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We first prove the consistency of: there is a universal graph of power R, <2%o=2%=R,. The

consistency of the non-existence of a universal graph of power X, is trivial. Add X, Cohen
generic reals. We then show that we can have 2% =R, < 2%, and get similar results for other
cardinals.

1. A universal graph in X, <2%

In this section we shall concentrate on the simplest case. Notice that a graph G
is just a pair (A, R), A aset, R a symmetric and reflexive two place relation on it.

1.1. Theorem. Suppose VE2% =X, an
‘F ower N in VP AR, _ 9K, =N amd t
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Proof. The proof is broken to stages.

1.2. Preliminary Forcing. For some forcing notion P, l I—Nz, P satisfying the
R,-c.c. is proper and in V, = V¥ there is a set A = {A, 10 € wy} of R, subsets of w,,
such that:

(a) A#BeU implies ANB is finite.
(b) Each A €9 is a stationary subset of w.
Note that RY-=R, for every a, (2%)Va =(2%)V +R,.

Proof. First we can force stationary B, < w; (¢ <w,) such that B, N Bg is counta-
ble for a # B (e.g. force Oy,). Next use a forcing of Baumgartner on (B, :a <w,):

(A) 1‘\ LUHUIUUH lb a llIllte set Ol al()ml(., L()l'l(llll()l'lh Wll[l no IﬂI'CC (,onlraulcung

(B) An atomic condition is:

(D [ie A, ] where ieB,,a <w, or
(1) A, NAz<w where w is finite, a# .
(C) Three atomic conditions are contradictory if they have the form ic A,,
icA. A ﬂAnwahPrP idw.

---_p, 2t 2
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1.3. General Description. We shall define a finite support iteration of forcing
notions saisfying the c.c.c. Q =(P,, Q, : a < ®,). Q, forces a graph (w;, R,), which
shall be a universal graph of power X;. We shall define the Q, by induction on «
(together with some auxilliary things), and will have to prove that it satisfies the

C.C.C.
In staoce \0\7 wr

1
11l Swags vy VYiia G vs Fs naints xw, OV

in V&, Q. will force an embeddlng f, of the graph (wy, R,) into the graph
(w4, Ry). It is known that we can take care that every P, -name of a graph on w,,
appears as (o, R,) for some a.<w,.

The problem is, of course, that the various f, may give contradicting demands
on (w;, Ry). In order to avoid this as much as possible we shall make the f,’s such

that for B <« (Rangf,)N(Rang fz) is finite. It is reasonable to demand that
“Rangf, < A.”.

1 have a D -name R 5o that! “len. R )i a oranh” and
I that I+ P, \©1, ;‘a, 1S a grapn’” and

1.4. The full inductive definition. We let

Qo={(w, r): w a finite subset of w,,

r a reflexive symmetric two-place relation on w}.

The order on Qq is: q; =g, iff q, is a submodel of g,.

Y o Frremmdiaa colalal fa ana l fanito 4
INOW 17 Wlll UC d LullbllUll Wlllbll LUL cacvii 1w DupPU L i

(P, Q,:a<7v), F(Q")is a P,-name of a graph (w,, R). Let A be a larg
regular cardinal.
Now for each a >0, we let (w;, R,)=F(Pg, Qg : B <a)), and we shall define
(N, i<wy), and Q,.
i

ret lat (N V“I(I\\ he an Inmcreacing
st et (N, 1i<w;) D€ an mcereasmng 1tinuou quen untab

elementary submodels of (H(A)Y~, €) such that

(¢
[¢]
=
o]
&
=

(Pg, Qg : B<a), {01, R,), {(Ag:B<wy b

(hence A, € N, (), and a + 1< U;<,, N, Note this is done in V,, s0 (N,;:i <w)€
V, and even ((Ng; i <@ :B=a)eV,

Note that & (i) N,;Nw, is always a limit ordinal and (&,(i):i<w,) is
increasing continuous. As A, is a stationary subset of wy, {i:i=&, (€A} is
stationary. So w.lo.g. £(i)eA, for every non-limit i<w, We let A,=
{€.(i+1):i<w,;} and note that AL e V,.

Now we come to the main point: defining Q, (in V5):

(A) A member of Q, will consist of finitely many atomic conditions (see B)
with no two of them explicitly contradictory (see (C)).

(B) There are two kinds of atomic conditions:

(D £.()=j where i<j,jeAl, and |A,N(, j)|<R, (or if you want, the

anence (o 0 1. 7). is a condition)
quence (g, Y, 1, 7, 18 a conqaiuon).

(Il) i¢ Rangef,.
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(C) We shall have to say when two atomic conditions are explicitly contradic-
tory; this occurs just in one of the following three cases:

(a) One-to-one: f,(i;)=j;, and f.(i,)=},

when i1 #i5j1=f O i1=iy 1 7 Ja
(B) Embedding: f.(i,))=j;, and £ (i)=j>

when  VEE“iR.i,=1jRoj,".
(v) Range: f.()=j and j¢Rangf,.

The order is inclusion.

Explanations. A, N (i, j) should be finite in order that Q, satisfies the c.c.c. Each
i <w; should have only countably many possible images. Why in (B)(I), je AL?
for reasons similar to those in the club method (see [1]).

1.5. Q, gives an embedding. We want to prove (in V<) that o “(ey, R,) is
embeddable into (w;, R;)”. We have a natural name for exemplifying this: f,
(defined by £, (i) =j iff [f, (i) = j] belongs to the generic subset of Q,). It is (forced
to be) an embedding by 1.4(C)(8). But we should still prove that for every i <w,,
Foo “ieDomf,”. This is equivalent to proving that for every q € Q, for some
i, qU{[f,. () =jT1te Q, (assuming q itself has no such member). By 1.4(B)(I) we
have countably many candidates:

B={jeAL:j>i (i,))NAL is finite}.

Now 1.4(C)(«) disqualifies finitely many of them: those j s.t. (3i; # D[f, (i) =j]le
g, and also 1.4(C)(«y) disqualifies finitely many j’s: those j s.t. [f¢ Rangf,]eq.
What about 1.4(C)(B)? As Be V, (as ALe V,, (N, :i<wy)e V,), by the defini-
tion of Q,, infinitely many j € B satisfy this so we finish the proof of 1.5.

Now the rest of the proof is dedicated to proving that Q, satisfies the c.c.c., or
what is equivalent, that P, satisfies the c.c.c. For this we shall derive more
detailed information on Q**! (using the fact that all Q;s, B<a, were defined in a
way similar to that of Q,).

1.6. Nice dense subsets of P, ,. Remember that

P; ={p:p a finite function with domain =g and p(y)
a P, -name of a member of Q,, for yeDom p}

(and for y¢ Dom p we let p(y)=§). Let

D0 —{p € P, :for each Y € Dom p, p(‘y) is an actual finite
B 8
set of atomic CODditiOHS}.

Note that not every function p with domain a finite subset of 8, p(y) a finite set
of atomic conditions of the forms mentioned in 1.4(B), is in D3, we need
p vyl “p(y)eQ,” for each y e Dom p.
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1.7. Definition. D} ={p:p is a finite function with domain =8 and for ye
Dom p, p(yy) satisfies the demand for p(y)eQ, in 1.4(A), (B), (C) except that
“there are no two atomic conditions in p(-y) which are explicitly contradictory by

1.4(C)(B)’}.
For pe D, y¢Dom p, let p(y) =§.
We define an order on Dg:

p=r iff for every v p(y)esr(y).

1.8. Fact. (1) D} is a dense subset of Pg.

(2) On DN P, the orders of Py and of D coincide.

(3) For pe D}, pe D} iff for every yeDomp and [f, (i) =j.], [f,(i)=j.] in
p(v)

p! ’Y“’_Py “U R,y iff j1Rof2”

(prove p | v P, by induction).
(4) If pe D, w<Dom p then p } we D§.

1.9. Fact. If p', p>e Dy, and for every yeDomp'UDom p?, p’(y)<p?(y) or
p’(Y)=p'(y), then p'vp?’eDy where (p'vp>)(y)=p'(v)Up(y) for vye
Dom p'UDom p>.

Now we continue with

1.10. Definition. For y<a, q€ Q,, and 6§ <w, we let, if y>0
a® ={[f,(i))=j1:[f,(i)) =jle q and for some & <w,, j <&, (e)=<8}
U{[j¢ Rang f,]:[j¢ Rang f,]€ q and for some & <w,, j <&, (e)=<8}
q®=q™ U{j¢Rang f,]:[j¢ Rang f,]€ q}
If y=0, q®=g®"=q |8, ie., if q=(w,r), then
g®'=(wns, r} (wns)).

1.11. Definition. (1) For peP,, and limit § <ew,, let p®® be a function with
domain Dom p and p®(y) = (p(y))?.
(2) We define p® similarly. We can make those definitions even for p e Dj.

1.12. Fact. (1) For any v >0 limit & and q € Q,, q"*'=§ or for some ¢, q'*' = g1,
(2) If pe DYy, e <w,, then (p%“ 1 [Ng.|)e Ng..
(3) If pe DY, 8 <w,, then p®'e D} and p® e D,
(4) p®l=p®=p (in Dy).
(5) If pe Dy, p<reD}, r=r®, ®l<p, then re D}.

1.13. Definition. Let D, ={p € D} :for every limit § <w,, p’'e D}.
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1.14. The Crucial Claim. D; is a dense subset of Ps (for B=<a+1).

Proof. We prove this by induction on B. For 8 =0 there is nothing to prove, the
case B is limit is trivial as we are dealing with a finite support iteration. Also the
case B =1 is clear (as Q, is so simple). Hence w.l.o.l. B=v+1, y>0.

So suppose p € P; and we shall find p’=p, p’€ Dg. First by Fact 1.8(1) there is
p1=p, pi € DY, second, by the induction hypothesis, there is re D,, r=p, | v. As
p;eDg, by 1.12(1), there are n, 0=8,<8,<---<8§,<w;, &8¢ ...,0,€
{&,(i): i <o} U{0} such that for every limit 8, for some [ <n, §=§, and pi(y)Pl=
pi(y)®). We now define by induction on I<n+1, r,e D, such that:

. 5 3 3, E)
() ro=rh.1=nr and "EH ”‘P~ ¢ pl(Y)[ JGQV .

If we succeed we shall finish to prove the main claim: p;vr,, is as required: for
each limit & choose [ as above (ie, 8=8, p,(v)=p,(¥)?), so

P2 ke, “py(v)* e @, but 2], <r?], (see end of 1.4), hence

2l ke, “p(n)P = pi(y)? e Q,”,

but r,., € D,, hence r'?!, € DY, hence r'2!, vp®’e D)., as required. So we have

proved 7, vp,eD, ..

So for proving the crucial claim we just have to do induction step in proving (*):
assume r, is as required and we shall define r,,,. This is the heart of the matter.
For | =0 there is nothing to prove as p,(y)'=@. So let >0.

Let & be such that & (e) =8, So ri®' 1 |N,..| belong to N, (see 1.12(2)) though
it does not necessarily belong to DS. Also p,((y)®*'eN,,. Let

I={reP,:reD,, and cither rlrp_‘“p,(y)® satisfies 1.4(C)(B)”
or rikp, “p(y)?] fail 1.4(C)(B)"}

Clearly I is a dense subset of P,, and also clearly e N, .. As P, satisfies the c.c.c.,
INN,, is a predense subset of P,. Hence there is r’e INN,,, compatible with r,
hence there is n,, € D,, n<rn,, and r’<r,,. By the definition of I, as r,<rn.,,
rl-“pi(v)®! satisfies 1.4(C)(B)”. Hence by 1.8(3) r’Ip “‘pi(y)*'e@,”, but

rP=< %1 so we finish.

1.15. Main Lemma. P_ ., satisfies the c.c.c.

Proof. Let p, e P, for i <w,, and for i# j, p,, p; are not compatible, and we shall
eventually derive a contradiction. Clearly we can replace {p; : i <w,) by (p!:i <<ew;)
if p/=p,, and by {(p,:i€ A) (if A Cw,, |A|=R,). We shall use this freely.

W.lo.g. for every i:

(@) pi€Dy.q.

(b) 0 Dom p,.

(c) If B#£yeDomp, je AzN A/, then j belongs to the universe of p;(0).

(d) If [j¢ Rang fyle p,(B) or [fs(e)=jle p,(B) for some B or &, then j belongs
to the universe of p,(0).
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(e) If [fs(e) =jle pi(B) and j, € A, € <j, <], then j; belongs to the universe of
p: (0).

(f) If j belongs to the universe of p;(0) and B eDomp, then [j¢Rang fzle
p:(B) or (38)([f¢3 (e)=jlep:(B)).

We can easily find i(*) <j(*) such that, for some §,
pg?j) = Dicwy» PE?E) I (Dom pi(*)) = Dio)-

By 1.9, pvpisaeDS,,. Let w={j:for some v,i,[f,(i)=jlepw(y)}, and
(w=8)u{d}={8(l):1<k}. So 8(1l) is increasing. 8(0)=38.

We shall define by induction on [ <k, r, such that:

(A) neDY,,, 1 is increasing, and 1 = p.).

(B) r,=rP0

© pE=r,

Clearly if we succeed, then 1, is = p; (., P (and r, € DO,y S P, 1), SO Picsy» Djw ATE
compatible, so we prove the c.c.c.

Case I. 1=0. We have already said that 8(0)=8, and pi(*)vp,[‘?ﬂ)eDgﬂ.

Case II. Defining for [ +1, assuming r, is defined (satisfying (A), (B), (C)) there
are finitely many B eDom p;., such that for some j [fs(j) =8(D] p;(B). Let
those B’s be 810> * > Bimay-1 and let ji,, be such that [fg (jim) = 8(1)]€ pjn(B).
Note that jy,, is unique (by 1.4(C)(B)), and j; ., <8(l). Let ¢4, (£,,,) = 8(]) (there is
a unique such g,,).

What are the requirements on r.,? By (C) we inherit some ‘soft’ demands:
atomic conditions of type II, and p;,(0)°*“*P but also hard ones: the
[fa...Gm) = 8(D)]. Our strategy will be as follows: we extend r, to r{ preserving it
‘below 8(1)’, so that we ‘know’

R, 1 {e:@Nfs,.(e) =TerD} U{jim}-

Now we add the ‘hard’ atomic conditions and corresponding condition to the
Q,-coordinate so that 1.4(C)(B) is satisfied, then we take care of the ‘soft’
demands.

Let 8(I) = &5 (e1,m)- So now we define by induction on m <m(l) a condition r, ,
such that:

(@) Ho=1, Fmi1 =N, and 1, € DG .

(B) =100

() fim+1 ! Bum forces the value of Ry | wy,, where

Wy =i 3(3]')([1'6[,,,,(1') =jlenmtUliim}-

(&) M P (Bums @+ 1) =141 ? [Bim» a +1).
For m =0, ro=r is as required. Suppose r,, is defined as required, m <m(l).
Let
L,.={pePy, :peDg,, p forces a value to Rg | Wi,

and either p=n,, | |[Ng . | or p has no

m.ElLm

extension satisfying this}.
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Clearly I,, is a dense subset of Py . Also I,,€Ng . . (as the relevant
parameters belong to it: wy,, as a finite set of ordinals <&(l) =&g (&1,.)). As Py,
satisfies the c.c.c. (as B, <a), I, " Np,_., . is a predense subset of Pg _, hence
there is p=p'mel, N Ng, .. Wwhich is compatible with r,: clearly p=
T | IN B[,mel_ml'

So p, r.m | Buw has a common upper bound, hence a common upper bound in
Dy, ., hence has one r{,,.,€Dg , (rin+)®>®'=1{ns1. Now Tomi1 2 iV P
is as required.

So rim@ is defined and we can define r.,: its domain is Domr,, U
{Bm:m< m(l)}-

For y>0, r . 1(v) = rma(Y) U pjeo(y

For y=0, r,,4(0) is a model extending r;,,q)(0), P (0)2* M), Its universe is
their union, and

(*) if m<m(l), [fBLm(i) =8(D]e pj(*)(Bl,m)

[fB.‘... (iy)=jile 1m ) (BLm)s
then ri (0)F/HL RS iff ripmeyHiiRg, I

)[S(H 1)1'

We should now only clarify why is this legitimate.

Point (). Why r,,(0) is well defined? I.e., a priory we may have two conflicting
demands on the truth value of j,R,j,. We have three sources of such demands:
N (0), Pin(®P¢* ), and (#). The first two do not contradict as r,,,,q,(0) = ri2%Q)
whereas p;.,(0)*“'c r(0) S ry ) (0). Also () cannot contradict r,,,,(0) as 1.
(0) =1, 1(0)*V1. So what about a contradiction between (*) and p;,,(0)"* 11
This is possible only if (with (*) notation) j, is in the universe of p;,(0)®0*"),
hence of p;.,(0)*"], by (d) also 8(I) belongs to the universe of p;(.,(0), so by (f)) as
P,['(Si)l)]grl,m(l)y h<é)= ‘EBLM(Sl,m)> clearly [fﬁm(il) =j11€ Pjn(Bim), SO no con-
tradictions arise.

We still have the possibility of a contradiction between two instances of (*). But
for m(1) # m(2), Ag,, ,NAg,., is included in the universe of p;.,(0) (by (c)), so
this is impossible too.

Point (ii). Why r.,(B) (B>0) satisfies 1.4(C)(a)? (one-to-oneness)? The only
problem possible is 8=, and for some j, [fa (im)=Jl€r ma, but as pi
satisfies (e) and (b) and p{?{'<r,,, this is impossible. (Note that for k,<k,,
necessarily 8, ¢ NB(_kzst; hence 7, (Bix) = n{Bii).)

Point (iii). Why n,,(B) (8> 0) satisfies 1.4(C)(B8)? All our constructions of 7,
r.; were done to satisfy this.

Point (iv). Why r,,,(B) (B> 0) satisfies 1.4(C)(-y)? Trivial.

Point (v). Why pR{*"V<rp . n. . =r3¢"D19 Trivial too.

2. Generalizations

In 2.1 we use a forcing of Baumgartner: there may be 2™ subsets of R, each of
power R, with finite intersection of any two. In 2.2 we prove a slight strengthen-
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ing of Baumgartner {5, 6.1]. In 2.4 we prove for any k = k=" we can have 2~
arbitrary large and there is a universal graph in every A e[k, 2%).

2.1. Theorem. (1) In 1.1 we can get such a model with 2%=R,, 2™ arbitrary.
(2) Really also any value for 2% is O.K.

Proof. Starting with V satisfying CH, 2™ arbitrary, the only difficult point in the
proof of 1.1 is that we have too many (2% which maybe >X,) graphs on ;.
However we do not need to explicitly force an embedding of any such graph into
(w1, Ry). It is enough if in each Vi (@ <w,) we can find X, such graphs (w,, R, )

34 an be embedded into one of them. and take care
(",’ <(J.}z) SO that any Other one ¢an oC SmMocQaed Ito one o1 tném, ana take care

that any such R, ., appear (up to isomorphism) among the Rg’s. Why is this
possible? In VF= 2% =R, hence there is an X;-saturated graph of power X,, say
(w,, RY). Clearly any graph of power <R, (in V) can be embedded into
(w>, R¥), hence into some (B, R* | B). So {(B, R¥ | B):w, <B<w,} is a list of
graphs of power R; as required.

(2) We use that, if P satisfies the c.c.c., then any set of ordinals in V¥ is a
subset of some set of ordinals in V with the same power. If cf(2%) =R, the

iteration will have length (2%)¥" X @, (ordinal multiplication).

2.2. Lemma. Suppose p >k are regular. Then we can define a forcing notion R,
and P-names A, (a <) such that
(@ p “A .

{b) Irp “for a# B, A, N Ag has power <k”.

(c) I+p “for any a, and any 8 <u of cofinality >k, {y<8:cfy=k,vycA.} is a
Stationary subset of 8.

(d) P is k-complete, |P\<<pu~=".

() If A <u is regular, \=* =X, then A" is not collapsed by P, moreover any set

VP f i To A€ o
! uUraLr

A -~ <) ta dwmniidad dva cnmens DR~ VP AL annaiinwe =)
ALV GiS O] pOwer <n i3 inciu

fsanTasdad 3y o R -~ UP £
iuucu 1r S UJ ‘,IUVVCI i

—
L= 4

Proof. We shall first define atomic conditions of various kinds:

Kind 0: iecA, (i<uw,a<w).

Kind A (k=sA=u): A,NAz<c W where W< is a set of power <A, or i € A,
So p is of kind A, 0<<A <A,, implies p is of kind A;.

Now for a set p of atomic conditions let p/A be the set of atomic conditions in p
which are of kind zero or kind A. Let for A;<<A,, p | (A1, A2) =p/A,—p/Aq.

Now we define the forcing notion:

P={p:p is a set of atomic conditions, |p/A| <A whenever k SA<p, A
regular, and p contains no three contradicting conditions}

where three atomic conditions are contradictory if they have the form i€ A,,

_ Yxys L ¥xXr

i€ Ay A, MA;, & W where ig W.
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The order on P is defined by:

p<=q iff p=qand [A,NAz<S W ]Jeq—p with
|W,|=k implies that W, includes
U{W:|W|=<|W|, and for some a,, B; [A,, N Az, < W]ep}

So now we shall prove that P satisfies the requirement. The P-name A, is of
course {i<u:[i€A,] belong to some condition in the generic set}.

Requirement a: |+p “A, < n”. Trivial.

Requirement b: For a# B <u, IFp “|A, NAg|<k”. It is enough to prove that
for any peP there is a set WeV of power <« and q, p<<qeP such that
qF“A ., NA; = W, Let W={i<p:the atomic conditions [ic€ A,] and [i € Ag]
belong to p}.

Now W has power <k, as the number of atomic conditions of the zero kind
which belong to p is <«. By the definition of P, g = pU{A, N Az = W} belongs
to p, and it is not hard to see that gl-“A, N Ag < W” (in fact, equality is forced).

Requirement ¢: Use the proof of (e) for A =k, in its notation, if 8 € Ny, then
letting i =sup(N, N &), clearly cf i=A, p*IF, “ieC is a club of 8” for every
CeN,, and p*=sp*U{licA BecP.

Requirement d: R is k-complete, and satisfies the (u<*)*-c.c., |P| < u~=*. Trivial.

Requirement e: This is the main point. We prove a kind of properness. Let x
be a large enough regular cardinal, <* a well-ordering of H(x). By (d) w.l.o.g.
A=k

Suppose peP, B a P-name, pitp “|B|<A, B<ord” so for some P-names of
ordinals B; (i<A), pltB<{B;:i<A}. Suppose {N;:i<<A) is an increasing sequ-
ence of elementary submodels of (H(x), €, <*) each of power A, (N;:j<i)eN,y,
and every subset of N; of power <A belongs, to N,. Lastly assume that B, B; € N,.
Let hy, h, be the <*-first pair of functions from A to A such that i# 0= (i) <i
and for every iy, i; <A, for some i <A, ho(i)=iy<i, h,(i) =i, <<i; so hg, hy € N,.
Let ((vi, g}, ry 1] <A) be the <*-first list of the triples (v, g, r)€ N,, ¥y a P-name of
an ordinal, q,re P, g=r and r=r/A.

Now we define by induction on i <A, conditions p;, g;, p!, such that

(A) p=po=qo, for j<i, p;<pj<p, and p;<q; and p/A = po/A.

(B) p»,a:€Niiy, pi=p U{A, NAgc INicilNord:a, Be N}

(C) For i>0, g, is the <*-first member of P satisfying:

(C1l) g =p! for j<i.

(C2) 1If there is q;, g, = pj for j<i,q' is =r for some r=q}:3), r isomorphic to
riB/A above gl and g; forces a value for yju(l), then g; is like that, q; € N, ;.

(D) p: is poU(q: I (A,]).

It is easy to see that this can be done.
Let p*=U;.. pi, and by (A), p<sp®cP. Let N, =J;~. N, clearly (e) follows
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from:

2.3. Fact. p* is (N,, P)-generic, i.e., for every P-name B of an ordinal which
belongs to N,, p*iFp “Be N,”.

Proof. If not, for some q*, p*=q*eP, q*I+“B=B"" and B*¢N,. Let r" e N, be
isomorphic to q*/A over (¢*NN,) € gq*. So for some iy <A, r*, g*€N,, and

w.lo.g. BeN,, hence

B, q", r") = (i, qio, rio/A)  for some i; <A.

Now for some i > ig, iy, ho(i) = iy, h1(i) =1i,. Clearly by (C2), g;=q" and g;/A, q"/A
are isomorphic above q* (remember q* =qiv), as q* exemplified the hypothesis.
We shall prove that q*, g, are compatible thus deriving a contradiction (as
q: - “yiee N”).

Suppose the contradiction involves [e € A, ], [e € Ag], [A, N Az = W]. If e¢ N,,
then necessarily [e € A, ], [e € Ag] belong to q*, hence [A, NA; < W]e g, —qF¥,
hence |W|< A and «, 8 € N,, hence for some j,

[A. N Ag c|N;|Nord]e p; <p¥,

so we get a contradiction in g*. So ¢ € N,, hence the isomorphism from r to g*/A
maps £ to itself.

Suppose [A,NAz S Wleg —q*. If |W|=A, then [A,NAz;c W]eq <p <
p*=q*, contradiction, so |W|<A, hence [A, NA; = W]eg/A €N, but |g/A|<A,
hence g/A € N,, hence [A, N Az € W]eN,, hence o, BEN,, WeN,, W N,. As
g, a, BeN,

[ecAJeq* > [ecAleq  =q,
(e EAB]ECI* > [e EAa]eq+—C—Qi,

so the contradiction arises already in g;, contradiction. So [A, N Az = W]eg*.
Suppose a, B € N,, then again [ec A, ], [e € Agleq, hence [A, N Az W]e
q*—q; and €, o, B N1, hence [A, N Az S W]¢p,. If |W]=A, by the definition
of p! and of p/<gq®*, clearly |N;.,|N ord= W, so ¢ W and no contradiction
arises. So |W| <A, hence [A, N Ag = W]¢ N, and for some W', W NN, = WNN,

-and [A, NAz; € W'leq; (see (C2)), hence ¢ e W', but W' e N,, hence

“ [AeNAg<|N|Nu]ep* for some j.

If W< N,, then (as |W]<A) WeN,, hence [A, N Az < W]eq" < g, contradic-
tion. So W& N,, so [A, NA; < W]¢ p*, but by the definition of the p; for some
B<cN,, [A,NA; cBlep* and |B|<A, hence WNBeN,,|WNB|<A, so there
are

[A,.NAz;=B'],[A.NAg= Weg,

B'NW'=BNW and again we get a contradiction.
So {a, B} ¢ N,, on the other hand «, B¢ N, implies that all the three atomic
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conditions causing the contradiction are in g*. So w.l.o.g. a €N,, B¢ N,, hence
[A.NAg; = W], [e € Agleq*—q;, so necessarily [e € A, ]eq, —q*.

So there are 8,, W, such that [e € Ag ], [A, NAg, < W, ]€g;, and e¢ W;, so we
get a contradiction in g;.

2.4. Remark. (1) So if (in 2.2) VEGCH, then P does not collapse any cardinal,
bp “2<=p, for A<k:2*=A", for A>k: 2" =A"+pu”

(2) From the proof it is clear that the product of R with Easton forcing (see [2])
again does not collapse cardinals (if VEGCH), hence we get quite arbitrary
functions 2%- (X, regular).

(3) Does 2.2(e) hold for A = A= =cf A? We have not looked into the matter.

2.5. Theorem. Suppose VEGCH, « <A < p are regular, (V8 <A) 8= < A. Then for
some k-complete forcing notion P of power p,

kp <2 =u and 2* = A" +u for A =k, and there is a graph
(i, Ry) such that (A, Ry } A) is a universal graph.”

Proof. We repeat the proof of 1.1, with some changes which we explain below, in
particular everywhere ‘finite’ is replaced by ‘of power <«’.

1.2. We use here 2.2.

1.3. The iteration will be (<«)-support iteration of k-complete forcing notions
satisfying the «*-chain condition. In stage o we will have a pair (4, R,), R, a
P, -name of reflexive symmetric relation on .

1.4. In Qs definition {w|<<«x and (N,;:i<u,) is an increasing continuous
sequence of elementary submodels of (H(A)Y<, €), IN,.i|| = («x +]i])=*, « € N,; and
so ae N ;Ala|<|N[|=>ac N, also aeN,;.,,|a|<k > aeN,,.,. Again we
assume &,(i+1)e A, cf(&,(i+1))=«k: but now £ (i) =Min{é<u: &£ N, ;}

In {A) member of Q, has power <k and replace (B)(I) by: f,(i)=j where
i<j,je A!, and the order type of A, Nj is >«i but <k(i+1).

1.6. Note that D} is closed under directed union of <« conditions.

1.7, 1.13. Similarly for D, Ds.

1.14. (Crucial Lemma) In the induction there is a new case: limit ordinal of
cofinality <k (when k >N;) but then use k-completeness.

1.15. So we suppose (p;:i <k ") is a sequence of conditions in P, ;.

As maybe k*<p,, we can demand less on i(*)<<j(*): if BeDom p,u.,N
Dom p;.y, then p;.(B8) U p;w(B8) belongs to Dg. We let

w ={j :for some v, i[f, (i) = j] € ;e (V) U pi(¥)}

and let w ={8(l): I <k} where here k <« (so may be infinite), 8(1) increasing. The
induction hypothesis is now

(A) r,e D)., r, increasing,

B) ri ="
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(©) pP<y, and ptWl<
(D) p*e 1, where p*")~ {[j¢ Rang f,]: for some 6% a, j€ AL A} and

@i, 3)([f. (i) = 8] € piw(B) U pjy(B))
and

[Hi, 8)([fs = 8]le Pi(*)(B) U Pj(*)(B))
but j<8(l) and

@) (D) = j1€ pin(B) U Py (B}

In the definition by induction on [ <k, we have a new case: | limit and we let

(D a(1
U r,, U pla01y pla®i

(note that U, .« r,cD?2., trivially (as r, is increasing) and r(8)—Um<i . (B)
is empty).

The first case, | =0 is now trivial.

So we have to deal only with case II: [+ 1

If k> we have the following new problem. We cannot use downward
induction {8, :m<m()} as maybe m(l)=w. However if we can define by

induction on m<m(l), n,, =ri3%e DS, increasing, .1 | Bym forces a value

R, MHi:@De..()=ilernm}
Now 7,y is not as we want but r,,,q, forces a value of
RBl,m r {l : (HI)UBlm(l) = ]] € rl}-

Letting r{=r, r{ =r,,,q) and we can continue similarly to define r{, r3, and their
union serves the function served previously by 1., SO we shall ignore this point.
Another easy new point is the care for (D).
Now we come to a more serious problem: defining r,,,. If only one of

(3, m)([fal,m(i) =8(D]e pi(*)(Bl,m))9
i, m)([fa,. (1) = 8(DJ€ pjwy(Bim))

holds, this is just as in the proof of 1.14. However (as maybe «*<u) maybe
both hold. But the additional condition (D) solves this.

Now in addition to 1.15 we should prove that P; satisfies the «"-c.c. when
cf 8 <k, but the proof is similar.

2.4. Discussion (1) Can we make the function 2* as we like? Clearly if we want
to have (A, R, | A) universal for each A <A, then there is no restriction on 2*
(Ao=<A), and in fact also on 2* (A"=),). But if we want to get more (e.g.,
2% =R, . for [=n, and we want a universal graph in each R;, [=<2" it seems a
downward induction is in order, and things become more complicated for in-
finitely many cardinals (but such problems were overcome). We have not looked
into the matter.
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(2) Can we prove parallel theorems for other first-order theorems T? Or even
for other reasonable classes, e.g. the class of locally finite groups? (See Grossberg
and Shelah [6].)

A trivial restriction is that if T has a universal model of power A, then
|D(T)| <A, so e.g. Piano arithmetic has no universal model in R, if 8, <2%.

Now in defining O, we can repiace (w, r) € G, by a model generted by {i : i € w},
and in fact demand that only (w, r) | (A; Nw) are defined (for a <p). Moreover
in 2.2 (and 1.2, and first stage of 2.3) we can get

(») A={A, NAg:a# B <pu}forms a tree, i.c., if a, b e then a Nb is an initial
segment of a (and of b).

This is done by a mino
specific members describe such situations.

So in the end we have to find a model M, extending M, with universe A,,
where M,, M, agree on A, NA;.

This applies to many classes, but e.g. not to the class of linear order (which was

treated in 4D
treated 1n (4]).

D far tha 0¢ ¢+
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Question. Is there a countable T which does not have a universal model in A™
whenever AT <<2*?
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