A note on κ -freeness of abelian groups

Introduction: Lately Foreman proved that the assertion $(*)_n$ below follows from some axioms (speaking on the \aleph_n , seemingly of consistency strength like the determinancy axioms), and $(*)_2$ consistent if some large cardinal axioms (\approx there is a huge cardinal) are consistent.

 $(*)_n$ every \aleph_n free abelian group of power \aleph_n is the union \aleph_1 free subgroups.

Let in this note a group mean an abelian group.

We consider mainly some variants (which his proofs easily gives); give some sufficient conditions in ZFC, and find the consistency strength for n=2 which is Mahlo, and prove the consistency of $(*)_n$ using super compact cardinals.

- 1. **Definition** : 1) $P(\lambda,\kappa) \stackrel{\text{def}}{=} \text{ if } G \text{ is } \lambda\text{-free of power } \lambda,$ $G = \bigcup_{i < \lambda} G_i, |G_i| < \lambda, G_i \text{ increasing continuous } then \{i: G / G_i \text{ not } \kappa\text{-free}\} \text{ is not stationary.}$
- 2) Let $P^+(\lambda,\kappa)$ mean that every λ -free group of power λ is κ -freely represented (see 2(4)).
- **2. Definition** : 1) A group G is (μ, κ) -coverable if we can find $H_{\alpha}(\alpha < \mu)$, free pure subgroups of G, such that: for every $A \subseteq G$ of power $< \kappa$, for some α , $A \subseteq H_{\alpha}$.
- 2) We define "weakly (μ,κ) -coverable" similarly if omitting the "purity".
 - 3) G is (μ,κ) -freely represented if it has a (μ,κ) free representation i.e.

 $\langle G_i:i< i(*)\rangle$, G_i increasing continuous, $G_0=\{0\}$, $G_{i(*)}=G$, and G_{i+1}/G_i is κ -free of power $\leq \mu$. (κ -free means: every subgroup of rank $<\kappa$ is free, so κ may be finite).

- **3. Lemma**: If G_i is increasing continuous, $G_{i(\bullet)} = G$, $G_0 = \{0\}$, $\mu \leq \lambda$ then G is (μ, κ) -coverable provided that:
- (*) there are sequences $\langle H_{i,\xi}: \xi < \mu \rangle$ of pure subgroups of G_{i+1} such that
 - (a) $H_{i,\ell} + G_i / G_i$ is a free and a pure subgroup of G_{i+1} / G_i .
 - (b) if $A \subseteq G$, $|A| < \kappa$ then for some set $S \subseteq i(*)$, and ξ such that:

(a)
$$A \subseteq \sum_{i \in S} H_{i,\xi}$$
 and

$$(\beta)$$
 $(\forall i < j)([i \in S \land j \in S \rightarrow H_{i,\ell} \cap G_{i+1} \subseteq H_{i,\ell} + G_i]$ and

$$(\gamma) \ (\forall j \in S) \ (\forall i < j) \ [H_{i, \ell} \cap (G_{i+1} - G_i) \neq \phi \rightarrow i \in S].$$

Proof: Define $K_{i,\ell}$ by induction on i < i(*):

$$K_{0,\xi} = \{0\}, K_{\delta,\xi} = \bigcup_{i < \delta} K_{i,\xi},$$

 $K_{i+1,\ell}$ is $K_{i,\ell} + H_{i,\ell}$ if $H_{i,\ell} \cap G_i \subseteq K_{i,\ell}$, and $K_{i,\ell}$ otherwise.

Easily by (a) of (*) $K_{i(*),\xi}$ is a pure subgroup of G. Now we should prove: for every $A \subseteq G$, if $|A| < \kappa$, then $(\exists \xi < \mu)A \subseteq K_{\lambda,\xi}$. Let S,ξ be as in (b) of (*) (for the set A). We prove by induction on $i \in S$ that:

(i)
$$H_{i,\xi} \cap G_i \subseteq K_{i,\xi}$$

(ii)
$$H_{i,t} \subseteq K_{i+1,t}$$

For i=0, everything is trivial as $G_i=\{0\}$; when we arrive to i, if (i), fail, choose $j\leq i$ minimal such that $H_{i,\xi}\cap G_j\not\subset K_{j,\xi}$, necessarily j is successor, so $H_{i,\xi}\cap (G_j-G_{j-1})\neq \phi$ so by (*) (b) $(\gamma)=(j-1)\in S$. By the minimality of j, $H_{i,\xi}\cap G_{j-1}\subseteq K_{j-1,\xi}$ and as by (β) of (b) $H_{i,\xi}\cap G_{(j-1)+1}\subseteq H_{j-1,\xi}+G_{j-1}$, by the choice of $K_{j,\xi}=K_{(j-1)1,\xi}$, $H_{i,\xi}\cap G_j\subseteq K_{j,\xi}$, contradicting the choice of j. Now we can prove (ii).

So $\{K_{\lambda,\xi}: \xi < \mu\}$ exemplify G is (μ,κ) -coverable.

4. Lemma: If G is (μ, κ) -freely representable, $\kappa > \aleph_0$, and $\mathcal{P}_{<\kappa}(\mu)$ has a stationary subset S of power μ^1 (see below) then G is (μ^1, κ) -coverable.

Proof: We use Lemma 3.

Let $\langle G_i:i\leq i\ (*)\rangle$ be a (μ,κ) -free representation of G, and let $L_i\subseteq G_{i+1}$ be such that $G_{i+1}=G_i+L_i$, $(L_i$ a pure subgroup of G_{i+1}) and $|L_i|=\mu$ (but maybe $G_i\cap L_i\neq \{0\}$). Let g_i be a one-to-one mapping from μ onto L_i .

Let $S = \{s_{\xi}: \xi < \mu^1\}$, be an enumeration of S in increasing order, and $H_{i,\xi}$ be the subgroup of G_{i+1} (of L_i in fact) generate by $\{g_i(x): x \in s_{\xi}\}$. We can finish as:

$$\otimes \langle H_{i,\xi}: \xi < \mu \rangle$$
 (i

(apply second sentence of 5(2)). Remember:

- 5. Definition: 1) $\mathcal{P}_{<\kappa}(A) = \{s: s \subseteq A, |s| < \kappa\}$.
- 2) $S \subseteq \mathcal{P}_{<\kappa}(A)$ is stationary, if for every $< \kappa$ (finitary) functions from A to A, some $s \in S$ is closed under all of them.

Note: if $B \supseteq A$, $\gamma < \kappa$, f_i is an n_i -place function from B to B for $i < \gamma$, and from each $\alpha \in B$, g_{α} is a one-to-one map from A onto some $B_{\alpha} \subseteq B$, then for some $s \in \mathcal{P}_{\leq \kappa}(B)$ closed under the f_i 's, $s \cap A \in S$ and for every $\alpha \in s$, $s \cap B_{\alpha} = \{g_{\alpha}(x): x \in (s \cap A\}\}$.

- **6. Fact:** 1) If κ is regular, $\mu = \kappa^{+n}$ then $\mathcal{P}_{<\kappa}(\mu)$ has a stationary subset of power μ .
 - 2) $\mathcal{P}_{<\kappa}(\mu)$ has a stationary set of power $\mu^{<\kappa}$.
- 7. Lemma: If $\kappa \leq \mu$, $\mathcal{P}_{<\kappa}(\mu)$ has no stationary subset of power μ then $0^{\#}$ exist, there is an inner model with a measurable cardinal B, etc.

Proof: By [Sh 3] Ch. XIII.

8. Lemma: Suppose $||G|| = \lambda$, G has a (μ, κ) -free representation, $\kappa = \aleph_0$,

 $2^{\mu} \geq \lambda$. Then G is (μ, κ) -coverable.

 $\begin{array}{llll} \mathbf{Proof} &: \text{ Let } \left\langle \left. G_i \colon i \leq i \left(\right.^{\bullet} \right) \right\rangle & \text{be} & \text{a} & (\mu,\kappa)\text{-representation of } G, \\ L_i \subseteq G_{i+1}, \left| \left. L_i \right| = \mu, & G_{i+1} = G_i + L_i & , & L_i & \text{a pure subgroup of } G_{i+1}. & \text{Let} \\ \left\langle \left. H_{i,\xi}^0 \colon \xi < \mu \right\rangle & \text{be a list of all pure subgroups of } L_i & \text{of finite rank.} \end{array} \right.$

Let $g_i: \mu \to \mu$ (i < i(*) be functions such that for every distinct $i_1, \ldots, i_m (m < \omega)$ and $\xi_1, \ldots, \xi_m < \mu$ for some $\alpha < \mu$ $g_{i\ell}(\alpha) = \xi_\ell$ for $\ell = 1, m$ (exists by Engelking and Karlowiz [EK] as w.l.o.g. $|i(*)| \le ||G|| \le 2^{\mu}$.)

Let
$$H_{i,\alpha}^0 = H_{i,g_i(\alpha)}^0$$
.

Now apply 3 to $\langle\langle H_{i,\alpha}:\alpha < \mu\rangle:i < i(*)\rangle$.

9. Lemma: Suppose $||G|| = \lambda \le 2^{\mu}$, G has a (μ, κ) -free representation, $\kappa < \aleph_0$. Then G is (μ, κ) -coverable.

Proof: Like 8 but $G_{i+1} = L_i$ and we restrict ourselves to $H = H_{i,\xi}^0$ disjoint to G_i (more exactly, $H_{i,\xi}^0 \cap G_i = \{0\}$).

We prove by induction on i, that for $A \subseteq G_i$, $|A| < \kappa$, the (*) (b) of Lemma (3) holds. For i = 0, i limit - no problem. For i+1: let $A = \{a_\ell : \ell < |A|\}$, w.l.o.g. a_ℓ belong to the pure closure of $\langle G_i, a_0, \ldots, a_{\ell-1} \rangle$ iff $\ell \ge m$. We first define by induction on $\ell < m$, $b_\ell \in G_{i+1}$, $c_\ell \in G_i$.

- (i) $\{b_0 + G_i, \dots, b_\ell + G_i\}$ is independent, and generates a pure subgroup of G_{i+1}/G_i (of course $b_\ell + G_i$ is not torsion).
 - (ii) $a_{\ell} \in \langle b_0, \ldots, b_{\ell-1}, b_{\ell}, c_{\ell} \rangle_G$ (= the subgroup generated by then).

As $m \leq |A| < k$ in the ℓ -stage, $G_{i+1} / \langle G_i, a_0, \ldots, a_{\ell-1} \rangle$ is $(\kappa - \ell)$ -free, so there is a maximal integer n_ℓ dividing $a_\ell + \langle G_i, b_0, \ldots, b_{\ell-1} \rangle$, and let b_ℓ be such that $n_\ell b_\ell - a_\ell \in \langle G_i b_0, \ldots, b_{\ell-1} \rangle$. So for some $n_{\ell,0}, \ldots, n_{\ell,\ell-1}$; $a_\ell - n_\ell b_\ell + n_{\ell,0}b_0 + \cdots + n_{\ell,\ell-1}b_{\ell-1} \in G_i$, and call it c_ℓ .

Now we define for $m \leq \ell < |A|, c_{\ell}$ such that

(iii)
$$a_{\ell} \in \langle c_0, \ldots, c_{\ell} \rangle$$

Arriving to ℓ , for some $m_{\ell} \neq 0$ $m_{\ell}a_{\ell} \in \langle G_i, a_0, \ldots, a_{\ell-1} \rangle$, hence $m_{\ell}a_{\ell} + G_i \in \langle a_0 + G_i, \ldots, a_{\ell-1} + G_i \rangle \subseteq \langle b_0 + G_i, \ldots, b_{m-1} + G_i \rangle$, but the latter is pure so or some $n_{\ell,0}, \ldots, n_{\ell,m-1}$, $a_{\ell} + G_i \in \langle b_0 + G_i, \ldots, b_{m-1} + G_i \rangle$, so for some $n_{\ell,0}, \ldots, n_{\ell,m-1}$ the following equation holds $a_{\ell} - n_{\ell,0}b_0 - \ldots - n_{\ell,m-1}b_m \stackrel{\text{def}}{=} c_i \in G_i$.

Now use then induction hypothesis on $\{c_0, c_1, \dots\}$.

10. Fact: If $P(\lambda, \kappa)$, $\lambda = \mu^+$ then every λ -free group of power λ is (μ, κ) -represented.

The following is a (strong) converse to 4,8,9 (so under suitable condition (μ,κ) -coverable \equiv weakly (μ,κ) -coverable.)

- 11. Lemma : 1) Suppose $\lambda = \mu^+$, $|G| = \lambda$ and G is (μ, κ) -coverable then G is (μ, κ) -freely represented.
 - 2) Then $\kappa > \aleph_0$ G weakly (μ, κ) -coverable is enough.

Proof: 1) Let $|G| = \lambda$ (i.e., the universe = the set of elements of G, is λ), $G = \bigcup_{\xi < \mu} H_{\xi}$, each H_{ξ} is a free pure subgroup of G, and $(\forall A \subset G)[|A| < \kappa \rightarrow (\exists \xi)A \subset H_{\xi}].$

Let $G = \bigcup G_i$, G_i increasing continuous, $||G_i|| < \lambda$ and let $S = \{i < \lambda : G/G_i \text{ is not } \kappa\text{-free}\}$, we assume S is stationary and will arrive at contradiction thus finishing. For $i \in S$, let L_i be a pure subgroup of G of rank $< \kappa$, such that $L_i + G_i / L_i$ not free. Let $A_i \subseteq L_i$ be such that $|A_i| < \kappa$, and $L_i + G_i$ is the pure closure of $\langle G_i \bigcup A_i \rangle$.

So for every $i \in S$ for some $\xi(i) < \mu, A_i \subseteq H_{\xi(i)}$. So for some $\xi, T = \{i \in S : \xi(i) = \xi\}$ is stationary. Let N be an elementary submodel of an appropriate expansion of G, with universal $|G_i| = i \in T$. We shall prove that: (the pure closure of $G_i \cup A_i$ in $G) / G_i \cong$ pure closure of $(H_{\xi} \cap G_i) \cup A_i$ in $H_{\xi} / H_{\xi} \cap G_i$.

This suffices. So it suffices to show.

(*) if $a_1, \ldots, a_n \in A_i$, $0 < k < \omega$, $b \in G_i$, $b + \sum_{i=1}^n m^{\ell} a_{\ell}$ is divisible by k (in G), then we can find such $b \in H_{\xi} \cap G_i$ divisible by k even in H_{ξ} .

Proof of (*): As N is an elementary submodel, $b \in N$ as $b \in G_i = i$ we can find $a'_{\ell} \in H_{\xi} \cap N = H_{\xi} \cap G_i$ such that $b + \sum m^{\ell} a'_{\ell}$ is divisible by k (in G and even in G_i). Now let $b' = 0 - \sum m^{\ell} a'_{\ell} \in H_{\xi} \cap G_i$, and divisibility is in H_{ξ} using: $H_{\xi} \subseteq G$ purely.

2) Just take care that $A_i = L_i$, L_i , $G_i + L_i$ and $G \cap L_i$ will be pure subgroups of G.

We now restrict ourselves for a while to $\lambda = \aleph_2 \mu = \aleph_1$.

- 12. Lemma: The following are equivalent.
- A) $P(\aleph_2,\aleph_1)$
- B) every \aleph_2 -free group of power \aleph_2 is (\aleph_1, \aleph_1) -coverable.
- C) every \aleph_2 -free group of power \aleph_2 is $(\aleph_1, 2)$ -coverable.
- D) If $S \subseteq \{\delta: \delta < \aleph_2, cf \ \delta = \aleph_0\}$ is stationary. $A_{\delta} \subseteq \delta$ (is countable for $\delta \in S$ then there is a stationary $T \subseteq \aleph_1$ and $f: T \to S$ one-to-one such that $\{\xi \in T: A_{f(\xi)} \subseteq \bigcup_{\xi < \xi} A_{f(\xi)}\}$ is stationary.

Proof: (A) \Longrightarrow (B) by 10, 4+6(1).

- $(B) \Longrightarrow (C) \text{ trivial}$
- (C) \Longrightarrow (D). We prove \neg (D) $\Longrightarrow \neg$ (C).

Let $\{A_{\delta}: \delta \in S\}$ be a counterexample to (D). Let $A_{\delta} = \{a_{\delta,n}: n < \omega\}$. Let G be freely generated by $x_{\eta}(\eta \in {}^{\omega} > \aleph_2)$, $y_{\delta,n}(n < \omega, \delta \in S)$ except the relations (letting $\eta_{\delta} = \langle a_{\delta,0}, a_{\delta,1}, \cdots \rangle$)

$$p \quad y_{\delta,n+1} = y_{\delta,n} - x_{\eta \in n}$$

(p a fixed prime but you can make it a natural number ≥ 1 depending on δ,n) Easily G is not ($\aleph_1,2$)-freely represented and by 1) we get a contradiction.

(D) \Longrightarrow (A): See [Sh 2] for much more

13 Theorem: (D) is equi consistent with Mahlo...

Proof: See Harrington Shelah [H Sh].

- 14. Lemma: We can move the cardinals in 11, e.g. let $\mu=\mu^{<\kappa}$, $\kappa>\aleph_0$ then the following are equivalent.
 - (A)' $P(\mu^+,\kappa)$.
 - (B)' every μ^+ -free group of power μ^+ is (μ, κ) -coverable.
 - (C)' every μ^+ -free group of power μ^+ is weakly (μ, κ) -coverable.
- (D)' for some regular χ , $\vartheta < \kappa + \aleph_1$, there are a stationary $S \subseteq \{\delta < \mu^+ : cf \ \delta = \vartheta\}$, and $A_{\delta} \subseteq \delta$ of order type $\vartheta \chi$, $\operatorname{Sup} A_{\delta} = \delta$, $A_{\delta} = \bigcup_{i < \vartheta} A_{\delta,i}, A_{\delta,i} < A_{\delta,j}$ for i < j otop $(A_{\delta,\alpha}) = \chi$, such that for every $i < \mu^+$ we can find pairwise disjoint $B_{\delta} \subseteq A_{\delta}$, such that $(\exists^{<\vartheta}i)(\exists^{<\chi}j \in A_{\delta,i})j \not\in B_{\delta}$ (if $\kappa = \aleph_1$, (D)' can be replaced by " A_{δ} of order type ω , $|A_{\delta} B_{\delta}| < \aleph_0$ ".

The consistency strength, for μ regular is as in 13.

Proof: As in [Sh 2].

However.

15 Observation: Suppose $\lambda_0 \le \lambda$, $(\exists n) \lambda \le \lambda_0^{+n}$ λ is regular, and

- (A) for every χ , $\lambda < \chi^+ \le \lambda$, every (χ^+) -free group of power χ^+ is χ -freely represented (i.e $P(\chi^+, \chi)$).
 - (B) every λ_0 -free group of power λ_0 is (μ,κ) -freely represented.

Then every λ -free group of cardinality λ is (μ, κ) -freely represented.

Proof: By induction on λ . For $\lambda=\lambda_0$ this is (B) for λ a successor cardinal use (A).

Remark. We can phrase similar things for $\lambda \geq \lambda_0^{+\omega}$, but then for λ singular every λ -free group of power λ will by free be [Sh 1] so this is not an

interesting case.

The consistency strength is much higher by Magidor [Ma].

Now by 14 and 15 and known set theory we can get positive results e.g. (using \aleph_1 for simplicity).

- 16 Theorem: 1) Suppose $2 < n < \omega$ and $P(\aleph_{m+1}, \aleph_m)$ holds when $1 \le m < m$. Then every \aleph_n -free group of cardinality \aleph_n is (\aleph_1, \aleph_1) -freely represented hence in (\aleph_1, \aleph_1) -coverable.
- 2) From the consistency of (n-1) supercompact cardinals we can get the consistency of $\bigwedge_{m=1}^{n-1} P(\aleph_{m+1}, \aleph_m)$ and G.C.H. $[\aleph_0 < \kappa_1 < \cdots < \kappa_n]$ are supercompact, w.l.o.g. satisfying Laver's conclusion [L], and use Levi collapse to make κ_{ℓ} to \aleph_{ℓ} ($\ell=1,n$) and use Baumgartner [B] argument.]

Note

17. Lemma: 1) Let U be an abelian group, and let

$$F = \{(A,B): \langle A \cup B \rangle_G / \langle B \rangle_G \text{ is } (\mu,\kappa) \text{-represented} \}.$$

Then (in the context of [Sh 1], §1, or [Sh 2] §1 the following axioms holds) with χ there standing for μ here: II, III, IV, VI, VII.

- 18. Lemma: 1) If G is (μ, κ) -coverable then G is (μ, κ) -represented.
- 2) If $\kappa > \aleph_0$ weakly (μ, κ) -coverable suffice.

Proof: We can prove this by induction on ||G||. If $||G|| \le \mu$ this is trivial. For $||G|| > \mu$ a singular cardinal use the compactness theorem of [Sh 1] (where Lemma 17 shows the assumption holds. For $||G|| > \mu$ a regular cardinal repeats the proof of 11.

19 Conclusion: Suppose $\kappa > \aleph_0$ and $\mathcal{P}_{<\kappa}(\mu)$ has a stationary subset of cardinality μ .

For any group G, G is (μ,κ) -represented iff G is (μ,κ) -coverable if G is weakly (μ,κ) -coverable.

Proof: The first implies the second by Lemma 4, the second implies the third trivially, the third implies the first by Lemma 18.

References

- [B] J. Baumgartner, A new class of order types, Annals of Math. Logic, 9 (1976), 187-222.
- [BD] S. Ben-David, On Shelah compactness of cardinals, Israel. J Math. 31 (1978), 34-56.
- [EK]R. Engelking and M. Karlowicz, Some theorems of set theory and their topological consequence, Fund. Math. 57 (1965), 275-285.
- [F] M. Foreman, in preparation.

[HSh]

- L. Harrington and S. Shelah, Equi-consistency results, *Notre Dame I. of Formal Logic*. Proc. of the Jerusalam Model Theory Year 1980/1, to appear.
- [L] R. Laver, Making the supercompactness of κ indestructible under κ-directed closed forcing. Israel J. Math., 29 (1978), 385-388.

[Ma] M. Magidor,

[Sh1]

S. Shelah, A Compactness theorem in singular cardinals, free algebra, Whitehead problem an transversal. *Israel. J. Math.* 2(1975), 319-349.

[Sh2]

S. Shelah, Incompactness in regular cardinals. Notre Dame J. of Formal Logic, in press.

[Sh3]

S. Shelah, Proper forcing, Springer Lecture Notes, 940 (1982).