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We prove a strong dichotomy for the number of ultrapowers of a given model of cardinal-
ity < 280 associated with nonprincipal ultrafilters on N. They are either all isomorphic,

or else there are 22N0 many nonisomorphic ultrapowers. We prove the analogous result
for metric structures, including C*-algebras and II; factors, as well as their relative com-
mutants and include several applications. We also show that the C*-algebra B(H) always
has nonisomorphic relative commutants in its ultrapowers associated with nonprincipal
ultrafilters on N.
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1. Introduction

In the following all ultrafilters are nonprincipal ultrafilters on N. In particular, “all
ultrapowers of A” always stands for “all ultrapowers associated with nonprincipal
ultrafilters on N”.

The question of counting the number of nonisomorphic models of a given theory
in a given cardinality was one of the main driving forces behind the development of
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Model Theory (see Morley’s Theorem and [20]). On the other hand, the question of
counting the number of nonisomorphic ultrapowers of a given model has received
more attention from functional analysts than from logicians.

Consider a countable structure A in a countable signature. By a classical result
of Keisler, every ultrapower [[,, A is countably saturated (recall that U/ is assumed
to be a nonprincipal ultrafilter on N). This implies that the ultrapowers of A are
not easy to distinguish. Moreover, if the Continuum Hypothesis holds then they
are all saturated and therefore isomorphic (this fact will not be used in the present
paper; see [5]).

Therefore the question of counting nonisomorphic ultrapowers of a given count-
able structure is nontrivial only when the Continuum Hypothesis fails, and in the
remaining part of this introduction we assume that it does fail. If we moreover
assume that the theory of A is unstable (or equivalently, that it has the order
property — see the beginning of Sec. 3) then A has nonisomorphic ultrapowers
([20, Theorem VI.3] and independently [6]). The converse, that if the theory of A
is stable then all of its ultrapowers are isomorphic, was proved only recently ([10])
although main components of the proof were present in [20] and the result was
essentially known to the second author.

The question of the isomorphism of ultrapowers was first asked by operator
algebraists. This is not so surprising in the light of the fact that the ultrapower
construction is an indispensable tool in Functional Analysis and in particular in
Operator Algebras. The ultrapower construction for Banach spaces, C*-algebras, or
II; factors is again an honest metric structure of the same type. These constructions
coincide with the ultrapower construction for metric structures as defined in [2]
(see also [10]). The Dow—Shelah result can be used to prove that C*-algebras and
II; factors have nonisomorphic ultrapowers ([14] and [9], respectively), and with
some extra effort this conclusion can be extended to the relative commutants of
separable C*-algebras and II; factors in their utrapowers ([8] and [9, Theorem 5.1],

respectively).
However, the methods used in [8, 9, 14] provide only as many nonisomor-
phic ultrapowers as there are uncountable cardinals < ¢ = 2% (with our

assumption, two). In [15, Sec. 3] it was proved (still assuming only that CH
fails) that (N, <) has 2° nonisomorphic ultrapowers. As pointed out in [7], this
proof could easily be modified to obtain the same conclusion for any infinite
linear (sometimes called total) order in place of (N, <) but the proof does
not cover even the case of an arbitrary partially ordered set with an infinite
chain.

Theorem 1.1. Assume the Continuum Hypothesis, CH, fails. If A is a model of
cardinality < ¢ such that the theory of A is unstable, then there are 2¢ isomorphism
types of models of the form [[,, A, where U ranges over nonprincipal ultrafilters
on N.
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In Theorem 5.1, we prove a generalization of Theorem 1.1 for ultraproducts.

Corollary 1.2. For a model A of cardinality < ¢ with a countable signature
either all of its ultrapowers are isomorphic or there are 2° isomorphism types of
its ultrapowers.

Proof. We may assume A is infinite. If the theory of A is stable, then [[,, A is
saturated and of cardinality ¢ and therefore all such ultrapowers are isomorphic
([10, Theorem 5.6]). If the Continuum Hypothesis holds, then all the ultrapowers
are isomorphic by Keisler’s result. In the remaining case when the Continuum
Hypothesis fails and the theory of A is unstable use Theorem 1.1. O

We also prove the analogue of Theorem 1.1 for metric structures (see [2] or [10]).
The ultrapowers of metric structures are defined in Sec. 6. Recall that the character
density of a metric space is the minimal cardinality of its dense subspace.

Theorem 1.3. Assume CH fails. If A is a metric structure of character density
< ¢ such that the theory of A is unstable, then there are 2° isometry types of models
of the form [[,; A, where U ranges over nonprincipal ultrafilters on N.

The proof is a modification of the proof of Theorem 1.1 and it will be outlined
in Sec. 6. Although Theorem 1.3 implies Theorem 1.1, we chose to present the proof
of Theorem 1.1 separately because it is the main case and because some of the main
ideas are more transparent in the discrete case.

Corollary 1.4. For a metric structure A of character density < ¢ with a countable
signature either all of its ultrapowers are isomorphic or there are 2¢ isomorphism
types of its ultrapowers.

Proof. We may assume A is infinite. If the theory of A is stable, then [, A is
saturated and of character density ¢ and therefore all such ultrapowers are isomor-
phic ([10, Theorem 5.6]). If the Continuum Hypothesis holds, then all ultrapowers
are isomorphic by the analogue of Keisler’s theorem for metric structures ([2]). In
the remaining case, when the Continuum Hypothesis fails and the theory of A is
unstable use Theorem 1.3. |

Important instances of the ultraproduct construction for metric spaces include
C*-algebras, II; factors (see, e.g. [10, Secs. 2.3.1 and 2.3.2]) and metric groups
(see [18]).

Organization of the paper. The proof of Theorem 1.1 uses ideas from [20,
Sec. VL.3|, [15, Sec. 3] and [21, Sec. 3] and it will be presented in Secs. 2-5.
Theorem 1.3 is proved in Sec. 6, and some applications will be given in Sec. 8.
In Sec. 7 we prove local versions of Theorem 1.1 and Theorem 1.3, and in
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Proposition 8.5 we use the latter to prove that B(H) always has nonisomorphic
relative commutants in its ultrapowers associated with nonprincipal ultrafilters
on N. Secs. 2 and 3 are essentially a revision of [20, Sec. 3], and Sec. 4 has a
small, albeit nonempty intersection with [15, Sec. 3] (and therefore with the latter
half of [20, Sec. VL.3]).

Notation and terminology. If A denotes a model, then its universe is also
denoted by A and the cardinality of its universe (or any other set A) is denoted
by |A|. Hence what we denote by A is denoted by A or by |A| in [20] and [21],
and what we denote by |A| is denoted by ||A|| in [20] and [21] if A is a model. We
also do not distinguish the notation for a formula ¢(z) and its evaluation ¢[a] in a
model. It will always be clear from the context.

Letters I and J, possibly with subscripts or superscripts, will always denote
linear (i.e. total) orders. The reverse of a linear order I will be denoted by I*. The
cofinality of a linear order I, cf(I), is the mininal cardinality of a cofinal subset
of I. By I + J we denote the order with domain I U J in which copies of I and J
are taken with the original ordering and ¢ < j for all i € I and all j € J. If J and
I;, for j € J, are linear orders then ) jes Ly denotes the order with the underlying
set (J;c{j} x I; ordered lexicographically.

Following the notation common in Model Theory, an ultrapower of A associated
with an ultrafilter &/ will be denoted by [[,, A, even in the case when A is an
operator algebra, where the notation AY for the ultrapower is standard. We refrain
from using the symbol w in order to avoid confusion.

By V*°m we denote the quantifier “for all large enough m € N”. More generally,
if D is a filter on N then by (¥?n) we denote the quantifier as a shortcut for “the
set of all n such that. .. belongs to D”.

An n-tuple of elements of A is always denoted by a.

For k > 1 by [X]* we denote the set of all k-element subsets of X.

A cardinal k will be identified with the least ordinal of cardinality x, as well as
the linear order (k, <). A cardinal s is regular if K = cf(k) and singular otherwise.
An increasing family of ordinals or cardinals A¢, for & < 7, is continuous if A, =
Supg,, A¢ whenever 7 is a limit ordinal. Analogously, an increasing family Ag, for
§ <1, of sets is continuous if A, = U§<77 Ag¢ for every limit ordinal 7.

2. Invariants of Linear Orders

The material of the present and the following sections is loosely based on [21, Sec. 3].

2.1. The invariant inv™(J)

In the following we consider the invariant inv{(I) as defined in [21, Definition 3.4],
or rather its special case when o = m € N and k = ;. All the arguments presented
here can straightforwardly be extended to the more general context of an arbitrary
ordinal a and regular cardinal x.
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In certain cases we define the invariant to be undefined. The phrase “an invari-
ant is defined” will be used as an abbreviation for “an invariant is not equal to
undefined”.

For a linear order (I, <) define inv"™(I), for m € N, by recursion as follows. If
inv™(I) is undefined for some m, then inv™*!(I) is also undefined. If cf(I) < R
then let inv"(7) be undefined. Otherwise let

inv? (1) = cf(I).

In order to define inv™(I) for m > 1 write x = inv®(I). Although the definition
when m =1 is a special case of the general case, we single it out as a warmup. Fix
a continuous sequence I¢, for £ < &, of proper initial segments of I such that I =
Ug<r Le- Then let A¢ = cf((I\I¢)*), where J* denotes the reverse order on J. Thus
Ag, for £ < K, is the sequence of coinitialities of end-segments of I corresponding to
the sequence I¢, for § < k.

Let D(k,N1) be the filter on x dual to the ideal generated by the nonstationary
ideal and the set {€ < k: cf(§) < Np}. Define f: Kk — Card by

Xe, if Ae >Ny,
fl&) =
0, if, e <N

If the set {¢£: f(€) # 0} belongs to D(k, Xy ) then let inv'(I) be the equivalence class
of f modulo D(k,X;), or in symbols

inv!(I) = f/D(r,Ry).

Otherwise, inv'(7) is undefined.

Assume m > 1 and inv™(.J) is defined for all linear orders J (allowing the very
definition of inv™(J) to be “undefined”). Assume I and I¢, for £ < k = cf(]), are
as in the case m = 1. Define a function g¢,, with domain x via

gm (1) = inv™ ((I\L)").

If {n: gm(n) is defined} belongs to D(k,R;) then let inv™ () be the equivalence
class of g,, modulo D(k,R;). Otherwise inv™!(I) is undefined.

This defines inv™(I) for all I. For a (defined) invariant d we shall write cf(d)
for cf(I), where I is any linear order with inv™ () = d. We also write

|d| = min{|I|: d = inv"*(I) for some m}.

Our invariant inv™ (I) essentially corresponds to invy (1) as defined in [21, Defini-
tion 3.4]. Although inv" can be recursively defined for every ordinal n, we do not
have applications for this general notion. As a matter of fact, only inv™ for m < 3
will be used in the present paper.
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Example 2.1. Assume throughout this example that x is a cardinal with
Cf(ﬁ) > Nl.

(1) Then inv’(x) = cf(k) and inv' (k) is undefined.

(2) If X is a cardinal with c¢f(\) > Ry then inv"(k x A*) = cf(k) and inv' (k x \*) is
the equivalence class of the function on cf(x) everywhere equal to cf(\), modulo
D(cf(k), Ry).

(3) If inv™ () is defined for all £ < x and £ is regular then with I = 3", I we
have that inv”" ™! (I) is the equivalence class of the function g(¢) = inv™(I¢)
modulo D(x, Ny).

Example 2.1(3) above will be used to define linear orders with prescribed
invariants.

Lemma 2.2. (1) For every regular A\ > Ny there are 2* linear orders of cardinality
X\ with pairwise distinct, defined, invariants inv' (I).
(2) If X is singular then for every regular uncountable 6 such that

max(Ng, cf(N)) <0 < A

there are 2* linear orders of cardinality X and cofinality @ with pairwise distinct,
defined, invariants inv?(I).

Proof. These are cases (1-3) of [21, Lemma 3.8], with £ = N; but we reproduce
the proof for the convenience of the reader.

(1) If A > Ny is regular, then the set {£ < A: cf(§) > N;} can be partitioned
into A disjoint stationary sets (see [20, Appendix, Theorem 1.3(2)] or [16,
Corollary 6.12]). Denote these sets by S,, for nn < X\. For Z C X define a
linear order Ly as follows. For o < \ let

Ny, ifae U Sn,
nez

Kla) =Ny, ifac U Shs
n¢Z

1, if cf(a) < No.

Let Lz = > ,.yk(a)*. More formally, let the domain of Lz be the set
{(a, ): @ < A\, B < k(a)} ordered by (a1,01) <r (a2,82) if a1 < g or
a1 = ag and 81 > (2. Then invl(Lz) is clearly defined. A standard argument
using the stationarity of S¢ for any { € ZAY shows that inv'(Ly) # inv'(Ly)
ifZ#£Y.

(2) Now assume A is singular. Pick an increasing sequence of regular cardinals
Ais for i < cf(A), such that 3, ;) Ai = A. Using (1) for each ¢ fix linear
orders I;j, for j < 2% of cardinality \; such that invl(Ii') are all defined
and distinct. Since | T, c¢(n 22| = 2% it will suffice to associate a linear order
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Jg to every g € HKCf()\) 2 such that inv2(Jg) is defined for every ¢ and
inv?(J,) # inv?(J,) whenever g # h.
Since § > max(Rg,cf(N)), by [20, Appendix, Theorem 1.3(2)] or [16,

Corollary 6.12] we may partition the set {& < 6: cf(§) > N1} into cf(\) stationary
sets Se, for & < cf(A). Then (letting S(§) =nif £ € 5,):
Jo =2 B as(e)
£<0
has inv’(Jy) = 0 and inv?(Jy) = (inv' (Ig g¢)): € < 0)/D(0,R1). If £ is such that
h(€) # g(€) then the representing sequences of inv?(J,) and inv?(J,) disagree on
the stationary set Se. Therefore g +— inv?(.J,) is an injection, as required. O

2.2. A modified invariant inv™™(J)

Fix a cardinal \. For a linear order J of cardinality A and m € N we define an
invariant that is a modification of inv™(J), considering three cases.

2.2.1. Assume X\ is regular

Then let inv™*(J) = inv™(J) if ¢f(J) = X and undefined otherwise.

2.2.2. Assume X is singular and cf(X) > 8y

Fix an increasing continuous sequence of cardinals ¢, for § < cf(X), such that
A = SUPgccr(x) Ae-

Then let inv®*(.J) = inv®(J) if ¢f(J) = cf(\) and undefined otherwise. If m > 1
and inv®*(J) is defined, then let inv™*(.J) = inv™(J) if inv™(J) = (d¢: & < cf(N))
is such that

{€ < cf(\): cf(de) > Ae} € D(cE(N), Ny).

2.2.3. Assume X is singular and Ry > cf(X)

This case will require extra work. Like above, fix an increasing continuous sequence
of cardinals A¢, for £ < cf(A), such that A = sup,_.¢(y) Ae. By RegCard we denote
the class of all regular cardinals.

Lemma 2.3. If cf(\) < Yy then there is h = hy: Xo — AN RegCard such that
h=1 ([, X)) is D(Rg, Ry)-positive for every p < A.

Proof. Partition Ry into D(Ry, Ry)-positive sets S¢, £ < cf(A). Fix an increasing
sequence of regular cardinals A, < cf()), cofinal in A and let h(§) = A, if £ € S,,.
O

With h = hy as in Lemma 2.3 let Dp,(N2) be the filter generated by D(Ry, Np)
and the sets h=1([u,\)) for 4 < A. In the following the function hy will be fixed
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for each X\ such that cf(\) < N;. We shall therefore suppress writing h everywhere
except in Dy, (Ng), usually dropping the subscript A which will be clear from the
context.

Define inv™*(.J) (really inv™*"(.J)) as follows.

Let inv®*(.J) = inv(J) if ¢f(J) = Ry and undefined otherwise.

Assume m > 1 and

ian(J) = <d§ f < N2>/D(N2,N1)
If {0 cf(de) > h(§)} € Di(Rg) then let
inv™A(J) = (de: € < Ra)/Dp(Ra)

and undefined otherwise.
Since Dy, (N2) extends D(Ng, Xy), this invariant is well-defined.

Definition 2.4. Given a cardinal A > Ny and m € N, an m, A-invariant is any
invariant inv"™*(J) for a linear order J of cardinality A that is not equal to
undefined.

Two representing sequences (d¢: & < k) and (e¢: & < k) of invariants of the
same cofinality x are disjoint if d¢ # e¢ for all £. Note that this is not a property
of the invariants since it depends on the choice of the representing sequences.

Lemma 2.5. For every cardinal A\ > Xy there exist m € N and 2 disjoint repre-
senting sequences of m, A\-invariants of linear orders of cardinality .

Proof. Assume first \ is regular. By Lemma 2.2, there are 2* linear orders of
cardinality A and with cofinality equal to \, listed as I for ¢ < 2*, with distinct (and
defined) invariants inv'(I¢). Let Je = X\ x J¢. Then [I¢| = A, inv?*(J¢) is defined
since cf(l¢) = A for all £ and it has constant representing sequence. Therefore all
these representing sequences are disjoint.

Now assume A is singular. By Lemma 2.2 for every sufficiently large regular
6 < A, there are 2* linear orders, Jp ¢, for &€ < 2*, of cardinality A, cofinality 0, and
with distinct and defined invariants inv?(Jp.¢).

(a) Assume furthermore that cf(\) > Ngo. Fix an increasing continuous sequence
A, for n < cf(A) with the supremum equal to A, as in Sec. 2.2.2. Now fix an
increasing sequence 6,), for n < cf(\), of regular cardinals with the supremum
equal to A and such that 6, > A, for all n. For £ < 22 let

Ie= > (Ipe)"
n<cf(\)

(see Example 2.1(3)). Then each linear order I¢, for & < 2*, has cardinal-
ity A, invg’)‘(Ig) is defined for all £, and the obvious representing sequences for
inv®*(I¢) are disjoint.
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(b) Now assume cf(A) < N; and consider h = hy: Ry — A N RegCard as in
Lemma 2.3. For & < 2% let I = Zn<N2 Iy ,e*. Then each linear order I,
for &€ < 2, has cardinality )\, inv®*(I¢) is defined, and the obvious represent-
ing sequences for inv**(I¢) are disjoint. |

3. Representing Invariants in Models of Theories
with the Order Property

3.1. The order property

In the present section, A is a model of countable signature whose theory has the
order property, as witnessed by formula ¢(Z, ). Thus there is n > 1 such that ¢ is
a 2n-ary formula and in A™ there exist arbitrarily long finite <4 chains, where <4
is a binary relation on A" defined by letting @ <4 b if

A ): (;5(5,, B) A _‘QS(& d)'

It should be emphasized that < is not required to be transitive.

The existence of such formula ¢ is equivalent to the theory of A being unstable
([20, Theorem 2.13]). This fact is the only bit of stability theory needed in the
present paper.

We shall write A |=a =<4 b to signify that A = a <4 b or A = a = b. We shall
frequently write @ <, b and @ <, b instead of A = a <4 b and A = a < b since at
any given instance we will deal with a fixed A and its elementary substructures.

A ¢-chain is a subset of A™ linearly ordered by =<4. For b and ¢ in A" we write

[b,c)g ={d:b=pdNnd=yc}
and similarly
(—o00,¢] = {d: d <4 ¢}, and
[6,00) = {d: ¢ =, d}.
If C is a ¢-chain in A then we shall freely use phrases such as “large enough ¢ € C”
with their obvious meaning. By cf(C) we denote the cofinality of (C, <4). We shall
sometimes consider ¢-chains with the reverse ordering, <-4. Whenever deemed

necessary this will be made explicit by writing (C, <-4) as in e.g. c¢f(C, <-4). Since
=4 need not be transitive, one has to use this notation with some care.

3.2. Combinatorics of the invariants

The following is a special case of the definition of “weakly (x, A)-skeleton like” where
k is an arbitrary cardinal and A is set of formulas as given in [21, Definition 3.1].
Readers familiar with [21] may want to know that we fix k = Ny and A = {¢, ¢}
where 9(z,y) stands for ¢(y, ).
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Definition 3.1. A ¢-chain C is weakly (X1, ¢)-skeleton like inside A if for every
@ € A" there is a countable C; C C such that for all b <, ¢ in C with [b, €], disjoint
from C; we have

AE(b,a) < ¢(c.a)
and
A ¢(a,b) < 6(a, o).
Remark 3.2. One can weaken the definition of weakly (Ni,¢)-skeleton like by
requiring only that (with a, Cz, b and ¢ as in Definition 3.1)
a=4 b if and only if a=g¢
and
b =g a if and only if ¢ =4 a.
All the statements about the notion of being weakly (Rq, ¢)-skeleton like, except

Lemma 3.7, remain true for the modified notion. As a matter of fact, it is transparent
that even their proofs remain unchanged.

Remark 3.3. For a € A* and b € A" define
tp(a/b) = {1(Z,b): ¢ is a k + n-ary formula and A = 1(a,b)}.
One may now consider a stronger indiscernibility requirement on a ¢-chain C than

being weakly (X1, ¢)-skeleton like, defined as follows.

(*) Forevery k € Nand a € A¥ there is a countable C; C C such that for all b =4 C
in C with [b,¢], N Ca = () we have that

tp(a/b) = tp(a/c).

The proofs of Theorems 1.1 and 1.3 can be easily modified to provide an ultrafilter
U such that for a given linear order I the ultrapower J[,, A includes a ¢-chain C
isomorphic to I and satisfying (*). See Remarks 4.5 and 6.9.

The nontrivial part of the following is a special case of [21, Claim 3.15] that will
be needed in Sec. 3.3.

Lemma 3.4. Assume C is a ¢-chain that is weakly (N1, ¢)-skeleton like in A.
Then C* is weakly (N1, ¢)-skeleton like inside A, and every interval of C is weakly
(Nq, ¢)-skeleton like inside A. If € C C is well-ordered (or conversely well-ordered)
by =4 then & is weakly (N1, ¢)-skeleton like in A.

Proof. Only the last sentence requires a proof. For b € A™ define & C & as follows.
& = {min(€N[¢ 00)y): ¢ € C3}.

Each & is countable since every ¢ € Cj produces at most one element of &. For
a =<, € in € such that [a,cy N E = 0 we have that [a,cy N C; = 0 and therefore

tp¢(d/5) = tp¢(é/l;). O
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If C and &€ are <4-chains in A then we say C and & are mutually cofinal if for
every a € C we have @ <, b for all large enough b € £ and for every b € £ we have
b <4 a for all large enough a € C.

Lemma 3.5. Assume C and & are mutually cofinal ¢-chains in A. Then

cf(C) = ct(€).

Of course this is standard but since <4 is not assumed to be a partial ordering
on A we shall prove it. Also note that if the condition “for every a € C we have
a <4 b for all large enough b € £” is replaced by “for every a € C we have a <4 b
for some b € £” and the condition “for every b € £ we have b <4 a for all large
enough a € C” is replaced by is replaced by “for every b € £ we have b <, a for
some @ € C” then we cannot conclude cf(C) = cf(€) in general.

Proof. Assume x = cf(C) < cf(€) = A and fix a cofinal X C C of cardinality .
For each @ € X pick f(a) € € such that @ <, b for all b such that f(a) <, b. The
set {f(@): a € X} is not cofinal in & and we can pick b € &€ such that f(a) <, b
for all @ € X. Now let @ € C be such that for all ¢ € C such that a <4 ¢ we have
b <4 ¢. But there is ¢ € X such that @ <, ¢, and this is a contradiction. |

The following is [21, Lemma 3.7] in the case k = N;. We reproduce the proof
for the convenience of the reader.

Lemma 3.6. Assume Cy,Cy are increasing, weakly (N1, ¢)-skeleton like, ¢-chains

in A. Also assume these two chains are mutually cofinal and m is such that both
inv™(Co) and inv™(Cy) are defined. Then inv™(Cy) = inv™(Cy).

Proof. The proof is by induction on m. If m = 0 then this is Lemma 3.5. Now
assume the assertion has been proved for m and all pairs Cyp and C;. Fix Cy,C;y
satisfying the assumptions for m + 1 in place of m and let kK = cf(Cy) = cf(Cy).
Since inv™(Cp) is defined, x > R;. Since inv™ "1 (Cy) is defined, D(,R;) is a proper
filter and xk > N,.

For an elementary sumbodel N of (A, Co,C1) consider

Ch=1{beCy: Alc=gbforallee N"NCy}, and
C}V:{BGQ:AI:Ej¢BforallceN"ﬂC1}.

By our assumption that inv™**(Cy) and inv""*(C;) are defined we have that for any
regular 1 < & the set of N < (A4, Co, C1) of cardinality p such that cf(N"NCy) > Ny
implies inv"™(C%;, <) is defined includes a club. In particular, for club many N
of size p such that cf(N™ NCp) > Ny we have cf(C%, <-,) > Ny. Similarly, for club
many N of size u such that ¢f(N"NCy) > Ny we have that inv™(C};) is defined and
cf(Chy =) > Ny
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Now pick N <A such that cf(N"NCy), cf(N"NCy), cf(C,=<-¢) and
cf(Cx, =-¢) are all uncountable and inv™(C, <-4) and inv™ (Cx, <-4) are defined.
We shall prove that in this case (C%, <-4) and (CL, <-4) are mutually cofinal.

By the elementarity N N Cy and N™ N C; satisfy the assumptions of Lemma 3.5,
and in particular c¢f(N" NCo) = cf(N"NCy). Pick @ € C%. Since N" NC; and
N™NCy are mutually cofinal, by elementarity for all ¢ € N™® N C; we have that
c =y a.

Let & C C1 be a countable set such that for all b and ¢ in C; satisfying b =4 cand
[b,¢ly NE = ) we have that A |= ¢(b,a) < ¢(¢,a) and A = ¢(a,b) < ¢(a,c). Since
&z is countable, by our assumptions on the cofinalities of N™ N Cy and (Ch, <-¢)
for <, end-segment many ¢ € N N C; and for <_,-end-segment many d € C} we
have

AEce=y,a< d=sa.

Therefore for <_-end-segment many d € Ck we have d <4 a, i.e. @ <4 d.

An analogous proof shows that for every € € C* and <_,-cofinally many d € C°
we have & <., d. We have therefore proved that the ¢-chains (C%,<-,4) and
(Ckr, Z-¢) are mutually cofinal. They are both obviously weakly (R, ¢)-skeleton
like, and by the inductive hypothesis in this case we have inv™(C%,=-4) =
inv"(Cx, =) if both of these invariants are defined.

By the inductive hypothesis we have inv™ ™ (Cp) = inv™ 1 (Cy). O

3.3. Defining an invariant over a submodel

Assume Z is an elementary submodel of A. By tpy(a/Z) we denote the ¢-type of
a € A™ in the signature {¢} over Z, or in symbols

tpg(a/Z) = {¢(z,b): b€ Z, A |= ¢(a,b)} U{p(b,2): b€ Z, A = 6(b,a)}.
If B C A (in particular, if B is an elementary submodel of A) we shall write
tpg(a/B) for tp,(a/B™). Write tp,(a/e) for tp,(a/{e}).

Lemma 3.7. A ¢-chain C in A is weakly (R, §)-skeleton like in A if and only if
for every a € A™ there exists a countable Cq C C with the property that for ¢ and d
in C the condition

Ca N (—00,dy = CaN(—00,d]y

implies tp,(a/c) = tpy(a/d).

Proof. Immediate from Definition 3.1. O

Definition 3.8. Assume B is an elementary submodel of A, m € N, and d is an
m-invariant. We say that ¢ € A"\ B" defines an (A, B, ¢, m)-invariant d if there are

(1) (nonempty) linear orders J and I, and
(2) a; € B" for j € J and a; € A"\B"™ for i € I, such that
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(3) (a;: i€ J+1I*)is a ¢-chain in A that is weakly (Ny, ¢)-skeleton like in A,
(4) tpy(a;/B) = tpy(c/B) for all i € I,

(5) d =inv™(I), and

(6) it J',I',a} for i € J'U I’ and d’ satisfy conditions (1)—(5) then d’ = d.

Let INV™(A, B, ¢) denote the set of all m-invariants d such that some ¢ defines an
(A, B, ¢, m)-invariant d.

The point of Definition 3.8 and the conclusion of the Lemma 3.9 is that, once
A, ¢, and m are fixed, the invariant d depends only on the submodel B and the
element ¢ outside of this submodel, and not on the ¢-chain C. Conditions (1)-(5)
of Definition 3.8 imply (6) of Definition 3.8. This is a consequence of Lemma 3.10
and the fact that cofinalities occurring in invariants that are “defined” in the sense
of Sec. 2.1 or Sec. 2.2 are uncountable.

The following notation will be useful. Assume C is a ¢-chain that is weakly
(N1, ¢)-skeleton like in A and B is an elementary submodel of A. For ¢ € C\B" let

C[B,dd={ae€C: (Vbe B"NC)c =4 b+ a =, b}.
We shall always consider C[B, ¢] with respect to the reverse order, <.

Lemma 3.9. Assume C = (a;: i € I) is a ¢-chain that is weakly (N1, ¢)-skeleton
like in A. Assume B is an elementary submodel of A and ¢ € C\B™ are such that

(1) G;NC[B,el N (—o0,¢ly =0 for allb € B", and
(2) d =inv™(C[B, ¢, =~¢) is well-defined.
(3) (CNBN[—o00,¢]) >y

Then ¢ defines the (A, B, ¢, m)-invariant d.

Proof. Let Jy be a well-ordered <4-cofinal subset of
{i€el:a; € B" and a; < ¢}

of minimal order type. By Lemma 3.4, the ¢-chain (a;: i € Jy) is weakly (Nq, ¢)-
skeleton like in A. Let Iy = {i € I: a; € C[B, ] and a@; < ¢}. We need to check that
Iy, Jo and (a;: i € Jo + I}) satisfy (1)—(6) of Definition 3.8.

Clauses (1)—(2) are immediate. As an interval of a weakly (X1, ¢)-skeleton like
order, {a;: i € Ip) is weakly (N1, ¢)-skeleton like. Therefore clause (3) follows. In
order to prove (4) pick b € B" and d € C[B,¢] N (—o0,ey. Then [d,c|s NCy =0,
hence tp,(¢/b) = tp,(d/b). Since b € B"™ was arbitrary, we have tp,(¢/B) =
tp,(d/B) and we have proved (4). Clause (5) is automatic, and (6) follows by
Lemma 3.10 below. O

Lemma 3.10. Assume Iy, I, Jy, J1 are linear orders and (a;: i € Jy + If) and

(bi: i€ J1+ IT) are weakly (Rq, ¢)-skeleton like ¢-chains in A such that

(1) a@; € B™ if and only if i € Jy and b; € B™ if and only if i € Jy,
(2) tpy(ai/B) = tpy(b;/B) for alli € Iy and all j € I,
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(3) each of ct(ly),ct(Iy),ct(Jy), and cf(J1) is uncountable.

If inv™(Ip) and inv™(I1) are both defined then inv™ (Iy) = inv™(I7).

Proof. Pick i(0) € Io. Since tp,(a;()/B) = tpy(b;/B) for some (any) j € I1, we
have that b; <y @;() for all i € J;. Since cf(J;) and cf(/;) are both uncountable
and since (b;: i € J1 +I7) is weakly (Xy, ¢)-skeleton like, we conclude that for large
enough 4 € I we have a;0) <-4 b;.

The analogous argument shows that for every i(1) € I; and all large enough
i € Ip we have ;1) =-¢ b;. Then (a;: i € Ip) and (b;: i € I;) are, when ordered by
<-4, mutually cofinal.

By Lemma 3.6 we have that inv™ (Ip) = inv"™(I;) if both of these invariants are
defined, and the claim follows. O

3.4. Representing invariants

In addition to A, ¢ and m fixed in Sec. 3.1 we distinguish A\ = |A|. A representation
of A is a continuous chain of elementary submodels A¢, for £ < cf()), of A such
that [A¢| < |A[ for all £ and U ¢(y) Ae = A

Define a set INV™*(A, ¢) of m, A-invariants (see Sec. 2.2) by cases as follows.
Whenever d is an m-invariant, or an m, A-invariant, for m > 1 we write (d¢: & <
cf(d)) for its representation. Although this representation is not unique, it is unique
modulo the appropriate filter D(cf(\),Ry) or Dp, (Rz).

3.4.1. Assume X\ is regular

Then d is an m, A-invariant of A, ¢ if d is an m, M-invariant and for every repre-
sentation A¢, £ < A of A we have

{€:de € INV™ (A, Ag, 9)} € DOA,RY).

3.4.2. Assume X is singular and cf(N) > Ry

Then d is an m, A-invariant of A, ¢ if d is an m, A-invariant and for every repre-
sentation A¢, £ < cf(\) of A we have

{€:de € INV™ (A, Ag, $)} € D(cf(N),Ny).

3.4.3. Assume X is singular and ¥y > cf(\)

Fix h: Ng — AN Reg as in Lemma 2.3. Then d is an m, A-invariant of A, ¢ if d is
an m, A-invariant and for every representation A = (J;_.5,) Ae there is { < cf(})
such that

{i <Vg:d; € INV™ (A, A, ¢) and h(i) > |A¢|} € Di(Ro).
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Lemma 3.11. Assume A, ¢, m and X\ = |A| are as above. Also assume C = (a;: j €
J) is a ¢-chain in A that is weakly (R, ¢)-skeleton like in A. If inv™*(J) is defined
then iny™*(J) € INV™*(A).

Proof. This is really three lemmas wrapped up in one. We prove each of the three
cases, depending on the cofinality of A (Secs. 3.4.1-3.4.3) separately.

3.4.4. Assume X\ is regular

Fix a representation A¢, & < A, of A. Let C C A be the club consisting of all §
such that for every a € AY we have Cz C Af. By the assumption cf(J) = X we may
clearly assume m > 1. Let

d=(de: £ < \)/DARy).

Fix { € C such that cf(§) = cf(C N AF) > Ry and de is defined. Since cf(J) = A
by Sec. 2.2.1 the set of such £ belongs to D(A,N1). It will therefore suffice to show
that for every such & some ¢ defines the (A4, A¢, ¢, m — 1)-invariant de.

Pick ¢ € C such that (—oo,¢ls N A7 2 CN AE. Let I¢ be the order with the
underlying set {i € J: @; € C[A¢,d]}, so that inv™ ' (I¢) = d¢. Then

cf(CNAZ) = cf(§) = N
and
Cf(C[A£7 6]7 j—@) = Cf(dg) Z Nl~

Since a € A? implies C; C Agﬂ Lemma 3.9 implies that ¢ defines the
(A, A¢, ¢, m — 1)-invariant de.

3.4.5. Assume X is singular and Ry < cf(X)

Fix a representation Ag, £ < cf(\), of A. By the assumption cf(J) = cf()\) and we
may clearly assume m > 1.

Let d = (d¢: & < cf(A))/D(cf(A),N1). By Sec. 2.2.2 we have J = 3 ¢\ J¢
with inv™ ! (J¢) = d¢ for D(cf(\), X} )-many &. We identify J¢ with the correspond-
ing subset of .J.

Recall that A = J, <cf(x) A¢, where this is an increasing sequence of elementary
submodels each of cardinality < . Let L¢ be the maximal initial segment of J such
that {a;: i € L¢} C Ag. Let Cq be the club in cf()) consisting of all £ such that
|A¢| = A¢, with A¢ as fixed in Sec. 2.2.2, and that (L, J¢) forms a gap in J. That
is, for every i € L¢ and every j € JE* we have ¢ < j and there is no [ € J such that
t<l<jforalliec L¢ and all j € J{.

By Sec. 2.2.2 the set C; of ¢ such that cf(d¢) = cf(J¢) > |A¢| and inv™ ! (J) =
d¢ is in D(cf(A),Ny). It will therefore suffice to show that for every £ € Co N Cy
some ¢ defines the (A, A¢, ¢, m — 1)-invariant de.
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Since cf(J¢) > |Ag¢l, for such £ we can pick j(0) € J¢ such that
{@icie Je,i>j(0)}n (Ag ufCaza e Ag}) = 0.
Let ¢ = a;(p). Then
cf(Ag NCN(=00,dy, Zg) = cf(§) = Xy
and
cf(C[Ag, ¢]) = cf(de) > V.

By Lemma 3.9 we have that ¢ defines the (A4, A¢(g), ¢, m — 1)-invariant d,,.

3.4.6. Assume X is singular and cf(A) < Ry

Fix a representation A¢, & < cf()\), of A. Since cf(J) = Ry we may assume m > 1.
Let d = (de: § < No)/Dp, (N2) and write J = > .y, J& so that inv™ 1 (Je) =
inv™~!(d¢) for D, (Rz)-many (.

Let I, = U, J¢- Pick L C J such that L N Jg is nonempty for all { and
|L| < Ny. Then for every { < Ny we have that L N I, is cofinal in I,, for every limit
7. Since A is uncountable and regular we have A\ > Ny and we can fix £(0) < cf()\)
such that A§(0) 2 {dii RS L}

The set of n < Ry such that h(n) > £(0) and cf(d,) > |A¢(o)| belongs to Dy, (Rz),
and it will suffice to show that for such 1 some ¢ defines the (A, A¢(), ¢, m — 1)-
invariant d,,. Since cf(d,) = cf(J,;) > |A¢(0)|, we can pick j(0) € J,, such that

{ai:i € Jyyi > j(0)} N (A% U HCa: a € A%y }) =0,
Let ¢ = a;(g). Then
cf(Agg) N C N (=004, =Zp) = cf(n) >Ny
and
cf(C[Ag(0), €], Z=g) = cf(dy) > Ny,

By Lemma 3.9 we have that ¢ defines the (A, A¢(), ¢, m — 1)-invariant d,,.
This exhausts the cases and concludes the proof of the lemma. O

3.5. Counting the number of invariants of a model

We would like to prove the inequality |INV™*(A, ¢)| < |A| for every model A
of cardinality > N,. Instead we prove a sufficiently strong approximation to this
inequaity. As a courtesy to the reader we start by isolating the following triviality.

Lemma 3.12. For every cardinal A and every X C P(X) of cardinality > X there
is € < X such that [{x € X: § € x}| > A.



Sh:954

J. Math. Log. 2010.10:45-81. Downloaded from www.worldscientific.com
by MCMASTER UNIVERSITY on 11/28/14. For personal use only.

A Dichotomy for the Number of Ultrapowers 61

Proof. We may assume |[X| = At and enumerate X as {z,: n < AT}. If the
conclusion of lemma fails then f(§) = sup{n < A":¢ € z,} defines a cofinal
function from A to AT. O

See the paragraph before Lemma 2.5 for the definition of disjoint representing
sequences.

Lemma 3.13. For A, ¢,m as usual and \ = |A| every set of disjoint representing
sequences of invariants in INVm’/\(A, @) has size at most \.

Proof. Let us prove the case when A is regular. We may assume m > 1 since
the case m = 0 is trivial. Assume the contrary and let d(n), for n < AT, be
disjoint representing sequences of elements of INV™(A, ¢). Let d(n) = (d(n)e: € <
A)/D(A,Ry). Fix a representation Ag, for £ < A, of A.

For each n < AT fix S, € D(\,Ry) such that for every { € S, some ¢ defines
an (A, Ae, ¢, m)-invariant d(n)e. By Lemma 3.12 there is £ < X such that AT
distinct (A, A¢, ¢, m)-invariants are defined by elements of A™. Since |A| = A, this
is impossible.

The proofs of the two cases when A is singular are almost identical to the above
proof and are therefore omitted. |

The following application, proved in [21], is not concerned with ultraproducts.

Proposition 3.14. Assume A > Ry and K is a class of models of cardinality \. If
there are n and a 2n-ary formula ¢ such that for every linear order I of cardinality
A there exists a model A € K such that I is isomorphic to a weakly (N1, ¢)-skeleton
like ¢-chain in A™, then there are 2 nonisomorphic models in K.

Proof. Let I be a linear order and let A be a model such that I is isomorphic to a
weakly (R, ¢)-skeleton like ¢-chain in A. By Lemma 3.11, inv™*(I) € INV™*(A)
and by Lemma 3.13, INV™(A) has cardinality at most A for every A € K. By
Lemma 2.5 there are 2* disjoint representing sequences of m, A-invariants of linear
orders of cardinality A. By the pigeonhole principle there are 2* nonisomorphic
elements of K. |

4. Construction of Ultrafilters

The main result of this section is Proposition 4.2 below. Its version in which M; =
(N, <) for all # was proved in [15, Lemma 4.7] and some of the ideas are taken from
this proof. Recall that if D is a filter on A then D™ is the coideal of all sets positive
with respect to D, or in symbols

Dt ={XCX: XNY #0 forall Y € D}.
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If D is a filter on A and ¢ € N* then we say G is independent mod D if for all
k € N, all distinct go,...,gx—1 in G and all jg,...,jx—1 in N the set

{&< X g0(§) =Jos---gu—1(&) = Jr—1}

belongs to DT. Note that it is not required that j; be distinct.
Write FI(G) for the family of all finite partial functions h from G into N. For
h € FI(G) write

Ap ={X e N: f(A) =h(f) for all f € dom(h)}.
Let
FL(G) = {An: h € FI(G)}.

We shall write X CP Y for X\Y =0 mod D and X =" Y for XAY = () mod D.
Forcing-savvy readers will recognize both where the following paragraph is coming
from and that Lemma 4.1 simply states that the poset for adding A Cohen reals
densely embeds into P(N)/D.

For h and h' in FI(G) say that h and h' are incompatible if h N A’ is not a function.
Note that if G is independent mod D then h L A’ if and only if A, N Ay =P () and
Ay CP Ay whenever h D B/, for all h and b/ in FI(G).

A standard A-system argument (see [20] or [16]) shows that every family of
pairwise incompatible elements of FI(G) is countable. Lemma 4.1 below is a special
case of [20, Claim VI.3.17(5)]. We include its proof for convenience of the reader.

Lemma 4.1. Assume D is a filter on X and G C N is a family of functions
independent mod D. Furthermore, assume D is a maximal filter such that G is
independent mod D. Then for every X C X there is a countable subset A C FI(G)
such that

(1) For every h € A either Ay, CP X or Ap,NX =P 0.
(2) For every h' € FI(G) there is h € A such that Ap 0 Ap #P 0.

Proof. Assume for a moment that for every h € FI(G) there is ' O h such that
Ay CP X or ApnXx =P (%)

Let A be a maximal family of incompatible elements of FI(G) such that (x) holds.
Then A is countable and it satisfies (1). By our assumption and the maximality of
A, it satisfies (2) as well.

Now assume there is h such that for every A’ O h in FI(G) we have both
Ap\X #P 0 and Ay N X #P ). Let D' be the filter generated by D and the
complement of X N Ay,. Since A, N X #P (0, for h, we have that D’ is a proper
extension of D. Since Aj\X #P ) for every h' extending h, we have that G is
independent modulo D’. This contradicts the assumed maximality of D. O

Lemma 4.1 implies that for every X C N there is a countable Gy C G such that
A satisfying the above conditions is included in FI4(Gp). In this situation we say
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X is supported by Gy. The question of uniqueness of a support Gy for given X is
irrelevant for us and it will be ignored.

Proposition 4.2. Assume ¢(Z,q) is a formula and M;, for i € N, are models of
the same signature such that in M; there is a <g-chain of length i. Then for every
linear order I of cardinality < ¢ there exists an ultrafilter U on N such that [[,, My,
includes a weakly (X1, ¢)-skeleton like ¢-chain C isomorphic to I.

Proof. In order to simplify the notation and release the bound variable n we shall
assume that ¢ is a binary formula and hence the elements of the ¢-chain C will be
elements of A instead of n-tuples of elements from A. Let a;(n), for 0 < i < n, be
a =g-chain in M,,. For convenience of notation, we may assume

a;(n) =1

for all 7 and n, and we also write a;(n) = n — 1 if ¢ > n. Fix an independent
family G of size ¢ of functions f: N — N (see [20, Appendix, Theorem 1.5(1)]). Let
G = {min(f,id — 1) : f € G}. Then G is still independent. Fix a filter D on N such
that G is independent with respect to D and D is a maximal (under the inclusion)
filter with this property. Let FI(G), Ay, for h € FI(G) and FI;(G) be as introduced
before Lemma 4.1. The following is an immediate consequence of Lemma 4.1 (i.e.
of [20, Claim VI.3.17(5)]). Fix an enumeration of G by elements of I and write

Claim 4.3. For every g € [[,,cy Mn there is a countable set S, C I such that for
all 1 € N both sets

Xg»l = {n: M, ': ¢(al(n)7g(n))}7
You =A{n: My = ¢(g(n), ar(n))}

are supported by {f;i: i € Sy}.

Proof. Apply Lemma 4.1 to each X, ; and each Yy ; and take union of the supports.
O

For ¢ < j in I write [¢, j]; for the interval {k € I:i < k < j}. For elements
a =g bin a model M write

[a,b]g ={ce M:a =<4 cand c =<y b}.

Since =4 is not necessarily transitive, this notation should be taken with a grain of
salt. For ¢ < j in I write

Bij = {n: fz(n) =6 fj(n)}
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Note that by our convention about a;(n) we have that f;(n) <4 f;(n) is equivalent
to fi(n) < fj(n). For g € [],,cy My and i < j in I such that [i, j]; NSy = 0 let

Cyij = {n: My |= ¢(fi(n), g(n)) < ¢(f;(n), g(n))
and My, = ¢(g(n), fi(n)) < ¢(g(n), f;(n))}.

In other words, Cyij = {n: tp,(fi(n)/g(n)) = tp,(fj(n)/g(n))}, with tp, as com-
puted in M,,.

Claim 4.4. The family of all sets By for i < j in I and Cy; for g € [[,en M.
and i < j in I such that [i, jl1 NSy = 0 has the finite intersection property.

Proof. It will suffice to show that for £ € N, i(0) < ... < i(k — 1) in I, and
9(0),...,9(k — 1) in [], oy Mn the set

ﬂ Bi(l),i(m) n ﬂ{Cg(k.),i(l),i(m) k< ];:71 <m< E, and [z(l)7z(m)]1 n Sg(k’) = @}
l<m<k

is nonempty. Let

S = U Sg(k)-

k<k

Write T = {i(k): k <k}, also 79 = {fi:i € T} and SY = {fi: i € S}.
Pick hy,, for m € N, in FI(S9\79) so that

(1) Ay C hypyq for all m and
(2) For all h € FI(79), with dom(h) 2 79 all I € N and all k& < k, for all but
finitely many m we have either

(ix) (VPn € Ay, un)Mn = ¢lai(n), g(k)(n)), o
(iix) (VPn € Ap,un)M )=ﬂ¢(az(n),g(k)(n))

and also either

(iy) (VPn € Ap,un) My = 6(g(k)(n), ai(n)), or
(iiy) (VPn € Ap,,un) My | —6(g(k)(n), ar(n)).

The construction of h,, proceeds recursively as follows. Enumerate all triples (h, k, )
in FI(79) x k x N by elements of N. Let hg = {). If h,,, has been chosen and (h, k, )
is the mth triple then use the fact that X ), and Yyy),; are supported by S
(Claim 4.3) to find hp,+1 € FI(S9\TY) such that Ay, U satisfies one of (ix) and
(iix) and one of (iy ) or (ily ). Then the sequence of h,, constructed as above clearly
satisfies the requirements.
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In order to complete the proof it suffices to show that there exist h € FI(79)
and n such that

Ap,un CP ﬂ Biy,imy N
l<m<k

ﬂ{(]g(k),i(l),i(m): k< E,l <m< /23, and [i(1),i(m)]r ﬂSg(k) = @} (1)

In order to have Ay, ,p CF Bi(1),i(m) it is necessary and sufficient to have h(f;)) <
h(fi(m)). We shall therefore consider only h that are increasing in this sense. An
increasing function in FI(79) is uniquely determined by its range. For ¢ € [N]* let
hy denote the increasing function in FI(79) whose range is equal to t.

Assume for a moment that for every ¢ € [N]¥ there are k, [, m such that for all
n we have Ay, on, Z° Cy(k*),i(1*),i(m~) and therefore by the choice of the sequence
{hn} that

AhnUht N Cg(k)vl(l)wl(m) :D ®~

For ¢ € [N]¥ let 4(t) be the lexicographically minimal triple (k,,m) such that this
holds for a large enough n. By Ramsey’s theorem, there are an infinite Z C N and a
triple (k*,1*, m*) such that for every t € [Z]¥ we have Ay, un, NCy(k*),i(1*),i(m*) =D
0.

Let N = |[i(1*),i(m*)]; N T| and find ¢ € [Z]* such that the set

(P (firey)s Pt (figm=)) ] N Z

has at least 4N — 3 elements. Let o' = h; | (T9 N Sg(k*)). Then for each p € N there
is a large enough m = m(p) such that either (ix) or (iix) holds, and either (iy) or
(iiy') holds. We say that such m decides the k*-type of p.

Pick m large enough to decide the k*-type of each p € [h'(fii+)), B (fiim=))]NZ.
Since there are only four different k*-types, by the pigeonhole principle there are N
elements of ['(fii+)), B (fitm+))] N Z with the same k*-type. There is therefore t* €
[Z]F such that all N elements of t* N (7' (fia=))s ' (fi(m=))] have the same k*-type.
This means that Ay, op,. CP Coy(k*),i(1#),i(m=), contradicting ¥ (t*) = (k*,1*, m*).

Therefore there exists ¢ € [N}fC such that for every k < k and all [ < m < k such
that [i(l),i(m)]; NSy = 0 for some n = n(k,l,m) we have

An,one € Coiy,i(r),im)-

Then hy and n = maxy i, n(k, [, m) satisty (1) and this completes the proof. O

By Claim 4.4 we can find an ultrafilter ¢/ such that the sets B;; for i < j in
I and Cy;; for g € [],, ey My and @ < j in I such that [i,j]; NSg = 0 all belong to
U. Let a; be the element of the ultrapower [[,, M,, with the representing sequence
fiifi eI forn € N, if i € N. Since the relevant Ay; and B;; belong to U we have
that a;,7 € I, is a ¢-chain in the ultraproduct.
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In order to check it is weakly (X1, ¢)-skeleton like fix g € [[,, M, and a repre-
senting sequence g € [[, M, of g. Let J, = {fi: i € Sg}. If i < j are such that
[i,7]1 N Jg = 0, then Cy;; € U, which implies that [[,, M, = ¢(a;,8) < ¢(a,,g)
and [[,, M, = #(g,a;) < ¢(g,a;), as required.

Remark 4.5. As pointed out in Remark 3.3, the proof of Proposition 4.2 can be
easily modified to obtain ¢/ such that [[,, M; includes a ¢-chain C isomorphic to I
that satisfies the indiscernibility property (%) stronger than being weakly (Ny, ¢)-
skeleton like stated there. In order to achieve this, we only need to add a variant
Djjgy of the set Cj;q to the filter basis from Claim 4.4 for every k& € N, every
k + n-ary formula 1 (Z,7) and every g € A*. Let

Dijgp = {n: My, = ¢(fi(n), g(n)) < &(f;(n), g(n))}.

The obvious modification of the proof of Claim 4.4 shows that the augmented
family of sets still has the finite intersection property. It is clear that any ultrafilter
U extending this family is as required.

5. The Proof of Theorem 1.1

Fix a model A of cardinality < ¢ whose theory is unstable. By [20, Theorem 2.13]
the theory of A has the order property and we can fix ¢ in the signature of A such
that A includes arbitrarily long finite ¢-chains. Therefore Theorem 1.1 is a special
case of the following with A; = A for all 4.

Theorem 5.1. Assume CH fails. Assume ¢(Z,y) is a formula and A;, for i € N,
are models of cardinality < ¢ such that in A; there is a =<4-chain of length i. Then
there are 2° isomorphism types of models of the form [],, An, where U ranges over
nonprincipal ultrafilters on N.

Proof. Since |4;| > i for all 4, the ultrapower [],, A has cardinality equal to ¢
whenever U is a nonprincipal ultrafilter on N. By Lemma 2.5, there are 2¢ lin-
ear orders [ of cardinality ¢ with disjoint representing sequences corresponding to
(defined) invariants inv™“(I) (with m = 2 or m = 3 depending on wheher ¢ is
regular or not). Use Proposition 4.2 to construct an ultrafilter 4 (I) such that I is
isomorphic to a weakly (R, ¢)-skeleton like ¢-chain C in Hu( n A;. The conclusion
follows by Proposition 3.14. O

6. Ultrapowers of Metric Structures
6.1. Metric structures

In this section, we prove a strengthening of Theorem 1.3 which is the analogue
of Theorem 5.1 for metric structures. First we include the definitions pertinent to
understanding the statement of Theorem 1.3. Assume (A4,d, fo, f1,...,Ro, R1,...)
is a metric structure. Hence d is a complete metric on A such that the diameter of
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Ais equal to 1, each f; is a function from some finite power of A into A, and each R;
is a function from a finite power of A into [0,1]. All f; and all R; are required to be
uniformly continuous with respect to d, with a fixed modulus of uniform continuity
(see [2] or [10, Sec. 2]). In the interesting cases, such as (unit balls of) C*-algebras,
tracial von Neumann algebras, and Banach spaces, this requirement follows from
the uniform continuity of algebraic operations on bounded balls.

If I/ is an ultrafilter on N then on AN we define a quasimetric dy; by letting, for
a = (a;)ieny and b = (b;)ien,

du(a7 b) = hm d(ah bl)

d

Identify pairs a and b such that dy(a,b) = 0. The uniform continuity implies
that f,(a) = (fn(a;)); and R,(a) = lim;—y R, (a;) are uniformly continuous func-
tions with respect to the quotient metric. The quotient structure is denoted by
[1,(A,d,...) (or shortly [],, A if the signature is clear from the context) and called
the ultrapower of A associated with U. An ultraproduct of metric structures of the
same signature is defined analogously.

The assumption that the metric d is finite is clearly necessary in order to have
dy be a metric. However, one can show that the standard ultrapower constructions
of C*-algebras and of II; factors can essentially be considered as special cases of
the above definition (see [10, Sec. 4] for details). These two constructions served as
a motivation for our work (see Sec. 8).

More information on the logic of metric structures is given in [2], and [10]
contains an exposition of its variant suitable for C*-algebras and II; factors.

Let A = (A,d,...) be a metric structure. Interpretations of formulas are func-
tions uniformly continuous with respect to d, and the value of an n-ary formula
1 at an n-tuple a is denoted by

(@)™,
We assume that the theory of A is unstable, and therefore by [10, Theorem 5.5]
it has the order property. Fix n and a 2n-ary formula ¢ that witnesses the order

property of the theory of A. Define the relation <, on every model such that ¢ is
a formula in its signature by letting a <4 b if and only if

#(@,b)=0 and ¢(b,a)=1.

A ¢-chain in A is a subset of A™ linearly ordered by <,. Theorem 1.3 is a conse-
quence of the following.

Theorem 6.1. Assume CH fails. Assume ¢(Z,y) is a formula and A;, for i € N,
are metric structures of cardinality < ¢ of the same signature such that in A; there
is a =g-chain of length i. Then there are 2° isometry types of models of the form
[1,, An, where U ranges over nonprincipal ultrafilters on N.

The proof proceeds along the same lines as the proof of Theorem 5.1 and we
shall only outline the novel elements, section by section.
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6.2. Combinatorics of the invariants
For a € A™ and b € A™ write
tpe(@/b) = (4@, b)*, o(b,a)").
For a € A" and X C A", let tp,(a/X) be the function from X into [0,1]?
defined by

tpy(a/X)(b) = tpy(a/b).

The notation and terminology such as [a, b4 have exactly the same interpretation
as in Sec. 3.1.

Definition 6.2. A ¢-chain C is weakly (N1, ¢)-skeleton like in A if for every a € A™
there is a countable Cz C C such that for all b and ¢ in C satisfying

[B, E]¢ N Ca - @
we have tpy(a/b) = tp,(a/c).

Note that (C,=<4) is an honest (discrete) linear ordering. Because of this a
number of the proofs in the discrete case work in the metric case unchanged. In
particular, Lemmas 3.4-3.7 are true with the new definitions and the old proofs.
Definition 3.8 and the definition of C[B, ¢] are transferred to the metric case unmod-
ified, using the new definition of tp,. As a matter of fact, the analogue of Remark 3.2
applies in the metric context. That is, even if weakly (Rq, ¢)-skeleton like is defined
by requiring only that (with @, Cs, b and ¢ as in Definition 6.2) we only have

a j¢5 if and only if @ <4 ¢
and
b =¢ a if and only if ¢ =4 a,
then all of the above listed lemmas remain true, with the same proofs, in the metric

context. However, Lemma 6.5 below requires the original, more restrictive, notion
of weakly (X1, ¢)-skeleton like.

6.3. Defining an invariant over a submodel

Definition 3.8 is unchanged. The statement and the proof of Lemma 3.9 remain
unchanged. However, in order to invoke it in the proof of the metric analogue of
Lemma 3.10 we shall need Lemma 6.3 below. For a metric structure B its character
density, the smallest cardinality of a dense subset, is denoted by x(B). Note that
X(A) > |C] for every ¢-chain C in A, since each ¢-chain is necessarily discrete.

Lemma 6.3. Assume C = (a;: i € I) is a ¢-chain that is weakly (N1, ¢)-skeleton
like in a metric structure A. Assume B is an elementary submodel of A and a €
C\B" is such that

cf(C[B,a], <-¢) > x(B).
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Then there is ¢ € C[B,a] such that for all d € C[B,a]N (—o0,ée, we have
tp,(d/B) = tp,(¢/B).

Proof. Pick a dense By C B of cardinality x(B). Let ¢ € C[B, a] be such that
C[B,aln| J{Cp: b€ By} N (—00,dy = 0.

Then for every d € C[B, &N (—00,¢|s and every b € Bf we have that [d, ¢]s N Cp = 0,
and therefore tp,(¢/b) = tp,(d/b). Since the maps Z — tp,(¢/T) and T — tp,(d/z
are continuous, they agree on all of B" and therefore tp,(¢/B) = tp,(d/B). m|

6.4. Representing invariants

The definition of INV™?*(A,$) from Sec. 3.4 transfers to the metric context
verbatim, and Lemma 3.11 and its proof are unchanged.

6.5. Counting the number of invariants over a model

Lemma 3.12 is unchanged but Lemma 3.13 needs to be modified, since the right
analogue of cardinality of a model is its character density.

Lemma 6.4. For A, ¢, m as usual every set of disjoint representing sequences of
invariants in INV™XA) (A, 6) has size at most x(A).

Proof. In this paper we shall only need the trivial case when x(4) = |A| = ¢,
but the general case is needed in [12]. It will follow immediately from the proof of
Lemma 3.13 with Lemma 6.5 below applied at the right moment. O

Lemma 6.5. For A, ¢,m as usual and an elementary submodel B of A there are
at most x(A) distinct (A, B, ¢, m)-invariants.

Proof. Let A = x(4). Let h: R — [0,1] be the continuous function such that
h(z) = 0 for & < 1/3, h(z) = 1 for > 2/3, and h linear on [1/3,2/3]. Let
v=hog.

Note that every ¢-chain is a 1p-chain. Also, ¢(ai,b;) = ¢(ag,be) implies
¥(ay,b1) = 9(ag,be), and therefore every weakly (X1, ¢)-skeleton like ¢-chain is
weakly (Nq,1))-skeleton like, with the same witnessing sets C;. This implies the
following, for every elementary submodel B of A and m € N.

(*) If ¢ € A™ defines the (A, B, ¢, m)-invariant d then ¢ defines the (4, B, ), m)-
invariant d.

Denote the sup metric on A” by d”. Since ¢* is a uniformly continuous function,
there is § > 0 sufficiently small so that d"(¢;,¢2) < d implies |¢(a, ¢1) — ¢(a, é2)| <
1/3 for all a. Therefore we have the following.
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(**) For every a € A™ we have that a <, ¢, implies a <y ¢2, and a <4 ¢z implies
a <y C1.

Assume B is an elementary submodel of A and ¢; defines the (A, B, ¢, m)-invariant
d;, for i = 1,2. By (*) we have that ¢; defines the (A, B, 1, m)-invariant d;, for
i=1,2.1f d*(¢1, ¢2) < § then (**) implies d; = ds. |

Proposition 3.14 applies in the metric case literally.

6.6. Construction of ultrafilters

It is the construction of the ultrafilter in Sec. 4 that requires the most drastic
modification. Although the statement of Proposition 4.2 transfers unchanged, the
proof of its analogue, Proposition 6.6, requires new ideas.

Proposition 6.6. Assume ¢(Z,q) is a formula and M;, for i € N, are metric
structures of the same signature such that in M; there is a =g-chain of length 1.
Assume I is a linear order of cardinality < c. Then there is an ultrafilter U on N
such that [[,, My, includes a ¢-chain {a;: i € I} that is weakly (Ry, ¢)-skeleton like.

Proof. Like in the proof of Proposition 4.2, we assume ¢ is a binary formula in
order to simplify the notation. Fix a ¢-chain a;(n), for 0 < i < n, in M,,. Like in
Sec. 4 fix an independent family G of size ¢ and a filter D such that G is independent
with respect to D and D is a maximal filter with this property. Define G, FI(G)
and FI4(G) exactly as in Sec. 4. Since the diameter of each M, is < 1, each element
of [],, My, is a representing sequence of an element of the ultrapower. Claim 4.3 is
modified as follows.

Claim 6.7. For every g € [[,cny My there is a countable set Sy C I such that for
alll € N and all r € QN[0,1] all sets of the form

Xgir = {n: ¢lar(n), g(n))" <r},
Yo = {n: ¢(g(n),ar(n)) <r}

are supported by Sy .

Proof. Since there are only countably many relevant sets, this is an immediate
consequence of Lemma 4.1. O

For i < j in I the definitions of sets

Bij = {n: fi(n) =4 fi(n)}
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is unchanged, but we need to modify the definition of Cy;;. For g € [],, cny Mn, i < j
in I such that [z,j]; NSy =0 and € > 0 let

Cyije = {n: [o(fi(n), g(n))M" — ¢(f;(n), g(n))"| <&
and [$(g(n), fi(n))™" — ¢(g(n), f;(n))"| < e}

Claim 6.8. The family of all sets B;; fori < j in I and Cyije for g € [], ey Mn,i <
J in I such that [i,7]; NSy =0 and € > 0 has the finite intersection property.
Proof. It will suffice to show that for k € N,i(0) < --- < i(k — 1) in I, and
9(0),...,9(k—1) in [, ey My and € > 0 the set

ﬂ Bi(l),i(m) N ﬂ{Cg(k),i(l)’i(m),E: k< E’,l <m< ff, and
l<m<k

[i(1),4(m)]1 N Syy = 0}

is nonempty. Pick M € N such that M > 2/e. Let

S= U Sy(k)-

k<k

Write 7 = {i(k): k <k}, also 79 = {fi:i € T} and SY = {f;: i € S}.
Pick hy,, for m € N, in FI(SY\7Y) so that

(1) A C hypgq for all m and
(2) For all h € FI(T9), all l € N, and all k < k there exist r and s in N such that
0<r<M,0<s<M and for all but finitely many m we have

(ix) (VPn € An,un)l¢(ai(n), g(k)(n))" —r/M| < /2 and
(iv) (VPn € Ap,on)lé(g(k)(n), ai(n)™ —s/M| < /2.

The construction of h,, is essentially the same as in the proof of Claim 4.4, except
that it uses Claim 6.7 in place of Claim 4.3.

In order to complete the proof we need to show that there exist h € FI(79) and
n such that

Ap,un CP ﬂ Biy,itm) N
l<m<k

[V Cowy.i.itmye: b <kl <m <k, and [i(l),i(m)]; NSy = 0}. (2)

In order to have Ap,un € Bjq).i(m) it is necessary and sufficient to have h(i(l)) <
h(i(m)). We shall therefore consider only h that are increasing in this sense. An
increasing function in FI(79) is uniquely determined by its range. For ¢ € [N}fC let
h¢ denote the increasing function in FI(79) whose range is equal to .
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Assume for a moment, that for every ¢ € [N]* there are k, 1, m such that for all
n we have Ay, un, Z° Cy(k),i(1),i(m),e and therefore by the choice of the sequence
{hy} that

Anune N Coy) ity imy,e = 0.

For t € [N]* let ¢)(t) be the lexicographically minimal triple (k,[,m) such that this
holds for a large enough n. By Ramsey’s theorem, there are an infinite Z C N and a
triple (k*,1*, m*) such that for every t € [N]¥ we have Ay, un, NCy(k),i(1),i(m),e =D,

Let N = [[i(1*),i(m*)]; N 7| and find ¢ € [Z]¥ such that the set

[P (i(I7)), hu (i(m™ )] N Z

has at least (M? + 2M)N + 1 elements. Let ' = h | (79N Sg(k*)). Then for each

p € N there are a large enough m = m(p) such that for some r = r(p) and s = s(p)
we have

(VPn € Ap,un)lé(ai(n), g(k)(n))™" —r/M| < /2
and

(VPn € An,un)lo(g(k)(n), a(n)) —s/M| < e/2.
We say that such m decides the k*-type of p. Pick m large enough to decide the k*-
type of each p € [B/(i(1*)), b/ (i(m*))]N Z. Since there are only (M +1)? different k*-
types, by the pigeonhole principle there are N elements of [/ (i(I*)), h'(i(m*))]| N Z
with the same k*-type. There is therefore t* € [Z]* such that hs extends ¢ and
all N elements of t* N [A/(i(1*)), h'(¢(m*))] have the same k*-type. This means that
By U hys CP Cy(k*),i(1%),i(m*),e, contradicting ¥(t*) = (k*, 1", m*).

Therefore there exists ¢ € [N]¥ such that for every k < k and all [ < m < k such

that [i(1),i(m)]r N Sy = 0 for some n = n(k,1,m) we have

An,one SP Cyry ity im).e-
Then hy and n = maxy,; m n(k, [, m) satisty (2). m|

Let U be any ultrafilter that extends the family of sets from the statement of
Claim 6.8. Since M,, are assumed to be bounded metric spaces, each f; is a rep-
resenting sequence of an element of the ultraproduct [[,, M,. Denote this element
by a; and let C denote (a;: i € I). Since B; ; € U for all i < j in I, C is a ¢-chain
isomorphic to I. For b € [[,, M, fix its representing sequence g and let C, C C be
{a;:i€Sy}. Since Cy; j - € U whenever [i,j]NS, = () and € > 0, we conclude that
C is a weakly (R, ¢)-skeleton like ¢-chain as in the proof in Sec. 4.

6.7. The proof of Theorem 6.1

Compiling the above facts into the proof of Theorem 6.1 proceeds exactly like in
Sec. 5.

Remark 6.9. Remark 4.5 applies to Proposition 6.6 in place of Proposition 4.2
verbatim.
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7. Types with the Order Property

In this section we prove local versions of Theorem 1.1 and Theorem 1.3 in which
the ¢-chain is contained in the set of n-tuples realizing a prescribed type t (the
definition of a type in the logic of metric structures is given below). We will make
use of this in case when t is the set of all n-tuples all of whose entries realize a given
1-type, and the set of these realizations is a substructure. In order to conclude that
a ¢-chain is still a ¢-chain when evaluated in this substructure, we will consider a
formula ¢ that is quantifier-free. Throughout this section we assume A is a model,
¢(z,y) is a 2n-ary formula in the same signature and t is an n-ary type over A.

Although the motivation for this section comes from the metric case, we shall
first provide the definitions and results in the classical case of discrete models. An
n-ary type t over A has the order property if there exists a 2n-ary formula ¢ such
that for every finite tg C t and for every m € N there exists a ¢-chain of length m
in A all of whose elements realize tg.

Proposition 7.1. Assume A is countable and type t over A has the order property,
as witnessed by ¢. Assume I is a linear order of cardinality < c. Then there is an
ultrafilter U on N such that [[,, A includes a weakly (Ry, ¢)-skeleton like ¢-chain
isomorphic to I consisting of n-tuples realizing t.

Proof. Since t is countable we may write it as a union of finite subtypes, t =
Uien ti- Let ai(k), for 0 < i < k, be a <4 chain in A of elements realizing ty.
Let G be an independent family of functions of cardinality ¢. Unlike the proof of
Proposition 4.2, we cannot identify G with functions in [],{a;(k): i < k}, since
we cannot assume a;(k) = a;(1) for all i < min(k,1). Therefore to each g € G we
associate a function § such that

9(k) = ag) (k)
if g(k) < k and §(k) = ag—1(k), otherwise. Then by the Fundamental Theorem of

Ultraproducts ¢ is a representing sequence of an element that realizes t. The rest
of the proof is identical to the proof of Proposition 4.2. |

In order to state the metric version of Proposition 7.1 we import some notation
from [8, 9]. Given 0 < & < 1/2 define relation <, . on A™ via

a1 =g, Q2 if ¢(d17d2) <e and ¢(EL2,@1) >1—ec.

Note that <4 o coincides with <4. A ¢, e-chain is defined in a natural way.

We shall now define a type in the logic of metric structures, following [2] and
[10, Sec. 4.3]. A condition over a model A is an expression of the form ¢(Z,a) <r
where ¢ is a formula, @ is a tuple of elements of A and r € R. A type t over A
is a set of conditions over A. A condition ¢(Z,a) < r is e-satisfied in A by b if
#(b,a)* < r + . Clearly a condition is satisfied by b in A if and only if it is -
satisfied by b for all € > 0. A type t is e-satisfied by b if all conditions in t are
e-satisfied by b.
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An n-ary type t over a metric structure A has the order property if there
exists a 2n-ary formula ¢ such that for every finite tg C t and for every m € N
there exists a ¢, 1/m-chain of length m in A consisting of n-tuples each of which
1/m-satisfies to.

Proposition 7.2. Assume A is separable metric structure and type t over A has
the order property, as witnessed by ¢. Assume I is a linear order of cardinality < c.
Then there is an ultrafilter U on N such that [[,; A includes a weakly (N1, ¢)-skeleton
like ¢-chain isomorphic to I and consisting of n-tuples realizing t.

Proof. For elements a and b of [ [, A and their representing sequences (a;);en and
(bi)ien we have a <4 b in [],, A if and only if {i: a; <4 b;} € U for every ¢ > 0.
Modulo this observation and replacing t with its restriction to a countable dense
subset of A, the proof is identical to the proof of Proposition 7.1. O

In order to prove versions of Propositions 7.1 and 7.2 for uncountable (respec-
tively, nonseparable) structures we shall need the following well-known lemma.

Lemma 7.3. Assume D is a meager filter on N extending the Frechét filter. Then
there is a family Gp of cardinality ¢ of functions in NN that is independent mod D.

Proof. Let G be a family of cardinality ¢ that is independent mod the Fréchet filter
([20, Appendix, Theorem 1.5(1)]). Since D is meager there is a surjection h: N — N
such that the h-preimage of every finite set is finite and the h-preimage of every
infinite set is D-positive (see, e.g. [1]). Then Gp = {ho f: f € G} is independent
mod D because the h-preimage of every infinite set is D-positive. O

Again A, ¢ and t are as above and A<YN denotes the set of all finite sequences
of elements of A. Note that A is not assumed to be countable.

Proposition 7.4. Let A be a model and let t be a type over A. Assume there is a
function h € [], oy AF™ such that the sets

X[to, k] = {i: h(2) is a ¢-chain of n-tuples satisfying to}

for to Ct finite and k € N generate a meager filter extending the Frechét filter.

Assume I is a linear order of cardinality < c. Then there is an ultrafilter U on
N such that [[,; A includes a ¢-chain {a;: i € I} that is weakly (N1, ¢)-skeleton like
and consists of elements realizing t.

Proof. Let Dy denote the filter generated by all X[to, k] for to C t finite and
k € N. By Lemma 7.3 there is a family Gy of cardinality ¢ that is independent mod
D. For each k € N enumerate the ¢-chain h(k) as a;(k), ¢ < k. Like in the proof of
Proposition 7.1 for g € Gy define g € AN by g(k) = ayq (k) if g(k) < k and a1 (k)
otherwise.
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The construction described in the proof of Proposition 4.2 results in U such that
all elements of the resulting ¢-chain a;, for i € I, realize t. |

The proof of the following metric version is identical to the proof of Proposi-
tion 7.4. Note that A is not assumed to be separable.

Proposition 7.5. Let A be a metric structure and let t be a type over A. Assume
there is a function h € [, A" such that the sets

X[to, k] = {i: h(i) is a ¢,1/k-chain consisting of n-tuples 1/k-satisfying to}

for tg C t finite and k € N generate a meager filter extending the Frechét filter.

Assume I is a linear order of cardinality < c. Then there is an ultrafilter U on
N such that [[,, A includes a ¢-chain {a;: i € I} that is weakly (N1, ¢)-skeleton like
and consists of elements realizing t.

8. Applications

Recall that Alt(n) is the alternating group on {0,...,n — 1}. The following is the
main result of [7] (see also [24]).

Theorem 8.1 (Ellis—Hachtman—Schneider—Thomas). If CH fails then there
are 2° wultrafilters on N such that the ultraproducts [[,, Alt(n) are pairwise
nonisomorphic.

Proof. Let ¢(z1,22,y1,y2) be the formula asserting that x1y2 = yox1 and zoy; #
y1xo. It is then easy to see that for all natural numbers k& > 2n+4 the group Alt(k)
includes a ¢-chain of length n. Therefore the conclusion follows by Theorem 5.1.

O

8.1. Applications to operator algebras

Theorems 1.3 and 6.1 were stated and proved for the case of bounded metric struc-
tures. However, the original motivation for the present paper came from a question
about the of ultrapowers of C*-algebras and II; factors stated in early versions of
[9, 10]. An excellent reference for operator algebras is [4].

In the following propositions and accompanying discussion we deal with the
ultrapower constructions for C*-algebras and II;-factors, as well as the associated
relative commutants. Although Theorem 1.3 was proved for bounded metric struc-
tures, it applies to the context of C*-algebras and II; factors. Essentially, one applies
the result to the unit ball of the given algebra. All the pertinent definitions can be
found in [9] or [10].

The classes of C*-algebras and of II; factors are axiomatizable in the logic of
metric structures. Both proofs can be found in [10, Sec. 3], and the (much more
difficult) II; factor case was first proved in [3], using a rather different axiomati-
zation from the one given in [10]. Extending results of [8, 14], in [9, Lemma 5.4]
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it was also proved that the class of infinite dimensional C*-algebras has the order
property, as witnessed by the formula

¢(z,y) = |zy — |

Assume a;,7 € N, is a sequence of positive operators of norm one such that a; — a;
is positive and of norm one whenever j < ¢. Then this sequence forms a <4-chain.
Such a sequence exists in every infinite-dimensional C*-algebra (see the proof of
[9, Lemma 5.2]). Note that it is important to have this <y-chain inside the unit
ball of the algebra. In [9, Lemma 5.4] it was also proved that the relative commutant
type (see below for the definition) of every infinite-dimensional C*-algebra has the
order property, and that this is witnessed by the same ¢ as above.

In [9, Lemma 3.2(3)], it was proved that the class of II; factors has the order
property, as witnessed by the formula

1/)($1,y179627212) = ||x1y2 - y2961||2-

Unlike the case of C*-algebras, the relative commutant type of some II; factors does
not have the order property. For a II; factor IV, the relative commutant type having
the order property is equivalent to having a nonabelian relative commutant in some
(equivalently, all) of its ultrapowers associated with nonprincipal ultrafilters on N
([9, Theorem 4.8]). Such II; factors are called McDuff factors. We emphasize that,
similarly to the case of C*-algebras, an arbitrarily long finite t)-chain can be found
inside the unit ball of a II; factor. This is necessary in order to have the proof work.
Note that without this requirement even C includes an infinite t-chain, although
C clearly does not have the order property.

Recall that two C*-algebras are (algebraically) isomorphic if and only if they are
isometric, and that the same applies to II; factors. The following is a quantitative
improvement to the results of [14], [8] (for C*-algebras) and [9] (for II; factors).

Proposition 8.2. Assume A is a separable infinite-dimensional C*-algebra or a
separably acting II;-factor. If the Continuum Hypothesis fails, then A has 2° noni-
somorphic ultrapowers associated with ultrafilters on N.

In Proposition 8.2 it suffices to assume that the character density of A is < .
This does not apply to Proposition 8.4 below where the separability assumption is
necessary (cf. the last paragraph of [10, Sec. 4] or [13]).

Proof. Since by the above discussion both classes are axiomatizable with unstable
theories, Theorem 1.3 implies that in all of these cases there are 2¢ ultrapowers
with nonisomorphic unit balls. Therefore the result follows. O

In the light of Proposition 8.2, it is interesting to note that the theory of abelian
tracial von Neumann algebras is stable (this is a consequence of [9, Theorem 4.7] and
the characterization of stability from [10, Theorem 5.6]). More precisely, a tracial
von Neumann algebra M has the property that it has nonisomorphic ultrapowers
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(and therefore by Theorem 1.3 it has 2¢ nonisomorphic ultrapowers) if and only if
it is not of type I. This is a consequence of [9, Theorem 4.7].

The following is a quantitative improvement of [9, Proposition 3.3], confirming
a conjecture of Sorin Popa in the case when the Continuum Hypothesis fails. The
intended ultrapower is the tracial ultrapower, and the analogous result for norm
ultrapower is also true.

Proposition 8.3. Assume the Continuum Hypothesis fails. Then there are 2¢ ultra-
filters on N such that the II, factors [[,;, My (C) are all nonisomorphic.

Proof. This is a direct application of Theorem 1.3, using <4-chains obtained in
[9, Lemma 3.2]. O

Assume M is a C*-algebra or a II; factor and U is a nonprincipal ultrafilter on
N. Identify M with its diagonal copy inside [],, M. The relative commutant of M
inside its ultrapower is defined as

M N][M={ac][M: (Vae M)ab=ba}.
u u

Thus the relative commutant is the set of all elements of [ [,, M realizing the relative
commutant type of M, consisting of all conditions of the form |xb — bz| = 0,
for b € M. (Here || - || stands for || - || in case when M is a II; factor.) The
relative commutant is a C*-algebra (II; factor, respectively) and it is fair to say that
most applications of ultrapowers in operator algebras are applications of relative
commutants. A relative commutant is said to be t¢rivial if it is equal to the center
of M. From a model-theoretic point of view, a relative commutant is a submodel
consisting of all realizations of a definable type over M.

The original motivation for the work in [8-10] came from the question whether
all relative commutants of a given operator algebra in its ultrapowers associated
with ultrafilters on N are isomorphic. This was asked by Kirchberg in the case of C*-
algebras and McDuff in the case of II;-factors. Here is a quantitative improvement
to the answer to these questions given in the above references.

Proposition 8.4. Assume A is a separable infinite-dimensional C*-algebra
or a separably acting McDuff II-factor. If the Continuum Hypothesis fails,
then A has 2° nonisomorphic relative commutants in ultrapowers associated with
ultrafilters on N.

Proof. In [9, Theorem 4.8], it was proved that the relative commutant type of a
McDuff factor has the order property, witnessed by 1 given in the introduction to
Sec. 8.1. In [9, Lemma 5.4], it was proved that the relative commutant type of any
infinite-dimensional C*-algebra has the order property, witnessed by ¢ given in the
introduction to Sec. 8.1. Hence applying Proposition 7.2 concludes the proof. O
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By B(H) we shall denote the C*-algebra of all bounded linear operators on
an infinite-dimensional, separable, complex Hilbert space H. In [13] it was proved
that for certain ultrafilters on N the relative commutant of B(H) in [[,, B(H) is
nontrivial. These ultrafilters exist in ZFC. It was also proved in [13] that the relative
commutant of B(H) in an ultrapower associated to a selective ultrafilter is trivial.
Therefore CH implies that not all relative commutants of B(H) in its ultrapowers
associated with ultrafilters on N are isomorphic. This fact motivated Juris Steprans
and the first author to ask whether this statement can be proved in ZFC. Since B(H)
is not a separable C*-algebra, the following is not a consequence of Proposition 8.4.

Proposition 8.5. Assume that the Continuum Hypothesis fails. Then B(H) has
2¢ nonisomorphic relative commutants associated with its ultrapowers.

Proof. We shall apply Proposition 7.5. The following construction borrows some
ideas from the proof of [13, Theorems 3.3 and 4.1]. Let F<N be the countable set of
all finite sequences of nonincreasing functions h: N — QN [0, 1] that are eventually
zero and such that h(0) = 1. We shall construct a filter D on F<N. For f and g in
RY write || f — glloo = sup; |f(i) — g(i)|. For f: N /' N and m € N let X¢,, be the
set of all k-tuples (hg, h1,...,hi—1) in F such that

(1) k>

(2) maxl<k ||h —hio flloe < 1/m,

(3) hi(j) < hiy1(j) for all i < k — 1 and all j,

(4) for all ¢ < k — 2 there is 7 € N such that h;(j) = 0 and h;+1(5) = 1.

We claim that X, is always infinite. This is essentially a consequence of the proof
of [13, Lemma 3.4] but we shall sketch a proof. Fix a sequence n(j), for j € N,
such that n(l +1) > f(n;) for all I. For Z C N by xz we denote the characteristic
function of Z. For i < k set

(i+1)m—1
(t+1)ym—1
hi = X[0,mi) + Z o XIn(W.n(i+1)-

l=im

A straightforward computation shows that (hg, ki, ..., hi—1) € X m. Since X¢,,, N
Xgn 2 Xmax(f,9), max(m,n), the collection of all Xy, for f: N /N and e > 0, has
the finite intersection property. Since the filter generated by these sets is analytic,
proper, and includes all cofinite sets, it is meager (see e.g. [1]). Fix a basis e;, for
j €N, of H. For h: N — [0, 1] define a positive operator aj, in B(H) via

ap = Z h(j)e;

JEN

In other words, ay, is the operator with the eigenvalues h(j) corresponding to the
eigenvectors e;. Fix an enumeration F<N = {s;: i € N}. Let h be a function from
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N into the finite sequences of positive operators in the unit ball of B(H) defined by
h(i) = (ap: h € s;). With

d(z,y) = |lzy — |

conditions (3) and (4) above imply that each h(i) is a ¢-chain.

Let t be the relative commutant type of B(H), i.e. the set of all conditions of
the form |jax — zal|| < e for a in the unit ball of B(H) and ¢ > 0. Let to be a finite
subset of t, let € > 0, and let ag, ..., a1 list all elements of B(H) occurring in tg.
Let § = /6. [13, Lemma 4.6] implies that there are go and g; such that for each
i < k we can write a; = ay + a} + ¢; so that

(1) @Y commutes with ay, for every h that is constant on every interval of the form
[90(m), go(m + 1)),

(2) a} commutes with ay, for every h that is constant on every interval of the form
[91(m), g1(m + 1)), and

@) llall <.

Then for i < k, j € X450 Xy, 5, and h an entry of h(j) we have

[aiv ah] = [a(i)7 ah} + [azlv ah] + [Ci7 ah}

and since [|ay|, ||a}|| and ||as|| are all <1 we conclude that ||[a;, ap]| < 66.
Therefore ay, realizes tg, and Proposition 7.5 implies that for every linear order
I of cardinality ¢ there is an ultrafilter ¢/ such that [[,, B(H) contains a ¢-chain C
isomorphic to I which is (Rq, ¢)-skeleton like and included in the relative commutant
of B(H). Since ¢ is quantifier-free, C remains a ¢-chain in the relative commutant
B(H) NI, B(H). Since C is (X1, ¢)-skeleton like in [[,, B(H), it is (X1, ¢)-skeleton
like in the substructure. Using Lemmas 2.5, 3.11, 3.13 and a counting argument as
in the proof of Theorem 5.1 we conclude the proof. |

8.2. Concluding remarks

Before Theorem 1.1 was proved the following test question was asked in a prelimi-
nary version of [10]: Assume A and B are countable models with unstable theories.
Also assume U and V are ultrafilters on N such that [[,, A 2 [[,, A. Can we con-
clude that [[,, B 2 [],, B? A positive answer would, together with [15, Sec. 3], imply
Theorem 1.1. However, the answer to this question is consistently negative. Using
the method of [22] one can show that in the model obtained there are countable
graphs G and H and ultrafilters ¢/ and V on N such that [[,, G,]],, G and [][,, H
are saturated but [],, H is not. This model has an even more remarkable property:
Every automorphism of [],, H lifts to an automorphism of H N An interesting and
related application of [22] was recently given in [17].

Methods of the present paper was adapted to the class of all approzimately
matricial (shortly AM) C*-algebras in [12]. A C*-algebra is AM if and only if
it is an inductive limit of finite-dimensional matrix algebras ([11]). In [12] it was
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proved that in every uncountable character density A there are 2* nonisomorphic
AM algebras. Unlike the classes of C*-algebras and II; factors, the class of AM
algebras is not elementary. This is because AM algebras are not closed under taking
ultrapowers (by the proof of [10, Proposition 6.1]).

Results related to our Sec. 6 were proved in [23], where it was shown that
an unstable theory in logic of metric structures has maximal possible number of
models in every uncountable cardinality. In the general case, treated in [23], there is
a distinction between “isomorphic” and “isometric”. For C*-algebras and II; factors
treated here the two notions are equivalent.
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