < A) forn < n* as there (so ¢{e, B} will be defined f, ff’; for
n<n®).

Discussion 3.4. (1) Note that in a sense what was done in [10], i.e., I[A] large for A = u™, is done in 3.1 for any A
with cf(A) > .
(2) We may consider replacing 0 by {¥¢} in 3.1. The base of the induction is clear (pcfy, -inaccessibility). So eventually
we have fs for it as above (fy : @ € B), the hard case is cf(otp(B)) = «; we have the induced &, € “k such that
o <k ={i:d<hi@i)} e D,but (VPi)[cf(hy (i) = Ro] (otherwise using niceness of the filter (which without loss
of generality holds), etc., we are done).

Note that this problem appears even in the simplest version of our problem: “assume p is the strong limit of

cofinality R (or k € [Xy, u)) and 2#* = ut; does it follow that <> .+ holds?” See [12], Cummings—Dzamonja—
cf(u)
Shelah [1], Dzamonja—Shelah [3]; and [23], Section 1, for a positive ans:;ver for a somewhat weaker property.

Butif k = cf(k) > Rpgandin2.14 weuse D = D, + S}’gl , for each o < k we should consider ¢(¢); if D-positively
we have ((t) < h,(t) we are done. But if ¢(t) > h4(t), D-positively, then on some A € DT, h, | A is constant.

3 Note that here we use 0 # k — in fact this is the only point that we use it at; if we could avoid it, then d could be chosen as {Xg}.
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Conclusion 3.5. Assume p < A, @ is strong limit > Ro, A is regular (or just cf(A) > w). Then for some ¥ < u and
finite 0 € Reg N pu to which Ry belongs (in fact (Dg () U {Rp}) is acceptable), there is F such that

@5’;}"‘ (a) F= (Foia < A), |Fol < Afora < A, E =Aif L =cf(A), Eisaclubof A if cf(A) < A,

(b) Fo C {f : f apartial function from « to ¢, |Dom( f)| < u}, Fy closed under restriction,
(c) forevery A C A,|A| <pand f: A — X forsomec: [A]? — k we have

i if BC A,6=sup(B)e E,c| [B]2 is constant,
[0 € B= f(a) <é]andcf(5) ¢ 0then f [ B € Fs
anda € B= f | (BNa) € F,.

Proof. We use the result of 3.1.

For clause (c) we use the pairing function pr on A such that pr(e, 8) < Max{w, o + |«|, B + |B]|} to replace the
function f in clause (c) by the set {pr(c, f(«)) : @« € A} and first we restrict ourselves to § in some club E of A (the
range of 4 in 3.1’s notation) such that § € E = |§]| divides § (and hence § is closed under pr); soif B € A, sup(B) € E
we are done. The other cases are easier as without loss of generality if « < § € E, then o + Min{x : u > || and if
aC Reg Nx™,la| < pu, pefy+-comp(a) S uT} < 8, and it is easy to finish as in the proof of 3.1. O

Conclusion 3.6. Assume that u is strong limit, A = A=* (equivalently A = A*) and £ : [A\]<* — [A]=H satisfies for
notational simplicity c€(B) = U{c€(BN (¢ + 1)) : @ € B} and By < By = By C cl(B1) C cl(By).
Then in 3.5 we can add to (a), (b) and (c) also

(d) gis a function from {f [ u : f € *A and u € [A]<*} to A,
(e) forevery f :cf A — A forsome g¢ : [A]"* — A (in fact gr(u) = g(f | c€(u)) we have
X for every A C cf A of cardinality < u such thata € A = gy(A Na) < «, for some function ¢ : [A]? — k we
have

® ifBCA,c]| [B]2 is constant and B has no last element,

8 = sup(B) has cofinality ¢ 0 then f [ c€(B)
belongto Fsando € B = f [ cl(BNa) € U{Fg: B < b},

(f) if X is regular then there is a sequence C = (Cs : 8§ € S) such that
(@) § € 8" =1{8 < Ar:cf(d) € [Ry, W}
(B) Cs is aclub of § of order type cf(5)
and in clause (e) we can add:
(y) f1ct(Cs) € Fs and
@) aeCs= flcl(CsNa)e |J Fpand
B<é
(¢) a € nacc(Cs,;) N nace(Cs,) = Cs;, N = Cs, Nax,
(¢) if @ < cf(A) is limit, cf(x) ¢ 0 then {Cs N« : @ € acc(Cs)} has cardinality < A,
(n) if B € A, |B| < u then for some ¢ : [B]?> — « if B’ C B has no last member and ¢ | [B’]? is constant and cf
(sup(B'))¢ 0 then sup(B’) € S.

Proof. We repeat the proof of 3.1.

Choose 4 : cf(X) — X and (My : o« < cf(X)) as in the proof of 3.1 but add the requirement that ¢ € My and still
use Fo, = My4+1 N{f : f apartial function from « to o with domain of cardinality < u}.

Choose g such that

X (a) g is a function from {f [ u : f € *A and u € [A]<*} onto A,
(b) f1 € f2 € Dom(g) = g(f1) < g(f2) and
(c) foreach o < A for some f € Dom(g) we have g(f) = a&
VOlg(f)=a= f' C f]
(d) if f: B, — X and B] < B then g(B1) < g(B»),
(e) g(f) =a = Dom(f) C .
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Without loss of generality g € My, so clause (d) (of the conclusion of 3.6) holds trivially; let us prove clause
(e). As g has already been chosen, we are given A < cf(A) of cardinality < px and f : A — X such that
vceA=>g(fcd(AN)) < .

Now a +— g(f | ¢c€(A Na)) is an increasing function from A to A; let A’ = {g(f [ c¢(ANa)) : @ € A} and let
¢ : [A']> = « be as proved to exist in 3.1 and by ¢ : [A]> — « be defined by c{a, B} = ¢'{g(f | cl(ANa)),g(f |
cl(AN BN}

It is easy to check that ¢ is as required. We turn to proving clause (f) of the claim. Now there is a function
F : ®A — X such that for any @ € “X for every large enough n < w thereare mp < m; < my < ... < ®
which are > n and o, = F(amy, dm,,...), by [4]. For any u € [A]™" we define cli(u) as follows: let
ut® = yU{gly,) : v € u Na for some « € u} and let cf,(u) be the minimal set v such that u™® C v
and [ = sup(v N ) < sup(u™®)& cf(8) < |u| = § € v] and [g(ly) € v& |w| < |u| = w C v] and
@€ = F(@) € v;50|cly(u)| < (lult +2)%.

In the proof above we can replace cf by cf, o c€. Now if § < A, 89 < cf(§) < u for some club C§ of § of order
type cf(8) we have: if C C Cj is a club of § then cf, o c£(C) = cly o c£(Cy) (which exists by the choice of F).
Alternatively, let C5 = N{c€4(C) : C a club of 8}; however, C§ seemingly has order type just < (cf(8)N0)*+. Now if
Cy satisfies (Vo € C;‘)(g(lcgm) < 4) then we can find C§*, Cs such that:

®1 C5* C cly o cl(Cy) is a club of § of order type cf(§) such that & € nacc(C5*) = sup((C3* U {0}) Na) <
g cpuiopney) < @,

@2 Csis {g(l((cg*u{O})ma)) s € nacc(C5*)} U acc(C5™).

Clearly

®3 Cs C cl«(B) whenever B C § = sup(B),
®4 if a € nacc(Cs,) N nacc(Cs,) then Cs; N = Cs, Nar.

We are done, as we have used cf.. o c£ and

(*) if § < A, Rg < cf(8) < wu and B is an unbounded subset of  then Cs C cl.(B). O
Remark 3.7. (1) In 3.1, 3.5, 3.6 if A is regular, then

Ay =1{8:6 < A, cf(8) < 6 and there is (11)
u C§=sup(u),otp(u) < dand Vo < 8)(u N € My)} (12)

belongs to I[A] and the § mentioned in (*) - 0f 3.1,(c) of 3.5 necessarily belongs to A ;. So Ay, for ordinals of
cofinality € Reg N w\0, contains “almost all of them” in the approprlate sense.

(2) We can use them to upgrade if {§ < w> : SK € I(:l+)} then S % eI[3'

» +1] when k = cf(k) > Ry; see [20].

Main Conclusion 3.8. (1) If u is strong limit and A = A= then for all but finitely many regular k < u (actually
K ¢ 02 (A) U {Rp} is enough) we have Ps; (%, k), see Definition 3.9 below.
(2) We also get Psq(cf(}r), A, k) when k > Ry.

Proof. By 3.5,3.6. O

Definition 3.9. (1) Ps; (X, ) means that Psy (A, S) for some stationary S C S,i‘.
(2) Psz(2, S) means that for some C = (Cs : 8 € S) we have Ps3(&, C).
(3) Ps3(n, C) means that for some F we have Ps4(A, C, F).
4) Psa(1, C a ) means that for some S:
(a) S is a stationary subset of A,
(b) C has the form (Cs : 8 € S),
(c) F has the form F = (Fy : a0 € S),
(d) Cs is aclub of § of order type cf(6) and @ € nacc(Cs,) N nacc(Cs,) = a N Cs;, = a N Cs,,
(e) Fs is a set of functions from Cs to 6 of cardinality < A,
() if f : A — A then for stationarily many 6 € S we have f | C5 € Fs;.
(5) Psa(X, w, h, C,F ) is defined similarly (and A is regular) except that
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(e)1 h is an increasing continuous function from A to p with limit x,
(e)2 Fs is a set of functions from § to 2(8) of cardinality < w,
(f) if f : A — u then for stationarily many § € S we have f | Cs € Fs.
(6) If in (5) we omit & we mean some /.
(7) Psi(A, u, k), Psa(h, w, S), Pss(A, u, C) are defined in parallel.

Definition 3.10. Pr, are defined similarly except not using C and Fs is a set of functions from some unbounded subset
of § into & (or /(5)), that is:

(1) Pri(A, k) means that Pra (X, S) for some stationary S C S,f.
(2) Pra(A, §) means that for some F= (Fo 1@ € §) we have Prg(A, @).
(3) Pr4(1, F) means that for some S:

(a) S is a stationary subset of A,

(b) F has the form F = (Fy :a € S),

(c) Fs is a set of cardinality < A of functions from some unbounded subset of § to §,

(d) if f : A — A then for stationarily many § € S we have f [ A € F;s for some A C § = sup(A).
(4) Pra(, w, h, F) is defined similarly except that

(c)1 h is an increasing continuous function from A to p with limit wu,

(c)2 Fs is a set of cardinality < A of functions from some unbounded subset of § to /(§),

(d) if f : A — u then for stationarily many § € S we have f [ A € F;s forsome A C § = sup(A).

(5) If in (4) we omit & we mean some /.

Observation 3.11. If Ps4(A, C, F), A1 = cf(A)) < 1,C = (Cs : § € S),(¥8 € S)[cf(8) > Rol,h : A — Ais
increasing continuous with limit ., §" = {8 < 1 : h(8) € §},Cy =f{a <8 : h(a) € Cs},C' = (C5: 8 € §'}, F5 =
{hof: [ €Fs)then Pss(hi, 2, b, C', F).

BB: We may phrase what we have for the ideal 7[A].

Conclusion 3.12. (1) If A = cf(A) > p > Vo, u strong limit singular then for some A € I[A],x < w and finite
0 C Reg N u (in fact 0 = 9, (1) we have:

(x) forevery k(2) = k() < u, k(1) > « and increasing continuous sequence {(a; : ¢ < k(2)™) we have: there is
aclub C of k(2)™ such that {o € C : cf(a) ¢ 0 and cf(@) <« (1)1} C A.

(2) For above A = A=* we can add: k € Reg N u\0 = (Dg)s,é (and even (D{)g for any S C S,’(\ which is # ) modulo
for a suitable filter similarly to in (3)).

On diamond from instances of GCH and its history, see [21]. Whereas A = u™ a successor of regular cardinals
has strong partial squares [14, Section 4], for a successor of singular we have much less. If A = ut, u? = u for
cofinalities < 6, we still have this.

Conclusion 3.13. Assume A = cf(A) > u > Ry, u strong limit and 0 = Dé)y u which is finite. If A = x+ = 2% and
Kk € Reg N p\d then Sz

Proof. Follows easily from 3.8. O
Recall that the previous approach gives 3.14. In particular if A = 2* is singular, see 3.15.

Claim 3.14. Assume u > k = cf(k) is strong limit and cf(A) > w and h : cf(A) — X is increasing continuous with
limit M. Then for any regular x < [ large enough, (A)x,.c = (B)j., u.xc,h and (B);M’K’h where

(A)j, i thereis A such that
@) A= (A 1o < cf ),
(b) Ay C [h(a)]=* has cardinality < A (we can add A € A, =A closed subset of sup(A); it does not
matter),
(c) if E is a club of cf(A) then for some increasing continuous oy € E for e < x we have
{e < x:cf(e) =k and{oa; : ¢ < €} € Ay, } is a stationary subset of X,
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(B)a,juc,n there is F such that
(@) F=(Fa 1 < cf(d)),
(b) Fo S {f : f a partial function from « to h(a)} has cardinality < A,
(c) for every club E of cf()) and function f : cf(A) — A there is an increasing continuous oz € E for
& < x for which the set {e < x : fH{o; : ¢ < &} € Fqo,} is a stationary subset of x,
(B))tu,x,h there is F such that
(a),(b) as above,
(©) if ag < cf(A) for ¢ < x1 and {0y : € < x1) is increasing continuous x1 € [x,un) and
f i {ae 1 e < x1} = Aand f(ag) < h(aey1) for € < x1 for simplicity, then we can find
= (u; 11 < x)suchthat x1 =U{u; :i < x}andforeverye < yyandi < x, f [{a; : ¢ < ¢
and ¢ € u;} belongs to F,.

Conclusion 3.15. Assume p > R is strong limit, x > p and A = 2X is singular. Then for every x € N Reg\{Ro}
we have Ps; (cf(L), A, «).

4. Middle diamonds and black boxes

We use Section 3 to improve the main results of [7]. The point is that there we use [21], while here we use Section 3
instead. Towards our aim we quote some results and definitions. See 4.4 and 4.3.

The Special Black Box Claim 4.0. Assume

(a) A = cf(2"), D is a u*-complete filter on X extending the club filter,

b) k =cf(k) <Arand S C S,i‘,

(c) C=(Cs:8€S),Csaclubof § of order type k and » = cf(2*) =2'& 8§ € S = A > |{Cs N : @ € nacc(Cs)}|
and S € D,

(d) 2=X <2 and 6 < u,

(e) Psi(x, 2*, C) (see Definition 3.9),

() Sep(u, 0) (see Definition 4.1 below and 4.2 on sufficient conditions).

Then A has the (k,0)-BB exemplified by some (C | S; : i < A) and C has the (D,2",0)-Md-property (see
Definitions 4.3 and 4.4 below).

Proof. By the proof of [7, 1.10]. O

Definition 4.1. (1) Sep(, #) means that for some f and 7:
@ f=(fe:e<u),
(b) f¢ is a function from #6 to 6,
(c) forevery o € #0 the set {v € #0: for every ¢ < u we have f;(v) # o(¢)} has cardinality < 7,
(d) T = cf(T) <24,
(2) Seps (14, 8) means that for some f, R and T we have
(@ f=(fl:e<pandi <o),
(b) fsi is a function from %0 to #0,
(c) R C #0; |R| = 2* (if R = "0 we may omit it),
DI =(T:i<0) Ty CPandifA; € Z;for j < j* < othenp # U{A; : j < j*} (eg. Liisa
o-complete ideal on ),
(e) ifn € *f andi < o then T > |Sol,| where
Sol, ={p € R: theset{s < u :if i < O then (foi(n))(s) # n(e)} belong to Z;}.

We may wonder whether clause (f) of the assumption is reasonable; the following claim gives some sufficient
conditions for clause (f) to hold.

Claim 4.2. Clause (f) of 4.0 holds, i.e., Sep(u, 6) holds, 2‘ at least one of the following holds:

(@) p=pul,
() Up(w) = pn+2% < p,
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(¢) Uy(n) = pu where for some o we have J = [0]1<?,0 < 0,27 < p,
(d) w is a strong limit of cofinality > 0,
(&) = ().

Proof. Thisis [7,1.11]. O

Definition 4.3. (1) We say that C exemplifies Mdt(x,«,6, T, D) when
(a) A > « are regular cardinals, 7" an ordinal (or a function with domain A or ®> X in this case a function
f from X to 7 means that f is a function with domain X and f(x) € Y(x), so €T = {f :
f is a function with Dom(f) = Cand o € C = f(a) € T(a)}),
b)C=(Cs:8€S),Sa stationary subset of A such that§ € § = cf(§) = «,
(c)* Csis aclub of § disjoint from S and & € nacc(Cs,) N nacc(Cs,) = Cs, N = Cs, N« so we may define
Cy = Cs Na when a € nacc(Cs),

(d) if F is a function from |J{f : f is a function from ®~(Cs) to 7’} to 6 then for some ¢ € 59 for every
seS

fe*Ttheset {8 € S:F(f|Cs)=c@®)}eDt.
(2) We write Md instead Md™ if we weaken (c)* to
(c) Cs is an unbounded subset of §.
(3) We say C has the (D, 7, 6)-Md property when clauses (a), (b), (c), (d) above hold; we say X has this property if
some C = (Cs : 6 € S)hasit, S C Sg stationary.

The following is a variant of the silly black box (trying to reconcile the definitions of [13, III], [8, IV] with [7]).

Definition 4.4. (1) We say that A has the (k, 8)-SBB™ (= Special Black Box) property when there are Cl = (Cs :
8 € §;) fori < A such that

IZI)é"‘ (a) S; are pairwise disjoint stationary subsets of A,
(b) 6 € Si = cf(§) =«,
(c) Cs is a club of § of order type k and every @ € nacc(Cs) is a successor ordinal,
(d) if @ € nacc(Cs,) N nacc(Cs,) then C5; N = Cs, N,
(e) C' has the 6-BB property which means that thereis f = (fs : § € S;)
such that fs5 : = (Cs) — 6 and for every f € “”A — 6 for
stationarily many § € S; we have f5 = f | Cs.

(2) We write SBB instead of SBB™ if we omit clause (d); we write SBB* if we replace “Cs a club of §” by
“Cs € 8 = sup(Cs)” and SBB™ if we make both changes.

Remark 4.5. (1) How strong is the demand that S can be divided into A sets S; with the property? It is hard not to
have it.

(2) In 4.6 to have more than one exception is a heavy demand on H ().

(3) We can improve 4.6 including the case cf(us) = N, even py = Jy4e. Then probably in part (2) we have to
distinguish A a successor of regular (easy), successor of singular (harder), rest (hardest).

The Main Theorem 4.6. (1) If 1y is strong limit > Ro, i > (s > 0, A = cf(2*) and T = 2" then for all but finitely
many k € Reg N [, (even every k € Reg N /L*\Dé)’u* 2")), there is C = (Cs : & € S) exemplifies Md* (A, k,0, T);
hence («,0)-SBB™.

(2) Assume [y is strong limit singular of uncountable cofinality and . = cf()) > [ is not strongly inaccessible.
Then for all but finitely many « € Reg Ny for every 0 < iy, A has (i, 0)-SBB; hence (k,0)-SBB™ (moreover only
one of the exceptions depends on A).

Proof. (1) Letd = Oé’u* (X). So by Section 3 we have k € RegN 4 \0 = Psi(A, 2%, C_‘) for some C satisfying clause
(c) of 4.0, and moreover clauses (c) and (d) of 4.4(1). So we apply 4.0.

(2) Let (u; : i < cf(us)) be increasing continuous with limit 1,; each p; is strong limit singular. For eachi < cf(u,)
let 0; = 06%_ (cf(2#)), so it is finite and let 0 = {x : k = cf(k) < u, and « € 0; for every i < cf(uy) large
enough}.
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Case 1: (Vo < M)[|a|~* < Al

So we can find p < A < 2*;let wy = (()<H*)<H+; this cardinal is < A and g1 = ().
Now use [7, Section 2].

Case 2: (o < M)[|o|=H+ = A].

As A is regular for some k < A, u < A we have u* > A. Let u = Min{u : u* > A for some k < 14}.
NOTE: Here getting A pairwise disjoint S; should be done. Again we use [7, Section 2]. O

Remark 4.7. ¥y € 0 as we need F : YA — A as in Section 3!!

Definition 4.8. We say that C exemplifies SBBg (%, , 6) when

(a) A > K are regular,

b)C=(Cs:8€8),Sa stationary subset of A such that § € S = cf(§) = «,

(c) Cs is an unbounded subset of § disjoint from S such thata € Cs5; N Cs, = C5, N = Cs, N,

(d) assume 79 C 11 < 717 are vocabularies of cardinality < 6, 71\tp has only predicates, 72\t has only function
symbols (allowed to be partial), B is a 7p-model with universe A (but not individual constants), then we can find
(Ms : 8 € S) such that
(o) every M € Ms is a 1o-model of cardinality 6 expanding B | | M|,

(B) if M € Ms, F € 1\1q then FM has domain C Cj (i.e., ™) (Dy)),

(y) every M € M has a universe which includes C; and is included in § and the universe of M is the B-closure
of Cs U{F(@) : F € m2\1; and @ € *F)(Cy)},

(8) if M', M" € Ms then (M', y)yecs, (M", ¥)yec; are isomorphic,

(g) if BT is a 1p-expansion of B then for stationarily many § € S for some M € M; we have:
@) Fen\t = FB [ Cs=F"|Cs (= FY),
G) M|t C€BT 1.

Observation 4.9. (1) In 4.8 if the order < on A is a relation of B (which is no loss) then the isomorphism is unique
as it is necessarily the unique order preserving function from |M'| onto |[M"|.

(2) In 4.8, if the function F; where o« < f € Cs,a0 € Cs, otp(Cs N@) = i = F;(B) = «, then for any
M € U{M; : 5§ € S}and §, M N Cs is an initial segment of Cs.

Definition 4.10. We say that C exemplifies BBy (X, k,0) when (a), (b), (d), (¢) from 4.8 hold + (&) below.
BB2(A, k, 0) holds when we add (¢) to clause (d) where

(¢) the isomorphism type of (M, y), ec; for M € M depends on 19, T1, T2 but not on B,
(¢) if M', M" € M; and I is an isomorphism from M’ onto M” and §’,8” € S, Cyy € M’, Cs» € M" and T maps
Cys onto Cyr, then forany N € My, N € Ms» we have (N, ¥)yecy = (N”, ¥)yecy-

Claim 4.11. If i > R is strong limit and A = cfQ2") or A > 22" is not strongly inaccessible then for all but finitely
many k € Reg N6 (k € Reg N u\oy(2")) for every 6 < p, BB1(A, k, 0) holds.

Proof. Use also 4.13 below. O

Observation 4.12. (1) If C exemplifies BBy (), k, 0) then for some pairwise disjoint (S : € < A) we have that each
C | S exemplifies BBy(A, k, 0).
Q) Ifr = 20 we can allow in t1\ 10 individual constants.

We delay their proof as we first use them.
Now we turn to proving 4.11, 4.12.

Claim 4.13. (1) IfC_' exemplifies SBB (X, k, 27 ) then C exemplifies BB1 (A, k, 0). [Rethink: if we use Cx x, x = 2y
enough to have many guesses. |
(2) C exemplifies BBy (X, k, 0) when there are A1, C':
(a) C exemplifies SBB(x, k, 2%, 1) (hence C' = (C; : 8 € S1) exemplifies BBy (X, k, 0) but apparently we need
more),
(b) h = (hs : 8 € S1) where hs is an increasing function from Cs onto some y =y (8) € S,
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(c) for every club C of A there is an increasing continuous function g from A1 into C such that o« € S1 = g(@) €
_S& Vg = . i}
(3) If C exemplifies MD(X, ., 27) then C exemplifies BB2 (%, k, 6).

Proof. (1) C has the (D, 21, 0)-Md-property (which is like the desired conclusion except that we write Fs(v | Cs)

instead of F'(v [ Cs, C | Cs). Butlet B = /60 mean that 0 < o« < 6 + 1. But define Fi(v) = Fs((v(a)/0 : a €
Cs), (v(a) —0(v(@)/0) : a € Cs)). So for (F5 : 8 € S) we have C as required in the original requirement; the same
C is as required for our F.

(2), (3) Left to the reader. O

Conclusion 4.14. If A = cf(A) > J,43 is not strongly inaccessible, then for every regular k < 3, except possibly
finitely many we have:

® for some topological space X and C = (Cs : § € S) we have
(a) X is Hausdorff having A points with a clopen basis set,
(b) every Y C X of cardinality < « is closed,
(c) every point has a neighborhood of cardinality < «,
(d) thereis f : X — « such that:

if X = |J X4, B < « then some non-isolated point x has a neighborhood included in X fx) (s0 f(x) < B).
a<p

Remark 4.15. It is natural to add in Definition 2.14 (but is not useful here): For regular A let 92(X) = 0(27’9’9* Q)
be defined as in part (1) of 2.14 omitting clauses (d), (f) and (g) of 2.3 adding (j) of 2.11 and: if n € maxz,a C
Reg N A, \ 6y and |a| < 6 then A, ¢ pdf,_. (@) (it too is finite).
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