APPENDIX

On a Question of Grinblat

Saharon Shelah^{1,2}

We prove the consistency of: there is a \varkappa -complete ideal on \varkappa for some uncountable $\varkappa < 2^{\aleph_0}$ such that the Boolean algebra $\mathcal{P}(\varkappa)/I$ is σ -centered and there are (uncountable) Q-sets of reals.

In set theoretic language, Grinblat has been asking for some time

A.1. PROBLEM. Is it consistent with ZFC that:

- (a) there is an \aleph_1 -complete ideal I on some $\varkappa < 2^{\aleph_0}$ such that $\mathcal{P}(\varkappa)/I$ is σ -centered (see below, and also Section 6.1 of this monograph)?
- (b) there is a Q-set?

We answer positively.

REMARK. Of course, $\alpha < \varkappa \Rightarrow \{\alpha\} \in I$.

A.2. CLAIM. Assume that $\varkappa < \chi = \chi^{\varkappa}$ and \varkappa is measurable. Then for some c.c.c. forcing notion \mathbb{P} of cardinality χ we have in $\mathbb{V}^{\mathbb{P}}$:

- (i) $2^{\aleph_0} = \chi;$
- (ii) $MA_{<\varkappa,<cf(\chi)}(\sigma\text{-centered})$ holds (i.e., MA for σ -centered forcing notions of cardinality $<\varkappa$ and $< cf(\chi)$ dense open subsets); hence
- (ii)⁻ every uncountable set of reals of cardinality $< \varkappa$ is a Q-set;
- (iii) assume D is a normal ultrafilter on \varkappa and I is the dual ideal. The Boolean algebra $\mathcal{P}(\varkappa)/I$ is σ -centered, i.e., $\mathcal{P}(\varkappa)\backslash I^{\mathbf{V}^{\mathbf{P}}}$ is the union of countably many filters where

$$I^{\mathbf{V}^{\mathbf{P}}} = \{A \in \mathbf{V}^{\mathbf{P}} : A \subseteq \varkappa \text{ and } A \text{ is included in some member of } I\};$$

note that $I^{\mathbf{V}^{\mathbf{P}}}$ is a normal ideal on \varkappa .

A.3. REMARK. Why "hence (ii)⁻" in (ii)? Because of the following result.

¹Institute of Mathematics, The Hebrew University, Jerusalem, Israel, and Rutgers University, Department of Mathematics, New Brunswick, New Jersey, USA.

 $^{^{2}}$ I would like to thank Alice Leonhardt for the beautiful typing.

A.4. CLAIM. For $X \subseteq Y \subseteq {}^{\omega}2$ the natural forcing $\mathbb{Q} = \mathbb{Q}_{X,Y}$ (defined below) satisfies

- (i) it adds subtrees $T_n \subseteq {}^{\omega>2}$ for $n < \omega$ such that $\cup_{n < \omega} \lim(T_n) \cap Y = X$;
- (ii) \mathbb{Q} is σ -centered of cardinality $\leq |Y| + \aleph_0$;
- (iii) if we can find a directed $G \subseteq \mathbb{Q}$ intersecting $|Y| + \aleph_0$ dense subsets $\mathcal{J}_{\eta,n}^{\ell}$ $(\eta \in Y \setminus X)$, \mathcal{J}_m $(m < \omega)$, I_η (for $\eta \in X$) (defined below), then there is $\langle T_n : n < \omega \rangle$ as above.

A.5. DEFINITION. 1) For $X \subseteq Y \subseteq {}^{\omega}2$ let $\mathbb{Q} = \mathbb{Q}_{X,Y}$ be defined as follows: (A)

 $\begin{aligned} \mathbb{Q} &= \left\{ p = (\bar{t}, \bar{u}) : \text{for some } n = n(p) < \omega \text{ we have:} \\ & (a) \quad \bar{t} = \langle t_{\ell} : \ell < n \rangle, \text{ each } t_{\ell} \text{ has the form } T \cap {}^{m_{\ell}(p) \geq 2}, \\ & T \text{ a subtree}^3 \text{ of } {}^{\omega > 2} \text{ with } m_{\ell}(p) < \omega, \\ & (b) \quad \bar{u} = \langle u_{\ell} : \ell < n(p) \rangle, u_{\ell} \subseteq X \text{ is finite} \\ & (c) \quad \text{if } \ell < n(p), n \in u_{\ell}, \text{ then } \eta \upharpoonright m_{\ell}(p) \in t_{\ell} \right\}. \end{aligned}$

(B) The order is natural: $p \leq q$ iff $\{n(p) \leq n(q) \text{ and } \bigwedge_{\ell < n(p)} [t_{\ell}^p \subseteq t_{\ell}^q \text{ and } m_{\ell}(p) \leq m_{\ell}(q) \text{ and } t_{\ell}^p = t_{\ell}^q \cap m_{\ell}(p) \geq 2]$ and $\bigwedge_{\ell < n(p)} u_{\ell}^p \subseteq u_{\ell}^q\}$.

2) For $\eta \in Y \setminus X$ and $m < \omega$ let $\mathcal{J}_m = \{p \in \mathbb{Q} : m < n(p) \text{ and } \ell < m \Rightarrow m \leq m_{\ell}(p)\}$ and $\mathcal{I}_{\eta}^{\ell} = \{p \in \mathbb{Q} : \ell < n(p) \text{ and } \eta \upharpoonright m_{\ell}(p) \notin t_{\ell}^{p}\}$. For $\eta \in X$ let \mathcal{I}_{η} be $\{p \in \mathbb{Q} : \eta \in u_{\ell}^{p} \text{ for some } \ell < n(p)\}$. Clearly, these sets are dense and open.

PROOF OF A.4. Let $\mathcal{I}_{\ell}[G] = \bigcup \{t_{\ell}^p : p \in G\}$. So any directed $G \subseteq \mathbb{Q}$ meeting all the $\mathcal{I}_{\eta}^{\ell}$ (for $\eta \in Y \setminus X$), I_{η} (for $\eta \in X$), and $\mathcal{J}_m(m < \omega)$ gives $\mathcal{I}_{\ell}[G]$ as required. \Box

PROOF OF A.2. Let $\mathbb{P} = \mathbb{P}_{\chi}$, where $\overline{\mathbb{Q}} = \langle \mathbb{P}_i, \mathbb{Q}_j : i \leq \chi, j < \chi \rangle$, be an FS iteration such that in $\mathbb{V}^{\mathbb{P}_i}, \mathbb{Q}_j$ is a σ -centered forcing notion of cardinality $\langle \varkappa$ and its set of elements is an ordinal $\langle \varkappa$ (not just a \mathbb{P}_j -name of such an ordinal), and any such forcing notion appears unboundedly often even χ times, more exactly, if $i_0 < \chi$, \mathbb{Q} is a \mathbb{P}_{i_0} -name of a forcing notion with a set of elements (forced to be) $\subset \alpha_{\mathbb{Q}} < \varkappa$, then for χ many (hence unboundedly many) ordinals $j \in (i, \chi)$ we have: $\| \cdot \mathbb{P}_j$ "if \mathbb{Q} is σ -centered, then $\mathbb{Q} \cong \mathbb{Q}_j$ ". Also as usual, $\mathbb{P}_i \subseteq \mathcal{H}_{<\mathbb{N}_1}(\varkappa + i)$, i.e., the members are sets which are hereditarily countable over the set of ordinals $< \varkappa + i$ (see [S4, Ch. III] or just use $\mathbb{P}_{1,i}$ as below).

As each \mathbb{Q}_j is σ -center (in $\mathbb{V}^{\mathbb{P}_j}$) there is $\overline{f} = \langle f_j : j < \chi \rangle$ such that $\Vdash_{\mathbb{P}_j} "f_j$ is a function from \mathbb{Q}_j to ω such that each $\{p \in \mathbb{Q}_j : f_j(p) = n\}$ is directed". We can explicate further. Letting the universe of Q_i be α_i for any $i < \chi$ and $\alpha, \beta < \alpha_i$ let $\langle g_{\alpha,\beta,n}^i : n < \omega \rangle$ be a maximal antichain of $\mathbb{P}_{1,i}$ such that $g_{\alpha,\beta}^i \Vdash_{\mathbb{P}_i} "\alpha \leq_{\mathbb{Q}_i} \beta$

248

 $\begin{array}{l} \text{iff } \mathbf{t}^{i}_{\alpha,\beta,n} = \text{truth". So } \left\langle \left\langle \left(t^{i}_{\alpha,\beta,n}, g^{i}_{\alpha,\beta,n}\right) : n < \omega, \alpha, \beta < \alpha_{i} \right\rangle : i < \chi \right\rangle \text{ gives all the information on } \bar{\mathbb{Q}}. \end{array}$

Therefore $\mathbb{P}_{1,i} =: \{ p \in \mathbb{P}_i : \text{if } j \in \text{Dom}(p), \text{ then } p \upharpoonright j \text{ forces a value to } f_j(p(j))$ and a value to $p(j) \}$ is a dense subset of \mathbb{P}_i ; recall that the set of members of \mathbb{Q}_j

is an ordinal $< \varkappa$. Now clearly clauses (i) and (ii) in Claim A.2 hold in $\mathbf{V}^{\mathbb{P}}$. As D is a normal ultrafilter on \varkappa there is a transitive class M such that $M^{\varkappa} \subseteq M$ and there is an elementary embedding \mathbf{j} from \mathbf{V} to M with critical ordinal \varkappa such that $D = \{A : A \in \mathbf{V}, A \subseteq \varkappa$ and $\varkappa \in \mathbf{j}(A)\}$. Let $\mathbf{j}(\overline{\mathbb{Q}})$ be $\overline{\mathbb{Q}}' = \langle \mathbb{P}'_i, \mathbb{Q}'_j : i \leq \mathbf{j}(\varkappa), j < \varepsilon \rangle$

 $\mathbf{j}(\chi)\rangle$, and let $\bar{f}'_{\widetilde{\mathcal{L}}} = \mathbf{j}(\bar{f}') = \langle f'_{j} : j < \mathbf{j}(\varkappa) \rangle$; so M "thinks" that $(\bar{\mathbb{Q}}', \bar{f}')$ satisfies all

the properties listed above, hence in V it satisfies all of those properties replacing \varkappa, χ by $\mathbf{j}(\varkappa), \mathbf{j}(\chi)$.

Let $\mathbb{P}^* = {\mathbf{j}(p) : p \in \mathbb{P}'_{\chi}}$; so it is well known that $\mathbb{P}^* < \mathbb{P}'_{\mathbf{j}(\chi)}, \mathbb{P}^*$ is isomorphic to \mathbb{P}_{χ} , all those forcing notions satisfy the c.c.c., and (some complete subalgebra of) the completion of the Boolean algebra corresponding to $\mathbb{P}'_{\mathbf{j}(\chi)}/\mathbb{P}^*$ is isomorphic to $\mathcal{P}(\varkappa)/I^{\mathbf{V}^{\mathbf{P}}}$. Therefore it is enough to prove that $\Vdash_{P^*} \mathbb{P}'_{\mathbf{j}(\chi)}/\mathbb{P}^*$ is σ -centered" (in $\mathbb{V}^{\mathbb{P}^*}$, which is the same as $\mathbb{V}^{\mathbb{P}_{\chi}}$). Note also that $\mathbb{P}'_{\mathbf{j}(\chi)}$, hence $\mathbb{P}'_{\mathbf{j}(\chi)}/\mathbb{P}^*$, has cardinality $\leq |\mathbb{P}_{1,\chi}|^{\varkappa} = \chi^{\varkappa} = \chi$.

Now the point is that we shall prove below that

 \boxtimes we can reorder the iteration $\overline{\mathbb{Q}}'$: first do $\langle \mathbb{Q}_{\mathbf{j}(j)} : j < \chi \rangle$ and then the rest, and in this reordering, each \mathbb{Q}_j is still σ -centered and $\overline{\mathbb{Q}}'$ is FS iteration.

Note first that proving \boxtimes suffices since

- (a) the limit of FS iteration of σ -centered forcing notion each of cardinality $\leq 2^{\aleph_0}$ and of length $< (2^{\aleph_0})^+$ (in $\mathbf{V}^{\mathbb{P}_{1,\chi}}!$) is σ -centered;
- (b) $\mathbb{P}'_{i(\varkappa)}/\mathbb{P}^*$ is in the universe $\mathbf{V}^{\mathbb{P}^*}$, the limit of such iteration.

They are easy. Second, this reordering is possible. [Why? The set of elements of \mathbb{Q}_j is $\alpha_{\mathbb{Q}_j}$, $\alpha_{\mathbb{Q}_j}$

is a \mathbb{P}'_{j} -name of an ordinal $< \varkappa$, and \mathbb{P}'_{j} satisfies the c.c.c.; hence for some $\alpha_{j}^{*} < \varkappa$ we have $\Vdash_{P_{1,j}^{*}} ``\alpha_{\mathbb{Q}_{j}}^{*} \leq \alpha_{j}^{*}$ " so the quasiorder \mathbb{Q}_{j} is a subset of $\alpha_{j}^{*} \times \alpha_{j}^{*}$. For any $\beta, \gamma < \alpha^{*}$, there is a maximal antichain $\mathcal{I}_{j,\beta,\gamma}$ of $\mathbb{P}_{1,j}^{*}$ of conditions forcing $``\mathbb{Q}_{j} \models \beta \leq \gamma$, so $\beta \in \mathbb{Q}_{j}, \gamma \in \mathbb{Q}_{j}$ " or forcing its negation. We choose $\overline{\mathcal{I}} = \langle \mathcal{I}_{j,\beta,\gamma} : j < \chi, \beta, \gamma < \alpha_{j}^{*} \rangle$. Let $A_{j} = \bigcup_{\beta,\gamma < \alpha_{j}^{*}} \bigcup_{p \in \mathcal{I}_{j,\beta,\gamma}} \operatorname{Dom}(p)$, so $|A_{j}| < \varkappa$; all this for every $j < \chi$. Let $A \subseteq \chi$ be called $\overline{\mathbb{Q}}$ -closed if $(\forall j \in A)(A_{j} \subseteq A)$ and clearly for a permutation π of χ , changing the order of the iteration to $Q_{\pi(0)}, Q_{\pi(1)}, \ldots$ is OK provided that $i \in A_{j} \Rightarrow \pi(i) \in \pi(j)$. Now in M we can compute $\mathbf{j}(\overline{\mathcal{I}})$, hence $\langle A_{i}^{M} : i < \mathbf{j}(\chi) \rangle$; now easily $A_{\mathbf{j}(j)}^{M} = \{\mathbf{j}(i) : i \in A_{j}\}$ as $|A_{j}| < \varkappa$. Now in \mathbf{V} all the relevant properties of $\overline{\mathbb{Q}}'$ are preserved. In \mathbf{V} let $A = \{\mathbf{j}(i) : i < \chi\} \subseteq j(\chi)$, which is $\overline{\mathbb{Q}}'$ -closed by the form of $A_{\mathbf{j}(i)}^{M}$. Hence the reordering suggested above $(\pi(\mathbf{j}(i)) = i$ for $i \in A$ and

 $\pi(j) = \chi + \operatorname{otp}\{\varepsilon : \varepsilon < i, \varepsilon \notin A\})$ is OK.]

So we are done.

250

A.6. REMARKS. 1) If $\varkappa < \lambda = cf(\lambda) \leq \varkappa$ we can even get $MA_{<\varkappa,<\lambda}$ in A.2; just use iteration of length $\chi \times \lambda$.

2) If *D* is a normal ultrafilter on $[\theta]^{<\kappa}$, to which $\mathcal{A} = \{A_{\alpha} : \alpha < \theta\}$ belongs, $A_{\alpha} \in [\alpha]^{<\kappa}$, then in $\mathbb{V}^{\mathbb{P}}$, *D* generates a normal filter *D'* with $\mathcal{P}(\mathcal{A})/D$ σ -centered.