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The stability theory of first order theories was initiated by Saharon Shelah in 1969.
The classification of abstract elementary classes was initiated by Shelah, too. In several
papers, he introduced non-forking relations. Later, Shelah (2009) [17, II] introduced the
good non-forking frame, an axiomatization of the non-forking notion.
We improve results of Shelah on good non-forking frames, mainly by weakening the
stability hypothesis in several important theorems, replacing it by the almost λ-stability
hypothesis: The number of types over a model of cardinality λ is at most λ+.
We present conditions on Kλ , that imply the existence of a model in Kλ+n for all n. We do
this by providing sufficiently strong conditions on Kλ , that they are inherited by a properly
chosen subclass of Kλ+ . What are these conditions? We assume that there is a ‘non-forking’
relation which satisfies the properties of the non-forking relation on superstable first order
theories. Note that here we deal with models of a fixed cardinality, λ.
While in Shelah (2009) [17, II] we assume stability in λ, so we can use brimmed (= limit)
models, here we assume almost stability only, but we add an assumption: The conjugation
property.
In the context of elementary classes, the superstability assumption gives the existence of
types with well-defined dimension and the ω-stability assumption gives the existence and
uniqueness of models prime over sets. In our context, the local character assumption is an
analog to superstability and the density of the class of uniqueness triples with respect to
the relation �bs is the analog to ω-stability.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The book [15], on elementary classes, i.e., classes of first order theories, presents properties of theories, which are so-
called ‘dividing lines’ and investigates them. When such a property is satisfied, the theory is low, i.e., we can prove structure
theorems, such as:

(1) The fundamental theorem of finitely generated Abelian groups.
(2) Artin–Wedderburn Theorem on semi-simple rings.
(3) If V is a vector space, then it has a basis B , and V is the direct sum of the subspaces span{b} where b ∈ B .

(We do not assert that these results follow from the model theoretic analysis, but they merely illustrate the meaning of
‘structure’.) But when such a property is not satisfied, we have non-structure, namely, there is a witness that the theory is
complicated, and there are no structure theorems. This witness can be the existence of many models in the same power.
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There has been much work on classification of elementary classes, and some work on other classes of models.
The main topic in the recently published book, [17], is abstract elementary classes (in short AEC). There are two additional

books which deal with AEC’s ([1] and [6]).
From the viewpoint of the algebraist, model theory of first order theories is somewhat close to universal algebra. But he

prefers focusing on the structures, rather than on sentences and formulas. Our context, abstract elementary classes, is closer
to universal algebra, as our definitions do not mention sentences or formulas.

As superstability is one of the better dividing lines for first order theories, it is natural to generalize this notion to AEC’s.
A reasonable generalization is that of the existence of a good λ-frame (see Definition 2.1.1), introduced in [17, II]. In [17, II]
we assume existence of a good λ-frame and either get a non-structure property (in λ++ , at least where 2λ < 2λ+ < 2λ++ )
or derive a good λ+-frame from it.

The main tool in studying superstability is the independence relation, so-called ‘non-forking’. So let us discuss the issue
of independence.

“In the 1930’s, van der Waerden [van der Waerden 1949] and Whitney [Whitney 1935] abstracted the following prop-
erties of linear independence in vector spaces and algebraic independence in fields and used them to define the general
notion of an independence relation” [2]. Let us describe van der Waerden’s notion in terms of an element a depending on a
set X :

(1) (Reflexivity) a depends on {a}.
(2) (Monotonicity) If a depends on X and X ⊆ Y then a depends on Y .
(3) (Transitivity) If a depends on X and each x ∈ X depends on Y then a depends on Y .
(4) (Exchange axiom) If a depends on X ∪ {b} but a does not depend on X then b depends on X ∪ {a}.
(5) (Finite character) If a depends on X then a depends on a finite subset of X .

The notion of forking (in the context of first order theories) also specializes to linear independence and algebraic inde-
pendence. It is not, strictly speaking, a generalization of the usual notion, since it is stronger in some respects, weaker in
others. However, it retains the most important consequence of the theory, the ability to assign a dimension to each member
of certain classes of models (see [11]).

In stability theory of first order theories we deal with a ternary relation, ‘non-forking’, which intuitively means ‘A is free
from B relative to C ’. Baldwin [2] presents three differences between this notion and the standard one:

(1) In stability theory of first order theories the transitivity of dependence fails, but we have transitivity of independence:
If ‘A is free from B relative to C ’ and ‘A ∪ B is free from D relative to B ’, then ‘A is free from D relative to C ’.

(2) The element a is replaced by a set A. Since a singleton is a set, in this sense we generalize the independence relation.
(3) In stability theory we define a is independent from X over A instead of only over empty set and study what happens

when A changes.

Here we deal with a much more general case: Abstract elementary classes (in short AEC’s). If we consider the study of
first order theory T as the study of the class of models {M: M |� T }, then the context of abstract elementary classes is
a generalization of that of first order theories. There are well-known theorems on first order theories, that are wrong or
very hard to prove in the context of AEC’s. The main reason is that the Compactness Theorem fails. Concerning AEC’s see
Section 1.

Shelah defines in [17, II] a set of axioms, which a non-forking relation should satisfy, in the context of AEC. An AEC with
a non-forking relation that satisfies this set of axioms is called ‘a good frame’. This non-forking relation deals essentially
with an element and a model. [Actually it is a relation on quadruples (M0, M1,a, M3) which intuitively means ‘a is free
from M1 relative to M0’ (M3 is an ambient model, which is needed in the AEC context, because we cannot use a monster
model as in the stability theory for first order theories).]

Until this point we have spoken about the following independence notions:

(1) The standard: between an element and a set.
(2) Non-forking in the context of first order theories: essentially between sets.
(3) Axioms for a non-forking relation on AEC’s: essentially between an element and a model.

The current work is a generalization of [17, II]. We replace the stability assumption by the almost stability assumption,
categoricity in λ and the conjugation property. We define a semi-good λ-frame as a good λ-frame minus stability in λ with
almost stability in λ.

A note about the hypotheses: When we write a hypothesis, we assume it until we write another hypothesis, but usually
we recall the hypothesis at the beginning of the following section. Sometimes we write ‘but we do not use local character’.
It is important to write this because we want to apply theorems we prove here, in papers, in which local character is not
assumed (for example [10]). For the same reason, in Hypothesis 3.0.9 we assume weak assumptions.
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Notations: We use the letters k, l, m, n for natural numbers or integer numbers, α, β , γ , i, j, ε, ζ for ordinal numbers,
δ for a limit ordinal number, κ , λ, μ for cardinal numbers. We use p, q for types and P for a set of types. We use K
for a class of models, �, ≺ for relations on K , ≺∗λ for a relation on models of cardinality λ, while we use �NF

λ+ , ≺+
λ+ , �⊗

λ+
for relations on models of cardinality λ+ . ⊆ denotes the relation of being submodel. We use NF ,

⋃
, N̂F for relations on

quadruples of models. We use x for an invariant (an element or a symbol of the meta-language), R , P , E for relations or for
predicates and f , g , h for functions or for function symbols. So sometimes we use P for a set of types and sometimes for a
relation or a predicate.

We prove two main theorems. We present them now, but the technical terms will be defined as the paper progresses
(most of them in the first 4 sections, but the hypothesis of the second theorem will be explained in Section 11). In the first
theorem we provide conditions mainly on Kλ , that imply the existence of a model in Kλ+ , Kλ+2 , Kλ+3 .

Theorem 1.0.1. Suppose:

(1) s= (K ,�, Sbs,
⋃

) is a semi-good λ-frame with conjugation.
(2) K 3,uq is dense with respect to �bs.
(3) I(λ+2, K ) < 2λ+2

.

Then

(1) There is a good λ+-frame s+ = ((K sat,�NF
λ+� K sat)up, Sbs,+,

+⋃
), such that K sat ⊆ Kλ+ and the relation �NF

λ+� K sat is included in
the relation �� K sat .

(2) s+ satisfies the conjugation property.
(3) There is a model in K of cardinality λ+2 .
(4) There is a model in K of cardinality λ+3 .

In the second theorem we provide conditions mainly on Kλ , that imply the existence of a model in Kλ+n for all n. We do
this by providing sufficiently strong conditions on Kλ , that they are inherited by a properly chosen subclass of Kλ+ .

Theorem 1.0.2. Suppose:

(1) s= (K ,�, Sbs,
⋃

) is a semi-good λ-frame with conjugation.

(2) m < ω⇒ I(λ+(2+m), K ) < μunif (λ
+(2+m),2λ+(1+m)

).

(3) 2λ+m
< 2λ+m+1

and for every m < ω, W DmId(λ+1+m) is not saturated in λ+(2+m) .
(4) Conjecture 11.1.4.

Then there is a model in K n of cardinality λ+n for every n < ω.

The main idea is that a class of models is posited to have ‘good’ properties on models of size λ. By induction, a decreasing
sequence of abstract elementary classes (K n,�n) are defined such that (K n,�n) satisfies the ‘good’ properties on models of
size λ+n (where λ+n is the n-th successor of λ). Condition 2 (of Theorem 1.0.2) is a precise way of saying there are fewer
than the maximal number of models in each λ+n to carry out an essential part of the inductive step, provided a rather
weak set theoretic hypotheses. Rather, the main part of the argument given here moves through several approximations to
transfer a dependence relation which behaves abstractly like first-order superstability on the models of K of cardinality λ

to a similar relation on a subclass of K of cardinality λ+ .

Definition 1.0.3 (Abstract elementary classes).

(1) Let K be any class of models for a fixed vocabulary and let � be a 2-place relation on K . The pair (K ,�) is an AEC if
the following axioms are satisfied:
(a) K , � are closed under isomorphisms. In other words, if M1 ∈ K , M0 � M1 and f : M1 → N1 is an isomorphism,

then N1 ∈ K and f [M0]� f [M1] = N1.
(b) � is a partial order on K and it is included in the inclusion relation.
(c) If 〈Mα: α < δ〉 is a �-increasing continuous sequence, then

M0 �
⋃
{Mα: α < δ} ∈ K .
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(d) Smoothness: If 〈Mα: α < δ〉 is a �-increasing continuous sequence, and for every α < δ, Mα � N , then
⋃
{Mα: α < δ}� N.

(e) If M0 ⊆ M1 ⊆ M2 and M0 � M2 ∧M1 � M2, then M0 � M1.
(f) There is a Lowenheim–Skolem–Tarski number, LST(K ,�), which is the first cardinal λ, such that for every model

N ∈ K and a subset A of it, there is a model M ∈ K such that A ⊆ M � N and the cardinality of M is � λ+ |A|.
(2) (K ,�) is an AEC in λ if: The cardinality of every model in K is λ, and it satisfies Axioms a, b, d, e, and for sequences

〈Mα: α < δ〉 with δ < λ+ it satisfies Axiom c too.

Remark 1.0.4. Considering a natural class of models, usually we can check if it is an AEC, by the following rules:

(1) If K is any class of models for a fixed vocabulary, then (K ,⊆) satisfies Axioms b, d, e of AEC (Definition 1.0.3.1).
(2) Suppose (K ,�) is an AEC. If (K ,⊆) satisfies Axiom 1.0.3.1.c, then (K ,⊆) is an AEC.
(3) If (K ,�) is an AEC and K ′ ⊆ K then (K ′,�� K ′) satisfies Axioms b, d, e of AEC (Definition 1.0.3.1).

We give some simple examples of AEC’s. One can see more examples in [7].

Example 1.0.5. Let T be a first order theory. Denote K =: {M: M |� T }. Define M � N if M is an elementary submodel of N .
(K ,�) is an AEC.

Example 1.0.6. Let T be a first order theory with Π2 axioms, namely, axioms of the form ∀x∃yϕ(x, y) [it is allowed to use
dummy variables]. Denote K =: {M: M |� T }. Then (K ,⊆) is an AEC.

Example 1.0.7. The class of locally-finite groups (the subgroup generated by every finite subset of the group is finite) with
the relation ⊆ is an AEC.

Example 1.0.8. Let K be the class of groups. Let � =: {(M, N): M, N are groups, and M is a pure subgroup of N} (M is a
pure subgroup of N if and only if N |� (∃y)ry =m implies M |� (∃y)ry =m for every integer r and every m ∈ M). (K ,�) is
an AEC.

Example 1.0.9. The class of models that are isomorphic to (N,<) with the relation ⊆ is not an AEC, because it does
not satisfy Axiom 1.0.3.1.c:

⋃{{−n,−n + 1,−n + 2, . . . ,0,1,2, . . .}: 0 � n} is isomorphic to (Z,<) although for every n
{−n,−n+ 1,−n+ 2, . . . ,0,1,2, . . .} is isomorphic to (N,<).

But the class of models that are isomorphic to (N, 0,<) with the relation ⊆ is an AEC (the relation ⊆ in this case is
actually the equality, and this AEC has just one model).

Example 1.0.10. Let K be the class of well-ordered sets. Let � be the relation of being an edge extension ((M,�) � (N,�) if
M ⊆ N and for each a ∈ M and b ∈ N −M N |� a < b). Then the pair (K ,�) satisfies Axioms a, b, c, d, e of Definition 1.0.3.1,
but (K ,�) does not satisfy Axiom f.

Example 1.0.11. The class of Banach spaces with the relation ⊆ is not an AEC, because it does not satisfy Axiom 1.0.3.1.c.

Example 1.0.12. The class of sets (i.e. models without relations or functions) of cardinality less than κ , where ℵ0 � κ and
the relation is ⊆, is not an AEC, because it does not satisfy Axiom 1.0.3.1.c.

The class of sets with the relation �= {(M, N): M ⊆ N and ‖N −M‖> κ} where ℵ0 � κ , is not an AEC, because it does
not satisfy smoothness (Axiom 1.0.3.1.d).

Definition 1.0.13. Kλ =: {M ∈ K : ‖M‖ = λ}, K<λ = {M ∈ K : ‖M‖< λ}, etc.

Definition 1.0.14. We say M ≺ N when M � N and M �= N .

Definition 1.0.15. Let K be a class of models which is closed under isomorphisms and let λ be a cardinal. I(λ, K ) is the
number of models in Kλ up to isomorphism.

Definition 1.0.16. (K ,�)up := (K up,�up) where we define:

(1) K up is the class of models with the vocabulary of K , such that there are a directed order I , and a set of models
{Ms: s ∈ I} such that: M =⋃{Ms: s ∈ I} and s �I t ⇒ Ms � Mt .
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(2) For M, N ∈ K up , M �up N iff there are directed orders I , J and sets of models {Ms: s ∈ I}, {Nt : t ∈ J }, respectively, such
that: M =⋃{Ms: s ∈ I}, N =⋃{Nt : t ∈ J }, I ⊆ J , s � J t ⇒ Ns � Nt , s �I t ⇒ Ms � Mt � Nt .

Proposition 1.0.17. If

(1) (K1,�1), (K2,�2) are AEC’s in λ,
(2) K1 ⊆ K2 ,
(3) �2� K1 is �1 ,

then K up
1 ⊆ K up

2 and (�2)
up � K up

1 is (�1)
up.

Proof. Easy. �
Fact 1.0.18. (See Lemma 1.23 in [17, II].) Let (K ,�) be an AEC in λ. Then

(1) (K ,�)up is an AEC.
(2) (K up)λ = K .
(3) �up� K is �.
(4) LST(K ,�)up = λ.

Definition 1.0.19.

(1) Let M , N be models in K , f is an injection of M to N . We say that f is a �-embedding and write f : M → N , or
shortly f is an embedding (if � is clear from the context), when f is an injection with domain M and Im( f ) � N .

(2) A function f : B → C is over A, if A ⊆ B ∩ C and x ∈ A ⇒ f (x)= x.

Definition 1.0.20.

(1) We say that (Kλ,�� Kλ) satisfies the amalgamation property when: For every M0, M1, M2 in Kλ , such that n < 3 ⇒
M0 � Mn , there are f1, f2, M3 such that: fn : Mn → M3 is an embedding over M0, i.e., the diagram below commutes.
In such a case, we say that ( f1, f2, M3) is an amalgamation of M1 and M2 over M0 or that M3 is an amalgam of M1,
M2 over M0.

M1
f1 M3

M0

id

id
M2

f2

(2) We say that Kλ satisfies the joint embedding property when: If M1, M2 ∈ Kλ , then there are f1, f2, M3 such that for
n= 1,2 fn : Mn → M3 is an embedding and M3 ∈ Kλ .

(3) M ∈ K is �-maximal if there is no N ∈ K with M ≺ N .

Now we want to define Galois-types (‘types’ in short). First we define classes of triples. Then we define when two
triples are ‘of the same type’. Then we define a Galois-type as an equivalence class of triples (under being ‘of the same
Galois-type’).

Definition 1.0.21.

(1) K 3
K ,� =: {(M, N,a): M, N ∈ K , M � N, a ∈ N}. When the class (K ,�) is clear from the context we omit it and write K 3.

(2) K 3
λ := {(M, N,a): M, N ∈ Kλ, M � N, a ∈ N}.

Now we define the equivalence relation E , the relation of being ‘of the same Galois-type’.

Definition 1.0.22.

(1) E∗K ,� is the following relation on K 3
K ,�: (M0, N0,a0)E∗(M1, N1,a1) iff M1 = M0 and for some N2 ∈ Kλ with N1 � N2

there is an embedding f : N0 → N2 over M0 with f (a0)= a1.
(2) E K ,� is the closure of E∗K ,� under transitivity, i.e., the closure to an equivalence relation.

When (K ,�) is clear from the context we omit it writing E∗, E .
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Proposition 1.0.23.

(1) For every M, N0, N1 ∈ Kλ , a ∈ N0 −M and b ∈ N1 −M, (M, N0,a)E∗(M, N1,b) iff there is an amalgamation ( f0, f1, N) of N0 ,
N1 over M such that f0(a)= f1(b).

(2) E∗ is a reflexive, symmetric relation.
(3) If (Kλ,�� Kλ) satisfies the amalgamation property, then E∗λ is an equivalence relation.

Proof. Easy. �
Definition 1.0.24.

(1) For every (M, N,a) ∈ K 3 let tpK ,�(a, M, N), the Galois-type of a in N over M , be the equivalence class of (M, N,a)

under E K ,� . When the class (K ,�) is clear from the context we omit it, writing tp(a, M, N) (in other texts, it is called
‘ga-tp(a/M, N)’).

(2) For every M ∈ K , S(M) := {tp(a, M, N): (M, N,a) ∈ K 3} and Sna(M) := {tp(a, M, N): (M, N,a) ∈ K 3 and a ∈ N − M}.
A Galois-type in Sna(M) is called non-algebraic Galois-type.

(3) If p = tp(a, M1, N) and M0 � M1, then we define p � M0 = tp(a, M0, N).

Definition 1.0.25. Let M, N ∈ K , N � M . M is said to be full over N when M realizes S(N). M is said to be saturated in λ+
over λ, when M ∈ Kλ+ and for every model N ∈ Kλ with N � M , M is full over N .

Remark 1.0.26. This is the reasonable sense of saturated model we can use in our context, since we do not want to assume
anything about K<λ , especially not stability and not the amalgamation property (so a saturated model in λ+ over λ may
not be full over a model N ∈ K<λ , N � M), see the following example from [3].

Example 1.0.27. Let τ contain infinitely many unary predicates Pn and one binary predicate E . Define a first order theory T
such that Pn+1(x)⇒ Pn(x), E is an equivalence relation with two classes, which are each represented be exactly one point
in Pn − Pn+1, for each n. Now let K be the class of models in T , that omit the type of two inequivalent points that satisfy
all the Pn . Then a model M ∈ K is determined up to isomorphism by μ(M) := |{x ∈ M: (∀n)Pn(x)}|. So K is categorical
in every uncountable powers, but has ℵ0 countable models (none of them is finite). Now let � be the relation of being
submodel. Then (K ,�) is an AEC with LST(K ,�)= ℵ0. Let M0, M1, M2 ∈ K be such that μ(M0)= 0, μ(M1)= μ(M2)= 1
and M1, M2 are not isomorphic over M0. Then there is no amalgamation of M1, M2 over M0. Now if λ > ℵ0 then every
model M ∈ Kλ+ is saturated (over λ). But it is not saturated over ℵ0, since it realizes tp(a1, M0, M1) if and only if it does
not realize tp(a2, M0, M2) (where an is the unique element of Mn −M0 of course).

Definition 1.0.28. Let M be a model in Kλ+ . M is said to be homogeneous in λ+ over λ if for every N1, N2 ∈ Kλ with
N1 � M ∧ N1 � N2, there is a �-embedding f : N2 → M over N1.

Definition 1.0.29. A representation of a model M is a �-increasing continuous sequence 〈Mα: α < ‖M‖〉 of models with
union M , such that ‖Mα‖< ‖M‖ for each α and if ‖M‖ = λ+ then ‖Mα‖ = λ for each α.

The following proposition is a version of Fodor’s Lemma (there is no mathematical reason to choose this version, but we
think that it is comfortable).

Proposition 1.0.30. There are no 〈Mα: α ∈ λ+〉, 〈Nα: α ∈ λ+〉, 〈 fα: α ∈ λ+〉, S such that the following conditions are satisfied:

(1) The sequences 〈Mα: α ∈ λ+〉, 〈Nα: α ∈ λ+〉 are �-increasing continuous sequences of models in Kλ .
(2) For every α < λ+ , fα : Mα → Nα is a �-embedding.
(3) 〈 fα: α ∈ λ+〉 is an increasing continuous sequence.
(4) S is a stationary subset of λ+ .
(5) For every α ∈ S, there is a ∈ Mα+1 −Mα such that fα+1(a) ∈ Nα .

Proof. Suppose there are such sequences. Denote M = ⋃{ fα[Mα]: α ∈ λ+}. By clauses 4 and 5 ‖M‖ = Kλ+ . 〈 fα[Mα]:
α ∈ λ+〉, 〈Nα ∩ M: α ∈ λ+〉 are representations of M . So they are equal on a club of λ+ . Hence there is α ∈ S such that
fα[Mα] = Nα ∩ M . Hence fα[Mα] ⊆ Nα ∩ fα+1[Mα+1] ⊆ Nα ∩ M = fα[Mα] and so all are equal. Especially fα+1[Mα+1] ∩
Nα = fα[Mα], in contradiction to condition 5. �
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By Lemma 1.14 in [17, II]:

Proposition 1.0.31 (Saturativity=model homogeneity). Let (K ,�) be an AEC such that Kλ satisfies the amalgamation property, and
LST(K ,�) � λ. Let M be a model in Kλ+ . Then M is saturated in λ+ over λ iff M is a homogeneous model in λ+ over λ.

Now we discuss the uniqueness of the saturated model, although we do not know its existence. The proof idea for
homogeneous models is due to Jonsson from 1960. It is proved as Lemma 1.14 in [17, II].

Theorem 1.0.32 (The uniqueness of the saturated model). Suppose (Kλ,�� Kλ) satisfies the amalgamation property and
LST(K ,�) � λ.

(1) Suppose N ∈ Kλ and for n= 1,2, N � Mn, and Mn is saturated in λ+ over λ. Then M1 , M2 are isomorphic over N.
(2) If M1 , M2 are saturated in λ+ over λ and (Kλ,�� Kλ) satisfies the joint embedding property, then M1 , M2 are isomorphic.

We can prove now that if (Kλ,�� Kλ) is stable in λ, then there is a saturated model in λ+ over λ. But we prefer to
define semi-good frames and then to prove a stronger theorem (Theorem 2.5.8).

2. Non-forking frames

2.1. The plan

Suppose we know something about Kλ , especially that there is no �-maximal model. Can we say something about Kλ+n ?
At least we want to prove that Kλ+n �= ∅. It is easy to prove that Kλ+ �= ∅. [How? We choose Mα by induction on α < λ+
such that Mα ≺ Mα+1 and if α is limit we define Mα := ⋃{Mβ : β < α} (by Definition 1.0.3.1.c Mα ∈ K ). At the end
Mλ+ ∈ Kλ+ .] What about Kλ+2 ? The main topic in this paper is semi-good frames. If there is a semi-good λ-frame, then
by Proposition 3.1.8.2 there is no �-maximal model in Kλ+ . So Kλ++ �= ∅. Moreover, Theorem 11.1.5.1 says that if s is a
semi-good λ-frame with some additional assumptions and λ satisfies specific set-theoretic assumptions, then there is a

good λ+-frame s+ = (K+,�+, Sbs,+,
+⋃

), such that K+ ⊆ K and the relation �+� K+ is included in the relation �� K+
(so Kλ+3 �= ∅).

If we want to use Theorem 11.1.5.1 ω times, then we have to assume set-theoretic assumptions on λ+n for each n ∈ ω.
In this way we obtain semi-good λ+n-frame for each n ∈ ω, assuming the existence of a semi-good λ-frame. In particular,
we conclude that Kλ+n is not empty for each n ∈ω.

Definition 2.1.1 is an axiomatization of the non-forking relation in a superstable first order theory. If we omit the local
character (see Definition 2.1.1.3.c) from the definition of semi-good frame then we get the basic properties of the non-forking
relation in (Kλ,�� Kλ) where (K ,�) is stable in λ.

Sometimes we do not find a natural independence relation on all the types. So first we extend the notion of an AEC in λ

by adding a new function Sbs which assigns a collection of basic (because they are basic for our construction) types to each
model in Kλ , and then we add an independence relation

⋃
on basic types.

It is reasonable to assume categoricity in some cardinality λ for some reasons:

(1) If K is not categorical in any cardinality, then we know {λ: K is categorical in λ}, it is the empty set.
(2) If there is a superlimit model in Kλ , then we can reduce (Kλ,�� Kλ) to the models which are isomorphic to it, and

therefore obtain categoricity in λ (see Section 1 in [17, II]). However this case requires stability.

We do not assume the amalgamation property, but we assume the amalgamation property in (Kλ,�� Kλ). This is a rea-
sonable assumption because it is proved in [17, I] that if an AEC is categorical in λ and the amalgamation property fails
in λ then under a plausible set theoretic assumption there are 2λ+ models in Kλ+ .

Definition 2.1.1. s= (K ,�, Sbs,
⋃

) is a good λ-frame if:

(0) (a) (K ,�) is an AEC.
(b) LST(K ,�) � λ.

(1) (a) (Kλ,�� Kλ) satisfies the joint embedding property.
(b) (Kλ,�� Kλ) satisfies the amalgamation property.
(c) There is no �-maximal model in Kλ .

(2) Sbs is a function with domain Kλ , which satisfies the following axioms:
(a) Sbs(M)⊆ Sna(M)= {tp(a, M, N): m≺ N ∈ Kλ, a ∈ N −M}.
(b) It respects isomorphisms: If tp(a, M, N) ∈ Sbs(M) and f : N → N ′ is an isomorphism, then tp( f (a), f [M], N ′) ∈

Sbs( f [M]).
(c) Density of the basic types: If M, N ∈ Kλ and M ≺ N , then there is a ∈ N −M such that tp(a, M, N) ∈ Sbs(M).
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(d) Basic stability: For every M ∈ Kλ , the cardinality of Sbs(M) is � λ.
(3) The relation

⋃
satisfies the following axioms:

(a)
⋃

is a set of quadruples (M0, M1,a, M3) where M0, M1, M3 ∈ Kλ , a ∈ M3 − M1 and for n = 0,1 tp(a, Mn, M3) ∈
Sbs(Mn) and it respects isomorphisms: If

⋃
(M0, M1,a, M3) and f : M3 → M ′

3 is an isomorphism, then⋃
( f [M0], f [M1], f (a), M ′

3).
(b) Monotonicity: If M0 � M∗

0 � M∗
1 � M1 � M3 � M∗

3, M∗
1 ∪ {a} ⊆ M∗∗

3 � M∗
3, then

⋃
(M0, M1,a, M3) ⇒⋃

(M∗
0, M∗

1,a, M∗∗
3 ). From now on, ‘p ∈ Sbs(N) does not fork over M ’ will be interpreted as ‘for some a, N+ we

have p = tp(a, N, N+) and
⋃

(M, N,a, N+)’. See Proposition 2.1.2.
(c) Local character: For every limit ordinal δ < λ+ if 〈Mα: α � δ + 1〉 is an increasing continuous sequence of models

in Kλ , and tp(a, Mδ, Mδ+1) ∈ Sbs(Mδ), then there is α < δ such that tp(a, Mδ, Mδ+1) does not fork over Mα .
(d) Uniqueness of the non-forking extension: If M, N ∈ Kλ , M � N , p,q ∈ Sbs(N) do not fork over M , and p � M = q � M ,

then p = q.
(e) Symmetry: If M0, M1, M3 ∈ Kλ , M0 � M1 � M3, a1 ∈ M1, tp(a1, M0, M3) ∈ Sbs(M0), and tp(a2, M1, M3) does not

fork over M0, then there are M2, M∗
3 ∈ Kλ such that a2 ∈ M2, M0 � M2 � M∗

3, M3 � M∗
3, and tp(a1, M2, M∗

3) does
not fork over M0.

(f) Existence of non-forking extension: If M, N ∈ Kλ , p ∈ Sbs(M) and M ≺ N , then there is a type q ∈ Sbs(N) such that q
does not fork over M and q � M = p.

(g) Continuity: Let δ < λ+ and 〈Mα: α � δ〉 an increasing continuous sequence of models in Kλ and let p ∈ S(Mδ).
If for every α ∈ δ, p � Mα does not fork over M0, then p ∈ Sbs(Mδ) and does not fork over M0.

Proposition 2.1.2. If
⋃

(M0, M1,a, M3) and tp(b, M1, M∗
3) = tp(a, M1, M3), then by Definition 2.1.1.3.b (the monotonicity axiom)⋃

(M0, M1,b, M∗
3).

Proof. By Definition 1.0.24, there is an amalgamation (idM3 , f , M∗∗
3 ) of M3 and M∗

3 over M1 with f (b) = a. By Defini-
tion 2.1.1.3.b,

⋃
(M0, M1,a, M∗∗

3 ). Using again Definition 2.1.1.3.b, we get
⋃

(M0, M1,a, f [M∗
3]). Hence, since f (b) = a, we

have
⋃

(M0, M1, f (b), f [M∗
3]). Therefore by Definition 2.1.1.3.a

⋃
(M0, M1,b, M∗

3). �
While in [17, II] we study good frames, so basic stability is assumed; here we assume basic almost stability so the

following definition is central:

Definition 2.1.3. s= (K s,�s, Sbs,s,
s⋃

)= (K ,�, Sbs,
⋃

) is a semi-good λ-frame, if s satisfies the axioms of a good λ-frame
except that instead of assuming basic stability, we assume that s satisfies basic almost stability, namely, for every M ∈ Kλ

Sbs(M) is of cardinality at most λ+ .
s is said to be a semi-good frame if it is a semi-good λ-frame for some λ.

Remark 2.1.4. If for each M ∈ Kλ Sbs(M)= Sna(M), then the continuity axiom is an easy consequence of the local character.

Can we define in our context independence, orthogonality and more things like in superstable theories? The answer is:
See [17, III] (mainly Sections 5, 6) and [11].

2.2. Examples

We give examples of good frames and examples of semi-good frames. The propositions and definitions that appear in
this subsection are important for this subsection only.

Example 2.2.1. Let T be a superstable first order theory and let λ be a cardinal � |T |+ℵ0 such that T is stable in λ. Let KT ,λ

be the class of models of T of cardinality at least λ. Let � denote the relation of being an elementary submodel. Let Sbs(M)

be Sna(M). Let
⋃

be as usual. Then by Claim 3.1 on page 283 in [17, II] (or see [16]) (KT ,λ,�, Sbs,
⋃

) is a good λ-frame.

Definition 2.2.2. Let (K ,�) be an AEC. We say that s := (K ,�, Sbs,
⋃

) is the trivial λ-frame of (K ,�) if Sbs is Sna and the
relation

⋃
is {(M0, M1,a, M3): M0, M1, M3 ∈ Kλ, a ∈ M3 −M1}.

Proposition 2.2.3. Suppose:

(1) (K ,�) is an AEC.
(2) LST(K ,�) � λ.
(3) (Kλ,�� Kλ) satisfies the joint embedding property, the amalgamation property and has no maximal model.
(4) For each M ∈ Kλ 1 � |S(M)|� λ+ .
(5) For each M, N ∈ Kλ with M � N and each p ∈ Sna(M), there is exactly one type q ∈ Sna(N) with p ⊂ q.
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Then the trivial λ-frame of (K ,�) satisfies the axioms of a semi-good λ-frame except maybe the symmetry axiom.

Proof. Check the axioms. �
Example 2.2.4. Let λ be a cardinal. Let P a family of λ+ subsets of λ. Let τ := {Rα: α < λ} where each Rα is an unary
predicate. Let K be the class of models M for τ such that for each a ∈ M {α ∈ λ: M |� Rα(a)} ∈ P . Let � be the inclu-
sion relation on K . Then (K ,⊆) is an AEC, LST(K ,⊆) = ℵ0 and (Kλ,⊆� Kλ) satisfies the joint embedding property, the
amalgamation property and has no maximal model. Moreover, for every M, N1, N2 ∈ Kλ with M ⊆ N1 ∧ M ⊆ N2 and every
a1 ∈ N1 − M and a2 ∈ N2 − M tp(a1, M, N1)= tp(a2, M, N2) iff {α ∈ λ: N1 |� Rα[a1]} = {α ∈ λ: N2 |� Rα[a2]}. So by Propo-
sition 2.2.3, the trivial λ-frame of (K ,⊆) satisfies the axioms of a semi-good λ-frame except maybe the symmetry axiom
(Definition 2.1.1.3.e). But it satisfies the symmetry axiom, too. On the other hand, it is not a good λ-frame.

The following proposition presents a simple way to create a semi-good frame from a class of models.
But first we have to present a way to create an AEC from a class of models. Roughly, if K is a class of models, then we

define a class K ′ by: each model M ∈ K ′ is a disjoint union of models of K (up to isomorphism) enriched by an equivalence
relation, whose classes are the models in K . The partial order �′ is defined naturally.

Definition 2.2.5. Let τ be a relational vocabulary and let λ be a cardinal. Let K be a class of λ+ (up to isomorphism)
τ -models each of cardinality at most λ. Let E be a binary predicate not in τ .

Then (K ′,�′) is defined as follows:
K ′ is the class of models M for τ ∪ {E} such that:

(1) E M is an equivalence relation.
(2) For every a ∈ M aE M is isomorphic to some model in K .
(3) For every predicate R ∈ τ if RM(a1, . . . ,an), then the elements a1, . . . ,an are in the same class under E M .

�′ is the relation on K ′ which is defined by: M �′ N if M ⊆ N and for every a ∈ N −M and b ∈ M ¬aE Nb.

Proposition 2.2.6. Let τ be a relational vocabulary and let λ be a cardinal. Let K be a class of λ+ (up to isomorphism) τ -models each
of cardinality exactly λ. Let E be a binary predicate not in τ .

Then (K ′,�′) is an AEC and the trivial frame of it is a semi-good λ-frame which is not a good-frame. Moreover, (K ,�) satisfies the
following properties:

(1) (K ,�) is λ-tame (see Definition 1.11 on page 8 in [8]).
(2) (K ,�) is stable in all cardinalities greater than λ.
(3) I(μ, K )=μ for each μ with μ > λ.

Proof. It is easy to prove that it is an AEC. For example, we prove that it has an LST-number and actually its LST-number
is λ. Let N ∈ K ′ and let A ⊂ N . Let M be the sub-model of N with universe {b ∈ N: aE Nb for some a ∈ A}. Now |M| = |A|×λ

and M �′ N .
We have to prove that the trivial frame of (K ′,�′) is a semi-good λ-frame. So we have to check conditions 3–5 of

Proposition 2.2.3 and the symmetry axiom (Definition 2.1.1.3.e).
3. Easy.
4. Let M, N1, N2 ∈ K ′λ with M �′ N1 and M �′ N2 and let a1 ∈ N1, a2 ∈ N2. Then tp(a1, M, N1)= tp(a2, M, N2) iff there

is an isomorphism f : a1 E N1 → a2 E N2 with f (a1)= a2. But for every (M, N,a) ∈ S(M), aE N is isomorphic to some model in
K and |K/∼= | = λ+ . So λ+ � |S(M)|� λ× λ+ = λ+ .

5. Easy.
By Proposition 2.2.3 it is enough to prove the symmetry axiom. We leave it to the reader.
It remains to prove that the trivial frame is not a good frame, namely, that for some model in M ∈ K ′ we have |S(M)|�

λ+ (so = λ+). Take an M ∈ K ′ of cardinality λ. For each model N ∈ K , we define a model MN ∈ K ′ such that its universe is a
disjoint union of M and N , E MN := E M ∪ {(a,b): a,b ∈ N}, for each predicate R ∈ τ RMN (a0,a1, . . . ,an) iff RM(a0,a1, . . . ,an)

or RN (a0,a1, . . . ,an).
Let N1, N2 ∈ K and let a1 ∈ MN1 , a2 ∈ MN2 . If (M, MN1 ,a), (M, MN2 ,b) realize the same Galois type, then the embedding

witnessing it must map the equivalence class of a onto the equivalence class of b and so N1 must be isomorphic to N2. �
Example 2.2.7. Let λ be a cardinal. Let K be the class of well orderings of cardinality λ at most. So |K/∼= | = λ+ . Let (K ′,�′)
be as in Proposition 2.2.6. Then the trivial frame of (K ′,�′) is a semi-good λ-frame, but is not a good λ-frame.
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2.3. A family of examples

The following assertions of Shelah yield examples of semi-good frames, which in general do not have to be stable;
understanding the argument requires a careful examination of the first chapter of [17].

In [17, II], Shelah presents a way to derive a good-frame, using results from [17, I]. Here, Proposition 2.3.4 presents a
way to derive a semi-good ℵ0-frame, using [17, II] and [17, I].

First we give some definitions.

Definition 2.3.1. Let (K ,�) be an AEC and let M ∈ Kℵ0 . We define KM = {N ∈ K : N ≡L∞,ω M} and �M= {(N1, N2):
N1, N2 ∈ KM , N1 � N2, and N1 �L∞,ω N2}.

Definition 2.3.2. (K ,�) is said to be P Cℵ0 when: K is the class of reductions to a smaller language, of some countable
elementary class, which omit a countable set of types, and the relation � is defined similarly.

Let (K ,�) be an AEC, M1, M2 be models in K and A a subset of M1 ∩M2. Shelah defines (Definitions 5.5, 5.7 of [17, I])
when tp(a, M1, M2) is definable over A. We should note, that while in [17, I], we deal with the syntactic types that are
materialized (see 4.3 of [17, I]), in [17, II], the types are Galois. Shelah discusses this issue in the proof of Theorem 3.4 of
[17, II] and shows that in the context of Theorem 3.4 Galois types are, actually, those types which are materialized.

Definition 2.3.3. Let (K ,�) be an AEC. The finitely definable λ-frame of (K ,�) is (K ,�, Sna,
⋃

) where we define
⋃ :=

{(M0, M1,a, M2): M0, M1, M2 ∈ K , ‖M0‖ = ‖M1‖ = λ, M0 � M1 ≺ M2 and ga-tp(a, M1, M2) is definable (in the sense of
Definitions 5.5, 5.7 of [17, I]) over some finite subset A of M0}.

Proposition 2.3.4. Let (K ,�) be an AEC with a countable vocabulary, LST(K ,�) = ℵ0 , (K ,�) is P Cℵ0 , 0 < I(ℵ1, K ) < 2ℵ1 and
2ℵ0 < 2ℵ1 .

Then:

(1) There is a model M in Kℵ0 such that (KM)ℵ1 �= ∅,
(2) the finitely definable ℵ0-frame of (KM ,≺M) is a semi-good ℵ0-frame.

Proof. (1) By Proposition 2.3.5.
(2) By Proposition 2.3.10. �

Proposition 2.3.5. Let (K ,�) be an AEC with a countable vocabulary, LST(K ,�) = ℵ0 , (K ,�) is P Cℵ0 (0 < I(ℵ1, K ) < 2ℵ1 and
2ℵ0 < 2ℵ1 ). Then there is a model M ∈ Kℵ0 such that (KM)ℵ1 �= ∅.

In order to prove Proposition 2.3.5, we use theorems from [4].

Definition 2.3.6. Let L∗ be a fragment of Lω1,ω . A model is L∗-small if it realizes only countably many L∗(τ )-types over ∅.

The following fundamental result is due to Keisler (see [12] or Theorem 2.4 of [4] or Theorem 5.2.5 of [1]).

Theorem 2.3.7 (Keisler). If a P Cδ over Lω1,ω class K has an uncountable model but less than 2ω1 models of power ℵ1 then for any
countable fragment L∗ of Lω1,ω every member M of K is L∗-small. That is, each M ∈ K realizes only countably many L∗-types over ∅.

The following theorem is a translation of Theorem 2.7 from [4] (this theorem was certainly known to Shelah when Sh88
was proved).

Theorem 2.3.8. If the class K is P Cℵ0 and every model of cardinality ℵ1 is L∗-small for every countable fragment L∗ of Lω1,ω then K
has an Lω1,ω-small models M ′ of cardinality ℵ1 .

Now we can prove Proposition 2.3.5:

Proof. By Theorem 2.3.7, the assumptions of Theorem 2.3.8 are satisfied. So by Theorem 2.3.8, K has an Lω1,ω-small model
of cardinality ℵ1. Now it is enough to prove Proposition 2.3.9. �

The following proposition is a version of the Lowenheim–Skolem–Tarski Downward Theorem. It combines the logic Lω1,ω

with the concept of AEC.
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Proposition 2.3.9. Let (K ,�) be an AEC with LST(K ,�)=ℵ0 and let M be an Lω1,ω-small model of K of cardinality ℵ1 . Then we can
find a countable submodel N of M such that:

(1) N ∈ K .
(2) N � M.
(3) N �Lω1,ω M.

Proof. If we can choose an increasing sequence of countable submodels of M , 〈Nn: n < ω〉 such that N2n � M and
N2n+1 �Lω1,ω M for each n < ω, then the union of this sequence satisfies the needed conditions. Since LST(K ,�) = ℵ0,
we can choose Nn for an even number. Since M is Lω1,ω-small, by a Lowenheim–Skolem–Tarski argument, we can choose Nn
for an odd number. �
Proposition 2.3.10. Let (K ,�) be an AEC with a countable vocabulary, LST(K ,�) = ℵ0 , (K ,�) is P Cℵ0 , 0 < I(ℵ1, K ) < 2ℵ1 and
2ℵ0 < 2ℵ1 . Let M be a model in Kℵ0 with (KM)ℵ1 �= ∅. Then the finitely definable ℵ0-frame of (KM ,≺M) is a semi-good ℵ0-frame.

Proof. By the proof of Theorem 3.4 on page 285 in [17, II]: We assumed here assumptions (α), (β), (γ ) of Theorem 3.4.
So by Theorem 3.4.1 for some M ∈ Kℵ0 we have (δ−), (ε) too. So if (δ) (namely stability) holds then by Theorem 3.4.2, s is
a good ℵ0-frame.

We have two problems concerning (δ): the first problem is that we know (δ−) (namely almost stability) only. But at the
beginning of the proof of item 2 (the last line on page 287), it is written ‘we assume (δ−) instead of (δ)’.

The second problem is that the proof of almost stability uses [17, I], where the types are not Galois. But Shelah shows
(in the proof of Theorem 3.4) that Galois types are in this case a certain kind of syntactic type, those which are materialized.

By the continuation of the proof, we see that s is a semi-good ℵ0-frame �
2.4. Specific examples

Example 2.4.6 is a specific semi-good frame. Note that Example 2.4.6 is not of the same kind as the family in Section 2.3,
because in 2.4.6 there are 2ℵ1 models of cardinality ℵ1.

Definition 2.4.1. A transitive linear order is a linear order, M , such that for every two elements a,b ∈ M there is an automor-
phism f of M with f (a)= b.

The following lemma is implied by Corollary 8.6(2) on page 123 in [13].

Lemma 2.4.2. Let K be the class of transitive linear orders. Then I(ℵ0, K )=ℵ1 .

Definition 2.4.3. A transitive partial order is a partial order, M , such that for each element a ∈ M , the connectedness compo-
nent of a, namely, {b ∈ M: b < a∨ a < b} is a transitive linear order.

The following AEC can be called ‘the AEC of transitive partial orders with countable connectedness components’. But we
prefer a shorter name.

Definition 2.4.4. The AEC of transitive partial orders, (K ,�) is defined by: K is the class of transitive partial orders, whose
each connectedness component is countable. M � N means M ⊆ N and for each a ∈ M and b ∈ N − M , neither a <N b nor
b <N a (new elements belong to new connectedness components).

Proposition 2.4.5. The AEC of transitive partial orders is an AEC which is P Cℵ0 and it has LST-number ℵ0 .

Proof. We prove that K is P Cℵ0 only. Define a vocabulary τ+ := {<} ∪ { fn: n < ω}, where < is a binary relation, and fn is
a unary function for each n. Define τ := {<}. Let ϕ be the sentence ‘< is a partial order’ and let ϕn be the sentence ‘ fn is
a τ -automorphism’. Let T be the theory {ϕ} ∪ {ϕn: n < ω}. We define a type p(x, y) := { fn(x) �= y: n < ω}. Now K is the
class of reductions to τ of τ+-models of T which omit p(x, y). �
Example 2.4.6. Let (K ,�) be the AEC of transitive partial orders. Let Sbs be Sna . Let

⋃
be the trivial non-forking relation

(‘always’ the type does not fork).

Remark 2.4.7. Let M0, M1, M2 ∈ Kλ , M0 � M1, M2 and let a1 ∈ M1 − M0 and a2 ∈ M2 − M0. Then ga-tp(a1, M0, M1) =
ga-tp(a2, M0, M2) if and only if there is an isomorphism f : a1 E M1 → a2 E M2 with f (a1)= a2).

Claim 2.4.8. (K ,�, Sbs,
⋃

) is a semi-good ℵ0-frame.
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Proof. It is easy to prove the existence and uniqueness of the non-forking extension, using Remark 2.4.7. In order to prove
almost stability, we have to use Lemma 2.4.2. It is easy to prove the remain axioms. �
2.5. Additional properties of a frame

The following definition appears in [14].

Definition 2.5.1. Let p0 ∈ S(M0), p1 ∈ S(M1). We say that p0, p1 are conjugate if for some a0, M+
0 , a1, M+

1 , f , the following
hold:

(1) For n= 0,1, tp(an, Mn, M+
n )= pn .

(2) f : M+
0 → M+

1 is an isomorphism.
(3) f � M0 : M0 → M1 is an isomorphism.
(4) f (a0)= a1.

Proposition 2.5.2. Assume that p0 , p1 are conjugate and the types p1 , p2 are conjugate. Then the types p0 , p2 are conjugate.

Proof. Compose the isomorphisms. �
Definition 2.5.3. Let p = tp(a, M, N). Let f be a bijection with domain M . Define f (p) := tp( f (a), f [M], f +[N]), where f +
is an extension of f (and the relations and functions on f +[N] are defined such that f + : N → f +[N] is an isomorphism).

Remark 2.5.4. The definition of f (p) in Definition 2.5.3 does not depend on the representative (M, N,a) ∈ p.

Definition 2.5.5. Let s be a semi-good λ-frame. We say that s satisfies the conjugation property when: Kλ is categorical and if
M1, M2 ∈ Kλ , M1 � M2 and p2 ∈ Sbs(M2) is the non-forking extension of p1 ∈ Sbs(M1), then the types p1, p2 are conjugate.

By Claim 2.18 in [17, II]:

Proposition 2.5.6 (The transitivity proposition). Suppose s is a semi-good λ-frame. Then: If M0 � M1 � M2 , p ∈ Sbs(M2) does not
fork over M1 and p � M1 does not fork over M0 , then p does not fork over M0 .

By Claim 2.16 in [17, II]:

Proposition 2.5.7. Suppose:

(1) s satisfies the axioms of a semi-good λ-frame.
(2) n < 3⇒ M0 � Mn.
(3) For n= 1,2, an ∈ Mn −M0 and tp(an, M0, Mn) ∈ Sbs(M0).

Then there is an amalgamation ( f1, f2, M3) of M1 , M2 over M0 such that for n = 1,2 tp( fn(an), f3−n[M3−n], M3) does not fork
over M0 .

Now we prove almost stability (and more). Note that while in Claim 4.2 of [17, II], Shelah uses local character in the
proof of stability, here we do not use local character.

Theorem 2.5.8. Suppose s satisfies conditions 1 and 2 of a semi-good λ-frame (so actually the relation
⋃

is irrelevant).

(1) Suppose:
(a) 〈Mα: α � λ+〉 is an increasing continuous sequence of models in Kλ .
(b) There is a stationary set S ⊆ λ+ such that for every α ∈ S and every model N, with Mα ≺ N, there is a type p ∈ Sbs(Mα)

which is realized in Mλ+ and in N.
Then Mλ+ is full over M0 and is saturated in λ+ over λ.

(2) Suppose:
(a) 〈Mα: α � λ+〉 is an increasing continuous sequence of models in Kλ .
(b) For every α ∈ λ+ and every p ∈ Sbs(Mα), there is β ∈ (α,λ+) such that p is realized in Mβ .
Then Mλ+ is full over M0 and Mλ+ is saturated in λ+ over λ.

(3) There is a model in Kλ+ which is saturated in λ+ over λ.
(4) M ∈ Kλ ⇒ |S(M)|� λ+ (we know that |Sbs(M)|� λ+ , but the point is that |S(M)|� λ+).
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Proof. We will show 1 implies the rest and then prove 1. Obviously 1⇒ 2.
3⇒ 4: Let M ∈ Kλ and let M+ ∈ λ+ be a saturated model in λ+ over λ. Since LST(K ,�) � λ we can find M1 ∈ Kλ with

M1 � M+ . Since (Kλ,�� Kλ) satisfies the joint embedding property, we can find a joint embedding ( f1, idM1 , M2) of M
and M1. By Proposition 1.0.31 (the saturativity = model homogeneity proposition) we can find an embedding f2 : M2 → M+
over M1. Now |S(M)| = |S( f2 ◦ f1[M])|� ‖M+‖ = λ+ .

To show 2⇒ 3, we construct a chain satisfying the hypotheses of 2. Let cd be an injection from λ+×λ+ onto λ+ . Define
by induction on α < λ+ Mα and 〈pα,β : β < λ+〉 such that:

(1) 〈Mα: α < λ+〉 is an increasing continuous sequence of models in Kλ .
(2) {pα,β : β < λ+} = Sbs(Mα).
(3) Mα+1 realizes pγ ,β , where we denote: Aα := {cd(γ ,β): γ � α, pγ ,β is not realized in Mα}, εα = Min(Aα) and

(γ ,β)= cd−1(εα).

We argue that Mλ+ :=
⋃{Mα: α < λ+} is saturated in λ+ over λ. By 2 it is sufficient to prove that for every α ∈ λ+

and every p ∈ Sbs(Mα) there is β ∈ (α,λ+) such that p is realized in Mβ . Towards a contradiction, choose α∗ so that
p ∈ Sbs(Mα∗ ) is not realized in Mλ+ . There is β < λ+ such that p = pα∗,β . Denote ε := cd(α∗, β). For every α � α∗ ε ∈ Aα ,
so Aα is nonempty and εα is defined. But εα �= ε (because otherwise p is realized in Mα+1), so εα < ε. The function
f : [α∗, λ+)→ ε, f (α)= εα is an injection which is impossible.

It remains to prove item 1. Fix N , with M0 ≺ N . It is sufficient to prove that there is an embedding of N to Mλ+ over M0.
We choose (αε, Nε, fε) by induction on ε < λ+ such that:

N id Nε
id Nε+1

M0

f0

id Mαε

fε

id Mαε+1

fε+1

(1) 〈αε: ε < λ+〉 is an increasing continuous sequence of ordinals in λ+ .
(2) The sequence 〈Nε: ε < λ+〉 is increasing and continuous.
(3) 〈 fε: ε < λ+〉 is increasing continuous.
(4) N0 := N , α0 := 0 and f0 = idM0 .
(5) fε : Mαε → Nε is an embedding.
(6) For every α ∈ S there is a ∈ Mαε+1 −Mαε such that fε+1(a) ∈ Nε .

By Proposition 1.0.30 we cannot carry out this construction. Where will we get stuck? For ε = 0 or limit, we will not get
stuck. Suppose we have defined (αζ , Nζ , fζ ) for ζ � ε. If fε[Mαε ] = Nε , then f −1

ε � N is an embedding of N into Mλ+
over M0, hence we are finished. So, without loss of generality, fε[Mαε ] �= Nε . If αε /∈ S , then we define αε+1 := αε + 1 and
use the amalgamation property in (Kλ,�� Kλ) to find Nε+1, fε+1 as needed.

Suppose αε ∈ S . By the theorem’s assumption, there is a type p ∈ S(Mαε ) such that p is realized in Mλ+ and fε(p) is
realized in Nε . Define αε+1 :=Min{α ∈ λ+: p is realized in Mα}. Take a ∈ Mαε+1 such that tp(a, Mαε , Mαε+1)= p and take
b ∈ Nε such that tp(b, fε(Mαε ), Nε) = fε(p). Then fε(tp(a, Mαε , Mλ+ )) = tp(b, Mαε , Nε). By the definition of type (Defini-
tion 1.0.24.1), there are Nε+1, fε+1 with Nε � Nε+1, fε+1 is an embedding of Mαε+1 into Nε+1, fε ⊆ fε+1 and fε+1(a)= b.

Since the hypotheses of 5 applies to any cofinal segment of the sequence 〈Mα: α < λ+〉 and any submodel of size λ lies
in some Mα , we conclude that Mλ+ is saturated in λ+ over λ. �
2.6. Non-forking with larger models

Now we extend our non-forking notion to include models of cardinality greater than λ.

Definition 2.6.1.
�λ⋃

is the class of quadruples (M0,a, M1, M2) such that:

(1) λ � ‖Mi‖ for each i < 3.
(2) M0 � M1 � M2 and a ∈ M2 −M1.
(3) For some model N0 ∈ Kλ with N0 � M0 for each model N ∈ Kλ , N0 ∪ {a} ⊆ N � M1 ⇒⋃

(N0,a, N, M2).

Definition 2.6.2. Let M0, M1 be models in K�λ with M0 � M1 and p ∈ S(M1). We say that p does not fork over M0, when

for some triple (M1, M2,a) ∈ p we have
�λ⋃

(M0,a, M1, M2).

Remark 2.6.3. We can replace the quantification ‘for some’ (M1, M2,a) in Definition 2.6.2 by ‘for each’.
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Definition 2.6.4. Let M ∈ K>λ , p ∈ S(M). p is said to be basic when there is N ∈ Kλ such that N � M and p does not fork
over N . For every M ∈ K>λ , Sbs

>λ(M) is the set of basic types over M . Sometimes we write Sbs
�λ

(M), meaning Sbs(M) or
Sbs

>λ(M) (the unique difference is the cardinality of M).

Now we present a weak version of local character which is needed for a later paper.

Definition 2.6.5. Let s be a semi-good λ-frame except local character. s is said to satisfy weak local character for≺∗λ-increasing
sequences when: If α∗ < λ+ and 〈Mα: α � α∗+1〉 is a ≺∗λ-increasing continuous sequence of models, then for some element
a ∈ Mα∗+1 −Mα∗ and ordinal α < α∗ , tp(a, Mα∗ , Mα∗+1) does not fork over Mα .

Definition 2.6.6. Let s be a semi-good λ-frame except local character. s is said to satisfy weak local character when for some
relation ≺∗λ the following hold:

(1) ≺∗λ is a relation on Kλ .
(2) If M0 ≺∗λ M1 then M0 ≺ M1 (so M0 �= M1).
(3) If M0 ≺∗λ M1 � M2 ∈ Kλ then M0 ≺∗λ M2.
(4) s satisfies weak local character for ≺∗λ-increasing sequences.
(5) If M0 ∈ Kλ , M0 ≺ M2 ∈ Kλ+ , then there is a model M1 ∈ Kλ such that: M0 ≺∗λ M1 � M2.

Remark 2.6.7. If s is a semi-good λ-frame (i.e. satisfies local character) and ≺∗λ is a relation on Kλ such that M ≺∗λ N ⇒
M � N , then s satisfies weak local character for ≺∗λ-increasing sequences.

The following theorem asserts that a non-forking relation in (Kλ,�� Kλ) can be lifted to K�λ with many properties
preserved. Assuming local character, we can prove that density, monotonicity, transitivity, local character and continuity are
preserved. Without assuming local character, we can prove that monotonicity, transitivity and continuity are preserved.

Theorem 2.6.8. Let s be a semi-good λ-frame, except local character.

(1) Density: If s satisfies weak local character and M ≺ N, M ∈ K�λ , then there is a ∈ N −M such that tp(a, M, N) ∈ Sbs
�λ

(M).

(2) Monotonicity: Suppose M0 � M1 � M2 , n < 3⇒ Mn ∈ K�λ , ‖M2‖> λ. If p ∈ Sbs
�λ

(M2) does not fork over M0 , then
(a) p does not fork over M1 .
(b) p � M1 does not fork over M0 .

(3) Transitivity: Suppose M0, M1, M2 ∈ K�λ and M0 � M1 � M2 . If p ∈ Sbs
�λ(M2) does not fork over M1 , and p � M1 does not fork

over M0 , then p does not fork over M0 .
(4) About local character: Let δ be a limit ordinal. Suppose s satisfies local character or λ+ � cf (δ). If 〈Mα: α � δ〉 is an increasing

continuous sequence of models in K>λ , and p ∈ Sbs
>λ(Mδ) then there is α < δ such that p does not fork over Mα .

(5) Continuity: Suppose 〈Mα: α � δ + 1〉 is an increasing continuous sequence of models in K�λ . Let c ∈ Mδ+1 − Mδ . Denote
pα = tp(c, Mα, Mδ+1). If for every α < δ, pα does not fork over M0 , then pδ does not fork over M0 .

Proof. (1) Density: Suppose M ≺ N .
Case 1: ‖M‖ = λ. Choose a ∈ N − M . LST(K ,�) � λ and so there is N∗ ≺ N such that: ‖N∗‖ = λ and M ∪ {a} ⊆ N∗ .

By Axiom e of AEC M � N∗ . But a ∈ N∗ − M and so M ≺ N∗ . By the existence axiom in s, there is c ∈ N∗ − M such that
tp(c, M, N∗) is basic. So tp(c, M, N) ∈ Sbs(M).

Case 2: ‖M‖> λ. We choose Mn , Nn by induction on n < ω such that:

c ∈ Nn
id Nn

id Nω
id N

Mn

id

id Mn,c
id Mn+1

id

id Nω
id

id

M

id

(a) 〈Nn: n � ω〉 is a ≺-increasing continuous sequence of models in Kλ .
(b) 〈Mn: n � ω〉 is a ≺∗λ-increasing continuous sequence of models in Kλ .
(c) Mn ≺ M (see the end of Definition 2.1.1).
(d) Nn ≺ N .
(e) N0 � M .
(f) For every c ∈ Nn , Mn,c ⊆ Mn+1 where we choose Mn,c ∈ Kλ such that: If tp(c, Mn, Nn) ∈ Sbs(Mn) but does fork over Mn

then Mn,c is a witness for this, namely, Mn ≺ Mn,c ≺ M and tp(c, Mn,c, N) forks over Mn . Otherwise Mn,c = Mn .

The construction is, of course, possible.
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Now we define Mω :=⋃{Mn: n < ω} and Nω :=⋃{Nn: n < ω}. By Definition 1.0.3.1.d (smoothness), Mω � Nω . By local
character for ≺∗λ-increasing sequences, for some element c ∈ Nω−Mω and there is n < ω such that tp(c, Mω, Nω) ∈ Sbs(Mω)

does not fork over Mn . By monotonicity without loss of generality c ∈ Nn . We will prove that tp(c, M, N) does not fork
over Mω . Take M∗ with Mω ≺ M∗ ≺ M . By way of contradiction suppose tp(c, M∗, N) forks over Mω . By the monotonicity
in s (Axiom b), tp(c, M∗, N) forks over Mn . So by the definition of Mn,c , tp(c, Mn,c, N) forks over Mn . Hence by Axiom b
(monotonicity) tp(c, Mω, N) forks over Mn , a contradiction.

(2) Monotonicity: We use the same witness.
(3) Transitivity:

N id N∗∗ id M2 p

N1
id N∗ id

id

M1

id

N0
id

id

id

M0

id

Suppose M0 ≺ M1 ≺ M2, p ∈ Sbs(M2) does not fork over M1 and p � M1 does not fork over M0. We can find N0 ≺ M0
such that N0 witnesses that p � M1 does not fork over M0. We will prove that N0 witnesses that p does not fork over M0.
Let N ∈ Kλ be such that N0 ≺ N ≺ M2. We have to prove that p � N does not fork over N0. First we find a model N1 that
witnesses that p does not fork over M1. As LST(K ,�) � λ, there is N∗ ∈ Kλ such that N0 ∪ N1 ⊆ N∗ � M1 and there is
N∗∗ ∈ Kλ such that N∗ ∪ N ⊆ N∗∗ � M2. As N1 witnesses that p does not fork over M1, p � N∗∗ does not fork over N1.
By Definition 2.1.1.3.b (monotonicity), p � N∗∗ does not fork over N∗ . N0 witnesses that p � M1 does not fork over M0,
so p � N∗ does not fork over N0. By the transitivity proposition (Proposition 2.5.6), p � N∗∗ does not fork over N0. So by
Definition 2.1.1.3.b (monotonicity), p � N does not fork over N0.

(4) About local character: Let 〈Mα: α < δ〉 be an increasing continuous sequence of models in K>λ . Let p ∈ Sbs
>λ(Mδ)

and N∗ be a witness for this, i.e., p does not fork over N∗ ∈ Kλ . Let 〈α(ε): ε � cf (δ)〉 be an increasing continuous sequence
of ordinals with α(cf (δ))= δ.

Case a: λ+ � cf (δ). By cardinality considerations, there is ε < cf (δ) such that: N∗ ⊆ Mα(ε) . By Definition 1.0.3.1.e
N∗ � Mα(ε) . As N∗ witnesses that the type p is basic, by Definition 2.6.1, N∗ witnesses that p does not fork over Mα(ε) .

Case b: s satisfies local character and cf (δ) � λ. Using LST(K ,�) � λ and smoothness, we can choose Nα(ε) by induction
on ε � cf (δ) such that:

N∗ id Nδ
id Mδ p

Nα(ε)
id

id

Mα(ε)

id

(a) Nα(ε) ∈ Kλ .
(b) 〈Nα(ε): ε � cf (δ)〉 is an increasing continuous sequence.
(c) Mα(ε) ∩ N∗ ⊆ Nα(ε) � Mα(ε) .

By Definition 1.0.3.1.e, N∗ � Nδ � Mδ . Since p does not fork over N∗ , by monotonicity (Theorem 2.6.8.2) p does not fork
over Nδ . By local character, for some ε < cf (δ), p � Nδ does not fork over Nα(ε) . By transitivity (Theorem 2.6.8.3), p does
not fork over Nα(ε) . By monotonicity (Theorem 2.6.8.2), p does not fork over Mα(ε) .

(5) Continuity: For every α ∈ δ denote pα := p � Mα . p7 does not fork over M0. So for some N0 ∈ Kλ , N0 � M0 and p7
does not fork over N0. By monotonicity (Theorem 2.6.8.2) and transitivity (Theorem 2.6.8.2) for every α < δ, pα does not
fork over N0. We will prove that p does not fork over N0. Take N∗ ∈ Kλ with N0 � N∗ � Mδ . We have to prove that p � N∗
does not fork over N0. Let 〈α(ε): ε � cf (δ)〉 be an increasing continuous sequence of ordinals with α(cf (δ))= δ.

Case a: λ+ � cf (δ). By cardinality considerations, there is ε < cf (δ) such that N∗ ⊆ Mα(ε) . But Mα(ε) � Mδ and N∗ � Mδ ,
so by Axiom 1.0.3.1.e N∗ � Mα(ε) . Since pα(ε) does not fork over N0, by monotonicity (Theorem 2.6.8.2) p � N∗ does not fork
over N0.

Case b: cf (δ) � λ+ . We choose Nα(ε) by induction on ε ∈ (0, cf (δ)] such that:

(a) The sequence 〈Nα(ε): ε � cf (δ)〉 is increasing continuous.
(b) ε � cf (δ)⇒ N∗ ∩Mα(ε) ⊆ Nα(ε) � Mα(ε) .
(c) Nα(ε) ∈ Kλ .
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For every ε < cf (δ), pα(ε) does not fork over N0, so p � Nα(ε) does not fork over N0. So by Definition 2.1.1.3.g (conti-
nuity) (in s), p � Nδ does not fork over N0. N∗ ⊆ Nδ , hence by Axiom 1.0.3.1.e N∗ � Nδ . Therefore by Definition 2.1.1.3.b
(monotonicity), p � N∗ does not fork over N0. �
3. The decomposition and amalgamation method

In this section, there is no reason to assume any version of stability or local character.

Hypothesis 3.0.9. s is a semi-good λ-frame, except basic almost stability and local character.

Discussion In Section 2 (Definition 2.6.2) we defined an extension of the non-forking notion to cardinals bigger than λ. But
we did not prove all the good frame axioms (we proved only Theorem 2.6.8). The purpose from here until the end of the
paper is to construct a good λ+-frame, which is derived from the semi-good λ-frame. In a sense, the main problem is that
the amalgamation property in (Kλ,�� Kλ) may not imply the amalgamation property in (Kλ+ ,�� Kλ+ ). The solution is to
define a special notion of a submodel, �NF

λ+ (see Definition 6.1.4).
Suppose for n < 3 Mn ∈ Kλ+ , M0 � Mn and we want to amalgamate M1, M2 over M0. We take representations of M0,

M1, M2 as unions of models of size λ. We want to amalgamate M1, M2 by amalgamating their representations. For this
goal, we will find in Section 5, a relation of ‘a non-forking amalgamation’. Sections 3, 4 are preparations for Section 5. If the
reader wants to know the plan of the other sections now, he may see the discussion at the beginning of Section 10.

The decomposition and amalgamation method Suppose for n= 1,2, M0 � Mn and we want to prove that there is an amalga-
mation of M1, M2 over M0 which satisfies specific properties (for example disjointness or uniqueness, see below). We will
define various subclasses of K 3 and study them in general under the name K 3,∗ . We will decompose a model into a chain
such that each extension is in K 3,∗ and draw conclusions from such a decomposition.

Theorem 3.2.3 says, under some assumptions, that we can decompose an extension of M1 over M0 by triples in K 3,∗ .
By Proposition 3.1.8.2 we can amalgamate M2 with the decomposition we have obtained.

Applications of the decomposition and amalgamation method

(1) By Proposition 3.1.8.2 there is no �-maximal model in Kλ+ .
(2) By Proposition 3.3.4 the reduced triples are dense with respect to �bs (see Definition 3.1.1.2). It enables to prove

Theorem 3.3.5 (the disjoint amalgamation existence), by the decomposition and disjoint method.
(3) By Hypothesis 5.1.1, the uniqueness triples are dense with respect to �bs . The density enables to prove Theorem 5.3.7

(the existence theorem for NF).
(4) Using again Hypothesis 5.1.1, we prove Proposition 5.4.6. But for this, we have to prove Proposition 3.1.10, a generaliza-

tion of 3.1.8, which says that we can amalgamate two sequences of models, not just a model and a sequence.

3.1. (K 3,bs,�bs) and amalgamations

We define K 3,bs as the class of those triples which represent basic types. The reader may feel that this definition is not
new, because we have defined basic types. But while we studied triples modulo an equivalence relation, now we want to
study the triples themselves. We define a partial ordering, �bs on K 3,bs .

Definition 3.1.1.

(1) K 3,bs =: {(M, N,a): M, N ∈ Kλ, a ∈ N −M and tp(a, M, N) ∈ Sbs(M)}.
(2) �bs is the relation on K 3,bs defined by: (M, N,a) �bs (M∗, N∗,a∗) iff M � M∗ , N � N∗ , a∗ = a and tp(a, M∗, N∗) does

not fork over M . In particular, tp(a, M∗, N∗) extends tp(a, M, N).

The pair (K 3,bs,�bs) satisfies most of the axioms of AEC. The comparison between the properties of (K 3,bs,�bs) and the
axioms of AEC helps to remember the properties of (K 3,bs,�bs). For this comparison we have to define a new vocabulary.

Definition 3.1.2. Let (K ,�) be an AEC with vocabulary τ . The vocabulary of triples means τ ∪ {P , c}, where P is an unary
predicate not in τ , c is a 0-ary function not in τ , and we interpret (M, N,a) by: N is a τ -model, M is the interpretation
of P and a the interpretation of c.

(K 3,bs,�bs) should not be an AEC. If (K 3,bs,�bs) is an AEC, then for each (M0, N0,a), (M1, N1,a) ∈ K 3,bs , (M0, N0,a) �bs
(M1, N1,a) implies (M0, N0,a) ⊂ (M1, N1,a) and it implies M1 ∩ N0 = M0. But why does it imply that M1 ∩ N0 = M0?
If (M0, N0,a) is reduced (see Definition 3.3.2), then it implies that M1 ∩ N0 = M0.
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We can replace the relation �bs by the following relation:

Definition 3.1.3. �disjoint
bs is the binary relation on K 3

bs defined by: (M0, N0,a) �disjoint
bs (M1, N1,a) iff (M0, N0,a) �bs

(M1, N1,a) and N0 ∩M1 = M0.

The unique use of Definition 3.1.3 is in the following remark. This remark is not used later.

Remark 3.1.4. (K 3,bs,�disjoint
bs ) is an AEC in λ (for the vocabulary of triples). See also Remark 3.3.3.

Proof. Easy, using Proposition 3.1.6. �
As we said above, the relation �bs should not be included in the submodel relation. So in order to compare the properties

of (K 3,bs,�bs) with the axioms of AEC, we have to define the notion of increasing continuous sequence in this context.

Definition 3.1.5. The sequence 〈(Mα, Nα,a): α < θ〉 is said to be �bs-increasing continuous if α < θ ⇒ (Mα, Nα,a) �bs
(Mα+1, Nα+1,a) and the sequences 〈Mα: α < θ〉, 〈Nα: α < θ〉 are continuous (and increasing).

Proposition 3.1.6. (K 3,bs,�bs) satisfies the axioms of AEC in λ except one: the relation �bs should not be included in the submodel
relation.

Proof. First we note that K 3,bs is not the empty set [there is M ∈ Kλ , and as Kλ has no �-maximal model, there is N ∈ Kλ

with M ≺ N . Now by Definition 2.1.1.3.f, there is a ∈ N − M such that tp(M, N,a) ∈ Sbs(M). So (M, N,a) ∈ K 3,bs]. Now we
check the axioms of Definition 1.0.3.1.

a. Trivial.
b. �bs is transitive by Proposition 2.5.6. It should not be included in the submodel relation.
c. Suppose δ < λ+ and 〈(Mα, Nα,a): α < δ〉 is increasing and continuous. Denote M = ⋃{Mα: α < δ}, N =⋃{Nα: α < δ}. By Axiom c of AEC, M, N ∈ Kλ and for each α < δ Mα � M , Nα � N . By the definition of �bs for every

α < δ, tp(a, Mα, Nα) does not fork over M0. So by Definition 2.1.1.3.g (continuity), tp(a, M, N) is basic and does not fork
over M0. By smoothness, M � N . By Axiom c of AEC M0 � M and N0 � N . So (M0, N0,a) �bs (M, N,a) ∈ K 3,bs .

d. Why is smoothness satisfied? Suppose 〈(Mα, Nα,a): α � δ + 1〉 is continuous and for every α,β with α < β � δ + 1,
we have α �= δ⇒ (Mα, Nα,a) �bs (Mβ, Nβ,a). We should prove that (Mδ, Nδ,a) �bs (Mδ+1, Nδ+1,a). δ �= α < β � δ + 1⇒
Mα � Mβ . But by the continuity of the sequence 〈(Mα, Nα,a): α � δ+ 1〉, we have Mδ =⋃{Mα: α < δ}. So by smoothness
of (K ,�), Mδ � Mδ+1. In a similar way Nδ � Nδ+1. (M0, N0,a) �bs (Mδ+1, Nδ+1,a), so by the definition, tp(a, Mδ+1, Nδ+1)

does not fork over M0. Therefore by Definition 2.1.1.3.b (monotonicity), tp(a, Mδ+1, Nδ+1) does not fork over Mδ .
e. Suppose (M0, N0,a) ⊆ (M1, N1,a) � (M2, N2,a), (M0, N0,a) �bs (M2, N2,a). By the definition of �bs , we have M0 ⊆

M1 � M2 and M0 � M2. Hence by Axiom 1.0.3.1.e we have M0 � M1. In a similar way N0 � N1. By the definition of �bs ,
tp(a, M2, N2) does not fork over M0. By 2.1.1.3.b (monotonicity), tp(a, M1, N1) does not fork over M0. So (M0, N0,a) �bs
(M1, N1,a). �
Proposition 3.1.7. K 3,bs has no �bs-maximal model.

Proof. Let (M0, N0,a) ∈ K 3,bs . In Kλ there is no �-maximal element, and so there is M∗
1 ∈ Kλ with M0 ≺ M∗

1. By Proposi-
tion 2.5.7 there is N1 ∈ Kλ with N0 � N1 and there is an embedding f : M∗

1 → N1 such that tp(a, M1, N1) does not fork
over M0 where M1 := f [M∗

1]. Hence (M0, N0,a) �bs (M1, N1,a). �
Roughly, the following proposition says that we can amalgamate the union of increasing continuous sequence of models

〈Mα: α < θ〉 and a model N extending M0 over M0 such that many types do not fork.

Proposition 3.1.8.

N0
id N1

id N2
id Nα

id Nα+1
id Nθ

M0
id

id

M1
id

id

M2
id

id

Mα
id

id

Mα+1
id

id

Mθ

id

Let 〈Mα: α � θ〉 be an increasing continuous sequence of models in Kλ . Let N ∈ Kλ with M0 ≺ N, and for α < θ , let aα ∈
Mα+1 −Mα , (Mα, Mα+1,aα) ∈ K 3,bs and b ∈ N −M0 , (M0, N,b) ∈ K 3,bs. Then there are f , 〈Nα: α � θ〉 such that:

(1) f is an isomorphism of N to N0 over M0 .
(2) 〈Nα: α � θ〉 is an increasing continuous sequence.
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(3) Mα � Nα .
(4) tp(aα, Nα, Nα+1) does not fork over Mα .
(5) tp( f (b), Mα, Nα) does not fork over M0 .

Note that Nθ is an amalgam of Mθ and N over M0 .

Proof. First note that the argument uses the symmetry axiom. Now we explain the idea of the proof. If we ‘fix’ the models
in the sequence 〈Mα: α � θ〉, then we will ‘change’ N θ times. So in limit steps, we will encounter a problem. The solution
is to fix N , and ‘change’ the sequence 〈Mα: α � θ〉. At the end of the proof, we ‘return the sequence to its place’.

The proof itself : We choose (N∗α, fα) by induction on α such that (∗)α holds where (∗)α is:

(i) α � θ ⇒ N∗α ∈ Kλ .
(ii) (N∗0, f0)= (N, idM0 ).

(iii) The sequence 〈N∗α: α � θ〉 is increasing and continuous.
(iv) For every α � θ , the function fα is an embedding of Mα to N∗α .
(v) The sequence 〈 fα: α � θ〉 is increasing and continuous.

(vi) For every α < θ tp( fα+1(aα), N∗α, N∗α+1) does not fork over fα[Mα].
(vii) For every α � θ tp(b, fα[Mα], N∗α) does not fork over M0.

Note that in limit steps we do not choose any element and by smoothness, fα[Mα]� N∗α .
Now fθ : Mθ → N∗θ is an embedding. Extend f −1

θ to a function with domain N∗θ and define f := g � N . Define
Nα := g[N∗α]. �
Proposition 3.1.9.

(1) Kλ+ �= ∅, and it has no �-maximal model.
(2) There is a model in K of cardinality λ+2 .

Proof. (1) Kλ+ �= ∅, as we can choose an increasing continuous sequence of models in Kλ , 〈Mα: α < λ+〉, and so its union
is a model in Kλ+ . [As there is no �-maximal model in Kλ and in limit step, use Axiom 1.0.3.1.c.]

Why is there no maximal model in Kλ+? Let M ∈ Kλ+ . Let 〈Mα: α < λ+〉 be a representation of M . By the Defini-
tion 2.1.1.3.f (existence), for every α ∈ λ+ there is an element aα ∈ Mα+1−Mα (we do not use aα , but as we have written it
in 1, for shortness, we have to write it here). As in Kλ there is no maximal model, there is a model N such that M0 ≺ N ∈ Kλ

and, without loss of generality, N ∩ M = M0. By Definition 2.1.1.2.c (the density of basic types), there is b ∈ N − M0 such
that tp(b, M0, N) is basic. Now by Proposition 3.1.8.1, there is an increasing continuous sequence 〈Nα: α < λ+〉 and f such
that f : N → N0 is an isomorphism over M0 and for α ∈ λ+ we have Mα � Nα and tp( f (b), Mα, Nα) does not fork over M0.
So by Definition 2.1.1, f (b) does not belong to Mα for α ∈ λ+ . So f (b) does not belong to M . But it belongs to Nλ+ ,
so M �= Nλ+ , and for this we defined b. But it is easy to see that M ⊆ Nλ+ and Nλ+ ∈ Kλ+ . By smoothness (i.e. Defini-
tion 1.0.3.1.d) M � Nλ+ . So M is not a maximal model.

(2) We construct a strictly increasing continuous sequence of models in Kλ+ , 〈Mα: α < λ+2〉. So its union is a model
in Kλ+2 . As by 2 there is no maximal model in Kλ+ , there is no problem to choose this sequence. �

The following proposition will be used in the proof of Proposition 5.4.6.

Proposition 3.1.10 (A rectangle which amalgamates two sequences). For x = a,b let 〈Mx,α: α < θ x〉 be an increasing continuous
sequence of models in Kλ such that Ma,0 = Mb,0 and let 〈dx,α: α < θ x〉 be a sequence such that dx,α ∈ Mx,α+1 − Mx,α , and the type
tp(dx,α, Mx,α, Mx,α+1) is basic. Denote α∗ = θa, β∗ = θb. Then there are a “rectangle of models” {Mα,β : α < α∗, β < β∗} and a
sequence 〈 fβ : β < β∗〉 such that:

(1) (α < α∗ ∧ β < β∗)⇒ Mα,β ∈ Kλ .
(2) fβ : Mb,β → M0,β is an isomorphism.
(3) Mα,0 = Ma,α .
(4) f0 is the identity on Ma,0 = Mb,0 .
(5) 〈 fβ : β < β∗〉 is increasing and continuous.
(6) For every α, β which satisfies α + 1 < α∗ and β < β∗ , the type tp(da,α, Mα,β, Mα+1,β ) does not fork over Mα,0 .
(7) For every α, β which satisfies α < α∗ and β + 1 < β∗ , the type tp(db,β , Mα,β, Mα,β+1) does not fork over M0,β .
(8) If

⋃{Im( fβ): β < β∗} ∩⋃{Ma,α: α < α∗} =⋃{Mb,β : β < β∗} ∩⋃{Ma,α: α < α∗} = Ma,0 , then (∀β ∈ β∗) fβ = id � Mb,β .
(9) For all α(1) < α∗ the sequence 〈Mα(1),β : β < β∗〉 is increasing and continuous.

(10) For all β(1) < β∗ the sequence 〈Mα,β(1): α < α∗〉 is increasing and continuous.
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da,α ∈ Mα+1,0 = Ma,α+1
id Mα+1,β

id Mα+1,β+1

Mα,0 = Ma,α
id

id

Mα,β
id

id

Mα,β+1

id

M0,0 = Ma,0 = Mb,0
id

id

M0,β = fβ [Mb,β ] id

id

M0,β+1 = fβ+1[Mb,β+1]
id

Proof. We define by induction on β < β∗ fβ, {Mα,β : α < α∗} such that the conditions 1–6 and 8, 9 are satisfied. For β = 0
see 3, 4. For β a limit ordinal, we define fβ =⋃{ fγ : γ < β}, Mα,β =⋃{Mα,γ : γ < β}. Why does 6 satisfy, i.e., why
for every α, does tp(da,α, Mα,β, Mα+1,β ) not fork over Mα,0? By the induction hypothesis, 6 is satisfied for every γ < β ,
i.e., tp(da,α, Mα,γ , Mα+1,γ ) = tp(da,α, Mα,γ , Mα+1,γ ) does not fork over M0,γ . By Definition 2.1.1.3.b (monotonicity) and
Definition 2.1.1.3.g (continuity), tp(da,α, Mα,β, Mα+1,β ) does not fork over Mα,0. So condition 6 is satisfied. For β = γ + 1
use Proposition 3.1.8.1. So we can carry out the induction. Now, without loss of generality, condition 7 is satisfied, too. �
3.2. Decomposition

When we speak about tp(a, M, N), the N is rather peripheral; any larger model will do. Now we consider classes K 3,∗
of triples (M, N,a) where the role of N is very important. For example, N is the algebraic closure of M ∪ {a}, where (K ,�)

is the class of fields with the partial order of being sub-field.

Definition 3.2.1. Let K 3,∗ ⊆ K 3,bs , such that K 3,∗ is closed under isomorphisms (i.e., if (M, N,a) ∈ K 3,∗ and f : N → N∗ is
an isomorphism, then ( f [M], f [N], f (a)) ∈ K 3,∗).

(1) K 3,∗ is dense with respect to �bs if for every (M, N,a) ∈ K 3,bs , there is (M∗, N∗,a∗) ∈ K 3,∗ such that (M, N,a) �bs

(M∗, N∗,a∗).
(2) K 3,∗ satisfies the existence property if for every (M, N,a) ∈ K 3,bs , there are N∗ , a∗ such that tp(a∗, M, N∗)= tp(a, M, N)

and (M, N∗,a∗) ∈ K 3,∗ . In other words, if p ∈ Sbs(M) then p ∩ K 3,∗ �= ∅.

Definition 3.2.2. Let K 3,∗ ⊆ K 3,bs , K 3,∗ be closed under isomorphisms. Let M∗ ∈ Kλ . We say that M∗ is decomposable by K 3,∗
over M , if there is a sequence 〈dε, Nε: ε < α∗〉�〈Nα∗ 〉 with Nα∗ =⋃{Nε: ε < α} such that:

(1) α∗ < λ+ and for each ε < α∗ Nε ∈ Kλ .
(2) 〈Nε: ε � α∗〉 is increasing and continuous.
(3) N0 = M .
(4) (Nε, Nε+1,dε) ∈ K 3,∗ .

In such a case, we say that the sequence 〈dε, Nε: ε < α∗〉�〈Nα∗ 〉 is a decomposition of M∗ over M by K 3,∗ .

Theorem 3.2.3 (The extensions decomposition theorem). Let K 3,∗ ⊆ K 3,bs be closed under isomorphisms.

(1) Suppose s satisfies the conjugation property. If K 3,∗ is dense with respect to �bs , then it satisfies the existence property.
(2) Suppose K 3,∗ satisfies the existence property. If N ∈ Kλ and p = tp(a, M, N) ∈ Sbs(M), then there are N∗, N+ such that

(M, N∗,a) ∈ K 3,∗ ∩ p, N � N+ , N∗ � N+ .
(3) Suppose K 3,∗ satisfies the existence property, M, N ∈ Kλ and M ≺ N. Then there is M∗ ∈ Kλ such that M∗ � N and M∗ is

decomposable over M by K 3,∗ . Moreover, letting a ∈ N − M, tp(a, M, N) is basic, we can choose d0 = a, where d0 is the element
which appears in Definition 3.2.2.

Proof. (1) Suppose p = tp(M, N,a) ∈ Sbs(M). As K 3,∗ is dense with respect to �bs , there are M∗ , N∗ , b with (M, N,a) �bs

(M∗, N∗,b). As s satisfies the conjugation property, p∗ =: tp(M∗, N∗,b) and p are conjugate. K 3,∗ is closed under isomor-
phisms and so p ∩ K 3,∗ �= ∅.

(2) K 3,∗ satisfies the existence property and so there are b, N∗ such that: tp(b, M, N∗)= p, (M, N∗,b) ∈ K 3,∗ . By the def-
inition of a type (i.e., the definition of equivalence between triples in a type), there are a model N+ , N � N+ and an embed-
ding f : N∗ → N+ over M such that f (b)= a. Denote N∗∗ = f [N∗]. Now as K 3,∗ respects isomorphisms, (M, N∗∗,a) ∈ K 3,∗ .
M � N∗∗ � N+ .
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(3) Assume toward a contradiction that M ≺ N and there is no M∗ as required. We try to construct Mα , aα , Nα by
induction on α ∈ λ+ such that (see the diagram below):

(a) M0 = M , N0 = N .
(b) (Mα, Mα+1,dα) ∈ K 3,∗ .
(c) Mα � Nα .
(d) For every α ∈ λ+ , dα ∈ Mα+1 ∩ Nα −Mα .
(e) The sequence 〈Mα: α < λ+〉 is increasing and continuous.
(f) The sequence 〈Nα: α < λ+〉 is increasing and continuous.

N0
id N1

id Nα

M0
id

id

M1
id

id

Mα
id

id

Mα+1 � aα

We cannot succeed because otherwise substituting the sequences 〈Mα: α ∈ λ+〉, 〈Nα: α ∈ λ+〉, 〈idMα : α ∈ λ+〉 in Propo-
sition 1.0.30, we get a contradiction. So where will we get stuck? For α = 0 there is no problem. For α limit take unions.
3 is satisfied by (smoothness) (Definition 1.0.3.1.d). What will we do for α + 1 (assuming we have defined (Mα, Nα,dα))?
If Nα = Mα , then Nα is decomposable over M by K 3,∗ and the proof is complete. Otherwise by the existence of the basic
types (2.1.1), there is dα ∈ Nα − Mα such that (Mα, Nα,dα) ∈ K 3,bs (and for the “moreover” take d0 = a if α = 0). By as-
sumption, K 3,∗ satisfies the existence property, so there are d∗α, M∗

α+1 such that: (Mα, M∗
α+1,d∗α) ∈ K 3,∗ , tp(d∗α, Mα, M∗

α+1)=
tp(dα, Mα, Nα). By the definition of a type, there are Nα+1, Nα � Nα+1 and an embedding f : M∗

α+1 → Nα+1 over Mα such
that f (d∗α) = dα . Denote Mα+1 = Im( f ). We have Nα � Nα+1, Mα+1 � Nα+1 and (Mα, Mα+1,dα) ∈ K 3,∗ . So 2, 3, 4 are
guaranteed. �

The following proposition will be used twice: once in the proof of Theorem 5.4.7 and once in the proof of Proposi-
tion 5.5.3.

Proposition 3.2.4 (Existence of decomposition over two models). If M0, M1, N ∈ Kλ and n < 2⇒ Mn � N, then there is M∗ ∈ Kλ

such that: N � M∗ and M∗ is decomposable over M0 and over M1 .

Proof. Choose an increasing continuous sequence 〈Mn: 2 � n � ω〉 such that:

(1) N � M2.
(2) For every n ∈ω, Mn+2 is decomposable over Mn .

The construction is possible by Theorem 3.2.3. Now by the following proposition, Mω is decomposable over M0 and M1. �
Proposition 3.2.5 (The decomposable extensions transitivity). Let 〈Mε: ε � α∗〉 be an increasing continuous sequence of models, such
that for every ε < α∗ , Mε+1 is decomposable over Mε . Then Mα∗ is decomposable over M0 .

Proof. Easy. �
3.3. A disjoint amalgamation

The next goal is to prove the existence of a disjoint amalgamation. For this we are going to prove the density of the
reduced triples. (M, N,a) is reduced means that a dominates N in a weak way. We will use the decomposition method
where the class of reduced triples stands for K 3,∗ .

Definition 3.3.1. The amalgamation f1, f2, M3 of M1, M2 over M0 is said to be disjoint when f1[M1] ∩ f2[M2] = M0.

Definition 3.3.2. The triple (M, N,a) ∈ K 3,bs
λ is reduced if (M, N,a) �bs (M∗, N∗,a)⇒ M∗ ∩ N = M . We define

K 3,r := {
(M, N,a) ∈ K 3,bs: (M, N,a) is reduced

}
.

Remark 3.3.3. (K 3,r,⊆) is an AEC in λ (see Proposition 3.1.6).

Proposition 3.3.4. The reduced triples are dense with respect to �bs: For every (M, N,a) ∈ K 3,bs
λ , there is a reduced triple (M∗, N∗,a)

which is �bs-bigger than it.
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Proof. Suppose towards contradiction that over (M, N,a) there is no reduced triple. We will construct models Mα , Nα by
induction on α < λ+ such that:

(i) (M0, N0,a)= (M, N,a).
(ii) For every α ∈ λ+ , (Mα, Nα,a) �bs (Mα+1, Nα+1,a).

(iii) For every α ∈ λ+ , Mα+1 ∩ Nα �= Mα .
(iv) The sequence 〈(Mα, Nα,a) : α < λ+〉 is continuous (see Definition 3.1.1).

Why can we carry out the construction? For α = 0 see clause (i) of the construction. For limit α see clause (iv). Suppose
we have defined 〈Mβ, Nβ,a): β � α〉. By Proposition 3.1.6 (K 3,bs,�bs) is closed under increasing union. So by clauses (i),
(ii), (iv) (M, N,a) �bs (Mα, Nα,a). So by the assumption (Mα, Nα,a) is not a reduced triple, i.e., there are Mα+1, Nα+1
which satisfies clauses (ii), (iii). Hence we can carry out this construction.

Now we have:

(1) The sequences 〈Mα: α < λ+〉, 〈Nα: α < λ+〉 are increasing (by clause (ii) and the definition of �bs).
(2) These sequences are continuous (by clause (iv)).
(3) For α ∈ λ+ , Mα ⊆ Nα (by the definition of K 3,bs).
(4) For every α ∈ λ+ , Mα+1 ∩ Nα �= Mα (by clause (iii)).

We got a contradiction to Proposition 1.0.30. �
The existence of non-forking extension implies that if M1 and M2 are extensions of M0 then we can find an amalga-

mation ( f1, f2, M3) of M1 and M2 over M0 such that f1[M1] �= f2[M2], namely, there is a ∈ M1 −M0 with f1(a) /∈ f2[M2].
By the following theorem, we can find an amalgamation ( f1, f2, M3) of M1 and M2 over M0 such that for each a ∈ M1−M2
f1(a) /∈ f2[M2].

Theorem 3.3.5 (The disjoint amalgamation existence theorem). Assume that s satisfies the conjugation property. Let M0 , M1 , M2 be
models in Kλ such that M0 � M1 and M0 � M2 .

Then there are M3 , f such that f : M2 → M3 is an embedding over M0 , M1 � M3 , and f [M2] ∩ M1 = M0 . Moreover, if a ∈
M1 −M0 and tp(a, M0, M1) ∈ Sbs(M0), then we can add that tp(a, f [M2], M3) does not fork over M0 .

Proof. If M1 = M0 then the theorem is trivial. Otherwise by the density of basic types (see Definition 2.1.1), there is an
element a ∈ M1−M0 such that tp(a, M0, M1) ∈ Sbs(M0). So it is sufficient to prove the “moreover”. By Proposition 3.3.4 the
reduced triples are dense with respect to �bs . So by Theorem 3.2.3 (the extensions decomposition theorem), as s satisfies
the conjugation property, there is a model M∗

1 such that M1 � M∗
1 and M∗

1 is decomposable over M1 by reduced triples,
i.e., there is an increasing continuous sequence 〈N0,α: α � δ〉 of models in Kλ such that: N0,0 = M0, M0,δ = M∗

1 and there
is a sequence 〈dα: α < δ〉 such that (N0,α, N0,α+1,dα) is a reduced triple and d0 = a. By Proposition 3.1.8.1, there is an
isomorphism f of M2 over M0 and there is an increasing continuous sequence 〈N1,α: α � δ〉 such that: N0,α � N1,α ,
f [M2] = N1,0 and tp(dα, N1,α, N1,α+1) does not fork over N0,α . So for α < δ, (N0,α, N0,α+1,dα) �bs (N1,α, N1,α+1,dα).
But the triple (N0,α, N0,α+1,dα) is reduced, so N1,α ∩ N0,α+1 = N0,α . Hence N1,0 ∩ N0,δ = N0,0. [Why? Let x ∈ N1,0 ∩ N0,δ .
Let α be the first ordinal such that x ∈ N0,α . α cannot be a limit ordinal as the sequence is continuous. If α = β + 1
then x ∈ N0,α ∩ N1,β = N0,β , in contradiction to the definition of α as the first such an ordinal. So we must have α = 0,
i.e., x ∈ N0,0.] Hence M1 ∩ f [M2] = N0,0 = N0. Denote M3 = N0,δ . �
4. Uniqueness triples

4.1. Introduction

In Section 7 we amalgamate models in Kλ+ by amalgamating their approximations in Kλ . In Sections 4, 5 we study
amalgamations of models in Kλ . Now we define equivalence relation on amalgamations in Kλ .

Hypothesis 4.1.1. s is a semi-good λ-frame.

Definition 4.1.2. Suppose

(1) M0, M1, M2 ∈ Kλ , M0 � M1 ∧M0 � M2.
(2) For x= a,b, ( f x, f x, Mx) is an amalgamation of M1, M2 over M0.
1 2 3
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( f a
1 , f a

2 , Ma
3), ( f b

1 , f b
2 , Mb

3) are said to be equivalent over M0 if there are f a , f b , Mab
3 such that f a : Ma

3 → Mab
3 , f b : Mb

3 →
Mab

3 , f b ◦ f b
1 = f a ◦ f a

1 and f b ◦ f b
2 = f a ◦ f a

2 , namely, the following diagram commutes:

Mb
3

f b

Mab
3

M1

f b
1

f a
1 Ma

3

f a

M0

id

id
M2

f a
2

f b
2

We denote the relation ‘to be equivalent over M0’ between amalgamations over M0, by EM0 .

Proposition 4.1.3. The relation EM0 is an equivalence relation.

Proof. Assume ( f a
1 , f a

2 , Ma
3)EM0 ( f b

1 , f b
2 , Mb

3) and ( f b
1 , f b

2 , Mb
3)EM0 ( f c

1 , f c
2 , Mc

3). We have to prove that ( f a
1 , f a

2 , Ma
3)EM0

( f c
1 , f c

2 , Mc
3). Take witnesses g1, g2, Ma,b

3 for ( f a
1 , f a

2 , Ma
3)EM0 ( f b

1 , f b
2 , Mb

3), and witnesses g3, g4, Mb,c
3 for ( f b

1 , f b
2 , Mb

3)EM0

( f c
1 , f c

2 , Mc
3). Amalgamate Ma,b

3 and Mb,c
3 over Mb

3. �

Example 4.1.4. Let K be the class of graphs, namely, K := {G = (|G|, EG): EG is a binary relation on |G| and for every
x1, x2 ∈ |G|, x1 EG x2 implies x2 EG x1}. The pair (K ,⊆) (⊆ is the relation of being subgraph), is an AEC.

Define three graphs by: G0 := {0}, EG0 := ∅, G1 := {0,1}, EG1 := ∅, G2 := {0,2}, EG2 := ∅. Now G0 ⊆ G1 and G0 ⊆ G2.
Up to EG0 (equivalence over M0, see Definition 4.1.2) there are exactly three non-equivalent amalgamations of G1, G2

over G0:

(1) ( f a
1 , f a

2 , Ga
3) is the non-disjoint amalgamation of G1 and G2 over G0, namely: Ga

3 := Ga
1, f a

1 : G1 → Ga
3, (∀x ∈ G1)

f a
1 (x)= x, f a

2 : G2 → Ga
3, f a

2 (0)= 0, f a
2 (2)= 1.

(2) ( f b
1 , f b

2 , Gb
3) is a disjoint amalgamation, where |Gb

3| := {0,1,2}, EGb
3 := ∅, f b

2 : G1 → Gb
3 (∀x ∈ G2) f b

2 (x)= x.
(3) ( f c

1 , f c
2 , Gc

3) is a disjoint amalgamation, where |Gc
3|, f c

1 , f c
2 are |Gb

3|, f b
1 , f b

2 , respectively, but in contrast to the previous

amalgamation EGc
3 := {(1,2), (2,1)}.

We use the equivalence relation E M to define a class of triples (M, N,a) such that the element a represents the exten-
sion N over M:

Definition 4.1.5. K 3,uq = K 3,uq
s is the class of triples (M, N,a) ∈ K 3,bs such that if M � M1 ∈ Kλ , then up to EM there is a

unique amalgamation ( f1, f2, N1) of N and M1 over M such that tp( f1(a), f2[M1], N1) does not fork over M . A uniqueness
triple is a triple in K 3,uq .

Along the paper we use uniqueness implicitly, via the weak uniqueness of NF (see Theorem 5.4.7).
We define a variant of domination in order to compare it with the notion of a uniqueness triple. The main difference

between our definition and the definition in the context of stable first order theories (as defined in Definition 3.2 on page
153 in [2]), is that in our variant, a ↓M b is replaced by ‘tp(a, M1, N1) does not fork over M for some models M1, N1 with
M � M1 � N1, b ∈ M1, tp(b, M, M1) ∈ Sbs(M) and N � N1’. By symmetry, we can replace the assumption ‘tp(a, M1, N1) does
not fork over M ’ by ‘for some N2 with M � N2 � N1 and a ∈ N2, the (Galois) type tp(b, N2, N1) does not fork over M ’, so it
is more similar to the first order case.

Definition 4.1.6. Let M, N be models in Kλ with M � N and let a be an element in N−M . We say that a dominates N over M
when: For every models M1, N1 ∈ Kλ with M � M1 � N1 and N � N1 and every element b ∈ M1 with tp(b, M, M1) ∈ Sbs(M),
if tp(a, M1, N1) does not fork M , then tp(b, N, N1) does not fork over M .

Proposition 4.1.7. If (M, N,a) is a uniqueness triple, then a dominates N over M.
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Proof. See Section 6 of [11]. �

Since the definition of K 3,uq is confusing, we clarify it by the following proposition:

Proposition 4.1.8. (M, N,a) ∈ K 3,uq iff the following holds: If for n= 1,2 (M, N,a) �bs (M∗
n, N∗n ,a) and f : M∗

1 → M∗
2 is an isomor-

phism over M ∪ {a}, then for some f1 , f2 , N∗ the following hold: fn : N∗n → N∗ is an embedding over N, and f1 � M∗
1 = f2 � M∗

2 ◦ f .

Proof. ⇒: Suppose (M, N,a) ∈ K 3,uq and for n= 1,2 (M, N,a) �bs (M∗
n, N∗n ,a) and f : M∗

1 → M∗
2 is an isomorphism over M

over M ∪ {a}. We have to prove that for some f1, f2, N∗ the following hold: fn : N∗n → N∗ is an embedding over N , and
f1 � M∗

1 = f2 � M∗
2 ◦ f . (idM∗

1
, idN , N∗1), ( f , idN , N∗2) are two amalgamations of M∗

1 and N over M . By the definition of the
relation �bs (Definition 3.1.1.2), tp(a, M∗

1, N∗1) does not fork over M and tp( f (a), f [M∗
1], N∗2)= tp(a, M∗

2, N∗2) does not fork
over M . Hence by Definition 4.1.5 (idM∗

1
, idN , N∗1)EM( f , idN , N∗2). So by Definition 4.1.2 there are f1, f2, N∗ as needed.

⇐: We leave to the reader. �

We give an example of a trivial frame such that it is very easy to compute K 3,uq .

Example 4.1.9. Let τ := (E, P ) where E is a binary predicate and P is an unary predicate. Let K be the class of τ -models
(G, E, P ) such that:

(1) (|G|, E) is a graph.
(2) For each a,b ∈ G , aEb⇒ [P (a)∧ P (b)].

(K ,⊆) is an AEC with LST-number ℵ0. Let λ be a cardinal. The trivial λ-frame (see Definition 2.2.2) of (K ,⊆) is of
course not a semi-good λ-frame. But if we ignore this fact, and define K 3,uq as in Definition 4.1.5 then K 3,uq = {(M, N,a):
(∀x ∈ N −M)¬P (x)}.

We will not use the following proposition later.

Proposition 4.1.10. If for every M, N ∈ Kλ with M � N and for every a ∈ N −M, the type tp(a, M, N) is basic then every uniqueness
triple is reduced.

Proof. Let (M, N,a) be a uniqueness triple. By Proposition 4.1.7, a dominates N over M . Suppose (M, N,a) �bs (M ′, N ′,a).
We have to prove that M ′ ∩ N = M . Take b ∈ M ′ − M . We have to prove that b /∈ N . Now by assumption, tp(b, M, M ′) is
basic. By the definition of �bs , tp(a, M ′, N ′) does not fork over M . So since a dominates N over M , tp(b, N, N ′) does not
fork over M . Hence b /∈ N . �

Since we do not want to assume that every type is basic, item 2 of the following proposition is important.

Proposition 4.1.11.

(1) If p0 , p1 are conjugate types and in p0 there is a uniqueness triple, then also in p1 there is such a triple.
(2) If s satisfies the conjugation property, then every uniqueness triple is reduced.

Proof. (1) Suppose p0 = tp(a, M, N), (M, N,a) ∈ K 3,uq . Let f be an isomorphism with domain M , such that f (p0) = p1.
K , � are closed under isomorphisms, so it is easy to prove that ( f [M], f +[N], f +(a)) ∈ K 3,uq , where f ⊆ f + , dom( f +)= N .
But ( f [M], f +[N], f +(a)) ∈ p1.

(2) First note that we do not use item 1. Suppose (M0, N0,a) ∈ K 3,uq and (M0, N0,a) �bs (M1, N1,a). Since s satisfies the
conjugation property, by Theorem 3.3.5 (the existence of a disjoint amalgamation), there are f , N2 such that f : M1 → N2

is an embedding over M0, N0 � N2, f [M1] ∩ N0 = M0 and tp(a, f [M1], N2) does not fork over M0. By Definition 4.1.5, there
are f1, f2, N∗ such that: fn : Nn → N∗ and embedding over N0 and f1 � M1 = f2 ◦ f . For the sake of contradiction assume
that x ∈ M1 ∩ N0 − M0. On one hand, since x ∈ N0, we have f1(x) ∈ f2[N0]. But on the other hand, since x ∈ M1 − M0 we
have f1(x) /∈ f2[N0] [ f (x) /∈ N0 because f [M1] ∩ N0 = M0. So f2( f (x)) /∈ f2[N0]. But f1(x)= f2( f (x))]. A contradiction. �
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Proposition 4.1.12.

(1) If K 3,uq is dense with respect to �bs and s satisfies the conjugation property then K 3,uq satisfies the existence property.
(2) Suppose that K 3,uq satisfies the existence property. If p = tp(a, M, N) ∈ Sbs(M), then there is a model N∗ such that (M, N∗,a) ∈

K 3,uq ∩ p.

Proof. (1) Substitute K 3,∗ := K 3,uq in Theorem 3.2.3.1.
(2) By Theorem 3.2.3.2. �

5. Non-forking amalgamation

5.1. The hypotheses

Hypothesis 5.1.1.

(1) s is a semi-good λ-frame.
(2) s satisfies the conjugation property.
(3) K 3,uq satisfies the existence property.

Remark 5.1.2. Actually we do not use the local character in this section (we assume it implicitly, see Definition 2.1.1.3.c).
So in [10] we can use the results in this section, although we do not have local character.

5.2. The axioms of non-forking amalgamation

Introduction We want to find a relation of a non-forking amalgamation (see the discussion at the beginning of Section 3).
In Definition 5.2.1 we define the properties this relation has to satisfy.

Definition 5.2.1. Let R ⊆ 4(Kλ) be a relation. We say
⊗

R when the following axioms are satisfied (where M0, M1, M2, M3,
N0, N1, N2, N3, Ma,i , Mb,i are models of cardinality λ):

(a) If R(M0, M1, M2, M3), then n ∈ {1,2}⇒ M0 � Mn � M3 and M1 ∩M2 = M0.
(b) Monotonicity: If R(M0, M1, M2, M3) and N0 = M0,n < 3⇒ Nn � Mn ∧ N0 � Nn � N3, (∃N∗)[M3 � N∗ ∧ N3 � N∗], then

R(N0, N1, N2, N3). [Proposition 5.2.2 clarifies this axiom.]
(c) Existence: For every N0, N1, N2 ∈ Kλ if l ∈ {1,2} ⇒ N0 � Nl and N1 ∩ N2 = N0, then there is N3 such that

R(N0, N1, N2, N3).
(d) Weak uniqueness: Suppose for x = a,b R(N0, N1, N2, Nx

3). Then there is a joint embedding of Na
3, Nb

3 over N1 ∪ N2.
In other words, if R(N0, N1, N2, N3) then N1 ∪ N2 is an amalgamation base.

(e) Symmetry: R(N0, N1, N2, N3)⇔ R(N0, N2, N1, N3).
(f) Long transitivity: For x= a,b let 〈Mx,i : i � α∗〉 an increasing continuous sequence of models in Kλ . Suppose i < α∗ ⇒

R(Ma,i, Ma,i+1, Mb,i, Mb,i+1). Then R(Ma,0, Ma,α∗ , Mb,0, Mb,α∗).

Proposition 5.2.2. We can replace item b from Definition 5.2.1 by the conjunction of the following two assumptions:

(1) If R(M0, M1, M2, M3) and M0 � N1 � M1 , then R(M0, N1, M2, M3).
(2) If M1 ∪M2 ⊆ N3 � M3 , then R(M0, M1, M2, M3)⇔ R(M0, M1, M2, N3).

Proof. Suppose
⊗

R .
(1) If R(M0, M1, M2, M3) and M0 � N1 � M1, then by Definition 5.2.1.b (where N∗ := M3, N3 := M3 and N2 := M2)

R(M0, N1, M2, M3).
(2) Easy, too.
Conversely, suppose R satisfies items a, c, d, e, f from Definition 5.2.1 and items 1, 2 from our proposition. By item 1,

without loss or generality, N1 = M1. Using again item 1, by Definition 5.2.1.e (symmetry) without loss of generality N2 = M2.
By item 2, R(M0, M1, M2, N∗). Using again item 2, we get R(M0, M1, M2, N3), namely, R(N0, N1, N2, N3). �
Example 5.2.3. Let K be the class of graphs. Let � be the relation on K of being subgraph. Let λ be any cardinal. Define
R1 := {(M0, M1, M2, M3) ∈ 4 Kλ: M0 � M1 � M3, M0 � M2 � M3, M1 ∩ M2 = M0 and for every a1 ∈ M1 − M0 and a2 ∈
M2 −M0 ¬(a1 E M3 a2)}. Define R2 like R1 but at the end: (a1 E M3 a2). Now

⊗
R1

and
⊗

R2
.

We give another version of weak uniqueness:
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Proposition 5.2.4. Suppose

(1)
⊗

R .
(2) R(M0, M1, M2, M3) and R(M0, M∗

1, M∗
2, M∗

3).
(3) For n= 1,2 there is an isomorphism fn : Mn → M∗

n over M0 .

Then there are M, f such that:

(1) For n < 3 f � Mn = fn.
(2) M∗

3 � M.
(3) f [M3]� M.

Proof. M1 ∩ M2 = M0, so there is a function g with domain M3 such that f1 ∪ f2 ⊆ g . So g[M1] = M∗
1 and

g[M2] = M∗
2. Hence R(M0, M∗

1, M∗
2, g[M3]) and R(M0, M∗

1, M∗
2, M∗

3). Therefore we can use the weak uniqueness from Defini-
tion 5.2.1.d. �

Roughly, the following proposition says that finding a relation R that satisfies clauses a, c, d of Definition 5.2.1 is equiv-
alent to assigning to each triple (M0, M1, M2) ∈ D := {(M0, M1, M2): M0, M1, M2 ∈ Kλ, M0 � M1, M0 � M2} a disjoint
amalgamation (see Definition 3.3.1) ( f1, f2, M3) of M1, M2 over M0 up to EM0 (see Definition 4.1.2).

Proposition 5.2.5. Let R be a relation that satisfies clauses a, c, d of Definition 5.2.1. Denote D := {(M0, M1, M2): M0, M1, M2

are models in Kλ and M0 � M1, M0 � M2}. Then:

(1) There is a function G with domain D which assigns to each triple (M0, M1, M2) an amalgamation ( f1, f2, M3) of M1 , M2 over
M0 , such that R(M0, f1[M1], f2[M2], M3) (in proving this item we do not use clause d).

(2) If G1 , G2 are two functions as in item 1 (with respect to R), then for every (M0, M1, M2) ∈ D, G1((M0, M1, M2))EM0

G2((M0, M1, M2)).
(3) If G is a function with domain D which assigns to each triple (M0, M1, M2) a disjoint amalgamation, then the relation R :=

{(M0, M1, M2, M3): M1 ∩M2 = M0, G((M0, M1, M2))EM0 (idM1 , idM2 , M3)} satisfies clauses a, c, d of Definition 5.2.1.

Proof. We leave to the reader. �
Definition 5.2.6. Suppose

⊗
R . R is said to respect the frame s when: if R(M0, M1, M2, M3) and tp(a, M0, M1) ∈ Sbs(M0),

then tp(a, M2, M3) does not fork over M0.

5.3. The relation NF

First we define a relation NF∗ and then we define a relation NF as its monotonicity closure, see Definition 5.3.2. Theo-
rem 5.5.4 asserts that the relation NF is the unique relation R which satisfies

⊗
R and respects the frame s.

Definition 5.3.1. Define a relation NF∗ = NF∗λ on 4(Kλ) by: NF∗(N0, N1, N2, N3) if there is α∗ < λ+ and for l= 1,2 there are
an increasing continuous sequence 〈Nl,i: i � α∗〉 and a sequence 〈di: i < α∗〉 such that:

N2 = N2,0
id N2,i

id N2,i+1
id N2,α∗ = N3

N0 = N1,0
id

id

N1,i
id

id

N1,i+1

id

id N1,α∗ = N1

id

(a) n < 3⇒ N0 � Nn � N3.
(b) N1,0 = N0, N1,α∗ = N1, N2,0 = N2, N2,α∗ = N3.
(c) i � α∗ ⇒ N1,i � N2,i .
(d) di ∈ N1,i+1 − N1,i .
(e) (N1,i, N1,i+1,di) ∈ K 3,uq .
(f) tp(di, N2,i, N2,i+1) does not fork over N1,i .
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In this case, 〈N1,i,di: i < α∗〉�〈N1,α∗ 〉 is said to be the first witness for NF∗(N0, N1, N2, N3), di is said to be the i-th element
in the first witness for NF∗ and 〈N2,i: i � α∗〉 is said to be the second witness for NF∗(N0, N1, N2, N3).

Definition 5.3.2. NF = NFλ is the class of quadruples (M0, M1, M2, M3) of models in Kλ such that M0 � M1 � M3, M0 �
M2 � M3 and there are models N0, N1, N2, N3 such that: N0 = M0, l < 4⇒ Ml � Nl and NF∗(N0, N1, N2, N3).

Proposition 5.3.3. The relations NF∗ , NF are closed under isomorphisms.

Proof. Trivial. �

Proposition 5.3.4. Suppose for x = a,b ( fx,1, fx,2, Mx,3) is an amalgamation of M1 , M2 over M0 . If ( fa,1, fa,2, Ma,3)EM0

( fb,1, fb,2, Mb,3), then

NF
(
M0, fa,1[M1], fa,2[M2], Ma,3

)⇔ NF
(
M0, fb,1[M1], fb,2[M2], Mb,3

)
.

Proof. Easy. �

Recall that by Definition 3.3.2 a triple (M, N,a) ∈ K 3,bs
λ is reduced if (M, N,a) �bs (M∗, N∗,a)⇒ M∗ ∩ N = M .

Proposition 5.3.5. Every triple in K 3,uq is reduced.

Proof. Suppose (N0, N1,d) �bs (N2, N3,d), (N0, N1,d) ∈ K 3,uq . By Hypothesis 5.1.1 and Proposition 3.3.5, there is a disjoint
amalgamation of N1, N2 over N0, such that the type of d does not fork over N0, so by the definition of uniqueness triple
(Definition 4.1.5), N3 is a disjoint amalgamation of N1, N2 over N0. �

Proposition 5.3.6.

(1) If NF∗(N0, N1, N2, N3) then N1 ∩ N2 = N0 .
(2) If NF(N0, N1, N2, N3) then N1 ∩ N2 = N0 .

Proof. (1) Let x ∈ N1 ∩ N2. We will prove that x ∈ N0. Let 〈N1,α,dα: α < α∗〉�〈N1,α∗ 〉, 〈N2,α: α � α∗〉 be witnesses for
NF∗(N0, N1, N2, N3). Let α be the first ordinal such that x ∈ N1,α . α is not a limit ordinal, because a first witness for
NF∗ is especially a continuous sequence. We prove that α is not a successor ordinal, so we conclude that α = 0. Suppose
α = β + 1. By Definition 5.3.1.e (N1,β , N1,β+1,dβ) ∈ K 3,uq . By Definition 5.3.1.f tp(dβ, N1,β , N1,β+1) does not fork over N0,β .
So by Proposition 5.3.5 N1,β+1 ∩ N2,β = N1,β . But x ∈ N1,β+1 ∩ N2 ⊆ N1,β+1 ∩ N2,β , so x ∈ N1,β in contradiction to the
assumption that α is the minimal ordinal with x ∈ N1,α .

(2) By item 1. �

Theorem 5.3.7 (The existence theorem for NF). Suppose that for n= 1,2 N0 � Nn and N1 ∩ N2 = N0 .

(a) For some model N3 ∈ Kλ , NF(N0, N1, N2, N3).
(b) If N1 is decomposable over N0 by K 3,uq, then for some N3 ∈ Kλ , NF∗(N0, N1, N2, N3).
(c) If N1 is decomposable over N0 by K 3,uq and a ∈ N1−N0 , then for some N3 ∈ Kλ , NF∗(N0, N1, N2, N3). Moreover, we can choose a

as the first element in the first witness for NF∗ .

Proof. (a) By Theorem 3.2.3.3 (the extensions decomposition theorem) (and Assumption 5.1.1), there is a model N∗1 with
N1 � N∗1 which is decomposable over N0, i.e., there is a sequence 〈N1,α,dα: α < α∗〉�〈N1,α∗ 〉, such that: N0 = N1,0,
(N1,α, N1,α+1,dα) ∈ K 3,uq , N1 � N1,α∗ = N∗1 . Therefore we can use item b.

(b) Let 〈N1,α,dα: α < α∗〉�〈N1,α∗ 〉 be an increasing continuous sequence with N1,0 = N0 and N1,α∗ = N1. By Proposi-
tion 3.1.8.1 there is a sequence 〈N2,α: α � α∗〉 which is a corresponding second witness for NF∗(N0, N1,α∗ , N2, N2,α∗).
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(c) By the ‘moreover’ in Theorem 3.2.3.3 (the decomposition extensions theorem). �
The following theorem is a preparatory version for NF∗ of Theorem 5.5.1, i.e., the long transitivity theorem for NF .

Proposition 5.3.8 (Long transitivity theorem for NF∗). For x = a,b let 〈Mx,α: α � α∗〉 be an increasing continuous sequence of
models. Suppose α < α∗ ⇒ NF∗(Ma,α, Ma,α+1, Mb,α, Mb,α+1). Then NF∗(Ma,0, Ma,α∗ , Mb,0, Mb,α∗).

Proof. Concatenate all the sequences together. �
Proposition 5.3.9 (The monotonicity theorem).

(1) If NF∗(N0, N1, N2, N3) and N0 � M2 � N2 , then NF∗(N0, N1, M2, N3).
(2) If NF(M0, M1, M2, M3), then we can find N1 , N3 such that NF∗(M1, N1, M2, N3) and M1 � N1 � N3 ∧M3 � N3 .
(3) NF∗(M0, M1, M2, M3)∧M3 � M∗

3 ⇒ NF(M0, M1, M2, M∗
3).

(4) The relation NF satisfies monotonicity (in the sense of Definition 5.2.1.b).

Proof. (1) Let 〈N1,α,dα: α < α∗〉, 〈N2,α: α < α∗〉 be witnesses for NF∗(N0, N1, N2, N3). Then 〈N1,α: α < α∗〉, 〈M2〉�〈N2,α :
0 < α < α∗〉 are witnesses for NF∗(N0, N1, N2, N3) (notice that by Definition 2.1.1.3.b (monotonicity) tp(d0, M2, N2,1) does
not fork over N0).

(2) By the definition of NF (Definition 5.3.2) and item 1.
(3)

a ∈ M∗
1

f
M∗∗

3

M1
id

id

M3
id M∗

3

id

M0
id

id

M2

id

Take p ∈ Sbs(M1), and take M∗
1, a such that (M1, M∗

1,a) ∈ p ∩ K 3,uq . By Definition 2.1.1.3.f, there is an amalgamation
( f , idM∗

3
, M∗∗

3 ) of M∗
1, M∗

3 over M1 such that tp(a, f [M∗
3], M∗∗

3 ) does not fork over M1. So NF∗(M1, f [M∗
1], M∗

3, M∗∗
3 ). Hence

by item 1, NF∗(M1, f [M∗
1], M3, M∗∗

3 ). Now by Proposition 5.3.8 NF∗(M0, M∗
1, M2, M∗∗

3 ). So the definition of NF (Defini-
tion 5.3.2), NF(M0, M1, M2, M∗

3).
(4) Suppose M∗

0 = M0, 0 < n < 3⇒ M∗
0 � M∗

n � M∗
3, M∗

n � Mn , M∗
3 � M∗∗

3 , M3 � M∗∗
3 , NF(M0, M1, M2, M3).

M∗∗
3

f
M∗∗∗

3

N1
id N3

id

M1

id

id M3

id

id

M∗
1

id

id

M∗
3

id

M0
id

id

M∗
2

id

id

M2 = N2

id



162 A. Jarden, S. Shelah / Annals of Pure and Applied Logic 164 (2013) 135–191

Sh:875
By item 2, for some N1, N3, NF∗(M0, N1, M2, N3), M1 � N1 � N3 and M3 � N3. Take an amalgamation ( f , idN3 , M∗∗∗
3 )

of M∗∗
3 and N3 over M3 (so over M∗

1 ∪ M∗
2). By item 3, NF(M0, N1, M2, M∗∗∗

3 ). So by the definition of NF (Definition 5.3.2),
NF(M0, M∗

1, M∗
2, f [M∗

3]). But the relation NF is closed under isomorphisms, so NF(M0, M∗
1, M∗

2, M∗
3). �

5.4. Weak uniqueness

We want to show that NF satisfies weak uniqueness and long transitivity. Proposition 5.4.4 is a key point. To emphasize
the exact hypotheses involved in the proof, we focus on a small set of consequences

⊗
R .

Item (3) of the following definition follows from ⊗R by existence and long transitivity.

Definition 5.4.1. Let R ⊆ 4(Kλ) be a relation. We say
⊗−

R when:

(1) If R(M0, M1, M2, M3) then n ∈ {1,2}⇒ M0 � Mn � M3.
(2) Weak uniqueness: Suppose for x = a,b ( f x

1 , f x
2 , Nx

3) is an amalgamation of N1 and N2 over N0 and R(N0, f x
1 [N1],

f x
2 [N2], Nx

3). Then ( f a
1 , f a

2 , Na
3)EN0 ( f b

1 , f b
2 , Nb

3).
(3) If R(M0, M1, M2, M3) and f : M2 → M4 is an embedding, then there is an amalgamation (g, idM4 , M5) of M3, M4 over

M2 such that R( f [M0], g[M1], M4, M5).

M1
id M3

g
M5

M0

id

id M2

id

f
M4

id

Definition 5.4.2. NFuq := {(M0, M1, M2, M3): there is a ∈ M1 − M0 such that (M0, M1,a) ∈ K 3,uq and tp(a, M2, M3) does
not fork over M0}.

Proposition 5.4.3.

(1)
⊗−

NFuq .

(2) For every relation R,
⊗

R ⇒
⊗−

R .

Proof. (1) By the definition of K 3,uq (Definition 4.1.5), Definition 2.1.1.3.f and Definition 2.1.1.3.d (to get M5).
(2) By Axioms d, f in Definition 5.2.1 and by Proposition 2.5.6. �

We show that weak transitivity is preserved by unions of chains.

Proposition 5.4.4 (The transitivity of weak uniqueness). Suppose

(1)
⊗−

R .
(2) α∗ � λ+ .
(3) For every α < α∗ , N1,α, Na

2,α, Nb
2,α ∈ Kλ .

(4) 〈N1,α: α � α∗〉, 〈Na
2,α: α � α∗〉, 〈Nb

2,α: α � α∗〉 are increasing continuous sequences.

(5) Na
2,0 = Nb

2,0 .

(6) For every α � α∗ , f a
α : N1,α → Na

2,α and f b
α : N1,α → Nb

2,α .
(7) (α < α∗ ∧ x ∈ {a,b})⇒ R( f x

α[N1,α], f x
α+1[N1,α+1], Nx

2,α, Nx
2,α+1).

Then ( f a∗ , idNa , Na ∗)EN1,0 ( f a∗ , idNa , Nb ∗).
α 2,0 2,α α 2,0 2,α
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Proof. We choose N2,α , ga,α , gb,α by induction on α � α∗ , such that for x= a,b and α � α∗ the following hold:

(i) gx,α : Nx
2,α → N2,α is an embedding such that ga,α ◦ f a

α = gb,α ◦ fb,α .
(ii) N2,0 = Nx

2,0, gx,0 = identity.
(iii) 〈N2,α: α � α∗〉 is an increasing continuous sequence.
(iv) 〈gx,α: α � α∗〉 is an increasing continuous sequence.

If we can construct this, then the following diagram commutes:

Na
2,α∗

ga,α∗
N2,α∗

N1,α

f a
α∗

f b
α∗ Nb

2,α∗

gb,α∗

N1,0

id

id N2,0

id

id

[By clause (i) ga,α∗ ◦ f a
α∗ = gb,α∗ ◦ f b

α∗ , and by clauses (ii), (iv) gx,α∗ ⊇ gx,0 = idN2,0 .]
Therefore (ga,α∗ , gb,α∗ , N2,α∗) witnesses that ( f a

α∗ , idN2,0 , Na
2,α∗)EN1,0( f b

α∗ , idN2,0 , Nb
2,α∗).

Why can we construct this? For α = 0, only clause (ii) is relevant. For α limit ordinal, take unions, and by smooth-
ness, gx,α is �-embedding. What will we do for α + 1? By clause 7 for x = a,b R( f x

α[N1,α], f x
α+1[N1,α+1], Nx

2,α, Nx
2,α+1).

By clause (i), gx,α[Nx
2,α]� N2,α and by clause 1,

⊗−
R . So by Definition 5.4.1.3, we can find gx , Nx such that the following

hold:

(1) gx : Nx
2,α+1 → Nx is an embedding.

(2) gx,α ⊂ gx .
(3) R(gx ◦ f a

α[N1,α], gx ◦ f a
α+1[N1,α+1], N2,α, Nx).

Na ha
N2,α+1

Na
2,α+1

ga

Nb

hb

N1,α+1
f b
α+1

f a
α+1

Nb
2,α+1

gb

Na
2,α

ga,α

id

N2,α

id

id

N1,α
f b
α

f a
α

id

Nb
2,α

id

gb,α

Hence by Definition 5.4.1.2 (ga � f a
α+1[N1,α+1], idN2,α , Na)E f a

α [N1,α ](gb � f b
α+1[N1,α+1], idN2,α , Nb). So there is a joint em-

bedding (ha,hb, N2,α+1) of Na , Nb such that for x = a,b idN2,α ⊆ hx and ha ◦ gα ◦ f a
α+1 = hb ◦ gb ◦ f b

α+1. Now we define
gx,α+1 := hx ◦ gx . �

The following proposition asserts that we have weak uniqueness over the first witness for NF∗ .

Proposition 5.4.5. If for x= a,b NF∗(N0, N1, N2, Nx
3) and they have the same first witness, then there is a joint embedding of Na

3 , Nb
3

over N1 ∪ N2 .

Proof. By Proposition 5.4.3.1,
⊗−

uq . Hence it follows by Proposition 5.4.4. �
NF
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The following proposition is similar to weak uniqueness for NF∗ , but note the order of N1, N2 in the two quadruples.

Proposition 5.4.6 (The opposite uniqueness proposition). Suppose NF∗(N0, N1, N2, Na
3) and NF∗(N0, N2, N1, Nb

3). Then there is a

joint embedding of Na
3 and Nb

3 over N1 ∪ N2 .

Proof. Suppose that 〈Na
α,da

α: α < α∗〉�〈Na
α∗ 〉 is a first witness for NF∗(N0, N1, N2, Na

3) and 〈Nb
β,db

β : β < β∗〉�〈Nb
β∗ 〉 is a

first witness for NF∗(N0, N2, N1, Nb
3). By Proposition 3.1.10, there is a rectangle {Mα,β : α � α∗, β � β∗} such that:

(1) Mα,0 = Na
α .

(2) M0,β = Nb
β .

(3) tp(da
α, Mα,β, Mα+1,β ) does not fork over Mα,0.

(4) tp(db
β, Mα,β, Mα,β+1) does not fork over M0,β .

Na
3

f a

Na,∗
3

ga

N∗

N1 = N1,α∗
id

id

id

Mα∗,β∗
id

id

Nb,∗
3

gb

da
α ∈ Na

α+1
id

id

Mα+1,β
id Mα+1,β+1

id

Nb
3

f b

Na
α = Mα,0

id

id

Mα,β
id

id

Mα,β+1

id

Na
1 = M1,0

id

id

M1,β
id

id

M1,β+1

id

N0 = M0,0
id

id

Nb
β = M0,β

id

id

Nb
β+1

id

id

N2 = M0,β∗

id

id

id

By clauses 1, 3, 〈da
α, Na

α: α < αa〉 is a first witness for NF∗(N0, N1, N2, Mα∗,β∗). But by definition this is also a first witness
for NF∗(N0, N1, N2, Na

3). So by Proposition 5.4.5, there is a joint embedding (idMα∗ ,β∗ , f a, Na,∗
3 ) of Mα∗,β∗ , Na

3 over N1 ∪ N2.

Similarly by clauses 2, 4, there is a joint embedding (idMα∗ ,β∗ , f b, Nb,∗
3 ) of Mα∗,β∗ , Nb

3 over N1 ∪ N2. Since (Kλ,�� Kλ)

satisfies the amalgamation property, there is an amalgamation (ga, gb, N3) of Na,∗
3 , Nb,∗

3 over Mα∗,β∗ . N3 is an amalgam of
Na

3, Nb
3 over N1 ∪ N2. �

Theorem 5.4.7 (Weak uniqueness for NF). Suppose for x= a,b NF(M0, M1, M2, Mx). Then there is a joint embedding of Ma, Mb over
M1 ∪M2 .

Proof. First note that since M1 ∩ M2 = M0, the conclusion of the theorem is equivalent to (idM1 , idM2 , Ma)EM0

(idM1 , idM2 , Mb).
Case a: NF∗(M0, M1, M2, Mx) and M2 is decomposable over M0. In this case, by Theorem 5.3.7.b (the existence theorem

for NF) there is Mc such that NF∗(M0, M2, M1, Mc). By Proposition 5.4.6 for x = a,b (idM1 , idM2 , Mx)EM0 (idM1 , idM2 , Mc).
But the relation EM0 is an equivalence relation, so it is transitive.

The general case: Since NF(M0, M1, M2, Ma) by Proposition 5.3.9.5, there are Na
1, Na,− such that NF∗(M0, Na

1, M2, Na,−)

and M1 � Na
1 � Na,− ∧ Ma � Na,− . Similarly there are Nb

1, Nb,− such that NF∗(M0, Nb
1, M2, Nb

3) and M1 � Nb
1 � Nb,− ∧

Mb � Nb,− . By Theorem 3.2.3 (the extensions decomposition theorem), there is a model M+
2 � M2 which is decomposable

over M0. Without loss of generality for x = a,b, M+
2 ∩ Nx,− = M2. So by Theorem 3.2.3.3 (the extensions decomposition

theorem), there is Nx � Nx,− such that NF∗(M0, Nx, M+, Nx).
1 2
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Na,+

N1

ga
1

gb
1 Nb,+

Na
1

f a
1

id Na

ga

Nb
1

f b
1

id Nb

gb

Ma

id

M1

id

id

id

id Mb

id

M0

id

id M+
2

id

id

By Proposition 3.2.4 there is an amalgamation ( f a
1 , f b

1 , N1) of Na
1, Nb

1 over M1 such that N1 is decomposable over Na
1

and over Nb
1. Hence for x = a,b there is an amalgamation (gx

1, gx, Nx,+) of N1, Nx over Nx
1 such that NF∗(gx

1 ◦ f x
1 [Nx

1],
gx

1[N1], gx[Nx], Nx,+). So for x = a,b by Proposition 5.3.9.8 (a private case of transitivity), since NF∗(M0, Nx
1, M+

2 , Nx) and
NF∗(Nx

1, Nx, N1, Nx,+) it follows that NF∗(M0, N1, M+
2 , Nx,+). So by Case a (ga

1, ga � M+
2 , Na,+)EM0 (gb

1, gb � M+
2 , Nb,+). There-

fore (ga
1 � M1, ga � M2, Na,+)EM0 (gb

1 � M1, gb � M2, Nb,+). �
Proposition 5.4.8.

⊗−
NF .

Proof. We have to check clauses 1, 2, 3 of Definition 5.4.1.
1. Trivial.
2. By Theorem 5.4.7.
3. Suppose NF(M0, M1, M2, M3) and f : M2 → M4 is an embedding. We have to find a model M5 and an embed-

ding g : M3 → M5 over M2 such that NF( f [M0], g[M1], M4, M5). By Theorem 5.3.9.2, we can find N1, N3 such that
NF∗(M1, N1, M2, N3) and M1 � N1 � N3 ∧ M3 � N3. By Theorem 5.3.7.b (the existence theorem for NF), we can find a
model M5 with M4 � M5 and an embedding h : N3 → M5 such that NF∗(M0, M4, N1, M5). Hence NF(M0, M1, M4, M5). Now
we define g := h � M3. �
Theorem 5.4.9 (The symmetry theorem). NF(N0, N1, N2, N3)⇔ NF(N0, N2, N1, N3).

Proof. By monotonicity of NF , i.e., Proposition 5.3.9.3, it is sufficient to prove NF∗(N0, N1, N2, N3)⇒ NF(N0, N2, N1, N3).
Suppose NF∗(N0, N1, N2, N3). By Theorem 3.2.3 (the extensions decomposition theorem), there is N+2 � N2 which is decom-
posable over N0. By Theorem 5.3.7.b, there is an amalgamation (idN1 , f , N+3 ) of N1, N+2 over N2 such that NF∗(N0, N1,

f [N+2 ], N+3 ). So N1 ∩ f [N+2 ] = N0. Hence by Theorem 5.3.7.b, there is a model N∗ such that NF∗(N0, f [N+2 ], N1, N∗).
By Proposition 5.4.6 (the opposite uniqueness proposition) there is a joint embedding idN+3

, g, N∗∗ of N+3 and N∗ over

N1 ∪ f [N+2 ]. Since NF∗ is closed under isomorphisms, NF∗(N0, f [N+2 ], N1, g[N∗]). Now we have to use the monotonicity of
NF twice. Since N0 � N2 � f [N∗2], it follows that NF∗(N0, N2, N1, g[N∗]). Since N3 � N∗3 � N∗∗ and g[N∗]� N∗∗ , it follows
that NF(N0, N2, N1, N3). �
Theorem 5.4.10. NF respects s (see Definition 5.2.6).

Proof. Suppose NF(M0, M1, M2, M3), tp(a, M0, M1) ∈ Sbs(M0). We must prove that tp(a, M2, M3) does not fork over M0.
Without loss of generality, NF∗(M0, M1, M2, M3). [Why? See Definition 2.1.1.3.b (monotonicity).] By the definition of NF∗ , M1
is decomposable over M0. By Theorem 5.3.7.c (the existence theorem for NF), there is M∗

3 such that NF∗(M0, M1, M2, M∗
3)

and the first element in the first witness is a.
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M∗
3

a ∈ M1
id

id

M3

M0
id

id

M2

id

id

By the definition of a first witness, tp(a, M2, M∗
3) does not fork over M0. By the weak uniqueness theorem (Theo-

rem 5.4.7), there are f , M∗∗
3 such that M3 � M∗∗

3 , and f : M∗
3 → M∗∗

3 is an embedding over M1 ∪ M2. So tp(a, M2, M3) =
tp(a, M2, f [M∗

3])= tp(a, M2, M∗
3) does not fork over M0. �

5.5. Long transitivity

Now we prove the long transitivity for NF . We are going to use decompositions of models of cardinality λ+ in the
definition of a new relation, �NF

λ+ on Kλ+ . Long transitivity is applied on beginnings of the decompositions, 〈ax,ε: ε � α∗〉,
〈bx,ε: ε � α∗〉. In particular, long transitivity is used in the proofs of the properties of the relations N̂F (see Proposition 6.1.3)
and �NF

λ+ (see Proposition 6.1.6) and in the proofs of Propositions 7.1.7, 8.1.4.

Theorem 5.5.1 (Long transitivity for NF). For x = a,b, let 〈Mx,ε: ε � α∗〉 be a ≺-increasing continuous sequence of models in Kλ .
Suppose ε < α∗ ⇒ NF(Ma,ε, Ma,ε+1, Mb,ε, Mb,ε+1). Then NF(Ma,0, Ma,α∗ , Mb,0, Mb,α∗).

Similarly to the proof of Proposition 2.5.6 (the transitivity proposition), we use the existence and weak uniqueness
theorems to prove the long transitivity. But here the proof is more complicated, and it is divided into four cases, each one
is based on its predecessor and generalizes it.

Proof. Case a: ε < α∗ ⇒ NF∗(Ma,ε, Ma,ε+1, Mb,ε, Mb,ε+1). Concatenate all the sequences together.
In the other cases we are going to use the following claim:

Claim 5.5.2. It is enough to find (Nb,ε, fε) for ε � α∗ such that:

(1) Mb,0 � Nb,0 .
(2) 〈Nb,ε: ε � α∗〉 is an increasing continuous sequence of models in Kλ .
(3) fε is an embedding of Ma,ε to Nb,ε .
(4) f0 = idMa,0 .
(5) 〈 fε: ε � α∗〉 is an increasing continuous sequence.
(6) For ε < α∗ , NF( fε[Ma,ε], fε+1[Ma,ε+1], Nb,ε, Nb,ε+1).
(7) NF(Ma,0, fα∗ [Ma,α∗ ], Nb,0, Nb,α∗).

Proof. Suppose we found (Nb,ε, fε) for ε � α∗ such that clauses 1–7 are satisfied. By Proposition 5.4.8,
⊗−

NF . There-
fore by Proposition 5.4.4 (the transitivity of the uniqueness), (idMa,α∗ , idMb,0 , Mb,α∗)EMa,0( f a

α∗ , idMb,0 , Nb,α∗). [Substitute
〈Ma,ε: ε � α∗〉, 〈Mb,ε: ε � α∗〉, 〈Nb,ε: ε � α∗〉, 〈idMa,ε : ε � α∗〉, 〈 fε: ε � α∗〉 in place of 〈N1,α: α � α∗〉, 〈Na

2,α: α �
α∗〉, 〈Nb

2,α: α � α∗〉, 〈 f a
α: α � α∗〉, 〈 f b

α: α � α∗〉.] By clause 7, NF(Ma,0, Ma,α∗ , Nb,0, Nb,α∗). So by Proposition 5.3.4
NF(Ma,0, Ma,α∗ , Mb,0, Mb,α∗). �

Case b: For every ε, Ma,ε+1 is decomposable over Ma,ε . In this case, we choose (Nb,ε, fε) such that clauses 1–6 of
Claim 5.5.2 are satisfied: For ε = 0, we define Nb,0 := Mb,0. In the successor step, we use Theorem 5.3.7.a. For ε limit, we
define Nb,ε :=⋃{Nb,ζ : ζ < ε}, fε :=⋃{ fζ : ζ < ε}. Now clause 7 is satisfied by Case a of the proof.

Case c: α∗ � ω. In this case we apply Claim 5.5.2 with fε = idMa,ε .
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Nb,0
id Nb,1

id Nb,2
id Nb,ε

id Nb,ε+1
id Nb,α∗

Mb,0

id

Ma,0
id

id

Na,1
id

id

Na,2
id

id

Na,ε
id

id

Na,ε+1
id

id

Na,α∗

id

Ma,0
id

id

Ma,1
id

id

Ma,2
id

id

Ma,ε
id

id

Ma,ε+1
id

id

Ma,α∗

id

By Proposition 5.5.3.a (see below), there is an increasing continuous sequence 〈Na,ε: ε � α∗〉 such that: Na,0 = Ma,0,
Ma,ε � Na,ε , Na,ε+1 is decomposable over Na,ε and over Ma,ε+1 and ε < α∗ ⇒ NF(Ma,ε, Ma,ε+1, Na,ε, Na,ε+1). Since α∗ � ω,
by Proposition 5.5.3.b (see below), there is an increasing continuous sequence 〈Nb,ε: ε � α∗〉 such that Nb,0 ! Mb,0, for
ε � α∗ Nb,ε is decomposable over Na,ε and NF∗(Na,ε, Na,ε+1, Nb,ε, Nb,ε+1).

Now it is enough to prove that 〈(Nb,ε, idMa,ε ): ε � α∗〉 satisfies clauses 1–7 of Claim 5.5.2. Clauses 1–5 are satisfied
trivially. We check clauses 6, 7.

6. First assume ε > 0. As NF(Ma,ε, Ma,ε+1, Na,ε, Na,ε+1), NF(Na,ε, Na,ε+1, Nb,ε, Nb,ε+1), Na,ε is decomposable over Ma,ε ,
and Nb,ε is decomposable over Na,ε , by Case b (for α∗ = 2), NF(Ma,ε, Ma,ε+1, Nb,ε, Nb,ε+1). Secondly assume ε = 0.
As NF(Na,0, Na,1, Nb,0, Nb,1), Na,0 = Ma,0 and Ma,1 � Na,1, by the monotonicity of NF , NF(Ma,0, Ma,1, Nb,0, Nb,1).

7. By Case b, we have NF(Na,0, Na,α∗ , Nb,0, Nb,α∗). By smoothness Ma,α∗ � Na,α∗ . So by the monotonicity of NF ,
NF(Ma,0, Ma,α∗ , Nb,0, Nb,α∗).

The general case: By the proof of Case c. We have only one problem: For ε limit, it is not clear why does
NF(Ma,ε, Ma,ε+1, Nb,ε, Nb,ε+1), where we know NF(Ma,ε, Ma,ε+1, Na,ε, Na,ε+1)∧NF(Na,ε, Na,ε+1, Nb,ε, Nb,ε+1). Here we can-
not use Case b, because we do not know if Nb,ε is decomposable over Na,ε and Na,ε is decomposable over Ma,ε . But we
can use Case c with α∗ = 2. �

Proposition 5.5.3. Let α∗ � λ+ . Let 〈Mε: ε � α∗〉 be a ≺-increasing continuous sequence of models in K such that for each ε � α∗ ,
if ε < λ+ then Mε is of cardinality λ (but if α∗ = λ+ then the last model is of cardinality λ+).

(a) There is a ≺-increasing continuous sequence of models in K 〈Nε: ε � α∗〉 such that: N0 = M0 , Mε � Nε ,
NF(Mε, Mε+1, Nε, Nε+1) and Nε+1 is decomposable over Nε and over Mε+1 .

(b) Suppose M∗ ∈ Kλ , M∗ ! M0 and M∗ ∩ Mα∗ = M0 . Then there is a ≺-increasing continuous sequence of models in K 〈Nε:
ε � α∗〉 such that: M∗ � N0 , Mε � Nε , NF(Mε, Mε+1, Nε, Nε+1), N0 is decomposable over M0 and Nε+1 is decomposable over
Nε and over Mε+1 .

Proof. (a) We choose a pair (Nε, fε) by induction on ε � α∗ such that:

(1) 〈Nε: ε � α∗〉 is an increasing continuous sequence of models in Kλ .
(2) fε : Mε → Nε is an embedding.
(3) f0 = idM0 .
(4) The sequence 〈 fε: ε � α∗〉 is increasing and continuous.
(5) For ε < α∗ , NF( fε[Mε], Nε, fε+1[Mε+1], Nε+1).
(6) For ε < α∗ , Nε+1 is decomposable over Nε and over fε+1[Mε+1].

Why can we carry out this construction? For ε = 0 or limit there is no problem. Suppose we chose (Nε, fε), how will we
choose (Nε+1, fε+1)? By Theorem 5.3.7.a we can find N−ε+1 and fε+1 such that NF( fε[Mε], Nε, fε+1[Mε+1], N−ε+1). Now
by Proposition 3.2.4, we can find Nε+1 such that N−ε+1 � Nε+1 and Nε+1 is decomposable over Nε and over fε+1[Mε+1].
Therefore we can carry out this construction.

Now, as in the proof of Proposition 3.1.8, without loss of generality, fε = idMε for every ε � α∗ (because we can extend
f −1
α∗ to a bijection g of Nα∗ and take the sequence 〈g[Nε]: ε � α∗〉).

(b) It demands a tiny change in the proof: In the construction, M∗ � N0 and it is decomposable over M0. �
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Theorem 5.5.4. NF = NFλ is the unique relation which satisfies
⊗

NF and respects s.

Proof. NF satisfies
⊗

NF : Clause a is clear. Clause b (the monotonicity) by Theorem 5.3.9.4. Clause c (the existence) by
Theorem 5.3.7.a. Clause d (weak uniqueness) by Theorem 5.4.7. Clause e (symmetry) by Theorem 5.4.9. Clause f (long
transitivity) by Theorem 5.5.1. By Theorem 5.4.10 NF respects s.

Suppose the relation R satisfies
⊗

R and respects s. First we prove NF(M0, M1, M2, M3)⇒ R(M0, M1, M2, M3).
Case a: There is a ∈ M1 − M0 with (M0, M1,a) ∈ K 3,uq . Since NF respects s, tp(a, M2, M3) does not fork over M0.

So since R respects s, by the definition of unique triples (see Definition 4.1.5), R(M0, M1, M2, M3).
Case b: NF∗(M0, M1, M2, M3). Since R satisfies long transitivity, and by Case a, R(M0, M1, M2, M3).
The general case: Since R satisfies monotonicity, by Case b, R(M0, M1, M2, M3). So we have proved that the relation NF is

included in the relation R .
Conversely: Suppose R(M0, M1, M2, M3). We have to prove that NF(M0, M1, M2, M3). Since

⊗
R , R satisfies disjoint-

ness. So M1 ∩ M2 = M0. By
⊗

NF , for some model M4 NF(M0, M1, M2, M4). But by the first direction of the proof,
NF(M0, M1, M2, M4) ⇒ R(M0, M1, M2, M4), so R(M0, M1, M2, M4). Since

⊗
R , R satisfies weak uniqueness, R(M0, M1,

M2, M3) and R(M0, M1, M2, M4), it follows that (idM1 , idM2 , M3)EM0 (idM1 , idM2 , M4). Therefore by Proposition 5.3.4
NF(M0, M1, M2, M4) implies NF(M0, M1, M2, M3), so NF(M0, M1, M2, M3), as required. �
6. A relation on Kλ+ that is based on the relation NF

6.1. Introduction

Recall that we want to derive from s a good λ+-frame. So first we have to define an AEC in λ+ with amalgamation.
Definition 6.1.4 presents the strong submodel relation on models of this AEC in λ+ .

Hypothesis 6.1.1. s is a semi-good λ-frame with conjugation and K 3,uq satisfies the existence property.

We will now define a notion for: a model of size λ is independent from a model of size λ+ over a model of size λ in a
model of size λ+ .

Definition 6.1.2. Define a 4-place relation N̂F on K by N̂F(N0, N1, M0, M1) iff the following hold:

(1) n < 2⇒ Nn ∈ Kλ , Mn ∈ Kλ+ .
(2) There is a pair of increasing continuous sequences 〈N0,α: α < λ+〉, 〈N1,α: α < λ+〉 such that for every α,

NF(N0,α, N1,α, N0,α+1, N1,α+1) and for n < 2, N0,n = Nn , Mn =⋃{Nn,α: α < λ+}.

Theorem 6.1.3 (The N̂F-properties).

(a) Disjointness: If N̂F(N0, N1, M0, M1) then N1 ∩M0 = N0 .
(b) Monotonicity: Suppose N̂F(N0, N1, M0, M1), N0 � N∗1 � N1 , N∗1 ∪M0 ⊆ M∗

1 � M1 and M∗
1 ∈ Kλ+ . Then N̂F(N0, N∗1, M0, M∗

1).
(c) Existence: Suppose n < 2 ⇒ Nn ∈ Kλ , M0 ∈ Kλ+ , N0 � N1 , N0 � M0 , N1 ∩ M0 = N0 . Then there is a model M1 such that

N̂F(N0, N1, M0, M1).
(d) Weak uniqueness: If n < 2⇒ N̂F(N0, N1, M0, M1,n), then there are M, f0 , f1 such that fn is an embedding of M1,n into M over

N1 ∪M0 .
(e) Respecting the frame: Suppose N̂F(N0, N1, M0, M1), tp(a, N0, M0) ∈ Sbs(N0). Then tp(a, N1, M1) does not fork over N0 .

Proof. (a) Disjointness: Let 〈N0,ε: ε < λ+〉, 〈N1,ε: ε < λ+〉 be witnesses for N̂F(N0, N1, M0, M1). Especially ε < λ+ ⇒
NF(N0,ε, N1,ε, N0,ε+1, N1,ε+1). So by Proposition 5.3.6.1 ε < λ+ ⇒ N1,ε ∩ N0,ε+1 = N0,ε . So by the end of the proof
of Theorem 3.3.5, N1 ∩ M0 = N0. Let x ∈ N1 ∩ M0. So there is ε < λ+ such that x ∈ N0,ε . Denote ε := Min{ε < λ+:
x ∈ N0,ε}. ε cannot be a limit ordinal as the sequence 〈N0,ε: ε < λ+〉 is continuous. If ε = ζ + 1, then x ∈ N0,ζ+1 ∩ N1 ⊆
N0,ζ+1 ∩ N1,ζ = N0,ζ , in contradiction to the minimality of ε. So ε must be equal to 0. Hence x ∈ N0,0 = N0.

(b) Monotonicity: Let 〈N0,ε: ε < λ+〉, 〈N1,ε: ε < λ+〉 be witnesses for N̂F(N0, N1, M0, M1). Let E be a club of λ+
such that 0 /∈ E and ε ∈ E ⇒ N1,ε ∩ M∗

1 � N1,ε . [Why do we have such a club? Let E be a club of λ+ such that 0 /∈ E
and ε ∈ E ⇒ N1,ε ∩ M∗

1 � M∗
1. By the assumption, M∗

1 � M1. So ε ∈ E ⇒ N1,ε ∩ M∗
1 � M1. Now as N1,ε � M1, by Ax-

iom 1.0.3.1.e, ε ∈ E ⇒ N1,ε ∩ M∗
1 � N1,ε .] We will prove that the sequences 〈N0〉�〈N0,ε: ε ∈ E〉, 〈N∗1〉�〈N1,ε ∩ M∗

1: ε ∈ E〉
witness that N̂F(N0, N∗1, M0, M∗

1). First, they are increasing. [Why ε < ζ ∧ {ε, ζ } ⊆ E ⇒ N1,ε ∩ M∗
1 � N1,ζ ∩ M∗

1? By the
properties of E , N1,ε ∩ M∗

1 � N1,ε . But Nε � Nζ . So N1,ε ∩ M∗
1 � N1,ζ . On the other hand, again by the properties of E ,

N1,ε ∩ M∗ ⊆ N1,ζ ∩ M∗ � N1,ζ . So by Axiom 1.0.3.1.e N1,ε ∩ M∗ � N1,ζ ∩ M∗ .] Secondly, we will prove that if ε < ζ ,
1 1 1 1



A. Jarden, S. Shelah / Annals of Pure and Applied Logic 164 (2013) 135–191 169

Sh:875
{ε, ζ } ⊆ E , then NF(N0,ε, N1,ε ∩ M∗
1, N0,ζ , N1,ζ ∩ M∗

1). Fix such ε, ζ . By Theorem 5.5.1 (the long transitivity theorem),
NF(N0,ε, N1,ε, N0,ζ , N1,ζ ). By the properties of E and Axiom 1.0.3.1.e, N0,ε � N1,ε ∩ M∗

1 � N1,ε , N0,ζ ∪ (N1,ε ∩ M∗
1) ⊆

N1,ζ ∩M∗
1 � N1,ζ . Now by Theorem 5.3.9.5 (the monotonicity of NF), we have NF(N0,ε, N1,ε ∩M∗

1, N0,ζ , N1,ζ ∩M∗
1).

(c) Existence: By Proposition 5.5.3.b.
(d) Weak uniqueness: Since

⊗
NF holds, it follows by Proposition 5.4.3.2 and Proposition 5.4.4. But we give another proof

using Section 7: By Proposition 7.1.12.f, there is a model M+
1,n such that M1,n ≺+λ+ M+

1,n . By Theorem 7.1.13.c, there is an

isomorphism f : M+
1,1 → M+

1,2 over M0 ∪ N1. So M+
1,2, idM1,2 , f � M1,1 is a witness, as required.

(e) Let 〈N0,ε: ε < λ+〉, 〈N1,ε: ε < λ+〉 be witnesses for N̂F(N0, N1, M0, M1). There is ε such that a ∈ N0,ε . By Def-
inition 6.1.2 (the definition of N̂F), we have NF(N0, N1, N0,ε, N1,ε). So the proposition is satisfied by Theorem 5.4.10
(the relation NF respects the frame). �

Now we define a relation �NF
λ+ on Kλ+ , that is based on the relation N̂F:

Definition 6.1.4. Suppose M0, M1 ∈ Kλ+ , M0 � M1. Then M0 �NF
λ+ M1 when: there are N0, N1 ∈ Kλ such that N̂F(N0, N1,

M0, M1).

Remark 6.1.5. If M0 �NF
λ+ M1 then M0 � M1.

Proposition 6.1.6. (Kλ+ ,�NF
λ+ ) satisfies the following properties:

(a) Suppose M0 � M1 , n < 2⇒ Mn ∈ Kλ+ . For n < 2, let 〈Nn,ε: ε < λ+〉 be a representation of Mn. Then M0 �NF
λ+ M1 iff there is a

club E ⊆ λ+ such that (ε < ζ ∧ {ε, ζ } ⊆ E)⇒ NF(N0,ε, N0,ζ , N1,ε, N1,ζ ).
(b) �NF

λ+ is a partial order.

(c) If M0 � M1 � M2 and M0 �NF
λ+ M2 then M0 �NF

λ+ M1 .

(d) (Kλ+ ,�NF
λ+ ) satisfies Axiom c of AEC in λ+ , i.e.: If δ ∈ λ+2 is a limit ordinal and 〈Mα: α < δ〉 is a �NF

λ+ -increasing continuous

sequence, then M0 �NF
λ+

⋃{Mα: α < δ} and obviously it is ∈ Kλ+ .

(e) Kλ+ has no �NF
λ+ -maximal model.

(f) If (Kλ+ ,�NF
λ+ ) satisfies smoothness (Definition 1.0.3.1.d), then it is an AEC in λ+ (see Definition 1.0.3).

(g) LST for �NF
λ+ : If M0 �NF

λ+ M1 , n < 2⇒ (An ⊆ Mn ∧ |An|� λ), then there are models N0, N1 ∈ Kλ such that: N̂F(N0, N1, M0, M1)

and n < 2⇒ An ⊆ Nn.

Proof. (a) One direction: Let E be such a club. So 〈N0,ε: ε ∈ E〉, 〈N1,ε: ε ∈ E〉 witness that M0 �NF
λ+ M1 (trace the definition

of N̂F (Definition 6.1.2) through the definition of NF (Definition 5.3.2) and NF∗ (Definition 5.3.1) to see where the witnesses
appear).

Conversely: Let 〈M0,α: α < λ+〉, 〈M1,α: α < λ+〉 be witnesses for M0 �NF
λ+ M1. Let E be a club such that (n < 2∧ε ∈ E)⇒

Mn,α = Nn,α . Suppose ε < ζ ∧ {ε, ζ } ⊆ E . We will prove NF(N0,ε, N1,ε, N0,ζ , N1,ζ ), i.e., NF(M0,ε, M1,ε, M0,ζ , M1,ζ ). The se-
quences 〈M0,α: ε � α � ζ 〉, 〈M1,α: ε � α � ζ 〉 are increasing and continuous. So by Theorem 5.5.1 (the long transitivity
theorem) NF(M0,ε, M1,ε, M0,ζ , M1,ζ ).

(b) The reflexivity is obvious. The antisymmetry is satisfied by the antisymmetry of the inclusion relation. The transitivity
is satisfied by item a, Theorem 5.5.1 and the evidence that the intersection of two clubs is a club.

(c) For n < 3, let 〈Mn,α: α < λ+〉 be a representation of Mn such that α < λ+ ⇒ NF(M0,α, M0,α+1, M2,α, M2,α+1).
Let E be a club of λ+ such that α ∈ E ⇒ M0,α � M1,α � M2,α . By the monotonicity of NF , α ∈ E ⇒ NF(M0,α, M0,α+1,

M1,α, M1,α+1). The representations 〈M0,α: α ∈ E〉, 〈M1,α: α ∈ E〉 witness that M0 �NF
λ+ M1.

(d) Without loss of generality, cf (δ) = δ, so δ � λ+ . Denote Mδ := ⋃{Mα: α < δ}. For α < δ, let 〈Mα,ε: ε < λ+〉
be a representation of Mn . By item a for every α, there is a club Eα,0 ⊆ λ+ such that (ε < ζ ∧ {ε, ζ } ⊆ Eα,0) ⇒
NF(Mα,ε, Mα,ζ , Mα+1,ε, Mα+1,ζ ). Let α be a limit ordinal.

⋃{Mα,ε: ε < λ+} = Mα = ⋃{Mβ : β < α} =⋃{⋃{Mβ,ε: ε < λ+}: β < α} =⋃{⋃{Mβ,ε: β < α}: ε < λ+}. Every edge of this equivalences’s sequence is a limit of a
⊆-increasing continuous sequence of subsets of cardinality less than λ, and it is equal to Mα . [Why is the sequence in
the right edge, 〈⋃{Mβ,ε: β < α}: ε < λ+〉 continuous? Let ε < λ+ be a limit ordinal. Suppose x ∈⋃{Mβ,ε: β < α}. Then
there are ζ , β such that x ∈ Mβ,ζ . So x ∈⋃{Mβ,ζ : β < α}.] So there is a club Eα,1 ⊆ λ+ such that ε ∈ Eα,1 ⇒ Mα,ε =⋃{Mβ,ε: β < α}. For α limit, define Eα := Eα,0 ∩ Eα,1, and for α not limit define Eα := Eα,0.

Case a: δ < λ+ . Define E := ⋂{Eα: α < δ}. If ε ∈ E then for α < δ, ε ∈ E , so NF(Mα,ε, Mα,Min(E−(ε+1)), Mα+1,ε,

Mα+1,Min(E−(ε+1))). So by Theorem 5.5.1 (the long transitivity theorem), ε ∈ E ⇒ NF(M0,ε, M0,Min(E−(ε+1)), Mδ,ε,

Mδ,Min(E−(ε+1))). Hence M0 �NF
λ+ M1.

Case b: δ = λ+ . Let E := {ε ∈ E: ε is a limit ordinal, α < ε⇒ ε ∈ Eα}. Denote Nε :=⋃{Mα,ε: α < ε}.
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M0
id Mα

id Mε
id Mζ

id Mλ+

M0,ζ
id

id

Mα,ζ
id

id

Mε,ζ
id

id

Nζ

id

M0,ε
id

id

Mα,ε
id

id

Nε

id

M0,α
id

id

Nα

id

M0,0

id

Claim 6.1.7. For every ε ∈ E, the sequence 〈Mα,ε: α < ε〉�〈Nε〉 is increasing and continuous (especially Nε ∈ K ).

Proof. If ε ∈ E is limit, then α < ε⇒ ε ∈ Eα,1, so the sequence 〈Mα,ε: α < ε〉 is continuous. So it is sufficient to prove that
α < ε ⇒ Mα,ε � Mα,ε+1. Suppose α < ε. ε ∈ E , so ε ∈ Eα,0. Hence NF(Mα,ε, Mα+1,ε, Mα,Min(E−(ε+1)), Mα+1,Min(E−(ε+1))),
and especially Mα,ε � Mα+1,ε . �
Claim 6.1.8. The sequence 〈Nε: ε ∈ E〉 is �-increasing.

Proof. Suppose ε < ζ , {ε, ζ } ⊆ E . By (*), the sequences 〈Mα,ε: α < ε〉�〈Nε〉, 〈Mα,ζ : α � ε〉 are increasing and continuous.
For every α ∈ ε, the sequence 〈Mα,β : β < λ+〉 is a representation of Mα , and especially it is �-increasing. So (∀α ∈ ε)

Mα,ε � Mα,ζ . Hence by smoothness Nε � Mε,ζ . But by (*), Mε,ζ � Nζ , so Nε � Nζ . �
Claim 6.1.9. The sequence 〈Nε: ε ∈ E〉 is continuous.

Proof. Suppose ε = sup(E ∩ ε). Let x ∈ Nε . By the definition of Nε , there is α < ε such that x ∈ Mα,ε . ε is limit and the
sequence 〈Mα,β : β � ε〉 is continuous. So there is β < ε such that x ∈ Mα,β . ε = sup(E ∩ ε), so there is ζ ∈ (β, ε) ∩ E .
x ∈ Mα,ζ but by (*), Mα,ζ ⊆ Nζ , so x ∈ Nζ . �
Claim 6.1.10.

⋃{Nε: ε ∈ E} = Mδ .

Proof. Clearly
⋃{Nε: ε ∈ E} ⊆ Mδ . The other inclusion: Let x ∈ Mδ . Then there is α < δ such that x ∈ Mα . So

(∃α,β)x ∈ Mα,β . So since sup(E)= δ, there is ζ ∈ (β, δ)∩ E . So x ∈ Mα,ζ which by (*) is ⊆ Nζ . So x ∈ Nζ . �
Claim 6.1.11. If ε < ζ , {ε, ζ } ⊆ E then NF(M0,ε, Nε, M0,ζ , Nζ ).

Proof. By the definition of E , (∀α ∈ ε){ε, ζ } ⊆ Eα . So (∀α ∈ ε)NF(Mα,ε, Mα+1,ε, Mα,ζ , Mα+1,ζ ). By (*), the sequences
〈Mα,ε: α < ε〉�〈Nε〉, 〈Mα,ζ : α � ε〉 are increasing and continuous. So by Theorem 5.5.1 (the long transitivity theorem),
NF(M0,ε, Nε, M0,ζ , Mε,ζ ). But by Claim 6.1.7, Mε,ζ ≺ Nζ , so NF(M0,ε, Nε, M0,ζ , Nζ ). �

Now we return to the proof of Proposition 6.1.6. By Claims 6.1.8, 6.1.9, 6.1.10, the sequence 〈Nε: ε < δ〉 is a representation
of Mδ . The sequence 〈M0,ε: ε < λ+〉 is a representation of M0. Hence, by Claim 6.1.11 and item a, they witness that
M0 �NF

λ+ Mδ .
(e) By Proposition 6.1.3.c. Derived also by the existence proposition of the ≺+

λ+ -extension (Proposition 7.1.12.f), which we
will prove later.

(f) We have actually proved it (for example: Axiom 1.0.3.1.e by item c here and Axiom 1.0.3.1.c., by item d here).
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(g) Let 〈N0,ε: ε < λ+〉, 〈N1,ε: ε < λ+〉 be witnesses for M0 �NF
λ+ M1. By cardinality considerations, there is ε ∈ λ+ such

that for n < 2 we have An ⊆ Nn,ε . But for every ε < λ+ , N̂F(N0,ε, N1,ε, M0, M1). �

A summary: We defined a relation �NF
λ+ on Kλ+ , that is included in the relation �� Kλ+ . The restriction to the relation

�NF
λ+ enables to get the amalgamation property (see Theorem 7.1.18.c below). But it gives rise to a new problem: Does

(Kλ+ ,�NF
λ+ ) satisfies smoothness? We have proved that if (Kλ+ ,�NF

λ+ ) satisfies smoothness, then it is an AEC in λ+ . The main
aim of Sections 7, 8, 9 is to get smoothness. But for this we restrict ourselves to the saturated models in λ+ over λ.

7. ≺+
λ+ and saturated models

7.1. Introduction

Now we restrict ourselves to K sat (see Definition 7.1.2) in order to get smoothness. So we study the class (K sat,�NF
λ+� K sat)

(�NF
λ+ is defined in Definition 6.1.4). We want to prove, under some model theoretic assumptions, that (K sat,�NF

λ+� K sat) is
an AEC in λ+ and that it satisfies the amalgamation property.

Hypothesis 7.1.1. s is a semi-good λ-frame with conjugation and K 3,uq satisfies the existence property.

Definition 7.1.2. K sat is the class of saturated models in λ+ over λ.

Note that in the following theorem there is no set-theoretic hypothesis beyond ZFC.

Theorem 7.1.3. If (s is a semi-good λ-frame with conjugation, K 3,uq satisfies the existence property and) (K sat,�NF
λ+� K sat) does not

satisfy smoothness (see Definition 1.0.3.1.d), then there are 2λ+2
pairwise non-isomorphic models in Kλ+2 .

How can we prove this theorem? First we find a relation ≺+
λ+ on Kλ+ such that:

(*) For every model M0 in Kλ+ , there is a model M1 such that M0 ≺+λ+ M1.
(**) If for n= 1,2 M0 ≺+λ+ Mn , then M1, M2 are isomorphic over M0.

(***) If 〈Mi: i � α∗〉 is an increasing continuous sequence, and i < α∗ ⇒ Mi ≺+λ+ Mi+1, then M0 ≺+λ+ Mα∗ .

In Section 7 we study the properties of ≺+
λ+ . Sections 8, 9 are preparations for the proof of Theorem 7.1.3. A key

theorem is Theorem 9.1.7: Suppose that there is an increasing continuous sequence 〈M∗
α: α � λ + 1〉 of models

in K sat such that: α < β < λ+ ⇒ M∗
α ≺+λ+ M∗

β ∧ M∗
α �NF

λ+ Mλ++1 and M∗
λ+ ��NF M∗

λ++1. Then for every S ∈ Sλ+2

λ+ :=
{S: S is a stationary subset of λ+2 and (∀α ∈ S)cf (α) = λ+}, there is a model M S in Kλ+2 such that S(M S ) = S/Dλ+2 .

So there are 2λ+2
pairwise non-isomorphic models in Kλ+2 .

Note that while ≺+
λ+ is a priori defined on Kλ+ , Proposition 7.1.6 shows that any ≺+

λ+ extension is saturated in λ+ over λ,
so in K sat .

Definition 7.1.4. ≺+
λ+ is a 2-place relation on Kλ+ . For M0, M1 ∈ Kλ+ , M0 ≺+λ+ M1 if there are increasing continuous se-

quences of models in Kλ , 〈N0,α: α < λ+〉, 〈N1,α: α < λ+〉, 〈N⊕1,α: α < λ+〉, and there is a club E of λ+ such that:

(a) For n= 0,1 Mn =⋃{Nn,α: α < λ+}.
(b) α ∈ E ⇒ N0,α � N1,α � N⊕1,α .

(c) If α < β and they are in E , then NF(N0,α, N⊕1,α, N0,β , N1,β ).

(d) For every α ∈ E , and every p ∈ Sbs(N1,α), there is an end-segment S of λ+ such that for every β ∈ S ∩ E the model
N⊕1,β realizes the non-forking extension of p to N1,β .

In such a case 〈N0,α: α < λ+〉, 〈N1,α: α < λ+〉, 〈N⊕1,α: α < λ+〉, E are said to be witnesses for M0 ≺+λ+ M1. Note that the

N1,α and the N⊕ are an alternating chain that both union to M1.
1,α
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M0
id M1

N0,3
id

id

N1,3
id N⊕1,3

id

N0,2
id

id

N1,2
id N⊕1,2

id

N0,1
id

id

N1,1
id N⊕1,1

id

N0,0
id

id

N1,0
id N⊕1,0

id

By the following proposition if M0 ≺+λ+ M1, then we can find witnesses for it, with E = λ+ .

Proposition 7.1.5. Suppose

(1) 〈N0,α: α < λ+〉, 〈N1,α: α < λ+〉, 〈N⊕1,α: α < λ+〉, E are witnesses for M0 ≺+λ+ M1 .

(2) For α ∈ E, M0,otp(α∩E) = N0,α , M1,otp(α∩E) = N1,α , M⊕
1,otp(α∩E) = N⊕1,α .

Then 〈M0,β : β < λ+〉, 〈M1,β : β < λ+〉, 〈M⊕
1,β : β < λ+〉, λ+ are witnesses for M0 ≺+λ+ M1 .

Proof. Easy, so we prove Definition 7.1.4.c only. Suppose γ0 < γ1. We have to prove that NF(M0,γ0 , M⊕
1,γ0

, M0,γ1 , M1,γ1 ).

There is a unique ordinal α ∈ E with otp(α ∩ E) = γ0. So M0,γ0 = N0,α ∧ M⊕
1,γ0

= N⊕1,α . Similarly there is a unique

β ∈ E such that M0,γ1 = N0,β ∧ M1,γ1 = N1,β . Now by clause b in the assumption, NF(N0,α, N⊕1,α, N0,β , N1,β), namely,

NF(M0,γ0 , M⊕
1,γ0

, N0,γ1 , N1,γ1 ). �

Proposition 7.1.6. If 〈N0,α: α < λ+〉, 〈N1,α: α < λ+〉, 〈N⊕1,α: α < λ+〉, E are witnesses for M0 ≺+λ+ M1 and E− is a club of λ+ with

E− ⊆ E, then 〈N0,α: α < λ+〉, 〈N1,α: α < λ+〉, 〈N⊕1,α: α < λ+〉, E− are witnesses for M0 ≺+λ+ M1 .

Proof. Trivial. �

Proposition 7.1.7. Suppose:

(a) For n= 1,2 NF(M0,0, M0,1, Mn,0, Mn,1).
(b) M1,0 � N0 , M2,0 � N0 .
(c) N0 ∩M0,1 = M0,0 .

Then for some model N1 with NF(M0,0, M0,1, N0, N1), we can assign to each n ∈ {1,2} an embedding fn : Mn,1 → N1 over M0,1 ∪
Mn,0 such that NF(Mn,0, fn[Mn,1], N0, N1).
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N0
id N1

M2,0

id

id M2,1

f2

M1,0

id

id M1,1

f1

M0,0

id

id

id M0,1

id

id

Proof. For each n ∈ {1,2} by Theorem 5.3.7 (the existence theorem for NF), we can find an amalgamation (idN0 , gn, Nn,1)

of N0, Mn,1 over Mn,0 with NF(Mn,0, N0, gn[Mn,1], Nn,1). But NF(M0,0, Mn,0, M0,1, Mn,1). So by Theorem 5.5.1 (the long
transitivity theorem), NF(M0,0, N0, gn[M0,1], Nn,1). By Assumption c, N0 ∩ M0,1 = M0,0. So by Theorem 5.4.7 (the weak
uniqueness theorem), we can find h1, h2, N1 such that the following hold:

(1) hn : Nn,1 → N1 is an embedding.
(2) hn � N0 = idN0 .
(3) h1 ◦ g1 � M0,1 = h1 ◦ g2 � M0,1 = idM0,1 .

Now we define for n= 1,2 fn := hn ◦ gn . Why is fn over M0,1 ∪Mn,0? By clause 3, x ∈ M0,1 ⇒ fn(x)= x. Let x ∈ Mn,0. Then
gn(x)= x. By Assumption b, Mn,0 ⊆ N0, so x ∈ N0. So by clause 2 hn(x)= x. Hence fn(x)= hn(gn(x))= hn(x)= x.

Claim 7.1.8. NF(Mn,0, fn[Mn,1], N0, N1).

Proof. NF(Mn,0, N0, gn[Mn,1], Nn,1). So by clauses 1, 2 NF(Mn,0, N0, fn[Mn,1],hn[Nn,1]). But hn[Nn,1]� N1, so NF(Mn,0, N0,

fn[Mn,1], N1). �

Claim 7.1.9. NF(M0,0, M0,1, N0, N1).

Proof. Since NF(M1,0, M1,1, N0, N1), by Theorem 5.5.1 (the long transitivity theorem), it is enough to prove that
NF(M0,0, M0,1, M1,0, f1[M1,1]). But fn is over M0,1 ∪M1,0. Hence it follows by Assumption a. �

This completes the proof of Proposition 7.1.7. �

Proposition 7.1.10.

(a) If M0 ≺+λ+ M1 then M0 ≺NF
λ+ M1 .

(b) If M0 ≺+λ+ M1 then M1 ∈ K sat .

(c) If M0 �NF
λ+ M1 ≺+λ+ M2 then M0 ≺+λ+ M2 .

(d) If M0 ≺+λ+ M1 ≺+λ+ M2 then M0 ≺+λ+ M2 .

Proof. (a) If 〈N0,α: α < λ+〉, 〈N1,α: α < λ+〉, 〈N2,α: α < λ+〉, E witness that M0 ≺+λ+ M1, then 〈N0,α: α ∈ E〉, 〈N1,α: α ∈ E〉
witness that N̂F(N0,0, N1,0, M0, M1). So M0 �NF

λ+ M1.
(b) By Theorem 2.5.8.2.
(c) Easy.
(d) By items a, c. �
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Definition 7.1.11. The ≺+
λ+ -game is a game between two players. It lasts λ+ moves. In any move, the players choose models

in Kλ with the following rules:
The 0 move: Player 1 chooses models N0,0, N1,0 ∈ Kλ with N0,0 � N1,0 and player 2 does not do anything.
The α move where α is limit: Player 1 must choose N0,α := ⋃{N0,β : β < α} and player 2 must choose N1,α :=⋃{N1,β : β < α}.
The α + 1 move: Player 1 chooses a model N0,α+1 such that the following hold:

(1) N0,α � N0,α+1.
(2) N0,α+1 ∩ N1,α = N0,α .

After player 1 chooses N0,α+1, player 2 has to choose N1,α+1 such that the following hold:

(1) N1,α � N1,α+1.
(2) NF(N0,α, N1,α, N0,α+1, N1,α+1).

At the end of the game, player 2 wins the game if
⋃{N0,α: α < λ+} ≺+

λ+
⋃{N1,α: α < λ+}.

A strategy for player 2 is a function F that assigns a model N1,α+1 to each triple (α, 〈N0,β : β � α + 1〉, 〈N1,β : β � α〉)
that satisfies the following conditions:

(1) α < λ+ .
(2) 〈N0,β : β � α + 1〉, 〈N1,β : β � α〉 are increasing continuous sequences of models in Kλ .
(3) NF(N0,α, N1,α, N0,α+1, N1,α+1) for β < α.
(4) N0,α+1 ∩ N1,α = N0,α .

A winning strategy for player 2 is a strategy for player 2, such that if player 2 acts by it, then he wins the game, no matter
what player 1 does.

Proposition 7.1.12.

(a) For every M0 ∈ Kλ+ , there is M1 with M0 ≺+λ+ M1 .

(b) If M0 ∈ Kλ+ , n < 2 ⇒ Nn ∈ Kλ , N0 ≺ M0 , N0 ≺ N1 , N1 ∩ M0 = N0 , then there is M1 such that M0 ≺+λ+ M1 and

N̂F(N0, N1, M0, M1).
(c) Player 2 has a winning strategy in the ≺+

λ+ -game.

Proof. (a) By c.
(b) By c.
(c) We describe a strategy: For α = 0 player 2 has nothing to do, but he takes a paper and writes for himself: I define

Ntemp
1,0 := N1,0. For α limit, player 2 chooses N1,α :=⋃{N1,β : β < α} and writes for himself Ntemp

1,α := N1,α . In the α + 1
move, he writes for himself the following things:

(i) A model Ntemp
1,α+1 with NF(N0,α, N1,α, N0,α+1, Ntemp

1,α+1). By Theorem 5.3.7.a, it is possible.

(ii) A sequence of types 〈pα,β : β < λ+〉 that includes Sbs(Ntemp
1,α ).

Now player 2 chooses a model N1,α+1 such that the following hold:

(1) Ntemp
1,α+1 � N1,α+1.

(2) For each type in pγ ,β with γ < α, β < α, N1,α+1 realizes the non-forking extension of pγ ,β over Ntemp
1,α+1.

Why will player 2 win the game? By Definition 7.1.4, where the sequences 〈N0,α: α < λ+〉, 〈Ntemp
1,α : α < λ+〉, 〈N1,α:

α < λ+〉 which appear here stand for the sequences 〈N0,α: α < λ+〉, 〈N1,α: α < λ+〉, 〈N⊕1,α: α < λ+〉 and λ+ stands
for E . �

Roughly, the following theorem says that:

(a) The ≺+
λ+ -extension is unique.

(b) Tameness: Every type over a model in Kλ+ is determined by its restrictions to submodels in Kλ .
(c) A preparation for symmetry.
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Theorem 7.1.13. Suppose for n= 1,2 M0 ≺+λ+ Mn, then:

(a) M1 , M2 are isomorphic over M0 .
(b) For every a1 ∈ M1 , a2 ∈ M2 , if for each N ∈ Kλ with N � M0 tp(a1, N, M1) = tp(a2, N, M2), then there is an isomorphism

f : M1 → M2 over M0 with f (a1)= a2 .
(c) Let N∗ ∈ Kλ , N0 � N∗ . If for n= 1,2 N̂F(N0, N∗, M0, Mn), then there is an isomorphism f : M1 → M2 over M0 ∪ N∗ .

The plan of the proof We prove the three items simultaneously. The proof is similar to that of the uniqueness of the saturated
model in λ+ over λ. Suppose 〈N0,ε: ε < λ+〉, 〈N1,ε: ε < λ+〉, 〈N⊕1,ε: ε < λ+〉, λ+ witness that M0 ≺+λ+ M1. So 〈N0,ε: ε < λ+〉
is a representation of M0 and 〈N1,0, N⊕1,0, N1,1, N⊕1,1, . . . , N1,ω, N⊕1,ω, . . .〉 is a representation of M1. Suppose in addition that

〈N0,ε: ε < λ+〉, 〈N2,ε: ε < λ+〉, 〈N⊕2,ε: ε < λ+〉, λ+ witness that M0 ≺+λ+ M2. We amalgamate M1, M2 over M0 in λ+ steps.
In each step, we amalgamate the corresponding models in the representations of M1, M2 over the corresponding model
in the representation of M0. Now if ( f1, f2, M3) is an amalgamation of M1, M2 over M0 and f1, f2 are onto M3, then
f −1
2 ◦ f1 is an isomorphism of M1 into M2 over M0, as required. In odd steps, we choose the amalgamations such that at

the end f1, f2 will be onto M3, see requirement 8 below. In even steps we choose amalgamations with NF , see requirement
4 below.

Proof. Roughly, the following claim says that one representation of M0 can serve as a part of the witness to both M0 ≺+λ+ M1

and M0 ≺+λ+ M2.

Claim 7.1.14. There are sequences 〈N0,ε: ε < λ+〉, 〈N1,ε: ε < λ+〉, 〈N⊕1,ε : ε < λ+〉, 〈N2,ε: ε < λ+〉, 〈N⊕2,ε: ε < λ+〉 such that for

n = 1,2, 〈N0,ε: ε < λ+〉, 〈Nn,ε: ε < λ+〉, E = λ+ , 〈N⊕n,ε: ε < λ+〉 witnesses that M0 ≺+λ+ Mn (so
⋃{N0,ε: ε < λ+} = M0 and for

n= 1,2,
⋃{Nn,ε: ε < λ+} =⋃{N⊕n,ε: ε < λ+} = Mn).

Proof. For n = 1,2, we take witnesses 〈Ntemp
0,n,ε: ε < λ+〉, 〈Ntemp

n,ε : ε < λ+〉, 〈N⊕,temp
n,ε : ε < λ+〉, En for M0 ≺+λ+ Mn . Take

a club E of λ+ such that E ⊆ E1 ∩ E2 and ε ∈ E ⇒ Ntemp
0,1,ε = Ntemp

0,2,ε . By Proposition 7.1.6 for n = 1,2, 〈Ntemp
0,n,ε: ε < λ+〉,

〈Ntemp
n,ε : ε < λ+〉, 〈N⊕,temp

n,ε : ε < λ+〉, E are witnesses for M0 ≺+λ+ Mn . Define N0,otp(ε∩E) := Ntemp
0,1,ε . For n = 1,2 and ε ∈ E ,

define Nn,otp(ε∩E) := Ntemp
n,ε . By Proposition 7.1.5 for n= 1,2, 〈N0,ε: ε < λ+〉, 〈Nn,ε: ε < λ+〉, E = λ+ , 〈N⊕n,ε: ε < λ+〉 witness

that M0 ≺+λ+ Mn . �

Let 〈N0,ε: ε < λ+〉, 〈N1,ε: ε < λ+〉, 〈N⊕1,ε: ε < λ+〉, 〈N2,ε: ε < λ+〉, 〈N⊕2,ε: ε < λ+〉 be as in Claim 7.1.14. For item b, we
require, in addition, that for n = 1,2 an ∈ Nn,0. [Why can we do it? Take α < λ+ with an ∈ Nn,α for n = 1,2 and replace
Nn,ε by Nn,α+ε in each one of the five sequences. Now rename the sequences.] For item c, we require in addition that for
n= 1,2, NF(N0, N∗, N0,0, Nn,0).

Define by induction on ε � λ+ a triple (Nε, f1,ε, f2,ε) such that:

(1) 〈Nε: ε � λ+〉 is an increasing continuous sequence of models in Kλ and for every ε < λ+ N2ε ∩ M0 = N2ε+1 ∩ M0 =
N0,ε .

(2) For item c we add: fn,0 � N∗ is the identity.
(3) For item b we add: f1,0(a1)= f2,0(a2).
(4) ε < λ+ ⇒ NF(N0,ε, N2ε+1, N0,ε+1, N2ε+2).
(5) For n= 1,2, the sequence 〈 fn,ε: ε � λ+〉 is increasing and continuous.
(6) For ε < λ+ , fn,2ε is an embedding of Nn,ε to N2ε and fn,2ε+1 is an embedding of N⊕n,ε to N2ε+1.
(7) fn,2ε � N0,ε = fn,2ε+1 � N0,ε and it is the identity on N0,ε .
(8) For every ε < λ+ , if for some n ∈ {1,2} (∗)n,ε holds, then for some m ∈ {1,2} (∗∗)m,ε holds, where:

(∗)n,ε There is p ∈ Sbs(Nn,ε) such that p is realized in N⊕n,ε and fn,2ε(p) is realized in N2ε .
(∗∗)m,ε fm,2ε+1[N⊕m,ε] ∩ N2ε �= fm,2ε[Nm,ε].

Note that requirement 4 is essentially a property of N2ε+2 and (∗∗)m,ε is essentially a property of fm,2ε+1.
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N⊕1,ε+1
f1,2ε+3

N2ε+3

N1,ε+1

id

f1,2ε+2
N2ε+2

id

N0,ε+1

id

id N2,ε+1
id

f2,2ε+2

N⊕2,ε+1

f2,2ε+3

N⊕1,ε

id

f1,2ε+1
N2ε+1

id

N1,ε

id

id

f1,2ε
N2ε

id

N0,ε

id

id

id N2,ε

id

id

f2,2ε

N⊕2,ε

id

f2,2ε+1

Why can we carry out the construction? For ε = 0, let ( f1,0, f2,0, N0) be an amalgamation of N1,0, N2,0 over N0,0, such
that N0 ∩ M0 = N0,0 (i.e., we choose new elements for N0 − N0,0). In the proof of item b, by the definition of the equality
between types, without loss of generality f1,0(a1)= f2,0(a2), so 3 is satisfied. In the proof of item c, by Theorem 5.4.7 (the
weak uniqueness theorem of NF), there is a joint embedding f1,0, f2,0, N0 of N1,0, N2,0 over N0,0 ∪ N∗ . So 2 is satisfied.

For limit ε, define Nε =⋃{Nζ : ζ < ε}, fn,ε =⋃{ fn,ζ : ζ < ε}. 5 is satisfied. 1 is satisfied by Axiom 1.0.3.1.c. 6 is satisfied
by the continuity of the sequence 〈Nn,ε : ε < λ+〉, and by smoothness (Definition 1.0.3.1.d). Clearly 7 is satisfied. 4, 8 are
irrelevant in the limit case.

The successor case: How can we construct N2ε+1, f1,2ε+1, f2,2ε+1 and N2ε+2, f1,2ε+2, f2,2ε+2, assuming we have con-
structed N2ε , f1,2ε , f2,2ε?

The construction of N2ε+1 , f1,2ε+1 , f2,2ε+1: Without loss of generality for some n ∈ 1,2, we have (∗)n,ε . [Otherwise re-
quirement 8 is irrelevant and we can use the existence of an amalgamation in (Kλ,�).] Fix n∗ with (∗)n∗,ε . We are going to
find N2ε+1, fn∗,2ε+1, f3−n∗,2ε+1 with (∗∗)n∗,ε , namely, fn∗,2ε+1[N⊕n∗,ε] ∩ N2ε �= fn∗,2ε[Nn∗,ε]. Let p be a witness for (∗)n∗,ε ,

so for some a, b tp(a, Nn∗,ε, N⊕n∗,ε) = p, tp(b, fn∗,2ε[Nn∗,ε], N2ε) = fn∗,2ε(p). So tp( fn∗,2ε(a), fn∗,2ε[Nn∗,ε], fn∗,2ε[N⊕n∗,ε]) =
tp(b, fn∗,2ε[Nn∗,ε], N2ε). Hence by the definition of equality of types, for some Ntemp

2ε+1, f temp
n∗,2ε+1, the following hold:

(1) N2ε � Ntemp
2ε+1.

(2) f temp
n∗,2ε+1 : N⊕n∗,ε → Ntemp

2ε+1 is an embedding.

(3) fn∗,2ε ⊆ f temp
n∗,2ε+1.

(4) f temp
n∗,2ε+1(a)= b.

N⊕3−n∗,ε
f3−n∗,2ε+1

N2ε+1

a ∈ N⊕n∗,ε

fn∗,2ε+1

f temp
n∗,2ε+1

Ntemp
2ε+1

id

N3−n∗,ε

id

f3−n∗,2ε

id

N2ε � b

id

N0,ε

id

id Nn∗,ε

fn∗,2ε

id
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Claim 7.1.15. f temp
n∗,2ε+1[N⊕n∗,ε] ∩ N2ε �= f temp

n∗,2ε[Nn∗,ε].

Proof. b ∈ N2ε . p is a basic type so it is a non-algebraic one. So a ∈ N⊕n∗,ε − Nn∗,ε . Hence b= f temp
n∗,2ε+1(a) ∈ f temp

n∗,2ε+1[N⊕n∗,ε] −
f temp
n∗,2ε+1[Nn∗,ε]. Therefore b ∈ f temp

n∗,2ε+1[N⊕n∗,ε] ∩ N2ε − f temp
n∗,2ε[Nn∗,ε]. �

As (Kλ,�) satisfies amalgamation, there are N2ε+1, f3−n∗,2ε+1 such that Ntemp
2ε+1 � N2ε+1 and f3−n∗,2ε+1 : N⊕3−n∗,ε →

N2ε+1 is an embedding that includes f3−n∗,2ε . Now we define fn∗,2ε+1 : N⊕n∗,ε → N2ε+1 by fn∗,2ε+1(x) = f temp
n∗,2ε+1(x).

By Claim 7.1.15, (∗∗)n∗ holds, so requirement 8 is satisfied. As for m = 1,2, the embedding fm,2ε+1 includes fm,2ε , re-
quirement 7 is satisfied. Without loss of generality, requirement 1 is satisfied. Requirement 4 is irrelevant in this case.
Requirements 5, 6 are satisfied.

The construction of N2ε+2, fn,2ε+2: By Proposition 7.1.7, there are N2ε+2, f1,2ε+2, f2,2ε+2 such that: NF( fn,2ε+1[N⊕n,ε],
fn,2ε+2[Nn,ε+1], N2ε+1, N2ε+2), and the restriction of fn,2ε+1 to N0,ε is the identity. [Let f +n,2ε+1 be an injection of Nn,ε+1,

fn,2ε+1 ⊆ f +n,2ε+1, and the restriction of f +n,2ε+1 to N0,ε+1 is the identity. Substitute the models N0,ε , N0,ε+1, fn,2ε+1[N⊕n,ε],
N2ε+1, f +2ε+1[Nn,ε+1], N2ε+2 which appear here, for the models M0,0, M0,1, Mn,0, N0, Mn,1, N1 which appear in Propo-
sition 7.1.7, respectively. Assumption a of Proposition 7.1.7 (i.e., NF(N0,ε, N0,ε+1, fn,2ε+1[N⊕n,ε], f +n,2ε+1[Nn,ε+1])) is satisfied

by Definition 7.1.4.a (recall that f +n,2ε+1 is an isomorphism over N0,ε+1 and NF respects isomorphisms). Assumption b of
Proposition 7.1.7 is satisfied by requirement 6 of the induction hypothesis. Assumption c of Proposition 7.1.7 is satisfied by
requirement 4 of the induction hypothesis.] Hence we can carry out the construction.

Why is it sufficient? By clause 7, for n= 1,2, fn,λ+ : Mn → Nλ+ is an embedding over M0.

Claim 7.1.16. f1,λ+[M1] = f2,λ+[M2] = Nλ+ .

Proof. Toward a contradiction, suppose there is n ∈ {1,2} such that fn,λ+[Mn] �= Nλ+ . By density (Theorem 2.6.8.1), there
is an element b such that tp(b, fn,λ+[Mn], Nλ+ ) is basic. 〈 fn,2ε[Nn,ε]: ε < λ+〉 is a representation of fn,λ+[Mn], so by
Definition 2.6.1 there is ε < λ+ such that for every ζ ∈ (ε,λ+) the type qζ := tp(b, fn,2ζ [Nn,ζ ], Nλ+ ) does not fork over
fn,2ε[Nn,ε]. We choose this ε such that b ∈ N2ε (recall: b ∈ Nλ+ =

⋃{Nε: ε < λ+}). So qζ is basic. Define pζ := f −1
n,2ζ (qζ ).

So pε ∈ Sbs(Nn,ε). For every ζ ∈ (ε,λ+), qζ is the non-forking extension of qε , so pζ is the non-forking extension
of pε . Hence by Definition 7.1.4, there is an end segment S∗ ⊆ λ+ such that for ζ ∈ S∗ , pζ is realized in N⊕2ζ . But
qζ = tp(b, fn,2ζ [Nn,ζ ], N2ζ ). So for every ζ ∈ S∗ , we have (∗)n,ζ (pζ is a witness for this). So by clause 8, there are m ∈ {1,2}
and a stationary set S∗∗ ⊆ S∗ such that for every ζ ∈ S∗∗ we have (∗∗)m,ζ (there are no two non-stationary subsets which
their union is an end segment of λ+). The sequences 〈N2ζ : ζ ∈ S∗∗〉, 〈Nm,ζ : ζ ∈ S∗∗〉, 〈 fm,2ζ : ζ ∈ S∗∗〉 are increasing and
continuous. But by (∗∗)m,ζ , we have fm,2ζ+1[N⊕m,ζ+1] ∩ N2ζ �= fm,2ζ [Nm,ζ ], in contradiction to Proposition 1.0.30. �

By Claim 7.1.16 f −1
2,λ+ ◦ f1,λ+ is an embedding of M1 onto M2 over M0. In the proof of item b, we have to note that

f −1
2,λ+ ◦ f1,λ+ (a1) = f −1

2,0 ◦ f1,0(a1) = a2 (by clause 3). In the proof of item c, we have to note that f −1
2,λ+ ◦ f1,λ+ � N∗ =

f −1
2,0 ◦ f1,0 � N∗ and by clause 3, it is the identity. �

Corollary 7.1.17.

(a) (Kλ+ ,�NF
λ+� Kλ+ ) satisfies the amalgamation property. So (K sat,�NF

λ+� K sat) satisfies the amalgamation property.
(b) Tameness: Let M0 , M1 , M2 be models in Kλ+ , such that M0 � M1 , M0 � M2 . Suppose that for every N ∈ Kλ , [N � M0] ⇒

tp(a1, N, M1)= tp(a2, N, M2). Then tp(a1, M0, M1)= tp(a2, M0, M2).
(c) Suppose there is N0 ∈ Kλ such that for n= 1,2 tp(an, M0, Mn) does not fork over N0 and tp(a1, N0, M1)= tp(a2, N0, M2). Then

tp(a1, M0, M1)= tp(a2, M0, M2).

Proof. (a) We could prove the amalgamation property without mentioning the relation ≺+
λ+ . But we give a shorter proof,

using Theorem 7.1.13. Suppose for n = 1,2 M0 ≺NF
λ+ Mn . By Proposition 7.1.12.a, there is M+

n such that Mn ≺+λ+ M+
n .

By Proposition 7.1.10.c, M0 ≺+λ+ M+
n . So by Theorem 7.1.13.c (the uniqueness of the ≺+

λ+ -extension), there is an isomorphism
f : M+

1 → M+
2 over M0. Hence ( f � M1, idM2 , M+

2 ) is an amalgamation of M1, M2 over M0. The ‘so’ is by Proposition 7.1.10.a.
(b) Tameness: By Proposition 7.1.12.a, for n = 1,2, there is M+

n such that Mn ≺+λ+ M+
n . By Theorem 7.1.13.b, there is

an isomorphism f : M+
1 → M+

2 over M0, such that f (a1) = a2. So ( f � M1, idM2 , M+
2 ) witnesses that tp(a1, M0, M1) =

tp(a2, M0, M2).
(c) By item b. Note that if N, N0 ∈ Kλ , N � N0 and tp(a1, N0, M1)= tp(a2, N0, M2), then tp(a1, N, M1)= tp(a2, N, M2). �
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Theorem 7.1.18.

(a) (K sat,�NF
λ+� K sat) satisfies Axiom c of AEC in λ+ (see Definition 1.0.3.2.c).

(b) If (K sat,�NF
λ+� K sat) satisfies smoothness, then it is an AEC in λ+ .

(c) (K sat,�NF
λ+� K sat) satisfies the amalgamation property.

Proof. (a) Let j < λ+2 and 〈Mi: i < j〉 be a �NF
λ+ -increasing continuous of models in K sat . Let M j be the union of this

sequence. We prove that M j ∈ K sat by induction on j. Let N be a model in Kλ such that N ≺ M j .
Case a: λ < cf ( j). In this case, for some i < j, N ≺ Mi . Since Mi is full over N , of course so is M j . Therefore M j ∈ K sat .
Case b: cf ( j) � λ. Without loss of generality, cf ( j) = j. So | j| = j = cf ( j) � λ. Let 〈Ni,α: α ∈ λ+〉 be a representation

of Mi . For every i < j, let Ei be a club of λ+ such that for α ∈ Ei , NF(Ni,α , Ni+1,α , Ni,α+1, Ni+1,α+1) and if i is a limit
ordinal, then Ni,α =⋃{Nε,α: ε < i}. So E :=⋂{Ei: i < j} is a club set of λ+ (because | j|� λ). Define N j,α :=⋃{Ni,α: i < j}.
〈N j,α: α � λ+〉 is a representation of M j . Take α∗ ∈ E such that N ⊆ N j,α∗ . By Axiom 1.0.3.1.e, N � N j,α∗ , so it is sufficient
to prove that M j is saturated over N j,α∗ . Let q ∈ Sbs(N j,α∗ ). We will prove that q is realized in M j . By the definition of E , the
sequence 〈Ni,α∗ : i < j〉 is increasing and continuous, so by Definition 2.1.1.3.c (the local character) there is an ordinal i < j
such that q does not fork over Ni,α∗ . Mi is saturated in λ+ over λ, so there is a ∈ Mi such that tp(a, Ni,α∗ , Mi)= q � Ni,α∗ .
By Definition 6.1.2, we have N̂F(Ni,α∗ , N j,α∗ , Mi, M j). So by Theorem 6.1.3.e (N̂F respects s), tp(a, N j,α∗ , M j) does not fork
over Ni,α∗ . Hence by Definition 2.1.1.3.d (the uniqueness of the non-forking extension) tp(a, N j,α∗ , M j)= q.

(b) The first part of Axiom c of AEC in λ+ is item a here. Axioms b, e and the second part of Axiom c follow by
Proposition 6.1.6.f.

(c) By Corollary 7.1.17.a. �
8. Relative saturation

8.1. Discussion

This section is, like the previous, a preparation for the proof of Theorem 7.1.3. We study the relation �⊗
λ+ , a kind of

relative saturation. This relation is similar to ‘closure of �NF
λ+ under smoothness’ (see Proposition 8.1.3.b). Theorem 9.1.13

says that non-equality between the relations �NF
λ+ , �⊗

λ+ is equivalent to non-smoothness and also to a strengthened version
of non-smoothness.

Hypothesis 8.1.1. s is a semi-good λ-frame with conjugation and K 3,uq satisfies the existence property.

Definition 8.1.2. �⊗
λ+ := {(M0, M1): M0, M1 ∈ K sat, M0 ≺ M1 and for every N0, N1 ∈ Kλ, if N0 � M0, N0 � N1 � M1 and

p ∈ Sbs(N1) does not fork over N0, then for some element d ∈ M0 tp(d, N1, M1)= p}.

Proposition 8.1.3.

(a) If M0 ∈ K sat and M0 �NF
λ+ M1 , then M0 �⊗

λ+ M1 .

(b) If 〈Mε: ε � δ〉 is a �NF
λ+ -increasing continuous sequence of models in K sat and for every ε ∈ δ, Mε �NF

λ+ Mδ+1 , then Mδ �⊗
λ+ Mδ+1 .

Proof. (a) Suppose M0 �NF
λ+ M1 and M0 ∈ K sat . Let N0, N1 be models Kλ with N0 � M0 and N0 � N1 � M1 and let p

be a type Sbs(N1) that does not fork over N0. We have to find an element d ∈ M0 with tp(d, N1, M1) = p. By Proposi-
tion 6.1.6.g (LST for �NF

λ+ ), for some N+0 , N+1 ∈ Kλ N0 � N+0 , N1 � N+1 and N̂F(N+0 , N+1 , M0, M1). By Axiom 1.0.3.1.e, N0 � N+0
and N1 � N+1 . Let q be the non-forking extension of p to N+1 . Since M0 ∈ K sat for some d ∈ M0, tp(d, N+0 , M0) = q � N+0 .
By Proposition 2.5.6 q does not fork over N0, so by Definition 2.1.1.3.b (monotonicity) q does not fork over N+0 . By Theo-
rem 6.1.3, N̂F respects s, so tp(d, N+1 , M1) does not fork over N+1 . So by Definition 2.1.1.3.b (uniqueness), tp(d, N+1 , M1)= q.
Therefore tp(d, N1, M1)= p.

(b) Suppose N0, N1 ∈ Kλ , N0 � Nδ , N0 � N1 � Mδ+1 and p ∈ Sbs(N1) does not fork over N0. We have to find an element
d ∈ Mδ that realizes p. For every α � δ + 1, there is a representation 〈Nα,ε: ε < λ+〉 of Mα . Without loss of generality,
cf (δ)= δ.

Case a: δ = λ+ . So for some α < δ, N0 ⊆ Mα and we can use item a.
Case b: δ < λ+ . For each α ∈ δ, let Eα be a club of λ+ such that for each ε ∈ Eα : NF(Nα,ε, Nα+1,ε, Nα,ε+1, Nα+1,ε+1)

and if α is limit then Nα,ε = ⋃{Nβ,ε: β < α}. Let Eδ := {α ∈ λ+: Nδ,ε ⊆ Nδ+1,ε, Nδ,ε = ⋃{Nα,ε: α < δ}}. Denote
E :=⋂{Eα: α � δ}. By cardinality considerations there is ε ∈ E such that for n < 2 Nn ⊆ Nδ+n,ε , so by Axiom 1.0.3.1.e
Nn � Nδ+n,ε .
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d ∈ Mα
id Mδ

id Mδ+1

Nα,ε
id

id

Nδ,ε
id

id

Nδ+1,ε

id

q

N0
id

id

N1

id

p

Let q ∈ Sbs(Nδ+1,ε) be the non-forking extension of p. By Proposition 2.5.6 (the transitivity proposition), q does not
fork over N0. By Definition 2.1.1.3.b (monotonicity), q does not fork over Nδ,ε , so q � Nδ,ε is basic. As ε ∈ E , the sequence
〈Nα,ε: α � δ〉 is increasing and continuous. So by Definition 2.1.1.3.c (local character), there is α < δ such that q � Nδ,ε does
not fork over Nα,ε . So by Proposition 2.5.6, q does not fork over Nα,ε . Since Mα �NF

λ+ Mδ+1 by item a for some d ∈ Mα ,
tp(d, Nδ+1,ε, Mδ+1)= q. So tp(d, N1, Mδ+1)= p. �

The following proposition is similar to the saturativity = model homogeneity lemma.

Proposition 8.1.4. Suppose

(1) M0 �⊗
λ+ M1 .

(2) For n < 3 Nn ∈ Kλ .
(3) N0 � M0 .
(4) N0 � N2 and N0 � N1 � M1 .

Then for some N∗1 ∈ Kλ and an embedding f : N2 → M0 the following hold:

(a) f � N0 = idN0 .
(b) NF(N0, f [N2], N1, N∗1).
(c) N∗1 � M1 .

M0
id M1

f [N2] id

id

N∗1

id

N0
id

id

N1

id

Proof. We try to choose N0,ε , N1,ε , N2,ε , fε by induction on ε < λ+ such that:

(1) For n < 3 〈Nn,ε: ε < λ+〉 is an increasing continuous of models in Kλ .
(2) For n < 3 Nn,0 = Nn , f0 = idN0 .
(3) For ε < λ+ , N0,ε � M0 ∧ N1,ε � M1.
(4) 〈 fε: ε < λ+〉 is increasing and continuous.
(5) fε : N0,ε → N2,ε is an embedding over N0.
(6) For every ε ∈ λ+ there is aε such that (N0,ε, N0,ε+1,aε) is a uniqueness triple, fε+1(aε) ∈ N2,ε and tp(aε, N1,ε, N1,ε+1)

does not fork over N0,ε .
(7) N0,ε � N1,ε (actually follows by 6).
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M0
id M1

N2,ε+1 N0,ε+1
fε+1 id

id

N1,ε+1

id

N2,ε

id

N0,ε
fε id

id

N1,ε

id

N0

id
id

id N1

id

By clauses 1, 4, 5 and particularly 6 and Proposition 1.0.30, we cannot succeed. Where will we get stuck? For ε = 0 or
limit, we will not get stuck. Suppose we have defined N0,ε , N1,ε , N2,ε , fε . By clause 5, fε[N0,ε]� N2,ε .

Case a: fε[N0,ε] �= N2,ε . In this case we can find N0,ε+1, N1,ε+1, N2,ε+1, fε+1 such that clauses 1–7 above hold. [By the
existence of the basic types, there is b ∈ N2,ε − fε[N0,ε] such that p := tp(b, fε[N0,ε], N2,ε) is basic. Let q ∈ Sbs(N1,ε) be the
non-forking extension of f −1

ε (p). As M0 �⊗
λ+ M1∧ (n < 2⇒ Nn,ε � M∗

n)∧ N0,ε � N1,ε ∈ Kλ , there is a ∈ M0 which realizes q.
So tp(a, N0,ε, M0)= f −1

ε (p). As K 3,uq satisfies the existence property, we can find N0,ε+1 such that (N0,ε, N0,ε+1,a) ∈ K 3,uq .
As M0 is saturated in λ+ over λ, by Lemma 1.0.31 (the saturation = model homogeneity lemma), without loss of generality,
N0,ε+1 � M0. Denote a as aε . Choose N1,ε+1 � M1 such that N0,ε+1 ∪ N1,ε ⊆ N1,ε+1. By Axiom 1.0.3.1.e, N0,ε+1 � N1,ε+1 ∧
N1,ε � N1,ε+1. Now fε(tp(aε, N0,ε, N0,ε+1)= p. So there are N2,ε+1, fε+1 such that: N2,ε � N2,ε+1, fε+1(aε)= b, fε ⊆ fε+1 :
N0,ε+1 → N2,ε+1.]

Case b: fε[N0,ε] = N2,ε . Hence N1,ε, f −1
ε � N2 witness that our proposition is true. [By 6, Definition 5.3.2 and Defini-

tion 5.3.1, ζ < ε⇒ NF(N0,ζ , N0,ζ+1, N1,ζ , N1,ζ+1). So by Theorem 5.5.1 (the long transitivity theorem), NF(N0, N0,ε, N1, N1,ε).
So by the monotonicity of NF , we have NF(N0, f −1

ε [N2], N1, N1,ε). So clause b in the proposition is satisfied. Clauses a, c are
satisfied by 5, 3, respectively.]

Let ε + 1 be the first ordinal, in which, we will get stuck. In other words, suppose we have defined N0,ε , N1,ε , N2,ε ,
fε and we cannot find models N0,ε+1, N1,ε+1, N2,ε+1, fε+1 such that clauses 1–7 above hold. So Case b holds and the
proposition is proved. �
Proposition 8.1.5. If M0 � M1 , n < 2⇒‖Mn‖ = λ+ ∧ An ⊆ Mn ∧ |An|� λ, then there are models N0, N1 ∈ Kλ such that: n < 2⇒
An ⊆ Nn � Mn and N1 ∩M0 = N0 (so of course N0 � N1).

Proof. Standard. �
M∗

1 �⊗
λ+ M∗

2 does not imply M∗
1 �NF

λ+ M∗
2, but we are able to construct useful approximations to the M∗

i .

Proposition 8.1.6. If M∗
1 �⊗

λ+ M∗
2 , then there is an increasing continuous sequence of models in K sat , 〈Mε: ε � λ+ + 1〉 such that:

(a) Mλ+ = M∗
1 , Mλ++1 = M∗

2 .
(b) ε < λ+ ⇒ Mε ≺+λ+ Mε+1 .

(c) ε < λ+ ⇒ Mε �NF
λ+ M∗

2 .

Proof. By Proposition 7.1.12.c, there is a winning strategy for player 2 in the ≺+
λ+ -game. Let F be such a winning strategy.

Enumerate M∗
2 by {aε: ε < λ+}. We construct 〈Nα,ε: ε � α〉, Nα by induction on α such that the following hold:

(1) For each ε � α, Nα,ε ∈ Kλ and Nα,ε � M∗
1.

(2) 〈Nα,ε: ε � α < λ+〉 is increasing continuous in the variables α, ε.
(3) 〈Nα: α < λ+〉 is an increasing continuous sequence of models in Kλ .
(4) Nα,α � Nα � M∗

2.
(5) If α + 1 is odd, then for each ε � α, Nα+1,ε+1 is isomorphic to F (〈Nβ,ε: ε+ 1 � β � α + 1〉, 〈Nβ,ε+1: ε+ 1 � β � α〉)

over Nα,ε+1 ∪ Nα+1,ε .
(6) If α + 1 is odd, then NF(Nα,α, Nα, Nα+1,α+1, Nα+1).
(7) aα ∈ N2α+2.
(8) N2α ∩M∗

1 ⊆ N2α,2α .
(9) If α + 1 is odd then Nα+1,α+1 = Nα+1,α .

(10) If α + 1 is odd then Nα+1,0 ∩ Nα = Nα,0, Nα+1,0 �= Nα,0.
(11) If α + 1 is even then for each ε � α Nα+1,ε = Nα,ε .
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Mε
id Mε+1

id Mα
id Mλ+ = M∗

1
id Mλ++1 = M∗

2

Nα,ε
id

id

Nα,ε+1
id

id

Nα,α
id

id

Nα

id

Nε+1,ε
id

id

Nε+1,ε+1
id

id

Nε+1

id

Nε,ε
id

id

Nε

id

[Explanation: Nα,α , Nα are approximations for M∗
1, M∗

2, respectively. Nα,ε is an approximation for Mε . When α + 1
is even, we increase the approximations of M∗

1, M∗
2, such that at the end we will have M∗

2 ⊆
⋃{Nα: α < λ+}, M∗

1 =⋃{Nα,α: α < λ+} by 7, 8, respectively. When α + 1 is odd, we increase the approximations of Mε (mainly by clause 10).
Clause 11 says that in even steps the approximations to Mε do not increase. Clause 5 insures, that at the end, we will
have Mε ≺+λ+ Mε+1. Clause 6 insures, that at the end requirement c will be satisfied. The point of the proof is, that we
could not demand 6 for every α (as otherwise we prove M∗

1 �NF
λ+ M∗

2, which might be wrong). But we succeed to prove that
NF(Nα,ε, Nα, Nα+1,ε, Nα+1) so Mε �NF

λ+ M∗
2.]

Why can we carry out the construction? We construct by induction on α. For limit α, by clauses 2, 3 there is no freedom.
Clauses 1, 4 are satisfied by smoothness, clauses 5, 6, 7, 9, 10, 11 are irrelevant and clause 8 is satisfied. For α = 0 we
choose N0, N0,0 by Proposition 8.1.5. Suppose we have defined 〈Nα,ε: ε � α〉, Nα . What will we do in step α + 1?

Case a: α + 1 is even. For ε � α define Nα+1,ε := Nα,ε . By Proposition 8.1.5 there are Nα+1, Nα+1,α+1 as required,
especially clauses 7, 8 are satisfied.

Case b: α + 1 is odd. Define Ntemp
α+1,ε by induction on ε � α such that:

(1) 〈Ntemp
α+1,ε: ε � α〉 is a �-increasing continuous sequence.

(2) Ntemp
α+1,ε+1 = F (〈Nβ,ε: ε+ 1 � β � α〉�〈Ntemp

α+1,ε〉, 〈Nβ,ε+1: ε+ 1 � β < α〉).

(3) Nα,0 � Ntemp
α+1,0.

Now by Proposition 8.1.4, there are Nα+1 and an embedding g : Ntemp
α+1,α → M∗

1 over Nα,α such that we have NF(Nα,α, Nα,

g[Ntemp
α+1,α], Nα+1). For every ε � α, define Nα+1,ε := g[Ntemp

α+1,ε]. Now define Nα+1,α+1 := Nα+1,α . So we can carry out the
construction.

Why is it sufficient? For ε < λ+ define Mε := ⋃{Nα,ε: ε � α < λ+}. Define Mλ+ :=
⋃{Mε: ε < λ+}, Mλ++1 :=⋃{Nα: α < λ+}. We will prove that the sequence 〈Mε: 0 < ε < λ+ + 1〉 satisfies requirements a, b, c:

(a) By 3, 4, 7 Mλ++1 = M∗
2. Why is Mλ+ = M∗

1? By 1 Mλ+ ⊆ M∗
1. Let x ∈ M∗

1. Then x ∈ M∗
2 = Mλ++1. So by the definition

of Mλ++1 and 3, there is α such that x ∈ N2α . So by 8 x ∈ N2α,2α . But by the definitions of Mε, Mλ+ , N2α,2α ⊆ M2α ⊆ Mλ+ .
(b) By 2, 10 |M0| = λ+ . By 2 and smoothness, the sequence 〈Mε: ε < λ+〉 is �-increasing and continuous. So |Mε| = λ+ .

Does ε < λ+ ⇒ Mε ∈ K sat? Not exactly, but we can prove by induction on ε that 0 < ε < λ+ ⇒ (Mε ∈ K sat ∧Mε ≺+λ+ Mε+1):
For ε = 0 by 10. For limit ε by Theorem 7.1.18.a. For ε successor by 5 and Proposition 7.1.10.b. So requirement b is satisfied.

(c) The sequences 〈Nα,ε: ε � α < λ+〉, 〈Nα: ε � α < λ+〉 are representations of Mε , Mλ++1, respectively. Let α ∈ λ+ .
We will prove NF(Nα,ε, Nα, Nα+1,ε, Nα+1). If α + 1 is even, this is satisfied by clause 11. So let α + 1 be odd. By 6 we
have: (*) NF(Nα,α, Nα, Nα+1,α+1, Nα+1). By 5 and Theorem 5.5.1 (the transitivity of NF), NF(Nα,ε, Nα,α, Nα+1,ε, Nα+1,α).
[Why? By 5 (and Proposition 7.1.12.c), ∀ζ ∈ [ε,α)NF(Nα,ζ , Nα,ζ+1, Nα+1,ζ , Nα+1,ζ+1). The sequences 〈Nα,ζ : ζ ∈ [ε,α)〉,
〈Nα+1,ζ : ζ ∈ [ε,α)〉 are increasing and continuous. So by Theorem 5.5.1 (the long transitivity theorem), NF(Nα,ε, Nα,α,

Nα+1,ε, Nα+1,α). So by the monotonicity of NF , we have: (**) NF(Nα,ε, Nα,α, Nα+1,ε, Nα+1,α+1).] Now by (*), (**) and Theo-
rem 5.5.1 NF(Nα,ε, Nα+1,ε, Nα, Nα+1). Note that we use here freely Theorem 5.4.9 (the symmetry theorem of NF). �
9. Non-smoothness implies non-structure

9.1. Introduction

Hypothesis 9.1.1. s is a semi-good λ-frame with conjugation and K 3,uq satisfies the existence property.

Definition 9.1.2. Let M̄ = 〈Mα: α < α∗〉 be an increasing sequence of models in Kλ+ . We say that M̄ is �NF
λ+ -increasing in the

successor ordinals if β < γ < α∗ ⇒ Mβ+1 �NF
λ+ Mγ+1.
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Definition 9.1.3. Let α � λ+2 and let M̄ = 〈Mα: α < λ+2〉 be a �NF
λ+ -increasing in the successor ordinals and continuous

sequence with union M . Define T (M̄) =: {δ ∈ λ+2: ∃α ∈ (δ, λ+2) Mδ ��NF Mα}. Define T (M) =: T (M̄)/Dλ+2 where Dλ+2 is
the club filter on λ+2. (By Proposition 9.1.5, T (M) does not depend on the representation M̄ .)

Proposition 9.1.4. Let M̄ = 〈Mα: α < λ+2〉 be a �NF
λ+ -increasing in the successor ordinals and continuous sequence. Then:

(a) For each α < λ+2 , Mα �NF
λ+ Mα+1 ⇔ [(∀β ∈ (α,λ+2))Mα �NF

λ+ Mβ ].
(b) T (M̄)= {δ ∈ λ+2: ∀α ∈ (δ, λ+2) Mδ ��NF Mα}.

Proof. (a) Easy (by Proposition 6.1.6.c).
(b) By item a. �

Proposition 9.1.5. Suppose:

(1) The sequences M̄1 := 〈Mα,1: α < λ+2〉, M̄2 := 〈Mα,1: α < λ+2〉 are �NF
λ+ -increasing in the successor ordinals and continuous.

(2) M1 =⋃{Mα,1: α < λ+2} and M2 =⋃{Mα,2: α < λ+2}.
(3) M1 , M2 are isomorphic.

Then T (M̄1)/Dλ+2 = T (M̄2)/Dλ+2 .

Proof. Let f : M1 → M2 be an isomorphism. Define E := {α ∈ λ+2: f [M1,α] = M2,α}. So T (〈Mα,1: α ∈ E〉) =
T (〈 f [Mα,1]: α ∈ E〉) = T (〈Mα,2: α ∈ E〉). By Proposition 9.1.4.b T (〈Mα,1: α ∈ E〉) = T (M̄1) ∩ E and T (〈Mα,2: α ∈ E〉) =
T (M̄2)∩ E . Hence T (M̄1)∩ E = T (M̄2)∩ E . �
Proposition 9.1.6. Assume that we can assign to each S ∈ Sλ+2

λ+ := {S: S is a stationary subset of λ+2 and (∀α ∈ S)cf (α) = λ+},
a model M S ∈ Kλ+2 with T (M S )= S/Dλ+2 (especially it is defined).

Then there are 2λ+2
non-isomorphic models in Kλ+2 .

Proof. Since |Sλ+2

λ+ | = 2λ+2
it follows by Proposition 9.1.5. �

The following theorem says that there is a kind of a witness for non-�NF
λ+ -smoothness, such that if it holds, then there

are 2λ+2
non-isomorphic models in Kλ+2 .

Theorem 9.1.7. Suppose that there is an increasing continuous sequence 〈M∗
α: α � λ+ + 1〉 of models in K sat such that for each α, β

with α < β < λ+ , we have M∗
α ≺+λ+ M∗

β �NF
λ+ M∗

λ++1 but M∗
λ+ ��NF M∗

λ++1 .

Then there are 2λ+2
pairwise non-isomorphic models in Kλ+2 .

Proof. By Proposition 9.1.6, it is enough to assign to each S ∈ Sλ+2

λ+ a model M S ∈ Kλ+2 with T (M S ) = S/Dλ+2 . Let S be a
stationary subset of λ+2 such that α ∈ S ⇒ cf (α)= λ+ . We will choose a model Mβ by induction on β < λ+2 such that:

(1) Mβ ∈ K sat .
(2) The sequence 〈Mβ : β < λ+2〉 is continuous.
(3) β ∈ λ+2 − S ⇒ Mβ ≺+λ+ Mβ+1.
(4) If β ∈ S then (Mβ, Mβ+1)∼= (M∗

λ+ , M∗
λ++1).

(5) For each β < λ+2 Mβ �NF
λ+ Mβ+1 ⇔ β /∈ S .

Note that clause 5 is the crucial point and it actually follows by clauses 3, 4.
[Why is it possible to choose Mβ ? For β = 0 we choose a model M0 ∈ K sat . For limit ordinal β , define Mβ =⋃{Mγ : γ < β}. What will we do in the β + 1 step? Clause 5 follows by clauses 3, 4. So it is enough to find Mβ+1

which satisfies clauses 3, 4.
Case a: β /∈ S . In this case we choose Mβ+1 such that Mβ ≺+λ+ Mβ+1 (see Proposition 7.1.12.a).
Case b: β ∈ S . Since Mβ, M∗

λ+ are saturated in λ+ over λ, they are isomorphic. Hence we can find Mβ+1 satisfying
clause 4.]

Define M S := ⋃{Mα: α < λ+2}. It remains to prove that T (M S ) = S/Dλ+2 (especially T (M S ) is defined). But if
T (〈Mα: α < λ+2〉) is defined then by clause 5, T (M S )= T (〈Mα: α < λ+2〉)/Dλ+2 = S/Dλ+2 . So it is enough to prove that
it is defined, namely, to prove that for each α, β with α < β < λ+2 we have Mα+1 �NF

λ+ Mβ+1. But it is easier to prove the
following stronger claim:
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Claim 9.1.8. For every β � λ+ (∗)β : For each α with α < β , the following hold:

(1) Mα+1 �NF
λ+ Mβ+1 .

(2) If β /∈ S then Mα+1 ≺+ Mβ+1 .

Proof. (∗)0 is vacuous.
Why does (∗)β ⇒ (∗)β+1 hold? Fix α < β + 1. We prove that Mα+1 ≺+λ+ Mβ+2. By clause 3, Mβ+1 ≺+ Mβ+2. So, if

α = β then Mα+1 ≺+λ+ Mβ+2. So without loss of generality, α < β . By (∗)β Mα+1 �NF
λ+ Mβ+1. But Mβ+1 ≺+λ+ Mβ+2. So by

Proposition 7.1.10.c, Mα+1 ≺+λ+ Mβ+2. This establishes (∗)β+1.
Assume that δ is a limit ordinal and (∗)β holds for each β with β < δ. We have to prove (∗)δ . Let 〈γ (ε): ε < cf (δ)〉 be

an increasing continuous of ordinals with limit δ, such that for every ε, γ (ε+ 1) is a successor of a successor ordinal. Note
that for every ε < cf (δ) γε /∈ S , because cf (γε) < cf (δ) � λ+ . Consider the sequence 〈Mγε : ε < cf (δ)〉.

Claim 9.1.9. Mγε ≺+ Mγε+1 for each ε < cf (δ).

Proof. Since γε /∈ S , by clause 3, Mγε ≺+λ+ Mγε+1. If γε+1 = γε + 1, then the claim is proved. Assume γε+1 > γε + 1.
γε+1 = ζ + 1 for some successor ζ . ζ /∈ S . So by (∗)ζ .2, Mγε+1 ≺+λ+ Mζ+1 = Mγε+1 . So Mγε ≺+λ+ Mγε+1 ≺+λ+ Mγε+1 . Hence by
Proposition 7.1.10.d Mγε ≺+λ+ Mγε+1 . �
Claim 9.1.10. The sequence 〈Mγε : ε < cf (δ)〉�〈Mδ〉 is continuous.

Proof. Take δ′ ∈ {γε: ε < cf (δ)}∪ {δ} and take x ∈ Mδ′ . We have to find ε < cf (δ) such that γε < δ′ and x ∈ Mγε . By clause 2
the sequence 〈Mβ : β < λ+2〉 is continuous, so for some β < δ′ x ∈ Mβ . The ordinals sequence 〈γε: ε < cf (δ)〉�〈δ〉 is
increasing and continuous. Hence for some ε < cf (δ) with β < γε < δ′ . Since Mβ ⊆ Mγε , x ∈ Mγε . �
Claim 9.1.11. Mγε �NF

λ+ Mδ for each ε < cf (δ).

Proof. By Proposition 6.1.6.d (and Claim 9.1.9, Claim 9.1.10 and Proposition 7.1.10.a). �
Now we return to the proof of (∗)δ . Fix α < δ.

Claim 9.1.12. Mα+1 �NF
λ+ Mγε+1 for some ε < cf (δ).

Proof. Take ε < cf (δ) with α + 1 < γε+1. γε+1 = ζ + 1 for some ζ . So by (∗)ζ .1, Mα+1 �NF
λ+ Mζ+1 = Mγε+1 . �

Case a: δ /∈ S . In this case by clause 4, Mδ ≺+λ+ Mδ+1. So by Proposition 7.1.10.c, it is enough to prove that Mα+1 �NF
λ+ Mδ .

By Claim 9.1.12 Mα+1 �NF
λ+ Mγε+1 for some ε. By Claim 9.1.11, Mγε+1 �NF

λ+ Mδ . So by Proposition 6.1.6.b, Mα+1 �NF
λ+ Mδ .

Case b: δ ∈ S . In this case we have to prove that Mα+1 �NF
λ+ Mδ+1. We choose fα by induction on α � λ+ such that:

(1) For every α � λ+ , fα : M∗
α → Mγα is an isomorphism.

(2) 〈 fα: α � λ+〉 is an increasing continuous sequence of isomorphisms.

There is no problem to carry out this induction. [Why? We can choose f0 by Theorem 1.0.32 (the uniqueness of the
saturated model in λ+ over λ). M∗

α ≺+λ+ M∗
α+1. By Claim 9.1.8 Mγα ≺+λ+ Mγα+1 . So by Theorem 7.1.13.a, for every α, we can

find fα+1. For α limit take union.]
Now by clause 4, (Mδ, Mδ+1) ∼= (M∗

λ+ , M∗
λ++1). So we can find an isomorphism f : Mλ++1 → Mδ+1 that extends fλ+ .

For every ε < λ+ , M∗
ε �NF

λ+ M∗
λ++1, so Mγε = f [M∗

ε] �NF
λ+ f [M∗

λ++1] = Mδ+1. So Mγε � Mδ+1 for each ε < cf (δ). Hence

Mγε+1 �NF
λ+ Mδ+1 for each ε < cf (δ). But by Claim 9.1.12 for some ε < cf (δ) Mα+1 �NF

λ+ Mγε+1 . Therefore by Proposi-
tion 6.1.6.b, Mα+1 �NF Mδ+1. �
Theorem 9.1.13. The following conditions are equivalent:

(a) (K sat,�NF
λ+� K sat) does not satisfy smoothness.

(b) There are M∗
1, M∗

2 ∈ K sat such that M∗
1 �⊗ M∗

2 but M∗
1 ⊀NF M∗

2 .
(c) There is a sequence 〈Mε: ε � λ+ + 1〉 of models in K sat such that for each ε, ζ with ε < ζ � λ+ + 1, we have ε �= λ+ ⇔

Mε ≺+λ+ Mζ ⇔ Mε �NF
λ+ Mζ .
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Proof. c⇒ a is clear. b⇒ c holds by Proposition 8.1.6. a⇒ b holds by Proposition 8.1.3.b. �
Now we can prove Theorem 7.1.3, but first we recall it: If (K sat,�NF

λ+� K sat) does not satisfy smoothness, then there are

2λ+2
pairwise non-isomorphic models in Kλ+2 .

Proof. Condition a of Theorem 9.1.13 is satisfied, so condition c is satisfied, too. Hence by Theorem 9.1.7 we have the
conclusion of the theorem. �
10. A good λ+-frame

10.1. Discussion

In Definitions 2.6.1, 2.6.2 and 2.6.4, we expanded the definition of the non-forking relation and basic types to models in
K>λ . In Theorem 2.6.8 we proved some axioms of a good frame for this expansions. Here we are going to prove the other
axioms. So why are Sections 3–9 needed? In other words, what are the difficulties in proving that s+ (defined below) is a
good λ+-frame? The main problem is that amalgamation may not hold in (Kλ+ ,�� Kλ+ ). Now we can solve this problem
by restricting the relation �Kλ+ to the relation �NF

λ+ . But then we lose smoothness. We solve this problem, showing that
if we restrict to the class of saturated models in λ+ over λ then non-smoothness of �NF

λ+ implies many models. Now the
relation ≺+

λ+ and tameness enable us to prove the remaining axioms.

Definition 10.1.1. Let s be a semi-good λ-frame. We say that s is successful when:

(1) K 3,uq satisfies the existence property.
(2) satisfies smoothness.

Hypothesis 10.1.2. s is a successful semi-good λ-frame with conjugation.

We recall that the types in this paper are classes of triples under some equivalence relation. But this relation depends on
the partial order, that we define on the class of models, see Definition 1.0.24. For M0, M1 ∈ Kλ+ , when we write tp(a, M, N),
we mean to the partial order �. But when we want to consider the partial order �NF

λ+ , we have to write it explicitly.

Definition 10.1.3. For M0, M1 ∈ K sat and a ∈ M1 −M0, we define

tp+(a, M0, M1) := tp((K sat)up,(�NF
λ+�K sat)up)(a, M0, M1).

(About ‘sat ’ see Definition 7.1.2 and about ‘up’ see Definition 1.0.16.)

Proposition 10.1.4. For every M0 , M1 , M2 with M0 �NF
λ+ M1 ∧M0 �NF

λ+ M2 and every a1 , a2 with a ∈ M1 −M0 ∧ a2 ∈ M2 −M0:

tp+(a1, M0, M1)= tp+(a2, M0, M2) ⇔ tp(a1, M0, M1)= tp(a2, M0, M2).

Proof. The first direction: Suppose tp+(a1, M0, M1) = tp+(a2, M0, M2). By Theorem 7.1.18.c, (K sat,�NF
λ+� K sat) satisfies the

amalgamation property. So there are f1, f2, M3 such that: M0 �NF
λ+ M3, fn : Mn → M3 is a �NF

λ+ -embedding over M0 and
f1(a1) = f2(a2). But K sat ⊆ K , and the relation �NF

λ+ is included in the relation �, so the amalgamation ( f1, f2, M3) wit-
nesses that tp(a1, M0, M1)= tp(a2, M0, M2).

The second direction: Suppose tp(a1, M0, M1)= tp(a2, M0, M2). Take an amalgamation ( f1, f2, M3) of M1, M2 over M0
with f1(a1) = f2(a2). For each N ∈ Kλ with N � M0 tp( f1(a1), N, f1[M1]) = tp( f2(a2), N, f2[M2]). So by Theorem 7.1.13.b,
tp+(a1, M0, M1)= tp+(a2, M0, M2). �

Although we defined restriction of types in Definition 1.0.24.3, the following definition is needed for tp+:

Definition 10.1.5. For p = tp+(a, M0, M1) and N ∈ Kλ with N � M0, we define p � N := tp(a, N, M1).

The following definition is based on Definition 2.6.1.
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Definition 10.1.6. s+ := ((K sat)up, (�NF
λ+� K sat)up, sbs,+,

+⋃
), where:

(1) For each M ∈ K sat , we define Sbs,+(M) := {tp+(a, M, N): {M, N} ⊆ K sat , M �NF
λ+ N , tp(a, M, N) ∈ Sbs

>λ}.
(2)

+⋃
is defined by: tp+(a, M1, M2) does not fork over M0 if {M0, M1, M2} ⊆ K sat , M0 �NF

λ+ M1 �NF
λ+ M2 and tp(a, M1, M2)

does not fork over M0 in the sense of Definition 2.6.2.

Proposition 10.1.7.

(a) Sbs is well-defined: It does not depend on the triple (M0, M1,a) that represents the type.

(b)
+⋃

is well-defined: It does not depend on the triple (M0, M1,a) that represents the type.

Proof. By Proposition 10.1.4. �
Proposition 10.1.8. Let s be a successful semi-good λ-frame with conjugation.

(1) (K sat,�NF
λ+� K sat) satisfies Axiom c of AEC in λ+ (i.e., Definition 1.0.3.2.c).

(2) (K sat,�NF
λ+� K sat) is an AEC in λ+ .

(3) (K sat,�NF
λ+� K sat) satisfies the amalgamation property.

Proof. By Theorem 7.1.18 and Hypothesis 10.1.2. �

Theorem 10.1.9. Let s be a successful semi-good λ-frame with conjugation. Then s+ is a good λ+-frame.

(So although in λ we have almost stability only, we get good λ+-frame, so stability!)

Proof. By Proposition 10.1.8, (K sat,�NF
λ+� K sat) is an AEC in λ+ with amalgamation. So by Fact 1.0.18, ((K sat)up, (�NF

λ+� K sat)up)

is an AEC with LST number λ+ . By Theorem 1.0.32, K sat is categorical. So (K sat,�NF
λ+� K sat) satisfies the joint embedding

property. By Proposition 7.1.12.a and Proposition 7.1.10.a, there is no �NF
λ+ -maximal model in K sat . What about the axioms of

the basic types and the non-forking relation? By Theorem 2.6.8, the following axioms are satisfied: Density, monotonicity,
local character and continuity.

Proposition 10.1.10. s+ satisfies basic stability.

Proof. Let M ∈ K sat . M ∈ Kλ+ , so it has a representation 〈Nα: α ∈ λ+〉 (each Nα is of cardinality λ). For p ∈ Sbs,+(M)

define (αp,qp) by: αp is the minimal ordinal in λ+ such that p does not fork over Nα . qp =: p � Nαp . For every α ∈ λ+ by

Definition 2.1.3 (semi-good λ-frame), we have |Sbs(Nα)|� λ+ , so |(αp,qp): p ∈ Sbs,+(M)|� λ+ ×λ+ = λ+ . So it is sufficient
to prove that the function p → (αp,qp) is an injection. For every p1, p2 ∈ Sbs,+(M) if αp1 = αp2 ∧ qp1 = qp2 . Therefore by
Corollary 7.1.17.c (tameness) p1 = p2. �

Proposition 10.1.11. s+ satisfies uniqueness in the sense of Definition 2.1.1.3.d.

Proof. (1) By the proof of Corollary 7.1.17.c (tameness).
(2) Suppose n < 2⇒ Mn ∈ K sat , M0 � M1, p,q ∈ Sbs,+(M1), p � M0 = q � M0 and p, q do not fork over M0. By the def-

inition of
+⋃

, there are N p, Nq ∈ Kλ , such that N p � M0, Nq � M0, p does not fork over N p and q does not fork over Nq .
As LST(K ,�) � λ, there is a model N ∈ Kλ with N p ∪ Nq ⊆ N � M0. By Axiom 1.0.3.1.e, N p � N and Nq � N . By Theo-
rem 2.6.8.2 (monotonicity), p, q do not fork over N . By the assumption p � M0 = q � M0, so p � N = q � N . Hence by item 1,
p = q. �
Proposition 10.1.12. s+ satisfies symmetry in the sense of Definition 2.1.1.3.e.
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Proof.

M2
id M4

M3

id

M0

id

id M1

id

N2

id

id

id

N4

id

N3

id

id

N0

id

id

id N1

id

id

Suppose 1–5 where:

(1) {M0, M1, M3} ⊆ K sat .
(2) M0 �NF

λ+ M1 �NF
λ+ M3.

(3) a1 ∈ M1.
(4) tp(a1, M0, M3) ∈ Sbs,+(M0).
(5) a2 ∈ M3 and tp(a2, M1, M3) does not fork over M0.

Step a: We choose models N0, N1, N3 ∈ Kλ which satisfy 6–12 where:

(6) n ∈ {0,1,3} ⇒ Nn � Mn and N0 � N1 � N3.
(7) tp(a2, M1, M3) does not fork over N0.
(8) tp(a1, M0, M3) does not fork over N0.
(9) a1 ∈ N1.

(10) a2 ∈ N3.
(11) N̂F(N0, N1, M0, M1).
(12) N̂F(N1, N3, M1, M3).

(Why is it possible? By 2, there are representations 〈N0,α: α < λ+〉, 〈N1,α: α < λ+〉, 〈N∗1,α: α < λ+〉, 〈N3,α: α < λ+〉 of
M0, M1, M1, M3, respectively, such that: α < λ+ ⇒ NF(N0,α, N1,α, N0,α+1, N1,α+1), NF(N∗1,α, N3,α, N∗1,α+1, N3,α+1). Let E be
a club of λ+ such that α ∈ E ⇒ N1,α =N ∗

1,α . Choose α ∈ E big enough such that 7, 8, 9, 10 will satisfied for N0 = N0,α

N1 = N1,α , N3 = N3,α .)

Step b: [We use the symmetry axiom.] By 6, 8 we have:

(13) tp(a1, N0, N3) ∈ Sbs(N0).

By 6, 7 we have:

(14) tp(a2, N1, N3) does not fork over N0.

Now by Definition 2.1.1.3.e (symmetry) there are N∗2, N∗4 ∈ Kλ which satisfy 15–18:

(15) N0 � N∗2 � N∗4 .
(16) N3 � N∗4 .
(17) a2 ∈ N∗2 .
(18) tp(a1, N∗, N∗) does not fork over N0.
2 4
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Step c: [Move everything to K sat .] We choose f which satisfies 19, 20:

(19) f is an injection, dom( f )= N∗4 and f � N3 is the identity.
(20) f [N∗4] ∩M3 = N3.

Define N4 := f [N∗4], N2 := f [N∗2]. By the existence proposition of the ≺+
λ+ -extensions (Proposition 7.1.12.b), there is M4 ∈ Kλ

which satisfies 21, 22:

(21) N̂F(N3, N4, M3, M4).
(22) M3 ≺+λ+ M4.

By 20 (mainly) we know:

(23) N2 ∩M0 = N0.

(Why? By 15 and the definitions of f , N2, we have N0 � N2. By 6, N0 � M0. Let x ∈ N2∩M0. By 2, 15 x ∈ N4∩M3. So by 20,
x ∈ N3. So x ∈ N3 ∩M1. Hence by 12, x ∈ N1. So x ∈ N1 ∩M0. Hence by 11, we have x ∈ N0.) So by the existence proposition
of N̂F (Proposition 6.1.3.c), there is M2 ∈ K sat such that:

(24) N̂F(N0, N2, M0, M2).

Without loss of generality, N4 ∩M2 = N2 as M0 ∩ N4 = N0. By Proposition 7.1.12.b there is M6 ∈ K sat which satisfies 25, 26:

(25) M2 ≺+λ+ M6.
(26) N̂F(N2, N4, M2, M6).

Step d: We will prove 27, 28:

(27) tp(a1, M2, M6) does not fork over N0.
(28) There is an isomorphism g : M6 → M4 over M0 ∪ N2.

Then we will conclude:

(29) tp(a1, g[M2], M4) does not fork over M0.

By 25, Proposition 7.1.10.c and 24 we have:

(30) M0 ≺+λ+ M6.

By 24, 25 and Theorem 6.1.3.b (monotonicity):

(31) NF(N0, N2, M0, M6).

By 24, 26, 28 and the transitivity of the relation N̂F , we have:

(32) NF(N0, N2, M0, M4).

By 2, 22 and Proposition 7.1.10.c:

(33) M0 ≺+λ+ M4.

By 30–33 and Theorem 7.1.13.c, we know 28. By 26, and Theorem 6.1.3.e (respecting the frame):

(34) tp(a1, M2, M6) does not fork over N2. By 18 (and 12, 9, 19):
(35) tp(a1, N2, N4) does not fork over N0. By 26 N4 � M6, so by Theorem 2.6.8.3 (the transitivity of the non-forking rela-

tion), we have:
(27) tp(a1, M2, M6) does not fork over N0.

Step e: It remains to prove
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(36) a2 ∈ g[M2]. By 28, g is an isomorphism over N2, so it is sufficient to prove a2 ∈ N2. By 17 a2 ∈ N∗2 . So by 10, 19
a2 ∈ N2. �

By the following proposition, s+ satisfies extension in the sense of Definition 2.1.1.3.f.

Proposition 10.1.13.

(1) If N � M ∈ K sat , p ∈ Sbs(N), N ∈ Kλ , then there is q ∈ Sbs,+(M) such that q � N = p and q does not fork over N.
(2) If {M0, M1} ⊆ K sat , M0 �NF

λ+ M1 , p ∈ Sbs,+(M0), then there is an extension of p to Sbs,+(M1).

Proof. (1) Let a, N1 be such that tp(a, N, N1)= p. By Theorem 6.1.3.c, without loss of generality, there is a model M1 such
that N̂F(N, N1, M, M1). By Theorem 6.1.3.e, q := tp(a, M, M1) does not fork over N .

(2) By the definition of Sbs,+ , there is a model N ∈ Kλ such that N � M0 and p does not fork over N . By item 1, there is
q ∈ Sbs,+(M1) which does not fork over N , and q � N = p � N . q does not fork over M0 as it does not fork over N . So it is
sufficient to prove that q0 := q � M0 = p. By Theorem 2.6.8.2 (monotonicity), q0 does not fork over N . q0 � N = q � N = p � N .
Hence by Corollary 7.1.17.c (tameness) p = q0. �

This completes the proof of Theorem 10.1.9. �
11. Conclusions

Definition 11.0.14. Let λ be a cardinal and let n be a natural number. We define λ+n as the n-th cardinal after λ: λ+0 = λ

and λ+(n+1) is the successor cardinal of λ+n .

11.1. Proof of the main theorem

Now we can prove Theorem 1.0.1:

Theorem 11.1.1. Suppose:

(1) s= (K ,�, Sbs,
⋃

) is a semi-good λ-frame with conjugation.
(2) K 3,uq is dense with respect to �bs.
(3) I(λ+2, K ) < 2λ+2

.

Then

(1) There is a good λ+-frame s+ = ((K sat,�NF
λ+� K sat)up, Sbs,+,

+⋃
), such that K sat ⊆ Kλ+ and the relation �NF

λ+� K sat is included in
the relation �� K sat .

(2) s+ satisfies the conjugation property.
(3) There is a model in K of cardinality λ+2 .
(4) There is a model in K of cardinality λ+3 .

A reader might wonder: does this really work with no assumption on the number of models in K of cardinality λ+?
So how do you get amalgamation (in Kλ)?

The point is that we assume amalgamation implicitly, it is hidden in the definition of a semi-good frame.

Proof. (1) K 3,uq is dense with respect to �bs . s satisfies the conjugation property, so by Proposition 4.1.12, K 3,uq satisfies
the existence property. By clause 3 of our assumption, I(λ+2, K ) < 2λ+2

. Hence by Theorem 7.1.3, (K sat,�NF
λ+� K sat) satisfies

smoothness, i.e., s is successful (Definition 10.1.1). So Hypothesis 10.1.2 is satisfied. Therefore by Theorem 10.1.9, s+ is a
good λ+-frame. Obviously K sat ⊆ Kλ+ and �NF

λ+ is included in the relation �� Kλ+ .

(2) Why does s+ have conjugation? Suppose M0 �NF
λ+ M1, {M0, M1} ⊆ K sat and p ∈ Sbs,+(M1) does not fork over M0.

By the definition of
+⋃

, there is N ∈ Kλ such that N � M0 and p does not fork over N .
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p � M0 f (p � M0)= p

M0
id
f

M1

N

id

By Theorem 1.0.32.a (the uniqueness of the saturated model), there is an isomorphism f : M0 → M1 over N . By The-
orem 2.6.8.2 (monotonicity), p � M0 does not fork over N . So f (p � M0) does not fork over N . But also p does not
fork over N and f (p � M0) � N = (p � M0) � N = p � N . [Why do we have the first equality? There are M+

0 , f +,a such
that p � M0 = tp(a, M0, M+

0 ) and f ⊆ f + , dom( f +) = M+
0 . So (p � M0) � N = tp(a, N, M+

0 ) = tp( f +(a), N, f +[M+
0 ]) =

tp( f +(a), M1, f +[M+
0 ]) � N = f (p � M0) � N .] By Proposition 10.1.11.1, s+ satisfies uniqueness in the sense of Defini-

tion 2.1.1.3.d. So f (p � M0)= p.
(3) By Proposition 3.1.9.2.
(4) Substitute s+ instead of s in Proposition 3.1.9.2. �
Now we want to present a conjecture that motivates the hypothesis that K 3,uq is dense with respect to �bs . In order to

state the conjecture, we have to give the following definitions.
First we define the ideal of weak diamond. It was firstly defined in [5]. An introduction to the weak diamond appear in

Appendix C of [1].

Definition 11.1.2. Let λ be an infinite cardinal. We define WDmId(λ) := {A ⊆ λ: for some F :<λ λ→ 2 for every c : A → 2
for some η : λ→ λ the set {δ ∈ A: F (η � δ)= c(δ)} is not stationery}.

Definition 11.1.3. Let μ be a cardinal, λ be a regular uncountable cardinal and I a normal ideal on λ. I is said to be not
saturated in μ when: There is a sequence 〈Ai: i < μ〉 such that Ai ⊆ λ, Ai /∈ I for i < μ and Ai ∩ A j ∈ I for i �= j ∈μ.

In the last chapter of [17], Shelah almost proved the following conjecture for good frames. In [9] we did more. The pat-
tern of the proof for this conjecture but with syntactic types is in [18] and Chapter 23 of [1].

Conjecture 11.1.4. Let s be a semi-good λ-frame. Assume that 2λ < 2λ+ < 2λ+2
and WDmId(λ+) is not saturated in λ+ . If K 3,uq

s is
not dense with respect to �bs , then I(λ+2, K )= 2λ+2

.

In the following theorem, we replace the assumption that K 3,uq is dense with respect to �bs (that appear in Theo-
rem 11.1.1), by assumptions that imply that K 3,uq is dense with respect to �bs . This theorem is the inductive step for
Corollary 11.1.6.

Theorem 11.1.5. Suppose:

(1) s= (K ,�, Sbs,
⋃

) is a semi-good λ-frame with conjugation.

(2) I(λ+2, K ) < 2λ+2
.

(3) 2λ < 2λ+ < 2λ+2
, and WDmId(λ+) is not saturated in λ+2 .

(4) Conjecture 11.1.4.

Then

(1) There is a good λ+-frame s+ = (K sat,�NF
λ+� K sat, Sbs,+,

+⋃
), such that K sat ⊆ Kλ+ and the relation �NF

λ+� K sat is included in the
relation �� K sat .

(2) s+ satisfies the conjugation property.
(3) There is a model in K of cardinality λ+2 .
(4) There is a model in K of cardinality λ+3 .

Proof. By Assumptions 2, 3 and Conjecture 11.1.4, K 3,uq is dense with respect to �bs . Now use Theorem 11.1.1. �
Corollary 11.1.6. Suppose:

(1) n < ω.
(2) s= (K ,�, Sbs,

⋃
) is a semi-good λ-frame with conjugation.
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(3) m < n⇒ I(λ+(2+m), K ) < 2λ+(2+m)
.

(4) 2λ+m
< 2λ+(m+1)

for every m < n+ 1 and WDmId(λ+1+m) is not saturated in λ+(2+m) for every m < n.
(5) Conjecture 11.1.4.

Then there is a good λ+n-frame sn =: ((K n,�n), Sbs,+n,
+n⋃

), such that:

(1) K n
λ+n ⊆ Kλ+n and the relation�n is included in the relation �k� K n.

(2) sn satisfies the conjugation property.
(3) There is a model in K n of cardinality λ+(2+n) .

Proof. By induction on n, using Theorem 11.1.5. �
Now we prove Theorem 1.0.2:

Theorem 11.1.7. Suppose:

(1) s= (K ,�, Sbs,
⋃

) is a semi-good λ-frame with conjugation.

(2) m < ω⇒ I(λ+(2+m), K ) < 2λ+(2+m)
.

(3) 2λ+m
< 2λ+m+1

and for every m < ω, WDmId(λ+1+m) is not saturated in λ+(2+m) .
(4) Conjecture 11.1.4.

Then there is a model in K n of cardinality λ+n for every n < ω.

Proof. By Corollary 11.1.6. �
12. Comparison with [17, II]

A reader who knows [17, II], might ask about the main problems in doing this work. As in [17, II], there is a wide use
of brimmed extensions (i.e., using stability); we had to find alternatives.

First the relation NF is defined in [17, II] using brimness, so we found a natural definition (maybe an easier one) which
is equivalent to the definition in [17, II], but not using brimness.

Another problem was proving conjugation (see Definition 2.5.5). But in the main examples there is conjugation, so it is
reasonable to assume conjugation.

Another problem was to find a relation ≺+
λ+ on K sat which satisfies the required properties (see the discussion before

Definition 7.1.4). [17, II] essentially uses brimness. But as the needed relation is on models of cardinality λ+ , we can find
such a relation, using just almost stability.
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