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Order polynomially complete lattices must be large

M. GOLDSTERN AND S. SHELAH

Abstract. If L is an o.p.c. (order polynomially complete) lattice, then the cardinality of L is a strongly
inaccessible cardinal. In particular, the existence of o.p.c. lattices is not provable in ZFC, not even from
ZFC+GCH.

0. Introduction

Let (L1,5) and (L2,5) be partial orders. We call a map f : L1�L2

‘‘monotone’’ if x5y implies f(x)5 f(y).
Notice that if (L,�,�,5) is a lattice, then every polynomial function (i.e.,

function induced by a lattice-theoretic polynomial) is monotone.
We call a lattice L n-order polynomially complete (o.p.c.) if

(�) every monotone function from Ln to L is a polynomial function

and we say that L is order polynomially complete if L is n-order polynomially
complete for every n.

The question whether there can be an infinite o.p.c. lattice has been the subject
of several papers. Kaiser and Sauer [4] remarked that such a lattice cannot be
countable, and Haviar and Ploščica showed in [5] that such a lattice would have to
be at least of size Óv. (Here, Ó0=Ò0, Ón+1=2Ón, Óv=sup{Ón : n �v}.

We show here that the size of an infinite o.p.c. lattice (if one exists at all) must
be a strongly inaccessible cardinal.
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In particular, the existence of such a lattice cannot be derived from the ‘‘usual’’
axioms of mathematics, as codified in the Zermelo-Fraenkel axioms for set theory.
Moreover, also certain additional assumptions such as the (generalized) continuum
hypothesis are not sufficient to prove the existence of an o.p.c. lattice, or in other
words, the theory ZFC+GCH+ ‘‘there is no infinite o.p.c. lattice’’ is consistent1.
In fact, the well-known consistent1 theory ZFC+ ‘‘there is no inaccessible cardi-
nal’’, a natural extension of ZFC, proves that there is no o.p.c. lattice.

We still do not know whether the existence of an o.p.c. lattice can be refuted in
ZFC alone.

In [2] we showed that if we change the original question by relaxing ‘‘lattice’’ to
‘‘partial order’’, and ‘‘polynomial’’ to ‘‘definable’’, then we get (consistently) a
positive answer, already for a partial order of size Ò1.

1. Preliminaries

We define here some of the notation that we will use, and we quote several
well-known theorems and corollaries from the calculus of partitions.

DEFINITION 1.1. We fix a set R={B,\, =, 3} of 4 symbols. For any p.o.
(L,5) we define R : L×L�R in the obvious way: R(x, y)=B iff xBy, etc.

DEFINITION 1.2. Let (L,5) be a partial order.
(1) We say that a set A¤L is ‘‘co-well-ordered’’ iff (A,]) is a well-ordered set.
(2) We call a set A¤L ‘‘uniform’’ iff A is either an antichain, or a well-ordered

chain, or a co-well-ordered chain.
(3) If A is well-ordered we say that the type of A is ‘‘B’’. Similarly we define

the types ‘‘\’’ and ‘‘3’’. [This notation is ambiguous if A is finite.
However, we are mainly interested in (large) infinite sets anyway, so this
ambiguity will not cause any problems.]

(4) Let Ai¤L for i � I. We call (Ai : i � I) ‘‘canonical’’ if the following conditions
hold:
(a) each Ai is uniform, all Ai are of the same type,
(b) there is a function F : I×I�R such that:

Öi, j � I : [i" j [ Öa �Ai Öb �Aj : R(a, b)=F(i, j)].

1 Pedants are invited to insert the necessary disclaimer themselves.
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Loosely speaking, this says that whenever i" j, then either Ai lies
‘‘completely above’’ Aj, or conversely, or Ai is ‘‘completely incompara-
ble’’ with Aj.

DEFINITION 1.3. For any set A, [A ]2 is the set of unordered pairs from A :

[A ]2={{x, y}: x, y �A, x"y}.

When we consider a set A together with an 1-1 enumeration A={ai : iBk}, we
usually identify the unordered pair {ai, aj } � [A ]2 with the ordered pair (ai, aj )
whenever iB j.

DEFINITION 1.4. Let k, l and c be cardinals. The ‘‘partition symbol’’

l� (k)2
c

means: Whenever F : [L ]2�C, where �L �=l, �C �=c, then there is an ‘‘F-homoge-
neous set’’ K¤L of cardinality k, i.e., a set K such that F E [K ]2 is constant.

(In other words, whenever the edges of the complete graph on l many vertices
are colored with c colors, then there is a complete subgraph with k many vertices
all of whose edges have the same color.)

DEFINITION 1.5. Let (L,5) be a partial order. We will try to get some
information on the structure of L by considering certain ‘‘cardinal characteristics’’
m(L) and n(L), which are defined as follows:

(1) We let m(L) be the smallest cardinal m such that there is no uniform set
A¤L of cardinality m. In other words, kBm(L) iff there is a uniform
subset A¤L of size k.

(2) We let mn (L)=m(Ln) for n\0.
(3) We let n(L) be the smallest cardinal n such that there is no family ( fi : iBn)

of n many pairwise incomparable monotone functions from L to L. (Func-
tions are ordered pointwise.)

(4) nn (L) is the smallest cardinal n such that there are no pairwise incomparable
monotone functions ( fi : iBn) from Ln to L.

(5) More generally, n(L1, L2) is the smallest cardinal n such that there are no
pairwise incomparable monotone functions ( fi : iBn) from L1 to L2.

(6) m�=sup{mn : n �v}, n�=sup{nn : n �v}. (Note that trivially mn5mn+1 and
nn5nn+1 for all n �v.)

FACT 1.6. Let L be infinite. Then mn (L)5 �L �+ and n(L)5 (2�L�)+.
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THEOREM 1.7 (Ramsey). For any natural number k, Ò0� (Ò0)2
k.

Proof. See [1, 10.2]. 


THEOREM 1.8 (Erdo3 s+Rado). For any infinite k, (2k)+� (k+)2
k.

Proof. See [1, 17.11(32)]. 


THEOREM 1.9 (Erdo3 s+Rado).
(1) If k is an infinite cardinal, k finite, then (2Bk)+� (k)2

k.
(2) If k is a strong limit cardinal, then

k+� (k)2
4.

Proof. [1, 15.2] proves a theorem that is stronger than (1). (2) is a special case
of (1). 


COROLLARY 1.10. Let (L,5) be a partial order.
(a) If k is an infinite cardinal, �L �\2k, then m(L)\k. (In fact, m(L)\k+.)

(a’) �L �52m(L).
(b) If L is infinite, then m(L)\Ò0.
(c) If k is a strong limit cardinal, then k5m(L) iff k5 �L �.
(d) If k is a strong limit cardinal, then �L �\k implies m(L)\k,
(e) If k is a strong limit cardinal, then m(L)=k implies �L �=k.

Proof.
(a) Write r for (2k)+. Let (ai : iBr) be distinct elements of L, and define

F : [r ]2�R by requiring F(i, j)=R(ai, aj ) whenever iB j. The Erdo3 s-Rado theorem
1.8 promises us an F-homogeneous set {iz : zBk+} of size k+, which will naturally
induce a uniform set {aiz

: zBk+} of the same cardinality.
(a’) follows from (a).
The proofs of (b) and (d) are similar, using 1.7 and 1.9, respectively, instead of

1.8.
(c) follows easily from 1.6. (e) follows from (c) and (d). 


CANONIZATION THEOREM 1.11 (Erdo3 s+Hajnal+Rado). Let l be an
infinite cardinal, (Ai : iBl) be a family of pairwise disjoint sets. Let (ki : iBl) be
infinite cardinals satisfying 2kiB2kj whene6er iB j, and assume �Ai �\2ki. Let f be a
function with domain [A ]2, where A=.iBl Ai, and let the range of f be small (say :
finite). Moreo6er, assume k0]2l.

For a �A write ia for the unique i such that a �Ai.
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Then there are sets (A %i : iBl), �A %i �=ki, A %i¤Ai, such that for a, b �A %
(�.iBl A %i ), f(a, b) depends only on ia and ib.

That is, there is a function F with domain [l ]2@ [l ]1 such that for all a"b in A %,
f({a, b})=F({ia, ib }).

Proof. See [1, 28.1]. 


COROLLARY 1.12. Let l=cf(k)Bk, k a strong limit cardinal, �L �=k,
(L,5) a partial order. Then there is a family (Az : zBl) of subsets of L satisfying

(1) (Az : zBl) is canonical. (See 1.2(4).)
(2) The sequence (�Az �: zBl) is strictly increasing.
(3) sup{�Az �: zBl}=k.
(4) For all zBl : �Az �\l.

Proof. Find an increasing sequence (ki : iBl) of cardinals such that 2kiBki+1

for all i and k=sup{ki : iBl}. Let (aa : aBk) be distinct elements, and let
Ai�{aa : ki+3BaBki+4} for iBl. Thus, A�.iBl Ai is a disjoint union, and
�Ai �=ki+4\2ki. (Note that in this enumeration each set Ai comes ‘‘before’’ Aj for
iB j.)

Define f : [A ]2�R by letting f({aa, ab })=R(aa, ab ) for aBb, and apply the
canonization theorem 1.11.

The resulting sets (A %i : iBl) will be canonical. 


REMARK 1.13. If (ki : iBl) is increasing with limit k, then �i ki=kl. If
moreover (as in our case) k is a strong limit cardinal, then kl=2k.

Proof. See [3, 6.4]. 


2. Partial maps

We want to give lower estimates for n(L), and then translate them to lower
estimates for m(L). (See 1.5 for the definitions of m and n.)

Since we will typically only construct many partial functions that are pairwise
incomparable, we have to give a sufficient condition that allows us to extend partial
monotone functions to total monotone functions.

FACT 2.1. Let L1, L2 be partial orders. If f : L1�L2 is a partial monotone
function whose range is contained in a complete partial order L %2¤L2, then f can be
extended to a total monotone function f. : L1�L2.
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Proof. Let f. (x)=supL %2
{ f(y): y � dom( f ), y5x}. 


COROLLARY 2.2. Let L be a partial order, A( ¤L a complete partial order.
(Note : We only require that least upper bounds exist in (A( ,5), we do not care if
these bounds are also least upper bounds in L.)

Then for any A¤A( we ha6e n(L)]n(A).

Proof. Every monotone map f : A�A can be extended to a monotone map
f. : L�A( . If f, g are incomparable, then so are f. , g/ . 


So we will show that n(L) is large by showing that n(A) is large, for some
sufficiently ‘‘nice’’ A.

In our treatment, ‘‘nice’’ means in particular ‘‘complete’’ (as a partial order),
or at least ‘‘contained in a complete p.o.’’ Here the following lemma, due to
Kaiser and Sauer [4] will be helpful:

LEMMA 2.3. If (L,5) is an o.p.c. lattice, then L is bounded (i.e., has a
greatest and a smallest element).

Proof. See [4]. 


Our method to make n(A) large will be multiplication: If A1, A2, . . . are
sufficiently ‘‘independent’’ (in a sense to be made precise below), and fi : Ai�Ai

are monotone, then we will show that they can be combined to give a monotone
function from A�.i Ai to A.

INDEPENDENCE LEMMA 2.4. Let L be a partial order, A=.iBl Ai¤L
and assume that (Ai : iBl) is canonical. Then :

(1) Whene6er ( fi : iBl) is a family of functions, each fi : Ai�Ai monotone, then
the function f�.iBl fi is a monotone function from A to A.

(2) If B is a partial order, ( fi : iBl) is a family of functions, each fi : Ai�B
monotone, and if .i Ai is an antichain, then .i fi is monotone from A to B.

(3) Moreo6er, if ( fi : iBl) and ( f i%: iBl) are both as in (1) or (2), and for
some j the functions fj and f j% are incomparable, then also .i fi and .i f i% are
incomparable.

(4) If kiBn(Ai ) for iBl, then n(A)\�iBl ki.
(5) If kiBn(Ai, B) for iBl, and A=.iBl Ai is an antichain, then n(A, B)\

�iBl ki (where B is an arbitrary partial order).
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Proof.
(1) Let F : I×I�R witness that (Ai : i � I) is canonical. To check that f is

monotone, consider an arbitrary pair a5b in A.
Now either there is a single i with a, b �Ai then f(a)5 f(b) (because f E Ai= fi is

monotone), or we have i" j, a �Ai, b �Aj. But then we must have F(i, j)=B, so
(since f(a) �Ai, f(b) �Aj ), we again have f(a)5 f(b).

(2) and (3) are easy.
(4) follows from (1) and (3), and (5) follows from (2) and (3). 


Now that we know how to get pairwise incomparable functions by multiplica-
tion, we have to look more closely at the factors in this product. The factors are of
the form n(A), where A is a uniform set. The computation of this cardinal
characteristic turns out to be easy:

FACT 2.5.
(a) If A uniform, �A �\2, then n(A)\2.
(b) If A is uniform, �A �=k]Ò0, then n(A)\2k, i.e., there are 2k many pairwise

incomparable monotone functions from A to A.
(c) If A is an antichain, �A �=k]Ò0, then 2kBn(A, {0, 1}), i.e., there are 2k

many incomparable (necessarily monotone) functions from A into the two-ele-
ment lattice {0, 1}.

Proof.
(a) Left to the reader.
(b) This is trivial if A is an antichain. So wlog assume that A is well-ordered of

order type k. Write A as a union of k many disjoint convex sets .iBk Ai, each Ai

of cardinality\2. Then (Ai : i � I) is canonical. So we can apply (a) and the
independence lemma 2.4(4), and get n(A)\�iBk 2=2k.

(c) Let A=.i Ai, where each Ai is of size\2, and the Ai are pairwise disjoint.
Clearly n(Ai, {0, 1})\2, so by the independence lemma 2.4 n(A, {0, 1})\2k. 


3. m and n

We now turn our attention to the number mn (L).

FACT 3.1. If A¤Ln is well-ordered of order type k, then there is A %¤L, also
well-ordered of order type k.

Proof. Let a) i= (ai(1), . . . , ai(n)) for iBk, and iB j [ a) iBa) j. For each
k � {1, . . . , n} the sequence (ai(k): iBk) is weakly increasing. If the sequence
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(ai(k): iBk) does not contain a strictly increasing sequence of length k, then
it must be eventually constant. However, this cannot happen for every
k � {1, . . . , n}. 


Now we finally investigate the relation between m and n. It turns out to be
slightly simpler if we look at m� and n� first.

First we show in 3.2 that the existence of many incomparable monotone
functions from Ln to L (kBnn (L)) implies the existence of a large antichain in
some Lm (kBmm (L)), assuming that L is o.p.c. (This is actually the only place in
the whole proof where we talk about lattices rather than general partial orders.)

Then we show in 3.3 that a large (anti)chain in Lm (kBmm (L)) implies the
existence of �very� many incomparable monotone functions from Lm to L (2kB
nm (L)).

These two lemmas are taken (with minor modifications) from [5].
Finally in 3.4 we combine 3.2 and 3.3 to show that m=m� must be a strong

limit cardinal.

LEMMA 3.2. Let (L,5) be an o.p.c. lattice, k a cardinal of uncountable
cofinality. If kBnn (L), then kBm�(L). In particular :

(A) n�5m+
�

(B) n�5m�, if m� has uncountable cofinality.

Proof. Assume kBnn (L). Let ( fi : iBk) be pairwise incomparable functions
from Ln to L. Since L is o.p.c., each of these functions is a polynomial function.
Thus, for each i there is some natural number ki and a lattice-theoretic term
ti (x1, . . . , xn, y1, . . . , yki

) and a ki -tuple b( i= (bi
1, . . . , bi

ki
) such that for all

a1, . . . , an we have fi (a1, . . . , an )= ti (a1, . . . , an, b1
i , . . . , bi

ki
).

Since there are only countably many pairs (ti, ki ) and we have assumed
cf(k)\Ò0, we may assume that they all are equal, say to (t*, k*). But then (b( i:
iBk) must be pairwise incomparable in Lk*, because b( i5b( j would imply fi5 fj.
Hence we have found an antichain of size k in Lk*.

To get (A), let k�m+
�, so cf(k)\Ò0 and therefore ‘‘kBn�’’ is impossible. To

get (B), let k=m�. 


From now on we can forget about lattices as long as we only consider partial
orders having properties 3.2(A) and 3.2(B).

LEMMA 3.3. Let (L,5, 0, 1) be a bounded partial order, k an infinite cardinal.
If kBmn (L), then 2kBnn (L). In particular, kBm� implies 2kBn�.
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Proof. Let A¤Ln be uniform of size k.
Case 1: A is a chain, so by 3.1 wlog n=1. Let A( =A@{0, 1}. By fact 2.5,

n(A)\2k. Since A( is a complete partial order, we may apply fact 2.1 to get
n(L)]n(A). Hence n(L)\2k.

Case 2: A is an antichain. Use 2.5(c). 


CONCLUSION 3.4. If L is infinite and o.p.c., (or, slightly more generally, if L
is an infinite bounded partial order satisfying the conclusion of 3.2), then

(a) m�(L) must be a strong limit cardinal,
(b) m(L)=m�(L)
(c) �L �=m(L).
(d) n(L)= �L �.

Proof.
(a) If kBm�(L), then 2kBn�(L) by 3.3. Now 2k always has uncountable

cofinality, so we get 2kBm�(L) by 3.2.
(b) Assume that m(L)Bm�(L). Let l=22m(L)Bm�(L). By 1.10, �L �52m(L)Bl,

so mn (L)5 �L �+5l for all n �v, hence m�(L)5l, a contradiction.
(c) Use 1.10(e).
(d) 3.2(B) implies n(L)5n�(L)5m(L), and 3.3 implies m1(L)5n1(L). 


4. The main lemma

We have already shown that for an o.p.c. lattice L the cardinal characteristic
m(L) must be a strong limit cardinal. In this section we show that m(L) must be
regular.

Letting k�m(L) we first show that the singularity of k would imply the
existence of �k many incomparable monotone functions, and then show that this
would imply m(L)\k.

MAIN LEMMA 4.1. Let (L,5, 0, 1) be a bounded partial order, and let k be a
singular strong limit cardinal, k5 �L �.

Then n(L)\k.
If moreo6er cf(k)=Ò0, then we get e6en n(L)\2k.

Proof. Let l=cf(k). The first step in the proof of 4.1 is to find a canonical
family (Ai : iBl) which is large, i.e., �.i Ai �=k, and �iBl �Ai �=kl=2k. If the set
A�.i Ai happens to be a chain or antichain, we easily get 2k many pairwise
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incomparable monotone functions. Using the independence lemma we will show
that already the canonicity of A is sufficient to get many monotone functions.

In step 3 we will exhibit many pairwise incomparable (partial) functions from A
to A, so in step 2 we may have to massage (Ai : iBl) a bit to guarantee that these
functions can be extended to total functions on L.

What actually happens in steps 2 and 3 depends on whether l is countable or
not.

Step 1. Let A={ai : iBk} be distinct elements of our partial order. For
iB jBk let f(i, j)=R(ai, aj ). (Recall 1.1.)

By the canonization theorem (or rather, by its corollary 1.12) we may (after
thinning out our set A) wlog assume that A=.zBl Az, where the cardinalities �Az �
are increasing with supremum k, lB �Az �Bk, and (Az : zBl) is canonical. Let
j : k�l be such that for all iBk, ai �Aji

. So there is a function F : [l ]52�
{B,\, 3} such that R(ai, aj )=F({ji, jj }) for all iB jBk.

We may assume {0, 1}SA=¥. Let A( =A@{0, 1}.
Note that

5
jBl

�Aj �=k cf (k)=2k.

Step 2, case a. Let us assume l=Ò0 for the moment. So we have a canonical
sequence (An : n �v), witnessed by F : [v ]2�{B,\, 3}. By Ramsey’s theorem 1.7
there is an infinite set X¤v such that F is constant on [X ]2. By dropping some
elements of the sequence (An : n �v) [i.e., replacing (An : n �v) by (An : n �X), and
then for notational simplicity only pretending that X=v ] we may assume that F is
constant, say

Ön Ök : [nBk [ Öa �An Öb �Ak : R(a, b)=c ].

There are (at most) 9 possible types of our family (An : n �v): Each An can be
well-ordered, co-well-ordered, or an antichain, and there are also 3 possible values
for c. For example, if c= ‘‘B’’, then the set A has one of the 3 forms given in the
Figure 1.

However, our construction of a large family of incomparable functions will be
‘‘uniform’’, i.e., be the same in all 9 cases. Note that if c � {B,\} and each An is
an antichain (leftmost possibility in Figure 1), then .n An is not a complete partial
order, since every element of An+1 is a minimal upper (or maximal lower) bound
for any nontrivial subset of An.

For each k we let A %2k+1 be a singleton subset of A2k+1, and we let A %2k=A2k.
Now let B�.n A %n@{0, 1}.
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Figure 1

Step 3, case a. We are still assuming l=Ò0. It is easy to see (by considering
cases – one of them is sketched in Figure 2) that the set B defined in step 2 (case
a) is a complete partial order. We leave the details to the reader.

Note that we still have �nBv �A %n �=�n �v �A %2n �=kl=2k, since the cardinali-
ties (�A2n �: n �v) are also increasing to k.

By 2.2 and the independence lemma 2.4, n(L)]n(A)\2k. This concludes the
discussion of the case l=Ò0.

Step 2, case b. Now we assume l\Ò0. Note that now we are only aiming for
k many pairwise incomparable monotone functions. Again let F : l×l�
{B,\, 3} witness canonicity.

Figure 2
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By dropping some of the sets Az we may assume that the function z � F(0, z)
is constant, say with some value c0. Thinning out three more times we may assume
that there are constants c0, c1, c2, c3 � {B,\, 3} such that

(a) Öz\0, F(0, z)=c0

(b) Öz\1, F(1, z)=c1

(c) Öz\2, F(2, z)=c2

(d) Öz\3, F(3, z)=c3

Choose i0B i1 � {0, 1, 2, 3} such that ci 0
=ci 1

, write A
*

for Ai 0
, let a

*
be any

element of Ai 1
, and let c

*
=ci 0

.
Depending on the value of c

*
we now have one of the following possibilities:

(a) either every element of A
*

is incompatible with every element of any Az,
z\4.

(b) or we have for all z\4:

Öx �A
*

Öy �Az : xBa
*
By

(c) or the dual of (b) is true.
Step 3, case b. Since all sets Az are infinite, we have n(Az )\ �Az �, so we can find

pairwise incomparable monotone functions (fz,i : i �Az ) from Az to Az.
Let f* be the identity function on {a*}, and let (f

*,z : 4BzBl) be a family of
pairwise incomparable monotone functions from A

*
to A

*
. (Recall that all our sets

Az had cardinality l, so it is possible to find that many functions.)
Note that for 4Bz the family (A

*
, {a

*
}, Az ) is canonical, so by the indepen-

dence lemma we can conclude that f
*,z@ f

*
@ fz,i is a monotone function. Moreover,

{0, 1, a
*
}@A

*
@Az is a complete partial order (again we leave the easy task of

checking this fact to the reader), so by 2.1 the function f
*,z@ f

*
@ fz,i can be

extended to a total monotone function f. z,i : L�L.
Clearly any two functions f. z,i, f. z%,i% are incomparable. If z"z % then this is due to

the incomparability of f
*,z and f

*,z%, and for z=z % we use the incomparability of fz,i

and fz,i%.
Note that the cardinality of the index set {(z, i): 4BzBl, i �Az } is k.
This concludes the discussion of the case l\Ò0, and hence also the proof of the

main lemma. 


CONCLUSION 4.2. If (L,5) is an o.p.c. lattice (or, slightly more generally, if
L is a partial order satisfying the conclusion of 3.2), then m(L)= �L � is an inaccessible
cardinal.

Proof. Let k=m(L). From 3.4 we know that k is a strong limit, and that
�L �=k. Assume that k is singular.

First assume that cf(k) is uncountable. The main lemma tells us that n(L)\k,
so by 3.2 we conclude m�(L)\k, a contradiction.
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Now we consider the second case: cf(k)=Ò0. Here the main lemma tells us
n(L)\2k. Since 2k has uncountable cofinality, we can again apply 3.2 and again get
m�(L)\2k\k, a contradiction. 


REMARK 4.3. Note that the cardinality of an o.p.c. lattice cannot be a weakly
compact cardinal.
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