ANNALS OF MATHEMATICAL LOGIC - Volume 2, No. 4 (1971) 441-447

REMARK TO "LOCAL DEFINABILITY THEORY" OF REYES *

S.SHELAH

The Hebrew University, Jerusalem, and The University of Californic, Los Angeles

Received 10 August 1970

Abstract: Here we correct and improve a theorem of G.E.Reyes (in this journal) which generalizes a result of Chang and Makkai, on weak definability.

In Reyes [6], Theorem 3.2.1, p. 132 the following error occurs: in (i), and (ii) 2^{μ} should be replaced by 2^{κ} , and the sequence of models $(\mathfrak{B}_{\xi}, P_{\alpha}^{(\xi)}, f_{\alpha,\beta}^{(\xi)})_{\alpha,\beta \in \xi_2}$ is defined only for $\xi < \kappa$, for if $\kappa \le \alpha < \mu$ may be $2^{|\alpha|} > \mu$, and so he gets a model of cardinality $> \mu$.

We shall show that a stronger theorem follows, and that this theorem is the best possible.

Let L be a (first-order) language, L(P) - a language obtained from L by adding a new predicate P. T will be a fixed theory in $L_1, L(P) \subset L_1$. Let $|L_1|$ be the number of formulas of L_1 . We say an L(P)-model is a model of T if it is a reduct of a model of T. T, L, $L(P), L_1$ will be fixed. Let

Definition 1. (1) Df(λ) is the first cardinal μ such that for every L-model \mathfrak{B} of cardinality λ

 $|\{P \mid (\mathfrak{B}, P) \text{ is a model of } T\}| < \mu$.

^{*} The preparation of this paper was supported in part by NSF Grant #GP-22937.

(2) $Df_1(\lambda)$ is the first cardinal μ such that for every L(P)-model (\mathfrak{B}, P) of T of cardinality λ

 $|\{P': (\mathfrak{B}, P') \cong (\mathfrak{B}, P)\}| < \mu.$

Remark. Clearly for every λ , $Df(\lambda) \ge Df_1(\lambda)$; and we can restrict the definition to $\lambda \ge |L_1|$ (and we shall assume it implicitly).

Definition 2. $Ded(\lambda)$ is the first cardinal μ , such that there is no ordered set J_1 with a dense subset J, $|J_1| = \mu$, $|J| = \lambda$. (Where |A| is the cardinality of A.)

Definition 3. $\text{Ded}_{\kappa}(\lambda)$ is the first cardinal μ such that there is no ordered set J_1 with a dense subset J, $|J_1| \ge \mu$, $|J| \le \lambda$ which satisfy: for every $s \in J_1$, $s \notin J$ there are in $Js^k k < \kappa_1$, $s_k s < \kappa_2$, such that:

- (1) $k < \ell \Rightarrow s^k < s^{\ell} < s < s_{\ell} < s_k$
- (2) for every $t \in J$, $t \neq s$

either for some k, $t < s^k$; or for some ℓ , $s_{\ell} < t$

 $(3) \qquad \kappa_1 + \kappa_2 = \kappa \; .$

Remark. By Theorem 1 we can replace (3) by $\kappa_1 = \kappa_2 = \kappa$, as the number of $s \in J_1$, for which $\kappa_1 \neq \kappa_2$ is $\leq \lambda$ (as s is the last or first element in every high enough member of the branch A_s defined in the proof of th. 1.) Clearly $\kappa \leq \lambda$, otherwise $\text{Ded}_{\kappa}(\lambda) = 0$.

Definition 4. $\operatorname{Ded}^*(\lambda) = \sum_{\kappa \leq \lambda} \operatorname{Ded}_{\kappa}(\lambda)$

Clearly $\lambda^+ < \text{Ded}^*(\lambda) \le \text{Ded}(\lambda) \le (2^{\lambda})^+$. (Let $\kappa = \inf\{\kappa : 2^{\kappa} > \lambda\}$, and J_1 be the set of sequences of ones and zeroes of length κ , ordered lexicographically. Then clearly $\lambda < 2^{\kappa} < \text{Ded}^*(\lambda)$.) If $\mu = \text{Ded}^*(\lambda) <$ $\text{Ded}(\lambda)$ then $\mu^+ = \text{Ded}(\lambda)$, and the cofinality of μ , cf(μ) is $\le |\alpha|$, where $\lambda = \aleph_{\alpha}$. It is known that **ZFC** + [$\text{Ded}(\aleph_1) < (2^{\aleph_1})^+$] is consistent. See Baumgartner [1, 2], Mitchell [5].

442

Sh:9

Theorem 1. The following conditions are equivalent (in Reyes [6], their negations appear)

- (i) there is $\lambda \ge |L_1|$ such that $Df(\lambda) > \lambda^+$
- (ii) for every $\lambda \ge |L_1|$, $Df_1(\lambda) \ge Ded^*(\lambda)$ (hence $Df(\lambda) > \lambda^+$)
- (iii) there are no formulas $\theta_i(\overline{x}, \overline{y})$ i = 1, ..., n such that

$$T \vdash \bigvee_{i=1}^{n} (\exists \bar{y}) (\forall \bar{x}) [P(\bar{x}) \equiv \theta_{i}(\bar{x}, \bar{y})] \ .$$

Remark. If in L the equality sign appears, and every model of T has at least two elements, then we can replace (iii) by

(iii)* there is no $\theta(\bar{x}, \bar{y})$ such that $T \vdash (\exists \bar{y})(\forall \bar{x})(P(\bar{x}) \equiv \theta(\bar{x}, \bar{y}))$.

For clearly (iii) implies (iii)*, and if (iii) does not hold, then

$$\theta(\bar{x}, \bar{y}, z_1, ..., z_{2n}) = \bigwedge_{i=1}^n [z_{2i-1} = z_{2i} \to \theta_i(\bar{x}, \bar{y})]$$

show that (iii)* does not hold.

Remark. Makkai [4] proved if (iii), $\lambda^+ = 2^{\lambda} > |L_1|$ then $Df_1(\lambda^+) = (2^{\lambda^+})^+$. Chang [3] proved this and, in addition, that (iii), $\mu < \lambda \Rightarrow 2^{\mu} < \lambda$ and $\lambda > |L_1|$ implies $Df_1(\lambda) = (2^{\lambda})^+$. Reyes [5] proved, in fact, that if $\lambda = \sum_{\kappa < |L_1|} 2^{\kappa}$, and (iii) then $Df_1(\lambda) > 2^{|L_1|}$. Of course it is trivial that (ii) \Rightarrow (i) \Rightarrow (iii).

Theorem 1 cannot be improved as shown by

Theorem 2. (1) There exist a language L, and a finite theory T in L(P) such that for T; for every λ , $Df(\lambda) = Ded(\lambda)$, $Df_1(\lambda) = Ded^*(\lambda)$.

(2) There exist languages $L \subset L(P) \subset L_1$ and a finite theory T in L_1 , such that for T; for every λ , $Df(\lambda) = Df_1(\lambda) = Ded^*(\lambda)$.

Proof of Theorem 2. We shall only give T for 2.1. The construction of the other example is similar; and the proofs depend on the remark to Definition 3, and the definition itself.

Let L contain the equality sign and the predicate x < y; and P be a

one place predicate. Now T will be the theory of order with that axiom that P is a head. That is

$$T = \{ (\forall xyz)(x < y \land y < x \rightarrow x < z), \\ (\forall xy)(x < y \lor y < x \lor x = y), (\forall x)(\neg x < x), \\ (\forall xy)[x < y \land P(y) \rightarrow P(x)] \}.$$

Remark. So in the case $L_1 = L(P)$, and when $(\exists \lambda)[\text{Ded}^*(\lambda) < \text{Ded}(\lambda)]$, and (iii), we do not know whether $(\forall \lambda)[Df(\lambda) = \text{Ded}(\lambda)]$ can be proved. Naturally arise the conjecture:

Conjecture. If for at least one λ , $Df(\lambda) > Ded(\lambda)$ then for every μ , $Df_1(\mu) = (2^{\mu})^+$.

As we have already mentioned, by Mitchell [5], $Ded(\aleph_1) < (2^{\aleph_1})^+$ is consistent with ZFC, hence the conjecture is not meaningless. There is a corresponding syntactical condition; which implies that for every μ , $Df_1(\mu) = (2^{\mu})^+$. But the condition is not elegant, and there is no proof of the other part. A similar weaker theorem is Shelah [7] Theorem 4.3.

Proof of Theorem 1. As has been mentioned, (ii) \rightarrow (i) \rightarrow (iii) is trivial. So we should prove only (iii) \rightarrow (ii). Hence suppose (iii) holds. So let $\lambda \ge |L_1|$, $\mu < \text{Ded}^*(\lambda)$. We should prove only that $\text{Df}_1(\lambda) > \mu$. So we should prove only that for some model (\mathfrak{B}, P) of T

 $|\{P': (\mathfrak{B}, P') \cong (\mathfrak{B}, P)\}| \geq \mu.$

Clearly without loss of generality we can assume T is complete. For simplicity we assume $cf(\mu) > \lambda$. (See remark at the end.)

The pair $\langle I, < \rangle$ is a tree if < is a well-ordering of *I*, which can be a partial order. For any $s \in I$, the level of *s*, $\ell(s)$, is the order type of $\{t \in I : t < s\}$ which is an ordinal. Let $I^{\alpha} = \{s \in I : \ell(s) = \alpha\}$. A branch *B* of *I* is a maximal totally ordered subset of *I*; its level, $\ell(B)$, is its

444

order type, and $Br_{\alpha}(I) = \{B : B \text{ a branch}, \ell(B) = \alpha\}.$

S.Shelah, Remark to "Lal definability theory" of Reyes

Now we shall prove that there is a tree $\langle I, \langle \rangle$ and ordinal $\alpha_0 \leq \lambda$ such that:

- (A) $|I| \le \lambda$, and $|I^0| = 1$,
- (B) for every $s \in I$, $\ell(s) < \alpha_0$,
- (C) for every $s \in I^{\beta}$, $|\{t \in I^{\beta+1} : s < t\}| \le 2$,
- (D) for every $s \in I^{\beta}$ except one $|\{t \in I^{\beta+1} : s < t\}| = 1$,
- (E) if $\{t \in I : t < s_1\} = \{t \in I : t < s_2\}$ and $\ell(s_1)$ is a limit ordinal, then $s_1 = s_2$.
- (F) $|\operatorname{Br}_{\alpha_0}(I)| \ge \mu$.

It suffices to find a tree satisfying A, B, C, E, F, as from it we can easily build a tree satisfying all the properties. This is the bisection tree.

By definition there is an ordered set J_1 , $|J_1| = \mu$, with a dense subset J, $|J| = \lambda$; and their order is <. We can assume J, J_1 are dense. Let $J_1 = \{x_k : k < \lambda\}$.

Let us define by induction on $\alpha < \lambda$ a family K_{α} of subsets of J_1 , such that for each $A \in K_{\alpha}$; $a, b \in A$, $a < c < b \Rightarrow c \in A$.

(1) Let $K_0 = \{J_1\}$.

(2) Suppose K_{α} is defined. For every $A \in K_{\alpha}$, |A| > 1, we define a_A as the first $a_k \in A \cap J$ that is not the first or last in $A \cap J$ (that is, with the smallest index k). We define

$$F^{1}(A) = \{ a \in J_{1} : a \in A, a < a_{A} \},\$$

$$F^{2}(A) = \{ a \in J_{1} : a \in A, a_{A} < a \} ,$$

and

$$K_{\alpha+1} = \{F^1(A) \colon A \in K_{\alpha}, |A| > 1\} \cup \{F^2(A) \colon A \in K_{\alpha}, |A| > 1\}.$$

(3) Suppose K_{α} is defined for every $\alpha < \delta$, where δ is a limit ordinal. Then

$$K_{\delta} = \{ \bigcap_{\alpha < \delta} A_{\alpha} : A_{\alpha} \in K_{\alpha}, \alpha < \beta \Rightarrow A_{\beta} \subset A_{\alpha}, |\bigcap_{\alpha < \delta} A_{\alpha}| > 1 \}.$$

Now on $K = \bigcup_{\alpha < \lambda} K_{\alpha}$ we define an order < : A < B iff $B \subset A$. Clearly $\langle K, < \rangle$ is a tree, and $A \in K_{\alpha}$ iff it is in the α -th level. It is also clear that the tree satisfies conditions A, C, E. Clearly, if $s \in J_1$, $s \notin J$ then $A_s = \{A \in K : s \in A\}$ is a branch of the tree, and every branch of the tree is of level $\leq \lambda$; hence $\mu \leq |J_1| \leq |\bigcup_{\alpha \leq \lambda} Br_{\alpha}(K)| = \sum_{\alpha \leq \lambda} |Br_{\alpha}(K)|$. As $cf(\mu) > \lambda$, for some $\alpha_0 \leq \lambda |Br_{\alpha_0}(K)| \geq \mu$. Now for $I = \bigcup_{\alpha < \alpha_0} K_{\alpha}$, $\langle I, < \rangle$ is the required tree.

Now after we have the tree $\langle I, < \rangle$, we shall describe shortly the construction, which is like Reyes's construction. For simplicity we assume $L(P) = L_1$. We shall define by induction on α the following: a model \mathfrak{B}_{α} , relations P_s for $s \in I^{\alpha}$, and isomorphisms $f_{s,t}$ for $s, t \in I^{\alpha}$, such that:

(1) If $s \in I^0$, then (\mathfrak{B}_0, P_s) is any model of T, of cardinality λ .

(2) If s < t, $t \in I^{\mathfrak{L}(s)+1}$ then $(\mathfrak{B}_{\mathfrak{L}(s)}, P_s)$ is an elementary submodel of $(\mathfrak{B}_{\mathfrak{L}(t)}, P_t)$, and their cardinalities are λ .

(3) If $t_1, t_2 \in I^{\alpha+1}, s \in I^{\alpha}, s < t_1, s < t_2, t_1 \neq t_2$ then $P_{t_1} \neq P_{t_2}$.

(4) If $\alpha = \ell(s)$ is a limit ordinal, then $(\mathfrak{B}_{\alpha}, P_s)$ is the union of $\{(\mathfrak{B}_{\beta}, P_t) : \ell(t) = \beta < \alpha, t < s\}.$

(5) If s, $t \in I^{\alpha}$, then $f_{s,t}$ is an automorphism between $(\mathfrak{B}_{\alpha}, P_s)$ and $(\mathfrak{B}_{\alpha}, P_t)$. (If s = t, $f_{s,t}$ is the identity.)

(6) If s, $t \in I^{\alpha}$, s_1 , $t_1 \in I^{\alpha+1}$, $s < s_1$, $t < t_1$, then the reduction of f_{s_1,t_1} to \mathfrak{B}_{α} is $f_{s,t}$.

(7) If $s, t \in I^{\delta}$, δ a limit ordinal, then $f_{s,t}$ is the union of $\{f_{s_{\alpha}, t_{\alpha}}: \alpha < \delta, s_{\alpha} < s, t_{\alpha} < t; s_{\alpha}, t_{\alpha} \in I^{\alpha}\}.$

The definition is straightforward, with the use of the Robinson Theorem in the case $\alpha + 1$. (Only here (iii) is used.)

Now if \mathfrak{B} is the union of $\{\mathfrak{B}_{\alpha} : \alpha < \alpha_0\}$ and for any $B \in \operatorname{Br}_{\alpha_0}(I)$ we define $P_B = \bigcup_{t \in B} P_t$, then the cardinality of \mathfrak{B} is λ , and for any $B_1 \in \operatorname{Br}_{\alpha_0}(I)$

$$\{P': (\mathfrak{B}, P') \cong (\mathfrak{B}, P_{B_1})\} \supset \{P_P: B \in Br_{\alpha_0}(I)\},\$$

hence

$$|\{P': (\mathfrak{B}, P') \cong (\mathfrak{B}, P_B)\}| \ge \mu.$$

So the theorem is proved.

446

Sh:9

Remark. If $cf(\mu) \leq \lambda$, then we will have $\leq \lambda$ trees $\{\langle I_k, \langle \rangle : k < k_0 \leq \lambda\}$, each of them satisfying (A)–(E) with α_k instead of α_0 , and $cf(\alpha_k) = cf(\alpha_0)$; and $\sum_{k < k_0} |Br_{\alpha_k}(I_k)| = \mu$. Then we do a similar construction using all the trees together. (We use that $\mu < Ded^*(\lambda)$, to insure $cf(\alpha_k) = cf(\alpha_0)$.) (Here is the only place where $\mu < Led^*(\lambda)$ and not $\mu < Ded(\lambda)$ is used.)

Added in proof, 8 December 1970

- 1) Baumgaruner tells me that for very λ , $\text{Ded}(\lambda^{\dagger}) = \text{Ded}^{*}(\lambda^{\dagger})$, and the consistency of ZFC implies the consistency of ZFC + $[\text{Ded}^{*}\aleph_{\alpha} < \text{Ded} \aleph_{\alpha}]$ for limit cardinal $\aleph_{\alpha} < 2^{\aleph_{0}}$. The proof is by the construction of Easton [8] for singular \aleph_{α} , and by Baumgartner [2] for regular \aleph_{α} . So by 2.1 it is possible that $Df(\lambda) \neq Df_{1}(\lambda)$ for some λ .
- 2) Theorem 2.2. can be improved to $T \subseteq L(P)$, $L_1 = L(P)$.

Conjecture. If for one $\lambda \operatorname{Df}_1(\lambda) > \operatorname{Ded}^*(\lambda)$ then for every $\mu \operatorname{Df}_1(\mu) = (2^{j_1})^+$.

References

- [1] J.E.Baumgartner, On the cardinality of dense subsets of linear ordering I, Notices of AMS 15 (1968) 935.
- [2] J.E.Baumgartner, Results and independence proofs in combinatorial set theory, Ph.D. Thesis, University of California, Berkeley, 1969.
- [3] C.C.Chang, Some new results in definability, Bull. AMS 70 (1964) 808.
- [4] M.Makkai, A generalization of a theorem of E.W.Beth, Acta Math. Acad. Sci. Hungar. 15 (1964) 227.
- [5] W.Mitchell, On the cardinality of dense subsets of linear ordering II, Notices of AMS 15 (1968) 935.
- [6] G.E.Reyes, Local definability theory, Annals of Math. Logic 1 (1970) 95-137.
- [7] S.Shelah, Stability and the f.c.p., Model-theoretic properties of formulas in first-order theory (to be published).
- [8] W.B.Easton, Powers of regular cardinaly, this Journal 1 (1970) 139-178.