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CATEGORICITY IN OF SENTENCES 
IN Lo,,,o, (Q) 

BY 

SAHARON SHELAH 

ABSTRACT 

We investigate the categoricity and number of non-isomorphic models in N~ of 
sentences in L~,..(Q). Assuming V = L we prove that no sentence in L.,.~(Q) 
has exactly one uncountable model. Thus partially answering problem 24 of a 
problem list by Friedman. 

1. Introduction 

After  the solution of the problem of the categorici ty-spectrum of first-order 

theories by Morley [9] (for countable theories) and Shelah [14] it is natural to 

look at categoricity of sentences in wider logics. Keisler [5] deals with 

categoricity of @ ~ L .... and, assuming the existence of appropriate N1- 

homogeneous models, gets full results. Unfor tunately  this is not the general 

case. Marcus [8] proved the existence of a minimal countable model which 

contains an infinite set of elements indiscernible in a strong sense, and the 

author observed this implies there is @ E L .... categorical in every  A, but no 

model of which is (L ..... l~l)-homogeneous. 

Several years ago the author investigated @ E L .... categorical in 1~1, (which 

should be the easiest case) and got a picture quite similar to the one for 

first-order theories (the most significant result is mentioned in [8]). Unfortu-  

nately the existence of prime models over  aplaropriate sets was not proven. 

Hence  the categoricity was not proven. Also the amalgamation property was 

not proven. Later  and independently Knight [7] obtained also some of those 

results. 

A common device is that when your  methods do not answer your  questions, 

change your  question. The following question (due to Baldwin) appeared in 

Friedman [3] (question 24): 

Can a sentence @ ~ L(Q)  have exactly one uncountable model? 
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128 s. SHELAH Israel J. Math., 

We answer negatively, assuming V -- L, even for sentences in L .... (Q), by 

proving that if such @ has < 2 " ,  but at least one, models of cardinality N1, then 

it has a model of cardinality ~ .  

The following example is interesting. Let  @R E L (Q) be the sentence saying: 

< is a dense linear order with no first nor last element, each interval is 

uncountable, but {x: P(x)} is a dense countable subset. By Baumgartner [1] it is 

consistent with ZFC + 2 "* - - ~  that @R is categorical in N,, but it is not even 

(No, l)-stable (see Def. 3.5) 

We can replace the quantifier (Qx) by some stronger quantifiers without 

changing much. Let M I=(Q"P)~o(P) (P varies over one-place predicates) 

filean that the family {P _C ]M{: M I=~ [P]} does not contain a subfamily P, of 

consistent with ZFC + 2 '~o = N2 that @R is categorical in N,, but it is not e v e n  

bounded (i.e. (VP) (=ip,) (p _C- I M J ̂  I P J _-< ~ ~ P _C P, E P)]. Notice ((Qz)~ (z) 
=-l(Q"P)(Vz)(~(z)-*P(z)). By Shelah [16] th. 2.14, L(Q") is very 

similar to L(Q) for models of power N,, and in fact also L .... (Q") is very 

similar to L .... (Q). The results of Secs. 2, 3 and 4 generalize easily to 

L .... (Q"), moreover by [16] clearly if @EL~,;~(Q"'), I(N~,@)<2 ~,, 

MI-- ,,I1MII=M, then e.g. for no a E I M  [ and e E L  .... (Q") does 

M [=(Q" P)q~(P, ti) ^ (Q"P) q~(P, a). 

But Sec. 5 does not generalize, as shown by the following @ E L(Q") which 

has exactly one (uncountable) model: @ states that < is a dense order, with no 

first element, each initial segment is countable, but the model is not, and 

-I(Q"p) (qp  does not have a first element). The model of ~0 is just (n �9 t~, < ). 

NOTATION. L will be a countable first-order language, L(Q) is L when we 

add to it the quantifier (Qx) meaning: "there exist uncountably many x 's  such 

that. . ." L .... is L when we allow A,<o,~0., provided that A.<,tp, has only 

finitely many free variables. L .... (Q) is defined similarly. A fragment of 

L .... (Q) (or L .... ) is a countable subset, closed under: taking subformulas, 

changing names of free variables and applying the finite connectives, and the 

quantifiers (3 x), (V x). Let ~, 0, be formulas, @ a sentence, R, P predicates. 

If L C_ U,  @ E L ~,.o,(Q) then PC(@, L)  is the class of L-reducts  of models of 

@, and I(A,@,L) is the number of non-isomorphic models in PC(@,L) of 

cardinality A. If L = L ~ we write I(A, @) for I(A, @,L). 

By ~ = ~ (x , . - -xm)  = ~(~) we mean every free variable of ~ appears in ~. 

For L* C_ L~,.,,(Q) the L*-type ~ realizes in M (a model) over A _C IMI ( = the 

universe of M) is 
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tp(~, A, L*, M)  = {~p(s ~p E L*, /~ E A, M [---'q~ [~,/~1} 

(~t = ( a , . . . a m ) E A  m e a n s a , . . . a m C A ) .  

If the length of d, l(ti), is m, it is a L*-m-type. If not said otherwise, A = th. 

2. Pseudo-elementary classes 

LEMMA 2.1. Let L C_L I, ~ E L~bo,(Q), and L* a fragment of L .... (Q). 

Then : 

(A) If  in some model M of ~b of cardinality >- I~11, uncountably many L*-types 

are realized then I(NI, ~, L )  = 2" 

(B) If  for some model M of ~b, of cardinality > N~, there is a countable 

A _C I M r, such that in M over A uncountably many L*-types are realized then 

I(N~, ~b, L ) = 2" provided that. 2 " > 2 "~ 

PROOF. 

(1) This is theorem 5.1 of [6]. 

(2) This follows easily from (l). 

LEMMA 2.2. Let L C_L', ~ E L~,.~(Q), L* a fragment of L .... (Q). Assume 

{p: p is an L*-type and there is an uncountable model of ~ in which p is 

realized} is uncountable. Then I(N1, ~, L)  _-> 2 "~ 

PROOF. By Keisler [6], just as in Morley [10], it follows that the set of 

L*-types realized in uncountable models of ~b, is analytic and its cardinality is 

_-< No or is 2 "o. So by the hypothesis the cardinality is 2"*. By the downward 

Lfwenheim-Skolem theorem (for L~,,~(Q)) each such type is realized in a 

model (of ~b) of cardinality N,. So if I(N~, ~b, L)  < 2"*, then in some model of 

of cardinality N,, at least N, types are realized, and we get a contradiction by 

2.1(A). 

THEOREM 2.3. Let L C_L ~, O~L~,,~(Q),  M[=0,  [[M[[= 1~I~. 

(A) If  for every fragment L*, in M only countably many L*-types are realized, 

then tp has a model N, IIN 1[ = N~ in which only ~ L .... ( Q )-types are realized. 

(B) If  for every fragment L*, over every countable A _CIM[ in M only 

countably many L*-types are realized then ~ has a model N, [1N [[ = N1, in which 

only ~ L, . , (Q)- types  are realized over any countable A C_ ]M[. 

PROOF. 

(A) Define by induction on a < to, the fragment L*  of L .... (Q): 
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L~= L(Q), 

L * =  I,_J L$ for limit a 

and L*+, is the minimal fragment closed under (Qx) which contains 

L*U{^tp(&4~,L*,M): a EIMI}. 

We can prove inductively that L*  is indeed countable: for a = 0, a limit it is 

immediate, and for a a successor it follows by the hypothesis. 

Now w.l.o.g, we can assume that LM[, the universe of M, is to,. Expand M to 

the model 

M'=(M, <,Eo, . . . ,E. , . . . ,Fo, . . . ,F, , . . . ) ,<o,  
where: 

(1) < is the usual order of the ordinals, 

(2) E. = { ( a ) ^ ~ ^ 6 : l ( a ) = l ( b ) = n ; & / ~ E l M [ ;  

tp(& 4~, L *,M) = tp(b,d~,L *,M)} 

(3) Fn is an n + 1-place function, and F,(a,a) E {m : m < to} and F.(a,a) = 
F , ( a , b )  r E. (a,&/~). 

(We can define F, because the number of L *-types realized in M is countable). 

It is easy to note that 

(i) E.(a,~,~) is an equivalence relation (in M); it refines E,(r for 

/3 < a ;  and it has ---~ equivalence classes; and < is an order with first 

element, 0, and E, (0, ti,/~) iff the L*-types of ti and /~ are equal. 

(ii) If NI=E~(a + 1, &/~) then for every c, E N there is c2 E N such that 

N [= E, +,(a, ~^ (c ,),/~^ (cz)). Moreover if for N1 c ' s  N [= E, § (a, a ^ (c), a ^ (c,)), 

then for N,, c ' s  N[=E,+, (a,b^(c), b^(c2)). 

Clearly (i) and (ii) can be "expressed" by sentences @,, @2 of L ... .  (Q) 

respectively (for (i) we need the F, 's) .  

By [5] there is a model N ' ,  such that: [IN'l[ = N,, N '  is a model of 

@ ^ @, ^ @2, < N, is not a well-ordering. 

Clearly N [= @, [[ N [[ = N1, where N is the L'-reduct of N ' .  So let d. E [ N '  [ 
t _ (n < to) be such that N [-d,+l < d,. Let  us define E ; :  for sequences ~,/~, from 

IN'I of length n, ~iE~/~ holds iff for some m N'l=E,(dm, a,b). 
As N '  1=4,, ̂  4,2 it is easy to check that the analogs of (i) and (ii) holds for N ' .  

So it is easy to prove that. for every r  .... (Q), aE*,E ~ N ' l = , O [ a ] -  

~o[/~] (by induction on ~o). As 
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N'l=E.(do,~ ,b)  # a E ; ~  # t p  (a, ck, L .... ( Q ) , N )  = tp (b,d~,L .... ( Q ) , N )  

and E,(d0,$,Y) has =<~ equivalence classes (in N')  clearly 

{tp(a, ck, L .... (Q), N): ti ~ N} is countable, so N is the model we want. 

(B) Essentially the same proof. 

LEMMA 2.4. I f  I (N, ,6 ,  L ) < = ~ , M I = 6  then in M only countably many 

L .... (Q)-types are realized. 

PROOF. Let {Mi: i < a } be a maximal set of models of 6 of cardinaliity N1, 

realizing only countably many L .... (Q)-types, and with pairwise non- 

isomorphic L-reducts. By the hypothesis I(N,, 6, L)--<~,  so clearly a < to~. 

Suppose that in M uncountably many L .... (Q)-types are realized and we shall 

get a contadiction. 

Let L* be a (countable) fragment of L .... (Q) such that if tL/~ E I Mi I then 

tp(& q~, L *, M,) = tp(b, ok, L *, M~) r tp (& ~k, L .... (Q), M~) 
= tp(b, ck, L .... (Q),M,) 

(exists by the choice of the M~'s). 
Let L* be a fragment of L .... (Q) such that L*C_L* for i < a  (exists as 

a < to,). As I(~11, 6, L)  _-< K,, by 2.1(A) in M only countably many L*-types are 

realized. As uncountably many L .... (Q)-types are realized, there are ti, 5 E 

IMI, which realized the same L*-types, but for some r 1 6 3  .... (Q) 

M l=~p[t~]----,q~(6). Let 

6 , = ( 3 ~ ) ( 3 y ) ( , p ( X ) - 7 , ~ ( y )  ^ ^ 0(~)--- 0(y)). 
e E L *  

So clearly M~l=-16t, M 1=6,, by the hypothesis on M and 2.3 there is a 

model N, IINll = N,, NI=6 ^ 6, and in N only countably many L .... (Q)-types 

are realized. Clearly N contradicts the maximality of {M~: i < a }. 

DEFINITION 2.1. M is (L*, ~ ) -  homogeneous if when t p ( & 4 ~ , L * , M ) =  

tp (b, ~, L*, M) ,  then for every e E ] M  [ there is d E [M[ such that 

tp(fl ^ e, ck, L*, M )  = tp (6  ^ d, ck, L * ,M).  
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LEMMA 2.5. Let  L C L', M an L'-model, and in M only countably many 

L .... (Q)-types are realized. Then (A)  For some fragment L* of L .... (Q), M is 

( L *, No )-homogeneo us. 

(B) Moreover we can choose L* so that for every Ft E I M I there is q~ (~) E L*, 
such that Ml=~o[a], and q~(~,) is L .... (Q)-complete, i.e., q~(~)t-tp 
(a, dp, L .... (Q) ,M)) .  

(C) The sentence ~b, = ^ {~b: ~b ~ L*, M [=~b} is L .... (Q)-complete. 

PROOF. Easy. 

3. Nice sentences and the amalgamation property 

Here  always ~b E L .... (Q), M and N are L-models .  

DEFINITION 3.1. The sentence ~ ~ L .... (Q) is L*-almost-nice (L* a frag- 

ment of L .... (Q)) if 

(1) ~b ~-(Qx)x =x,  ~b has a model and is L .... (Q)-complete  

(2) every model of ~/, is (L*, 1~)-homogeneous 

(3) moreover  if M [= ~b, ~ E I M [ then for some ~p (~) E L*, M [= ~ [~ ] and ~ (~) 

is L .... (Q)-complete.  

DEFINITION 3.2. 
(A) The sentence ~ is almost nice if it is L*-almost-nice  for some L*.  

(B) The sentence ~b is nice if it is L-almost-nice and in (3) of Def. 3.1 the 

formula r is atomic; 

(C) M]="~" if M is a (first-order) atomic model of T ( ~ ) =  

{~b,: ~ , ~ L , M [ = ~ ,  ~ MI=~,}. M is a non-standard model of ~b if MI=7~, 
M 1="4,". 

(D) M [="~p [a ]" (q~ E L .... (Q)) if ~ ~-(Vs =- R (.~)), R E L, M [=R [a], 

M [="qJ" and ~, is nice. 

REMARK. Notice that T(4,) is a set of first order sentences. If ~ is nice 

~b = ~* ^ Qx(x = x)  for some ~b* a Scott-sentence of a (first-order) prime model 

in which each type is isolated by a predicate. 

LEMMA 3.1. 

(A) For every almost-nice d/there is L' D_ L and a nice ~b' E L ", . ,(Q) such 

that 

(1) for every ;t I(h, ~) = I(h, ~')  

(2) the L-reduct of  any model of tp' is a model of  ~b, and every model o[ ~ can 

be uniquely expanded to a model of  ~'. 
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(B) I f  4 is nice, there is exactly one model M (up to isomorphism) such that 

M [="4", IIMI] <-- no (this model is the prime model o[ T(4) ) .  

(C) In L e m m a  2.5(C) 41 is almost nice. 

(D) I f  M is a model o f  T (4 ) ,  where qs is nice then : 

(a)  Assume  N < M. Then N I = " 4 "  iff every ~ E INI realizes an L-isolated 

type, i.e. there is ~ ~ L ,  such that Ml=r  T(4), r163 4~,L,M) 

(f$) I[ A C I M [, ]A ] _-< ~ ,  and every a E A realizes an isolated L-type, then 

there are N1, N2 such that Nz is a model of  T (4 ) ,  A C I NI I, N,  < N2 M < N2 

and N~ 1="4". I[ M is Nl-saturated we can choose N2 = M. 

PROOF. Easy. 

LEMMA 3.2. I[ I (1,11, 4 ) <- ~ ,  then there are almost-nice sentences 4n n <= a <= 

to such that I-[4 ^ ( Q ) x ) ( x  = x)] = V,<~4.. 

PROOF. Let M, n < a =< to be the models of 4 of cardinality NI. By Lemma 

2.4 each M, realizes only countably many L .... (Q)-types. Hence by 2.5 and 

3.1(C) there is an almost nice sentence 4~, such that Mn [=4~,. Then 4, = 4 ^ 4~ 

satisfies our requirements. 

DEFINITION 3.3. Let 4 be nice, M[="4" ,  N[="4" .  
(A) M < N if M is an elementary submodel of N. 

(a) M < * N  if M < N  and if R ( x , y ) E L ,  a E I M [ ,  and MI= 

" - 3 ( Q x ) g ( x , a ) "  then for no c E [ N I - [ M [  does N[=R[c,a].  

(C) M < * * N  if M < * N  and if R ( x , y ) E  L, d E l M  1 and Ml="(Qx)R(xa)" 
then for some c E ] N [ - I M I ,  S l = R [ c , d ] .  

REMARK. Notice that if M < **N then M ~ N (if there is a nice 4 such that 

M 1="4"). 

LEMMA 3.3. 

(A) I f 4  is nice, M~ I="4" for i < to,, M~ < *M~+~ for i <j ,  M~ = I,.J ,<sM~ for 

limit 8, and {i: M~ <**M~+~} has cardinality N~ then I..J,<,~M~ I=4 

(B) I f  4 is nice, MI="4", I[MII = ~ then for some N, M < **NI="4"  
(C) The relations < ,  < *, < ** are transitive, and if Mo < *M~ < **M2 or 

Mo < **M~ < *M2 then Mo < **M2. 

PROOF. Immediate. 

DEFINmON 3.4. A nice sentence 4 has the A-amalgamation property when: 

if N, 1="4 '' for l = 0, 1,2, No < *N,, ]l N, II--< A then there are M, f,, f2 such that 

No < *M, M ]="4", [t is an embedding of N~ into M, fi I[ No l = the identity and 

M I Range (fi) < * M  (for l = 1,2). 

Sh:48



134 S. SHELAH Israel J. Math., 

LEMMA 3.4. Suppose V = L or even ~.~. 

If  ~O is nice but does not have the ~-amalgamation property then I ( ~ ,  qJ) = 

2N,. 

PROOF. Trivially I(tt,, t0)=<2% Let  {S,: i < to,} be a partition of to, to 

pairwise disjoint stationary sets (see e.g. [17]), by Jensen's diamond [4] there 

are for a < to,, a function [~ : a ~ a, and L-models  M 2, M"  with universe 

too + a )  such that for every function g: to,--~ to,, and L-models  Mo, M, with 

universe  to,; {a: a ~ S/, g Ia = f~, M, Ito(1 + a )  = M~" for I = 0, 1} is stationary 

for every i < to,. Let  No, N,, N2 contradict the l~-amalgamation property and 

w.l.o.g. No < **N,, No < **N2. Now for any set S _C to, we define M s (0~ < to,) 
, s by induction on a, such that IM s [ = to(1 + a) ,  M s [="q,",/3 < a :> Mg < M=. 

For a = 0, or a a limit ordinal there is no problem. If M s is defined let g be an 

isomorphism from No onto M ~ If M s = M~, a ~ S, and i E S r 1 = 0 choose 

MS+, so that g (if I = 0) or [~g (if 1 = 1) cannot be extended to an isomorphism 

from N~ onto MS+l. In any case choose MS+l so that IMS+~l= to ( l+a  + 1), 
M s < **MS+,. 

Let  M s=  [..J . . . .  M s, so clearly MSl=~O, IIMSlI--,,. It is easy to see that 

M $") ~ M $a~ implies that U {S, : i E S(1)}, U {S~ : i E S(2)} are equal modulo 

the filter of closed unbounded subsets of to,, hence S(1)=  8(2). 

DEFINITION 3.5. 

(A) A nice q, is (A, 1)-stable if M[="r AC_IM], IAi<=A, 

I{ tp(~,a,L,M):  ~ E IMI}l _-<x 
(B) A nice ~ is A-stable if MI="O" ,  A C_IM I, IA I_-<A implies 

t{tp(EI, A , L , N ) :  ~ E N, Nl="~b", M <*N}I_-<A. 

implies 

LEMMA 3.5. Assume ~b is nice and has the No-amalgamation property, 

(A) 0 is ~-stable iff ~b is (No, l)-stable. 
(B) Assume 2 N~ = &; then ~b has an l~l-model-homogeneous M of power NI 

(i.e. if N, < *M, N2 < *M, 11 N, l[ = ~ ,  / an isomorphism from N, onto N2, then f 

can be extended to an automorphism of M). 

PROOF. 

(A) The direction ~ is always true, and the direction # follows by the 

I~-amalgamation property. 

(B) Easy. 
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4. Rank 

Let ~ E L  .... (Q) ben ice .  

DEFINITION 4.1. Suppose r is nice, M[="~b". For every L- type  p with m 

variable over a finite subset of I M l we defiffe its rank R m (p) = R m (p, M) as an 

ordinal, - 1, or ~, as follows: We define by induction when R (p) => a, and then 

R(p)  = - 1 r R ( p ) ~ O ,  

R ( p ) = a  r R(p)>=a A R ( p ) ~ a  + l, 

R (p )  = oo r (Va)R(p)_-__a. 

(A) R ( p ) =  0 if p is realized in M. 

(B) R(p)>=~ (for a limit ordinal 8) if for every a <SR(p)>=a.  

(C) R (p) = a + 1 if the following conditions are satisfied 

(a) there are ~ E L  and a~lMI  such that Rm(pO{~($,a)})>=a,  

Rm(p U {--1~ (~, t~)}) => 

(13) for every ti E IMI there is P(g, ~) and ~ E IMI (1(~) = I(E) = m) such 

that P(L  ~)~-tp(~, ~, L, M) (so P(g, a,) is complete), R " (p U {P(g, &)})_-__ a 

(3') If MI="q(Qy)P(y, tI)" and p ~-(~ y)[@(y, ~, ~) A P(y, tT)] then for some 

d ~ IMt,  MI=P[d,~] and Rm(p U {r _-__ a. 

REMARK. A natural ordering is defined among the possible ranks by stipulat- 

ing - 1 < a < oo for any ordinal a. 

DEFINITION 4.2. For any not necessarily finite p, 

R " ( p )  = min{R~(q):  q C_p, [ql< ~} 

LEMMA 4.1. 

(A) Rm(q~(~,ti),M) depends only on tp(&~b,L,M).  
(B) p k q implies R m (p) <= R m (q). 

(C) Rm(p)>=to~ implies Rm(p)--oo. 

(D) Xf M < * N ,  N I = " 0 " ,  MI="~", / ~ I M I ,  a ~ N ,  I=q~[&5], 

R "~ (tp (& I MI, L, N) --- R" ((q~ (~,/~}), A C_ L NI, 6 ~ A then there is a unique 

complete L-type pA over A realized in some N' ,  N < *N'  I="~",  which contains 

(g, b) and has the same rank. So A C B ~ pA C pa and pA does not split over 

/~, i.e. if 

~.1,~2 ~ A, tp(e,,  ~, L, N)  = tp(e2, a, L, N)  

and ~b ~ L then ~b (g, ~,, a) E pA r ~ (~, ~2, a) ~ pA. 
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PROOF. 

(A) Prove by induction on a that the truth of R"(q~(s 5), M ) ~  t~ depends 

only on tp (5, ck, L, M). 

(B) Easy. 

(C) By (A) the number of possible ranks is countable, hence necessarily for 

some ao<  to, for no p Rm(p, M) = ao. Now prove by induction on a _-> a0 that 

R "(p, M) _-> ao implies R " (p, M) -> a + 1 (for a0 this is the definition of ao, for 

a limit--immediate and a =/3 + 1 use the definition of rank and the induction 

hypothesis). 

(D) Easy. 

LEMMA 4.2. The following conditions on ~ satisfy (B) f f  (A) r (C) ::> (D) 

(A) ~b is ~-stable. 
(B) ~b is (1~,, 1)-stable and has the ~-amalgamation property. 

(C) For every finite p over M, Ml="~b", R ~ ( p , M ) <  oo. 
(D) (or) ~b is (~ ,  1)-stable, and 

(6) if N, M 1="0", N < *M, ti E ] M  [, then tp (d, IN I, L, M), is definable over 
a finite set C_ IN I, where 

DEFINITION 4.3. Let A C B C M I = " ~ b " ,  d E I M  I, then tp(rt, B , L , M )  is 

definable over A, if for every P~(X, y) there is P(y, b), b ~ A such that for every 

e IBI, MI=P,(5,c) r Mll=P(e,b). 

RE~AR~. Not necessarily all the conditions are equivalent. 

PROOF. 

(B) ~ (A): This holds by 3.5(A). 

(A) ~ (C): Let M be an Nrsaturated model of T(g,) and N < M, IINll = ~ ,  

N = "~b". Then we prove by standard techniques (see e.g. Keisler [6]). 

CLAIM 4.3. Let M be an N,-saturated model of T(0), A _CIM I, IA I~ ;~ .  

Then there is a model N, such that 

(i) N < M ,  A c_]NI, IINII=s, 
(ii) let 5 E A ,  M]="-l(Qx)~(x,a)" (~ E L )  then for some c E I N I - A ,  

Ml=~[c,a ] iff there are O ~ L, b E A, 

M 1=(3 y)0(y,/~) a (V y) (0(y,/~)-*q(y,a)) 

but for no c E A, M I=O(c, 5). Then it is easy to prove that if Rm(p)= ~, for 
some p, then there are in M ~,, i < 2 N., satisfying the conditions of 4.3, and 

realizing in M over I NI distinct L-types such that by 4.3 there are N,  
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INlua,  C_IN, I ,N < *N,, N, < M (remember Rm(p)>=oJ, ~ R " ( p ) >  oJ,, and 

notice that the definition of rank is tailored for this proof. 

(C) :ff (D), (A): Let N 1="6", II N[I = i~, N < *M [="t0", and ~i ~ I MI. Then 
by (C) and 4.1 there is P(Y,/~) E p,~ = tp(& IN I, L, M) with minimal rank, which 

is a <oo. Clearly by the definition of rank and the choice of P(.'L/~), 

R " ({P($,/~)}) ~ a + 1 implies that for no P,(s b,) (b, E IN [) do 

R "  ({V(.~,/~), P,(X, b,)}) _-> a 

R ~ ({P(X, t;),  -~ e , (~ ,  b , ) l )  --> a ,  

both hold; so exactly one holds, the one contained in p~. This proves that pa is 

definable over a finite subset of N(  =/~) so (D) (/3) holds. As the number of 

such definitions is _--- [IN II + No also (D) (a)  (A) holds. 

LEMMA 4.4. Suppose to is nice and ~-stable, M < *N, II N II = ~ M I="to", 

N[="V,",a E[N[. Then there is a prime model M'  over [M]Ua, i.e. M < *  

M ' < N ,  and if M < * N ' ,  f f ' E N ' ,  t p ( & i M ] , L , n ) = t p ( d ' , ] M i , L , n ' ) ,  then 

there is an elementary imbedding f of M' into N' ,  which is the identity over [M[,  

and f( f i)  = fi', and N'[  Range f < N' .  

M' is, in fact, the prime model of the first-order theory of (N, C),~lMl~,,. 

QUESTION. Can we demand M' < *N, N '  I Range f < *N '?  

REMARK. (Until then this lemma is interesting mainly for to E L ..... ) 

PROOF. Clearly it suffices to prove: 

(*)  If N[=(3y)q~(y,&6) (q~ E L )  where bEIM[, then there is ~0,(y,&6,) 

(~, E I M 1, ,P, ~ L ) such that N [= ( V y)(q~,(y, & b,) ~ ~ (y, fi,/~)) and p~(y, fi, b,) 

isolates a complete L-type of y over [MI u a, and Nl=(:ly)g,,(y,&/~0. 

PROOF OF (*).  Choose 0(y, .C,e)(e E IM I, 0 E L)  such that 

(i) Nt=(gy)(O(y ,~ ,e)Aq~(y ,&6))  
(ii) R " +'(tp (& I M I)) U {0 (y,.~,/~)}) (m = l (fi)) is minimal assuming (i) holds. 

It is easy to see that 0(y,a,e)^ ,p(y,a,/~) isolates a complete L- type  over 

I M l u  a, so we finish. 

5: The order property 

Let  to be nice and ~-s table .  

DEFINmON 5.1. We say that to has the order property if there is a model M 

of to and ft. E I MI (a < o~,) and formula ~p(~, ~) E L such that M [=q~[do, fi~] r 
a<_--/~. 
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DEFINITION 5.2. 

(A) We say that 6 has the symmetry property if for M < * N ,  N 1="6 '', 

MI="~"; a, S e l N I  

g(tp(a, IMI U G,L,N) = R(tp(a, IM IL, N)) 
iff 

R(tp(b, lM[ U &L,N))= R(tp(b, IMI,L,M)). 

(B) We say that 4' has the asymmetry property if there are M, N, ti, 6 as 

above such that 

(i) R (tp (& [M [ U b, L, N)) = R (tp (& [M 1, L, N)) 
(ii) for some E = E()7,, $2, ~ )E  L, E()7,,)72, ti) is an equivalence relation with 

no equivalence classes(in any model N ' ; N <  *N' 1= 4') and 6 is not E07t,)72, a) 

equivalent to any sequence from I MI. 

THEOREM 5.1. The following properties of ~b are equivalent (for nice no- 
stable qJ ) 

(A) tk has the order property. 
(B) 4' does not have the symmetry property. 
(C) ~b has the asymmetry property. 

PROOF. 

(B) ~ (A). 

Let M, N, ~, 6 be a counter example to the symmetry property, and let 

~(x,y,e) (e EIMI,~o E L )  be such that: 

(i) N [=r 6, ?] 

(ii) R({,p(X, 6, e)})<R(tp(a, lMI ,L,M))  
(by the symmetry between a and 6 we can assume this). We can also assume 

w.l.o.g, that II NII -- no. 
Now define by induction on a < to, models No ; and sequences tL, 6~ for limit 

a only such that: 

(l) IINo II = no 

(2) for limit a, No = U~<~ N~ and No = N 

(3) N~ < *No+t, N~+2 < **N~+3. 

(4) for limit a, ~L E N,+, and tp(a~, IN~ I,L,N~+,) extends and has the same 

rank, as tP(&IMI ,L ,N) .  
(5) for limit a,/~, E IN,+21 and tp(6~,INo.,I,L,N~+2) extends, and has the 

same rank, as tp (6, I M I, L, N). 
This is easy to do. Clearly by (4) and (2) and Lemma 4.1A 
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N~§ As tp(6~,[MI,L,N~§ tp(6, lMl,L,N~§ 

and as by 4.1D tp(&,[N~[,L,N~.,) does not split over ]M[, necessarily 

/3 No+,l= ,tao, Go, el. 
Similarly we can prove that for a =/3, 

tp(&^bo, [M 1, L, N,§ tp(a ^5, ]M 1, L, No§ 

hence N~§ ]=~p[&, b0, el.  As N* = I..J . . . .  N~ is a model of $ (by 3.3(A)) letting 

& = ~ ^ 6 ~ ^ e  and 0(g,,y,,:~,;gz, y2, e~) = q~(g,,yz, zz) we find that Nl=t~ and 

Nl=0[~ ,~o]  r a _-</3. So we finish. 

(C) ~ (B). 

Let M,N,c~,6, E be as in Definition 5.2(B). Clearly it suffices to prove 

p, = tp(b, lM] tA a,L,N) has rank smaller than that of p2 = tp(b, lMl,L,N). 
Suppose not, and let q~(g, ~ ) E  p2 has the same rank as p2, so that (using 4.1B) 

R(tp(a,~,L,N))=R(tp((t,M,L,N)). Choose g ' ~ I M I ,  tp(b',?,L,M)= 
tp(6,r and define models N~(a<o) , )  so that N~ < * * N . §  N s =  

U.<,NoI="#,", Ilt oll=a., and /~ .EN,+, ,  N.I="~p(E.,() and R(tp 
(b~,N.,L,N.+O)=R(q~(.r As E(Y,,,g,,a) has in 1..J . . . .  N.  only ~h 

equivalence classes, for some/3 < a < ~o,, E(b., b~, a). We can assume not (B), 

so R(tp(b',(^(t,L,N))=R({~(~,e)}), so by 5.2B (below) E(/~',/~,ci), con- 

tradicting the definition 5.2(B). 

(A) => (C) 

During this proof we shall prove several claims. Of course we can assume 

IINll-- x, .  

CLAIM 5.2. Suppose N]=~, and I* is a set of 1~, sequences from N and 

A _C ]N I is countable, and II N II = N,. 
(A) We can find an No < * N ,  A C]No[, No <**N~§ N~ = ~ < ~ N ~ ,  N =  

I,.J . . . .  N~ and & ~ ]N~+~I,& at ]N~I,& ~ I* and 0 ~ ]No] and ~0 ~ L such that 

Nl=,p[a~,e],  and R(tp(ao, lNo [ , L , N ) ) =  R({q~(:/, ~)}). 

(B) The conditions of (A) or even R(tp(&,U~<~aoUA,L,N))= 
R({~p(2/,~)}) and N[=~ (&,r  implies {& :a  < r is an indiscernible sequence 
over A, i.e. if 

a(l, 1) < l(l, 2 ) . . .  <c~(l,n)<to,(l = 1,2, n < to)  

then 

tp(&,.. ^ a.,.2) ^" �9 �9 ̂ ei~(~..). A. L. N)  = tp (a~(2.~)  ^ C]~(2.2) ̂ " " �9 ̂  (] , , (2. ,  ~, A. L. N) 

(in any case we assume ~p(.~,ff) is as in (A)). 
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(C) If ~ does not have the order property, in (B) we get that {6~ : ~ < to,} is 

an indiscernible set over A (i.e. we demand only that {a(l, i): i = 1, n} are 

distinct. 

PROOF. 

(A) We can easily find appropriate N~ 's. Now for a < to~, choose inductively 

~ I ,  ~ I N ~ I ,  ~ { t ~ :  /3 < a } ,  and choose q~o E L ,  &  INol so that 

R(tp(~L, IN~I ,L,N)= R(~(~,b~)) and N l = ~ o ( ~ , b ~ ) .  

By a theorem of Fodour [2] it follows that there is S C_ to,, IS [ = ~, such that 

a E S f f  r = r =/~. By renaming we get our conclusion. 

(B) and (C). The proof essentially is as in Morley [9], Shelah [13]. 

DEFINITION 5.2. Let M [="~",  J an ordered set, and ti, E [M[ for t ~ J. 

Then the indexed set {~, : t E J} is called nice in M if for every/~ E [ M  [ there is 

a finite set SC_J such that if t ( 1 ) ~ - t ( 2 ) mo d S  [i.e. ( V t E S )  

(t < t ( 1 ) ~ t  < t ( 2 ) ^ t = t ( 1 ) - t  = t(2)] then tp(a, ,^b,  ck, L ,M)=tp  
(~,~2~ ̂  G, ~b,L,M). 

CLAIM 5.3. 

(A) The indexed set {as : c~ < to,} from 5.2A is nice in N 

(B) If {a,: t ~ J} is nice in M, M < *N 1="+" then it is nice in N. 

PROOF. 

(A) Let  /~EN,  so for some a E~IN~+,[, /5~No or g lNol. If E~INo[ 
clearly S = $ will do.We prove the existence of S = S(b)by induction on a. So 

by 4.1C for some 8 ~ ] N ~ [  tp(b,[N~[,L,N) does not split over ~. Choose 

S(/~) = {a} U S(g), and clearly this will do. 

(B) For every/~ E N choose g ~ [M I so that tp (/~, [M [, L, N) does not split 

over ~. Clearly if t(I) , t(2)EJ, t ( l ) ~ t ( 2 ) m o d S ( 8 ) ( S ( e ) - - t h e  S we can 

choose for 8 by Definition 5.3) then tp(b^ ~,,,, r L, N) = tp(b^ ~,2,, ok, L, N). 
So we finish. 

CONTINUATION OF THE PROOF OF 5. I, (A) ~ (C) 
So let N,N~, ~,~p(s (o~ < t o o  be as in 5.2A. We can assume I N l = t o , ,  

Now it is known (see e.g. [5]) that if 0 ~ L .... (Q) has a model of order type 

tol, then it has a model which is countable and has an order type which contains 

a copy of the rationals. 

Hence, using extra-predicates, there is an ordered set J, models N,(t ~J )  
and elements ~,(t E J) such that 
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(1) J,N, are countable, and N,o, = No where t(O) is the first element of J, and 

J contains a copy of the rationals. 

(2) N, 1="4," 
N . , , <  Nm,, and let U , ~ N ,  (3) t ( 1 ) < t ( 2 ) ~ J  f f  ** N * =  

(4) for each ~ E U,~ j  I N, I - I N ,  co,[ there is t = t~ e J  such that a ELM,.,  [, 

a f t  I M,I (t + 1 - the successor of t) 

(5) (3 ~ IN, co, I, N,.,i=~p[gl,, C'] and tp(gl,, IN, I,L,N,.,) has the same rank as 
q,(X, ~) 

(6) for each f i E N *  there is a finite S(8)C_J such that t(1),t(2)EJ, 
t ( l )  - t(2) rood S(~i) implies tp(a ^ ~.,,, 4), L, N*) = tp(~ ^ a.z),~b,L,N*) 

(7) for each/~ E IN,+, I - IN, [ there are n, t ( l )  < ... < t(n) = t and/~0 E ]No [, 
and /~ E I N . . + ,  l, /~ff I N . . ,  such that, for O<k <l  <n, tp(bt, N.k,,L,N*), 
tp(bt, bk, L,N*) have the same rank. 

REMARK. For the original N . ' s ,  (7) follows immediately. 

As J contains a copy of the rational order, it has a Dedekind cut (J,, J2) (J, 

the lower part) with no last element in Jl nor first element in J~, (and J~ ~ 0 ,  

A # | 
By (6) there is an N,-saturated model M of T(O), N* < M, and ~* E I M I so 

that for /~ C N*,  q~ ~ L. 

Ml=q~(~*,/~) r162 there are t ( I ) E I , ,  t ( 2 ) E L  so that t ( 1 ) < t  < t ( 2 )  implies 
B]. 

Clearly for every O E I N*[ u a*, tp(& 4), L, M) is isolated. If there is a model 

M', N * < * M ' < M ,  ~ * E M ' ,  M'I="4"' ,  then tp(a*, lN*l ,L,M')  split over 

every finite set C_ IN*l,  contradiction. By 4.3 there are e, ~ IN*l,  0 , , 0 ~  L 

such that 
(a) N*l="~(Qx)O,(x,e,)" 
(~) M 1=(3 y) 0~(y, a*, e,) 
(T) M I=(V y)(V g)(V ~)[0Ay, )7, :~)---> O,(y, s 

(~) for no d ~ IN* l, N*[=O,(d,f,) and Mi=O2[d,~*,O,]. 
By (7) we can find t ( l ) E I ~ ,  t ( 2 ) ~ I 2  and g 2 E N . , ,  such that 

tp(g,,lN.2,[,L,N*), tp(g,,f . . ,L,N*) have the same rank. By notational 

changes we can assume t ( l )  = t(0), ~2 = c, c, ~ N.~+,. Let 

E(X,, 2~2; z) = (V y) [0~(y, X,, ~) - 02(y, X~, ~)1. 

Clearly E(27~,~;~) is an equivalence relation, and if N ' a *  M, I="~b",g' ~ M~. 

M, ]=" N(Qy)O,(y, 6')"  then in M, E(~ , )~ ;  ~') has < ~to equivalence classes (by 
the ~to-stability of q~). Hence  if g t E I M , ] ,  M , < * M ~ I = " $ " ,  M,I="-I  

(Oy)O,(y,g')" then there is in M2 no new E()7~,~2;g')-equivalence class. 
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So E(~,,~2;6,) has NO equivalence classes: it has <NO by the previous 

argument, and t (3) < t (4) < t (2) implies N*]=-IE (~,3), ~,4~; ~0. The last formula 

implies of course that a,o~ is not E(.~I, ~2; Ch)-equivalent to any sequence from 

N,o). So clearly (C) holds with No, N*, ~ ,  fi,0~ for M, N, a,/~ respectively. 

THEOREM 5.4. If ~b (is nice, No-stable and) has the asymmetry property 
then 10,11, ~b ) = 2 M'. 

PROOF. Let M, N, 6,/~, E be as in Definition 5.2(B). ]IN H = NO w.l.o.g. Now 

we define by induction on c~ < ~o, models N, such that: 

(1) No = N 

(2) N~ [="q,", IINo II-- NO 
(3) N.  < *No+v and N,+t < **N.+2. Moreover every L- type over N~+, real- 

ized in some N ' ,  N.+, < *N' ,  is realized in N~+2. 

(4) N~ = t.3~<~N~ for limit 6 

(5) Ns+, is prime over [N~ [ tO ~i8 (see Lemma 4.4) where tp (an, IN8 l, L, Nn+~) 
extend and has the same rank as tp (~ , IM[ ,L ,N) ;  for limit 6. 

(6) /~+, E INo+~I 
Where tp(bo+,,lN~+,[,L,N~+2) extend and has the same rank as 

tp(b, I M I , L , N )  
So clearly N* = [.J . . . .  N~ [=q,. Note that if 6 < wl (is a limit ordinal and 

E IN8 [ then for every a < 6, 6 E I M. I and for all /3, a </3 < 6 the types 

tp(g ^/~+~ ̂  ae, ~b, L, N*) are equal. (i.e., the type does not depend on/3 nor on 

6). 

Notice that all the E($, Y;~8) equivalence classes are representable in N~+~ 

(otherwise we can get a contradiction to the choice of E by (3)). Now for no 

b ' E N *  is tp(as^6',[N,l,L,N*)=tp(a~+o,,6~+,,lNs[,L,N*). Otherwise 

choose /~"E Ns§ such that N* [=E[b', b", d~ ], so by the conditions in Defini- 

tion 5.2 (B), N* [=-lE[b", /~, ~ ]  for any a < & By 4.4 we can choose ~ ~ [N~ I 

and q~ so that N*f=q~[/~", ti~, 6] and q~(~,ti~,t~)~- tp(b",& tO IN~ I , L , N * )  and let 

e  INol, and o~ </3 <6 .  Then q~($,ti~,t~)l--qE(,~,/~o, 6) hence 

q~,(y,, ~i~, e) a--t (=l y)(E(~, y, a~) A q~(y, a~, ~)) t- -1Ef t , /~ ,  ~) 

but N* [= q~t [/~, tin, ~] so N* I= ~ E(bo, b0, ~i~), a contradiction. 

As in the Proof of 5.1 (A)--> (C), using [16], 2.14, for every set S _C o~, we can 

find an order J, and models N,, t ff J, and sequences a,,/~, such that 
(A) J = [..J . . . .  J~, IJ~ [ = ~o,[J[ = ~,, J~ is an initial segment of J ;  J - J~ has a 

first element iff a ~ S;  and J is elementarily equivalent to o~,. Also a </3 

J~ C_ J~ and J, = [.J~<~J~ for limit 6. 
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(B) The conditions parallel to (1)-(6) above holds. We denote U,~sN,, which 

is a model of to of cardinality ~I,, by Ns. Let t? E M, r q~2 E L be such that 

Nl=q~t[tl,~]^q~2[a^/~,C] and ~,($,C'),q~2($,y,C) has the same rank as 

tp(a, l M l , L , N  ), tp(• ^b, I M I , L , N )  resp. 

Now clearly 

(*) L e t a < o ~ , , N  ~=  U N , . T h e n a ~ S i f f t h e r e a r e  C ' E N ' ,  
t EJ~ 

tp(C, da, L, N) =- tp(6', ok, L, N"),  and a' E Ns, N~ I=q~,[~', ( '] ,  and ~p,(X, 6') has 

the same rank as t p (a ' , lN  ~ I, L, Ns) such that for no b'  E INs I does Nst = 

~,[a'^6',e '] and q~2($, y,C') has the same rank as tp(?~'^6', lN" [,L, Ns). 

(**) 

If Ns = U N'~(~ <w,) ,  N'~<*Ns, [IN~'][=I~,, N~<*N~+,, N~= U N~' 

then {o~: N~ = N ~ } is a closed and unbounded subset of co,. 

We can easily conclude that Ns, = Ns, implies that S,, $2 are equal modulo 

the filter on co, generated by the closed unbounded subsets of w~. Hence e.g. by 

Solovay [17], I(N,,to)= 2",. 

THE I(o-AMALGAMATION LEMMA 5.5. 

(A) Let tO be nice and ~-stable, NI="to", (I =0,1,2)No<*N,, No<*N2. 
Then there is a model M of T(to) and elementary embeddings [~ of N~ into M 

[ , l lNol=the identity, fi maps N~ onto N'~ (1=1,2) ,  and /or FIE[N'2[ 
tp(F~,N;,L,M) has the same rank as tp(d, INol ,L,M).  

(B) Under the conditions of (A), i[ IIN, II=IIN=II=~ there is M ' < M ,  
M' I="to", N~ < *M'. 

(C) l f  to has the symmetry property, then in (B) we can have also N'2 < *M'. 
(D) I[ ~ has the symmetry property, it has the l~-amalgamation property. 

PROOF. 

(A) Immediate. 

(B) Follows by claim 4.3. 

(C) Immediate by 4.3, as then the conditions in (A) are symmetric for N', and 

N~. 

(D) Immediate by (C). 

LEMMA 5.6. Suppose to is nice, I%-stable and with the symmetry property. 

(m) tf Nl=to, IINII= n, then there is M,M[=to, N <*M, M ~  N. 
(B) Moreover there is such an M o[ cardinality 1~. 
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PROOF. 

(A) Let N = I,.J . . . .  N,, IrNo II--No, No <**No~,, N~ = U . . . .  No, and let 

N < M, M an N2-saturated model of T(6).  We now define by induction on a 

models M~ and embedding [~.o (for/3 < a )  such that: 

(1) No <*Ms,  M o ~ N o  

(2) /~.o is an elementary embedding of M~ into Mo 

(3) Mo I Range [~.~ < *M~ 

(4) [~.~ INo = the identity 

(5) if 7 </3 < o~ then f~.~ = f~  f~.~ 

(6) if a EJM~I,  /3 < a ,  then tp (~ ,]N~[ ,L ,  Mz) has the same rank as 

tp(f~.~(a),N~,L,M~).  

We can define Mo = N,, and then proceed by 5.5 for successor ordinal, and 

using the litnit for limit ordinal. We can .assume M~ < *M~ for/3 < a. 

Clearly I,.J . . . .  M~ is the required model. 

(B) By repeating (A) we get Ms (a < o~2), M~ < *Mo ~ M~ for/3 < a, Mo = N. 

Clearly I,.J~<~Mo is as required. 

Without any assumptions on & let us prove. 

MAIN THEOREM 5.7. ( V = L or ~,~) I f  ~ E L .... (Q), I(N~, ~b) < 2", but ~b has 

an uncountable model, then ~b has a model of  cardinality ~ .  

PROOF. Clearly we can replace in the proof ~ by ~'  if I(h, ~')  _-< I(A, ~) for 

h > ~ ,  but I(N1, ~b') _-> 1. 

Let  M be an uncountable model of g~, so by the downward L6wenheim- 

Skolem theorem we can assume [[g II = NI. 

By 2.1A for every fragment L* of L .... (Q), only countably many L*-types 

are realized in M. By Theorem 2.3A, ~ has a model M~ of cardinality ;~1 in 

which only countably many L .... (Q)-types are realized. By 2.5A for some 

fragment L* of L .... (Q), M~ is (L*, ~)-homogeneous.  By 3.1(C), 2.5(C) for 

some almost nice g~,, M, [=~,  ~ F- g~, so we can replace ~b by g~,. By 3.1(A) we 

can replace ~, by a nice ~2. By 3.4 ~2 has the ~-amalgamation property, and by 

2.1(B) it is ( ~ ,  l)-stable. By Theorem 4.2 ~b: is ~-stable.  By Theorem 5.4 ~2 

does not have the asymmetry property, hence by 5.1 it has the symmetry 

property. Hence by 5.7 ~2 has a model of cardinality ~ .  

CONJECTURE. If ~b E L .... (Q) has an uncountable model, then it has at least 

2 "1 non-isomorphic models. 
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6. Various results 

We give here various additional results, but do not elaborate the proofs or 

omit them. 

LEMMA 6.1. Suppose tp ~ L .... (Q) has a model o[ cardinality "~,. 

(A) Then some model of  ~b o[ cardinality >-_ "~, satisfies an almost-nice 

sentence ~b'. 

(B) So )t > No ~ f(A, ~b) _-__ I(A, ~b') and equality holds i[ ~b is categorical in 

some tx <- A. 

(C) I[ ~b is categorical in I~, then it is (No, I)-stable. 

PROOF. Let M be an Ehrenfeucht-Mostowski model of ~b of cardinality %, 

(see e.g. [5]), with dense skeleton. Then in M only countably many L .... (Q)- 

types are realized. Hence we finish (A), and (B) is immediate. By the proof of 

Morley [9] (C) is immediate. 

LEMMA 6.2. Suppse ~b E L .... (Q) is nice and has a model of  cardinality "I ~, 

and is categorical in N~. Then ~b is l~-stable. 

PROOF. Let M 1 be an Ehrenfeucht-Mostowski model of qJ. (M'  is an L,-  

model, L C_ L3  which is the closure of the indiscernible sequence {y~: i < to,}. 

Let M'o be the closure of {y,: i < a} and M ( M . )  the L-reduct  of M'(M~).  It is 

easy to see that a </3 ~ Ms <*M~. By [12] in M we cannot find a set of I~, 

sequence which some ~ E L ordered. From this it is not hard to deduce that if 

~ E I M  I, /3 limit for some ct < / 3 t p ( & I M ~ I , L , M  ) does not split over M,, 

and there is 6 ' ~ I M ~ [  such that t p ( & I M ~ I , L , M ) = t p ( a ' , I M ~ I , L , M ) .  

If T is not ~-stable,  we can find models N. (c~ < to,) such that N~ < **No+, 

N~ = U,<~ Ns, II N,, II = No, N,, and the condition mentioned above does 

not hold (i.e. for every 8 there is d 6 [N~+, I such that: tp(~,lN~ I,L,N~+,) split 

over every ]N~ [, (a < 8) or for some a < 8, tp(a, INs 1, L, N~+,) is not realized 

in N~.) 

It is easy to check that N = I,_) . . . .  N is not isomorphic to M, but is a model 

of 6 of cardinality N~, contradiction. 

The following lemma was once used in the proof of 5.6 so we do not prove it. 

LEMMA 6.3. Let 4, be nice, No-stable, with the symmetry property. Let M be a 

model o[ T(~b), N , < N 2 < M ,  IIN211=~, D ~ I M  I, M ~ < M  is prime over 

IN, [ U ~ ; and N~, N2, M,, M21 =' '~ ' ' .  Then there is an elementary embedding [ o[ 

M, into M2, [ I(IN, I u ~) = the identity and M2 IRange [ < *M2. 
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From here we work in L ..... 

We could reduce all the previous discussion to L ..... The only noticeable 

changes are the omitting of (y) in Definition 4.1 (of rank), and replacing 

"to F-(Qx)x = x "  by "to has an uncountable model" in Definition 3.1 (of 

niceness), and we can drop < *, < ** and 

LEMMA 6.4. If tO is nice and ~-stable, then it does not have the order 

property (and does have the symmetry property. 

PROOF. Follows by the proof of 5.1 (A) :ff (C) (as we lack the alternative 

followed there). 

DEFINITION 6.1. Let M [="tO", 
(A) the formula q~(g,a)(~ElM[,q~ E L )  is big if there is a model N, 

NI="to", M <*N,  and some 6 E IN I, ( ~ ] M  I satisfies ~(g,a).  

(B) The formula ~ (g, ~) is minimal if it is big but for no 0 C L,/~ C ] M l, are 

both r  0(g,/~) and ~(g,d)^---,0(g,/~) big. 

(C) If ~ C M, A C_ M, tp (& A, L, M) is big (minimal) if some formula in it is. 

LEMMA 6.5. 

(A) The properties "q~(g, ~) is big", "q~(g, ~) is minimal" depends only on 

tp(& ck, L ,M)  

(B) I/q~(g,a) is minimal ~ C A  C_ M ]="to", then there is a unique complete 
L-type over A realized in some N, M < *N [="tO", which is big and contains 
~(~,~). 

PROOF Immediate. 

LEMMA 6.6. Let tO be nice and t~o-stable. 

(A) If MI=tO there is a minimal formula q~($,~), ~ CA.  
(B) I[ M I=tO, ~ E l M  I, q~($, ~) is minimal, then the dependence relation 

among sequences satisfying q~(g,a), defined by "/9 depends on {b,b2,.. .} if 

tp(b, ~ (3, ~, L, M) is not big" satisfies the axioms for linear dependence 

(which enable us to define dimension). 

PROOF. 

(A) Choose ~(x,~) with minimal rank such that for some N, M < N, N I=to, 

and c C I N [ - I M I ,  Sl=~[c ,~ ] .  

(B) Easy, remembering 6.5. 

LEMMA 6.7. Let tO be nice and t%-stable. Then tO is categorical in n,, iff for 

every model N, IINII=N,, NI=tO for every minimal ~,(x,,~) ( ~ C N )  

I { c C l N l : N I = ~ [ c , a ] } l = n ,  iff for every model M , N  o[ tO, M <N,  and 
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minimal ~p (x, ~) (c3 C ] M [) for some c E ] N I - [ M [, N 1= q~ [c, D ] iff over every 

countable NI=to, there is a prime model M, o[ to i.e. N < M I=to, N ~  M, and i[ 

N < M' I=to, N ~  M' ,  then there is an elementary embedding o [ M  into M' which 

is the identity over IN[.  

PROOF. Left to the reader. 

This seemed a reasonable characterization of categoricity. 

CONCLUSION 6.8. Let tO be nice, No-stable and categorical in N1. Then its 

model M of cardinality NI is N~-model-homogeneous, i.e. if N~, N2 < M, [ an 

isomorphism from N~ onto Nz, N~, Nz are countable then we can extend f to an 

automorphism of M. 

REMARKS. (1) We can easily generalize Lemma 3.4 (that the lack of the 

amalgamation property implies I (N , , to )=2  ' ' )  to higher cardinals and to 

pseudo-elementary classes. 

(2) If T C L(Q) ,  and for every finite set of formulas F _C L ( Q )  there is a 

model M of T, IITII=N~ such that for every countable A C_[MI 
I{tp (a, A, F, M): ~i E I M I}1 =< No then T has a model N, II N II = N1, such that the 

number of L .... (Q)-types realized in N is countable. The proof is analagous to 

2.3. 

(3) Claim 5.2 generalizes easily to any regular cardinality. 

(4) We can strengthen the definition of nice indexed set (Def. 5.2) as in [$6] 

without changing the conclusions. 

(5) We can generalize 6.4-6.8 to to C L .... (Q). 

(6) We can define niceness for all reasonable logics. 

Note added October 6, 1974. 

(1) A Variant of 2.3 was proved, later and independently by M. Makkai, An 

addmissible generalization of a theorem on countable E] sets of reals with 

applications, to appear. 

(2) Recently, the author has proven that e.g., if to E L .... is categorical in I~, 

for 0 < n < oJ then to is categorical in every A > ~ ,  assuming V = L. 
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