
APPENDIX

On a Question of Grinblat

Saharon Shelah1,2

We prove the consistency of: there is a x-complete ideal on x  for some un
countable x  < 2**° such that the Boolean algebra V(x)/I  is cr-centered and there 
are (uncountable) Q-sets of reals.

In set theoretic language, Grinblat has been asking for some time

A . l .  Problem. Is it consistent with ZFC that:
(a) there is an Ni-complete ideal I  on some x  <  2**° such that V(x)/I  is a- 

centered (see below, and also Section 6.1 of this monograph)?
(b) there is a Q-set?

We answer positively.

Remark. Of course, a < x  => {a }  e  I.

A.2. Claim. Assume that x  < x  =  X* and *  *s measurable.
Then for some c.c.c. forcing notion P of cardinality x  we have in V p:

(i) 2*0 =x;
(ii) MA<><j<cf(x)(a-centered) holds (i.e., MA for a-centered forcing notions of 

cardinality < x  and < cf(x) dense open subsets); hence
(ii) “  every uncountable set of reals of cardinality < x  is a Q-set;
(iii) assume D is a normal ultrafilter on x  and I  is the dual ideal. The Boolean 

algebra V(x)/I is a-centered, i.e., /P {x)\Iv  is the union of countably many 
filters where

JvP =  {A  G V p : A C x  and A is included in some member of / } ;  

note that Iv * is a normal ideal on x.

A.3. Remark. Why “hence (ii)“ ” in (ii)?
Because of the following result.
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A .4 . Claim . For X  C Y  C " 2  the natural forcing Q =  Qx,y (defined below) 
satisfies

(i) it adds subtrees Tn C w>2 for n < u such that Un<u; lim(Tn) fl Y  =  X;

(ii) Q is a-centered of cardinality < \Y\ +  No;
(iii) if we can find a directed G C Q  intersecting |y| +  No dense subsets J *n (rj G 

Y\X), Jm (m <  u), In (for rj G X)  (defined below)} then there is (Tn : n < 
oj) as above.

A.5. Definition. 1) For X  C Y  C w2 let Q =  Qx.y be defined as follows:
(A)

Q — jp  — (?,v) ' for some n =  n(p) < uj we have:

(a) t =  (te : £ < ti), each ti has the form T  fl m*(p)-2 ,

T a subtree3 of w>2 with me(p) <
(b) u =  (ue : £ < n(p)),ue C X  is finite

(c) if £ <  7i(p), n G u*, then rj f m/(p) G

(B) The order is natural: p < g iff {n(p) < 71(g) and A£<n(p)[^? -  an<̂  
mt(p) < and tpe = t qe n m*(p)>2] and f\e<n(p) n\ C uqe}.

2) For 77 G and 771 < u let Jm =  {p G Q : m < 7i(p) and £ < m => m < 
me(p)} and 1* =  {p G Q : £ < n(p) and rj \ m*(p) £ tf}. For 77 G X  let l v be 
{p G Q : p € for some £ < 7i(p)}. Clearly, these sets are dense and open.

Proof of A.4. Let Te[G] =  (J{tf : p e G } .  So any directed G C Q meeting all

the X% (for rj G Y\X), Iv (for 77 G X ), and J m(ro <  u>) gives Te[G\ as required. □

Proof of A.2. Let P =  Px , where Q =  (P*,Qj * * <  X>J <  X>> be an FS

iteration such that in V p<, Qj is a a-centered forcing notion of cardinality < h and

its set of elements is an ordinal < h (not just a Pj-name of such an ordinal), and 
any such forcing notion appears unboundedly often even x  times, more exactly, if 
¿0 <  Q is a Pio-name of a forcing notion with a set of elements (forced to be)

C aq < then for x  many (hence unboundedly many) ordinals j  G (z, x) we have:

Ihp. “if Q is cr-centered, then Q =  Q j” . Also as usual, Pi C 7i<n1(x  +  z), i.e., the

members are sets which are hereditarily countable over the set of ordinals < x  +  i 
(see [S4, Ch. Ill] or just use P i}i as below).

As each Qj is a-center (in V p*) there is /  =  (fj : j  < x) such that I bp.. “/ j

is a function from Qj to 00 such that each {p G Qj : f j (p) =  ti} is directed” . We

can explicate further. Letting the universe of Qi be oli for any i < x  an<i a )P < ai

let (t&./j.n : n <  cj) be a maximal antichain of Pi,i such that g  ̂p Ihp. “a < q . /?
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3T  is nonempty, v < 77, and 77 G T  =>> v G T  and no 77 6 T  is <-maximal.
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iff =  truth” . So : n < U,a,p < <Xi) : i < x) gives all the
information on Q.

Therefore Pif* =: {p € P* : if j  G Dom(p), then p \ j  forces a value to fj(p(j))

and a value to p{j)}  is a dense subset of P*; recall that the set of members of Qj

is an ordinal < x. Now clearly clauses (i) and (ii) in Claim A.2 hold in V p. As D 
is a normal ultrafilter on x  there is a transitive class M  such that M * C  M  and 
there is an elementary embedding j  from V  to M  with critical ordinal x  such that 
D =  {A : A e V , A  C x  and x  G j (A)} .  Let j(Q ) be Q7 =  (P*,Q7- : % <  j ( x ) J  <

j(x))> and let f  =  j ( / ' )  =  (fj : j  <  j(x )) ; so M  “thinks” that (Q7, / 7) satisfies all

the properties listed above, hence in V  it satisfies all of those properties replacing 
^Xbyj(>*r),j(x).

Let P* =  {j(p) : p 6 P^}; so it is well known that P* < P j^ ,P *  is isomorphic 
to Px, all those forcing notions satisfy the c.c.c., and (some complete subalgebra 
of) the completion of the Boolean algebra corresponding to Pj(x)/P* is isomorphic
to V(x)/Iv? . Therefore it is enough to prove that lhp* “Pj(x)/P* is <7-centered” 
(in V p*, which is the same as V p*). Note also that ®J(x)’ hence Pi(x )/r - has 
cardinality < |Pi,x |x =  X* =  X-

Now the point is that we shall prove below that

13  we can reorder the iteration Q7: first do (Qjy) • j < x) an<i then the rest, 
and in this reordering, each Qj is still cr-centered and Q7 is FS iteration.

Note first that proving IHI suffices since

(a) the limit of FS iteration of cr-centered forcing notion each of cardinality 
< 2N° and of length < (2N°)+ (in V Pl»x!) is cr-centered;

<b> r n*  ̂ /P* is in the universe V IP*, the limit of such iteration.

They are easy.
Second, this reordering is possible. [Why? The set of elements of Qj is aq .,

is a P'-name of an ordinal < x,  and P7- satisfies the c.c.c.; hence for some < x  we 
have lhp* . “chq. < a^” so the quasiorder Qj is a subset of QijXaj. For any /3,7  < a*,

there is a maximal antichain of PJ^ of conditions forcing “Qj |= /? < 7 , so

/3 G Qj, 7 G Q j” or forcing its negation. We choose X =  (2j,/3,7 : j < X>/?>7 < aj)-

Let Aj =  U)3,7<aj Dom(p), so \Aj\ < x\ all this for every j  < x- Let
A C  x  be called Q-closed if (V j G A)(Aj  C A) and clearly for a permutation ir 
of x> changing the order of the iteration to Qn(o)>Qir(i)> • • • is OK provided that

i G Aj => 7r(i) G 7r(j). Now in M  we can compute j(J ), hence (A^1 : i < j (x)>;  
now easily A ^  =  {j(z) : i £ Aj}  as \Aj\ < x. Now in V  all the relevant properties 
of Q' are preserved. In V  let A =  {j(z) : i < x }  £  j(x)> which is Q'-closed by 
the form of A ^ y  Hence the reordering suggested above (7r(j(z)) =  i for i 6 A and 
ir(j) = x +  otp{e : e < i, e £ i4}) is OK.]

So we are done. □
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A.6. R e m a r k s . 1) If h < A =  cf(A) < x w e  can even get in A.2;
just use iteration of length \ x A.

2) If D is a normal ultrafilter on [0]<><r, to which A  =  {Aa : a < 6 } belongs, 
Aa E [a]<;*, then in V p, D generates a normal filter D7 with V(A)/D cr-centered.
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