CATEGORICITY IN \boldsymbol{N}_{1} OF SENTENCES
 IN $L_{\omega, \omega}(Q)$

BY
SAHARON SHELAH

Abstract

We investigate the categoricity and number of non-isomorphic models in \boldsymbol{N}_{1} of sentences in $L_{\omega_{1}, \omega}(Q)$. Assuming $V=L$ we prove that no sentence in $L_{\omega_{1}, \omega}(Q)$ has exactly one uncountable model. Thus partially answering problem 24 of a problem list by Friedman.

1. Introduction

After the solution of the problem of the categoricity-spectrum of first-order theories by Morley [9] (for countable theories) and Shelah [14] it is natural to look at categoricity of sentences in wider logics. Keisler [5] deals with categoricity of $\psi \in L_{\omega_{1}, \omega}$ and, assuming the existence of appropriate \mathcal{N}_{1} homogeneous models, gets full results. Unfortunately this is not the general case. Marcus [8] proved the existence of a minimal countable model which contains an infinite set of elements indiscernible in a strong sense, and the author observed this implies there is $\psi \in L_{\omega_{1}, \omega}$ categorical in every λ, but no model of which is ($L_{\omega_{1}, \omega}, \boldsymbol{N}_{1}$)-homogeneous.

Several years ago the author investigated $\psi \in L_{\omega_{1, \omega}}$ categorical in \aleph_{1}, (which should be the easiest case) and got a picture quite similar to the one for first-order theories (the most significant result is mentioned in [8]). Unfortunately the existence of prime models over appropriate sets was not proven. Hence the categoricity was not proven. Also the amalgamation property was not proven. Later and independently Knight [7] obtained also some of those results.

A common device is that when your methods do not answer your questions, change your question. The following question (due to Baldwin) appeared in Friedman [3] (question 24):

Can a sentence $\psi \in L(Q)$ have exactly one uncountable model?

We answer negatively, assuming $V=L$, even for sentences in $L_{\omega j, \omega}(Q)$, by proving that if such ψ has $<2^{\mu_{1}}$, but at least one, models of cardinality \boldsymbol{N}_{1}, then it has a model of cardinality \boldsymbol{N}_{2}.
The following example is interesting. Let $\psi^{R} \in L(Q)$ be the sentence saying: $<$ is a dense linear order with no first nor last element, each interval is uncountable, but $\{x: P(x)\}$ is a dense countable subset. By Baumgartner [1] it is consistent with $\mathrm{ZFC}+2^{\boldsymbol{N}_{0}}=\boldsymbol{\kappa}_{2}$ that ψ^{R} is categorical in $\boldsymbol{\kappa}_{1}$, but it is not even ($\boldsymbol{N}_{0}, 1$)-stable (see Def. 3.5)
We can replace the quantifier ($Q x$) by some stronger quantifiers without changing much. Let $M \mid=\left(Q^{s t} P\right) \varphi(P)$ (P varies over one-place predicates) mean that the family $\{P \subseteq|M|: M \mid=\varphi[P]\}$ does not contain a subfamily \mathbf{P}, of consistent with ZFC $+2^{\boldsymbol{N}_{0}}=\boldsymbol{N}_{2}$ that $\psi^{\mathbf{R}}$ is categorical in $\boldsymbol{\aleph}_{1}$, but it is not even bounded (i.e. $\left.(\forall P)\left(\exists P_{1}\right)\left(P \subseteq|M| \wedge|P| \leqq \kappa_{0} \rightarrow P \subseteq P_{1} \in P\right)\right]$. Notice $((Q z) \varphi(z)$ $\equiv\urcorner\left(Q^{* *} P\right)(\forall z)(\varphi(z) \rightarrow P(z))$. By Shelah [16] th. 2.14, $L\left(Q^{* t}\right)$ is very similar to $L(Q)$ for models of power \mathcal{N}_{1}, and in fact also $L_{\omega_{1}, \omega}\left(Q^{* *}\right)$ is very similar to $L_{\omega, \omega}(Q)$. The results of Secs. 2, 3 and 4 generalize easily to $L_{\omega, \omega}\left(Q^{s t}\right)$, moreover by [16] clearly if $\psi \in L_{\omega i ; \omega}\left(Q^{s t}\right), I\left(\mathcal{N}_{\mathbf{1}}, \psi\right)<2^{\boldsymbol{\mu}_{1}}$, $M \mid=\psi,\|M\|=\kappa_{1}$ then e.g. for no $\bar{a} \in|M|$ and $\varphi \in L_{\omega, \omega \omega}\left(Q^{s t}\right)$ does $\left.M \mid=\left(Q^{s t} P\right) \varphi(P, \bar{a}) \wedge\left(Q^{s t} P\right)\right\urcorner \varphi(P, \bar{a})$.

But Sec. 5 does not generalize, as shown by the following $\psi \in L\left(Q^{* t}\right)$ which has exactly one (uncountable) model: ψ states that $<$ is a dense order, with no first element, each initial segment is countable, but the model is not, and $\neg\left(Q^{s t} P\right)\left(\neg P\right.$ does not have a first element). The model of φ is just $\left(n \cdot \omega_{1},<\right\rangle$.

Notation. L will be a countable first-order language, $L(Q)$ is L when we add to it the quantifier ($Q x$) meaning: "there exist uncountably many x 's such that..." $L_{\omega, \omega}$ is L when we allow $\wedge_{n<\omega} \varphi_{n}$, provided that $\Lambda_{n<\omega} \varphi_{n}$ has only finitely many free variables. $L_{\omega_{1}, \omega}(Q)$ is defined similarly. A fragment of $L_{\omega, \ldots, \omega}(Q)$ (or $L_{\omega j, \ldots}$) is a countable subset, closed under: taking subformulas, changing names of free variables and applying the finite connectives, and the quantifiers $(\exists x),(\forall x)$. Let φ, θ, be formulas, ψ a sentence, R, P predicates.
If $L \subseteq L^{1}, \psi \in L_{\omega_{L}, \omega}^{1}(Q)$ then $P C(\psi, L)$ is the class of L-reducts of models of ψ, and $I(\lambda, \psi, L)$ is the number of non-isomorphic models in $P C(\psi, L)$ of cardinality λ. If $L=L^{1}$ we write $I(\lambda, \psi)$ for $I(\lambda, \psi, L)$.
$\operatorname{By} \varphi=\varphi\left(x_{1} \cdots x_{m}\right)=\varphi(\bar{x})$ we mean every free variable of φ appears in \bar{x}. For $L^{*} \subseteq L_{\omega, \omega}(Q)$ the L^{*}-type \bar{a} realizes in M (a model) over $A \subseteq|M|(=$ the universe of M) is

$$
\begin{aligned}
\operatorname{tp}\left(\bar{a}, A, L^{*}, M\right)= & \left\{\varphi(\bar{x}, \bar{b}): \varphi \in L^{*}, \bar{b} \in A, M \mid=\bar{\varphi}[\bar{a}, \bar{b}]\right\} \\
& \left(\bar{a}=\left\langle a_{1} \cdots a_{m}\right\rangle \in A \text { means } a_{1} \cdots a_{m} \in A\right)
\end{aligned}
$$

If the length of $\bar{a}, l(\bar{a})$, is m, it is a $L^{*}-m$-type. If not said otherwise, $A=\phi$.

2. Pseudo-elementary classes

Lemma 2.1. Let $L \subseteq L^{1}, \psi \in L_{\omega, ~}^{1}, \omega(Q)$, and $L^{*} a$ fragment of $L_{\omega_{1, \omega}}(Q)$. Then:
(A) If in some model M of ψ of cardinality $\geqq \mathcal{N}_{1}$, uncountably many L^{*}-types are realized then $I\left(\mathcal{N}_{1}, \psi, L\right)=2^{N_{1}}$
(B) If for some model M of ψ, of cardinality $\geqq \mathcal{N}_{1}$, there is a countable $A \subseteq|M|$, such that in M over A uncountably many L^{*}-types are realized then $I\left(\boldsymbol{N}_{1}, \psi, L\right)=2^{\aleph_{1}}$ provided that. $2^{\mu_{1}}>2^{N_{0}}$.

Proof.
(1) This is theorem 5.1 of [6].
(2) This follows easily from (1).

Lemma 2.2. Let $L \subseteq L^{\prime}, \psi \in L_{\omega_{1, \omega}}^{1}(Q), L^{*}$ a fragment of $L_{\omega_{1}, \omega}(Q)$. Assume $\left\{p: p\right.$ is an L^{*}-type and there is an uncountable model of ψ in which p is realized $\}$ is uncountable. Then $I\left(\aleph_{1}, \psi, L\right) \geqq 2^{\aleph_{0}}$.

Proof. By Keisler [6], just as in Morley [10], it follows that the set of L^{*}-types realized in uncountable models of ψ, is analytic and its cardinality is $\leqq \kappa_{0}$ or is $2^{\kappa_{0}}$. So by the hypothesis the cardinality is $2^{\kappa_{0}}$. By the downward Löwenheim-Skolem theorem (for $L_{\omega_{1, \omega}}^{1}(Q)$) each such type is realized in a model (of ψ) of cardinality \boldsymbol{N}_{1}. So if $I\left(\boldsymbol{N}_{1}, \psi, L\right)<2^{\boldsymbol{N}_{0}}$, then in some model of ψ of cardinality \boldsymbol{N}_{1}, at least \boldsymbol{N}_{1} types are realized, and we get a contradiction by 2.1(A).

Theorem 2.3. Let $L \subseteq L^{\prime}, \psi \in L_{\omega_{1}, \omega}^{1}(Q), M \mid=\psi,\|M\|=\boldsymbol{N}_{1}$.
(A) If for every fragment L^{*}, in M only countably many L^{*}-types are realized, then ψ has a model $N,\|N\|=N_{1}$ in which only $\kappa_{0} L_{\omega_{1}, \omega}(Q)$-types are realized.
(B) If for every fragment L^{*}, over every countable $A \subseteq|M|$ in M only countably many L^{*}-types are realized then ψ has a model $N,\|N\|=\kappa_{1}$, in which only $\aleph_{0} L_{\omega_{1}, \omega}(Q)$-types are realized over any countable $A \subseteq|M|$.

Proof.
(A) Define by induction on $\alpha<\omega_{1}$ the fragment L_{α}^{*} of $L_{\omega_{1}, \omega}(Q)$:

$$
\begin{aligned}
& L_{0}^{*}=L(Q), \\
& L_{\alpha}^{*}=\bigcup_{\beta<\alpha} L_{\beta}^{*} \text { for limit } \alpha
\end{aligned}
$$

and $L_{\alpha+1}^{*}$ is the minimal fragment closed under ($Q x$) which contains

$$
L_{\alpha}^{*} \cup\left\{\wedge \operatorname{tp}\left(\bar{a}, \phi, L_{\alpha}^{*}, M\right): \bar{a} \in|M|\right\}
$$

We can prove inductively that L_{α}^{*} is indeed countable: for $\alpha=0, \alpha$ limit it is immediate, and for α a successor it follows by the hypothesis.

Now w.l.o.g. we can assume that $|M|$, the universe of M, is ω_{1}. Expand M to the model

$$
M^{\prime}=\left(M,<, E_{0}, \cdots, E_{n}, \cdots, F_{0}, \cdots, F_{n}, \cdots\right)_{n<\omega}
$$

where:
(1) $<$ is the usual order of the ordinals,
(2) $E_{n}=\left\{\langle\alpha\rangle^{\wedge} \bar{a}^{\wedge} \bar{b}: l(\bar{a})=l(\bar{b})=n ; \bar{a}, \bar{b} \in|M|\right.$;

$$
\left.t p\left(\bar{a}, \phi, L_{\alpha}^{*}, M\right)=t p\left(\bar{b}, \phi, L_{\alpha}^{*}, M\right)\right\}
$$

(3) F_{n} is an $n+1$-place function, and $F_{n}(\alpha, \bar{a}) \in\{m: m<\omega\}$ and $F_{n}(\alpha, \bar{a})=$ $F_{n}(\alpha, \bar{b}) \Leftrightarrow E_{n}(\alpha, \bar{a}, \bar{b})$.
(We can define F_{n} because the number of L_{α}^{*}-types realized in M is countable). It is easy to note that
(i) $E_{n}(\alpha, \bar{x}, \bar{y})$ is an equivalence relation (in M); it refines $E_{n}(\beta, \bar{x}, \bar{y})$ for $\beta<\alpha$; and it has $\leqq \kappa_{0}$ equivalence classes; and $<$ is an order with first element, 0 , and $E_{n}(0, \bar{a}, \bar{b})$ iff the L_{0}^{*}-types of \bar{a} and \bar{b} are equal.
(ii) If $N \mid=E_{n}(\alpha+1, \bar{a}, \bar{b})$ then for every $c_{1} \in N$ there is $c_{2} \in N$ such that $N \mid=E_{n+1}\left(\alpha, \bar{a}^{\wedge}\left\langle c_{1}\right\rangle, \bar{b}^{\wedge}\left\langle c_{2}\right\rangle\right)$. Moreover if for $\kappa_{1} c^{\prime}$ s $N \mid=E_{n+1}\left(\alpha, \bar{a}^{\wedge}\langle c\rangle, \bar{a}^{\wedge}\left\langle c_{1}\right\rangle\right)$, then for $\mathcal{N}_{1}, c^{\prime} s N \mid=E_{n+1}\left(\alpha, \bar{b}^{\wedge}\langle c\rangle, \bar{b}^{\wedge}\left\langle c_{2}\right\rangle\right)$.
Clearly (i) and (ii) can be "expressed" by sentences ψ_{1}, ψ_{2} of $L_{\omega_{1}, \omega}(Q)$ respectively (for (i) we need the F_{n} 's).

By [5] there is a model N^{\prime}, such that: $\left\|N^{\prime}\right\|=\boldsymbol{N}_{1}, N^{\prime}$ is a model of $\psi \wedge \psi_{1} \wedge \psi_{2},<N^{N^{\prime}}$ is not a well-ordering.

Clearly $N \mid=\psi,\|N\|=\boldsymbol{\aleph}_{1}$, where N is the L^{\prime}-reduct of N^{\prime}. So let $d_{n} \in\left|N^{\prime}\right|$ ($n<\omega$) be such that $N^{\prime} \mid=d_{n+1}<d_{n}$. Let us define E_{n}^{+}: for sequences \bar{a}, \bar{b}, from $\left|N^{\prime}\right|$ of length $n, \bar{a} E_{n}^{+} \bar{b}$ holds iff for some $m N^{\prime} \mid=E_{n}\left(d_{m}, \bar{a}, \bar{b}\right)$.

As $N^{\prime} \mid=\psi_{1} \wedge \psi_{2}$ it is easy to check that the analogs of (i) and (ii) holds for N^{\prime}. So it is easy to prove that for every $\varphi(\bar{x}) \in L_{\omega_{1}, \omega}(Q), \bar{a} E_{n}^{+} \bar{b} \Rightarrow N^{\prime} \mid=\varphi[\bar{a}] \equiv$ $\varphi[\bar{b}]$ (by induction on φ). As

$$
N^{\prime} \mid=E_{n}\left(d_{0}, \bar{a}, \bar{b}\right) \Rightarrow \bar{a} E_{n}^{+} \bar{b} \Rightarrow t p\left(\bar{a}, \phi, L_{\omega_{1}, \omega}(Q), N\right)=t p\left(\bar{b}, \phi, L_{\omega_{1}, \omega}(Q), N\right)
$$

and $E_{n}\left(d_{0}, \bar{x}, \bar{y}\right)$ has $\leqq \aleph_{0}$ equivalence classes (in N^{\prime}) clearly $\left\{t p\left(\bar{a}, \phi, L_{\omega_{1}, \omega}(Q), N\right): \bar{a} \in N\right\}$ is countable, so N is the model we want.
(B) Essentially the same proof.

Lemma 2.4. If $I\left(\boldsymbol{\kappa}_{1}, \psi, L\right) \leqq \mathcal{N}_{0}, M \mid=\psi$ then in M only countably many $L_{\omega_{1, \omega}}(Q)$-types are realized.

Proof. Let $\left\{M_{i}: i<\alpha\right\}$ be a maximal set of models of ψ of cardinality \boldsymbol{N}_{1}, realizing only countably many $L_{\omega, \omega}(Q)$-types, and with pairwise nonisomorphic L-reducts. By the hypothesis $I\left(\mathcal{N}_{1}, \psi, L\right) \leqq \mathcal{N}_{0}$, so clearly $\alpha<\omega_{1}$. Suppose that in M uncountably many $L_{\omega_{1}, \omega}(Q)$-types are realized and we shall get a contadiction.

Let L_{i}^{*} be a (countable) fragment of $L_{\omega_{1}, \omega}(Q)$ such that if $\bar{a}, \bar{b} \in\left|M_{i}\right|$ then

$$
\begin{aligned}
\operatorname{tp}\left(\bar{a}, \phi, L_{i}^{*}, M_{i}\right)=\operatorname{tp}\left(\bar{b}, \phi, L_{i}^{*}, M_{i}\right) \Leftrightarrow \operatorname{tp}\left(\bar{a}, \phi, L_{\omega_{1}, \omega}(Q),\right. & \left.M_{i}\right) \\
& =\operatorname{tp}\left(\bar{b}, \phi, L_{\omega_{1}, \omega}(Q), M_{i}\right)
\end{aligned}
$$

(exists by the choice of the M_{i} 's).
Let L^{*} be a fragment of $L_{\omega_{1}, \omega}(Q)$ such that $L^{*} \subseteq L^{*}$ for $i<\alpha$ (exists as $\left.\alpha<\omega_{1}\right)$. As $I\left(\mathcal{N}_{1}, \psi, L\right) \leqq \kappa_{0}$, by $2.1(\mathrm{~A})$ in M only countably many L^{*}-types are realized. As uncountably many $L_{\omega,, \omega}(Q)$-types are realized, there are $\bar{a}, \bar{b} \in$ $|M|$, which realized the same L^{*}-types, but for some $\varphi(\bar{x}) \in L_{\omega_{1}, \omega}(Q)$ $M \mid=\varphi[\bar{a}] \equiv \longrightarrow \varphi(\bar{b})$. Let

$$
\psi_{1}=(\exists \bar{x})(\exists \bar{y})\left(\varphi(\bar{x}) \equiv \neg \varphi(\bar{y}) \wedge \wedge_{\theta \in L^{*}} \theta(\bar{x}) \equiv \theta(\bar{y})\right)
$$

So clearly $M_{i}\left|=7 \psi_{1}, M\right|=\psi_{1}$, by the hypothesis on M and 2.3 there is a model $N,\|N\|=\kappa_{1}, N \mid=\psi \wedge \psi_{1}$ and in N only countably many $L_{\omega_{1}, \omega}(Q)$-types are realized. Clearly N contradicts the maximality of $\left\{M_{i}: i<\alpha\right\}$.

Definition 2.1. M is $\left(L^{*}, \kappa_{0}\right)$-homogeneous if when $\operatorname{tp}\left(\bar{a}, \phi, L^{*}, M\right)=$ $\operatorname{tp}\left(\bar{b}, \phi, L^{*}, M\right)$, then for every $\bar{c} \in|M|$ there is $\bar{d} \in|M|$ such that

$$
\operatorname{tp}\left(\bar{a}^{\wedge} \bar{c}, \phi, L^{*}, M\right)=\operatorname{tp}\left(\bar{b}^{\wedge} \bar{d}, \phi, L^{*}, M\right)
$$

Lemma 2.5. Let $L \subseteq L^{\prime}, M$ an L^{\prime}-model, and in M only countably many $L_{\omega_{1}, \omega}(Q)$-types are realized. Then (A) For some fragment L^{*} of $L_{\omega_{1}, \omega}(Q), M$ is (L^{*}, κ_{0})-homogeneous.
(B) Moreover we can choose L^{*} so that for every $\bar{a} \in|M|$ there is $\varphi(\bar{x}) \in L^{*}$, such that $M \mid=\varphi[\bar{a}]$, and $\varphi(\bar{x})$ is $L_{\omega_{1}, \omega}(Q)$-complete, i.e., $\varphi(\bar{x})+t p$ $\left(\bar{a}, \phi, L_{\omega 1}, \omega(Q), M\right)$.
(C) The sentence $\psi_{1}=\wedge\left\{\psi: \psi \in L^{*}, M \mid=\psi\right\}$ is $L_{\omega_{1}, \omega}(Q)$-complete.

Proof. Easy.

3. Nice sentences and the amalgamation property

Here always $\psi \in L_{\omega_{1}, \omega}(Q), M$ and N are L-models.
Definition 3.1. The sentence $\psi \in L_{\omega_{1}, \omega}(Q)$ is L^{*}-almost-nice (L^{*} a fragment of $\left.L_{\omega_{1}, \omega}(Q)\right)$ if
(1) $\psi \vdash(Q x) x=x, \psi$ has a model and is $L_{\omega_{1}, \omega}(Q)$-complete
(2) every model of ψ is $\left(L^{*}, \mathcal{N}_{0}\right)$-homogeneous
(3) moreover if $M|=\psi, \bar{a} \in| M \mid$ then for some $\varphi(\bar{x}) \in L^{*}, M \mid=\varphi[\bar{a}]$ and $\varphi(\bar{x})$ is $L_{\omega_{1}, \omega}(Q)$-complete.

Definition 3.2.

(A) The sentence ψ is almost nice if it is L^{*}-almost-nice for some L^{*}.
(B) The sentence ψ is nice if it is L-almost-nice and in (3) of Def. 3.1 the formula φ is atomic;
(C) $M \mid=" \psi$ " if M is a (first-order) atomic model of $T(\psi)=$ $\left\{\psi_{1}: \psi_{1} \in L, M|=\psi \Rightarrow M|=\psi_{1}\right\} . M$ is a non-standard model of ψ if $M \mid=\neg \psi$, $M \mid=" \psi "$.
(D) $M \mid=" \varphi[\bar{a}] "\left(\varphi \in L_{\omega}, \omega(Q)\right)$ if $\psi \vdash(\forall \bar{x})(\varphi(\bar{x}) \equiv R(\bar{x})), R \in L, M \mid=R[\bar{a}]$, $M \mid=" \psi "$ and ψ is nice.

Remark. Notice that $T(\psi)$ is a set of first order sentences. If ψ is nice $\psi=\psi^{*} \wedge Q x(x=x)$ for some ψ^{*} a Scott-sentence of a (first-order) prime model in which each type is isolated by a predicate.

Lemma 3.1.
(A) For every almost-nice ψ there is $L^{\prime} \supseteq L$ and a nice $\psi^{\prime} \in L_{\omega_{1, \omega}}^{\prime}(Q)$ such that
(1) for every $\lambda I(\lambda, \psi)=I\left(\lambda, \psi^{\prime}\right)$
(2) the L-reduct of any model of ψ^{\prime} is a model of ψ, and every model of ψ can be uniquely expanded to a model of ψ^{\prime}.
(B) If ψ is nice, there is exactly one model M (up to isomorphism) such that $M \mid=" \psi ",\|M\| \leqq N_{0}$ (this model is the prime model of $T(\psi)$).
(C) In Lemma 2.5(C) ψ_{1} is almost nice.
(D) If M is a model of $T(\psi)$, where ψ is nice then:
(α) Assume $N<M$. Then $N \mid=" \psi "$ iff every $\bar{a} \in|N|$ realizes an L-isolated type, i.e. there is $\varphi \in L$, such that $M \mid=\varphi[\bar{a}] ; T(\psi), \varphi(\bar{x})+\operatorname{tp}(\bar{a}, \phi, L, M)$
(β) If $A \subseteq|M|,|A| \leqq N_{0}$, and every $\bar{a} \in A$ realizes an isolated L-type, then there are N_{1}, N_{2} such that N_{2} is a model of $T(\psi), A \subseteq\left|N_{1}\right|, N_{1}<N_{2} M<N_{2}$ and $N_{1} \mid=" \psi "$. If M is N_{1}-saturated we can choose $N_{2}=M$.

Proof. Easy.

Lemma 3.2. If $I\left(\mathcal{N}_{1}, \psi\right) \leqq \mathcal{N}_{0}$, then there are almost-nice sentences $\psi_{n} n \leqq \alpha \leqq$ ω such that $\vdash[\psi \wedge(Q) x)(x=x)] \equiv \vee_{n<\alpha} \psi_{n}$.

Proof. Let $M_{n} n<\alpha \leqq \omega$ be the models of ψ of cardinality \boldsymbol{N}_{1}. By Lemma 2.4 each M_{n} realizes only countably many $L_{\omega,, \omega}(Q)$-types. Hence by 2.5 and $3.1(\mathrm{C})$ there is an almost nice sentence ψ_{n}^{1} such that $M_{n} \mid=\psi_{n}^{1}$. Then $\psi_{n}=\psi \wedge \psi_{n}^{\prime}$ satisfies our requirements.

Definition 3.3. Let ψ be nice, $M|=" \psi ", N|=" \psi "$.
(A) $M<N$ if M is an elementary submodel of N.
(B) $M<{ }^{*} N$ if $\quad M<N \quad$ and \quad if $\quad R(x, \bar{y}) \in L, \quad \bar{a} \in|M|, \quad$ and $M \mid=$ " $7(Q x) R(x, \bar{a})$ " then for no $c \in|N|-|M|$ does $N \mid=R[c, \bar{a}]$.
(C) $M<^{* *} N$ if $M<^{*} N$ and if $R(x, \dot{\bar{y}}) \in L, \bar{a} \in|M|$ and $M \mid="(Q x) R(x \bar{a})$ " then for some $c \in|N|-|M|, N \mid=R[c, \bar{a}]$.

Remark. Notice that if $M<{ }^{* *} N$ then $M \neq N$ (if there is a nice ψ such that $M \mid=" \psi ")$.

Lemma 3.3.
(A) If ψ is nice, $M_{i} \mid=" \psi$ " for $i<\omega_{1}, M_{i}<{ }^{*} M_{i+1}$ for $i<j, M_{\delta}=\bigcup_{i<\delta} M_{i}$ for limit δ, and $\left\{i: M_{i}<^{* *} M_{i+1}\right\}$ has cardinality \mathcal{N}_{1} then $\cup_{i<\omega_{1}} M_{i} \mid=\psi$
(B) If ψ is nice, $M \mid=" \psi ",\|M\|=\kappa_{0}$ then for some $N, M<* * N \mid=" \psi "$
(C) The relations $<,<^{*},<^{* *}$ are transitive, and if $M_{0}<{ }^{*} M_{1}<{ }^{* *} M_{2}$ or $M_{0}<{ }^{* *} M_{1}<{ }^{*} M_{2}$ then $M_{0}<{ }^{* *} M_{2}$.

Proof. Immediate.
Definition 3.4. A nice sentence ψ has the λ-amalgamation property when: if $N_{t} \mid=" \psi$ " for $l=0,1,2, N_{0}<^{*} N_{l},\left\|N_{t}\right\| \leqq \lambda$ then there are M, f_{1}, f_{2} such that $N_{0}<{ }^{*} M, M \mid=" \psi ", f_{1}$ is an embedding of N_{1} into $M, f_{1} \|\left|N_{0}\right|=$ the identity and $M \upharpoonright$ Range $\left(f_{l}\right)<{ }^{*} M$ (for $l=1,2$).

Lemma 3.4. Suppose $V=L$ or even $\nabla_{N_{1}}$.
If ψ is nice but does not have the κ_{0}-amalgamation property then $I\left(\kappa_{1}, \psi\right)=$ $2^{\mu_{1}}$.

Proof. Trivially $I\left(\mathcal{N}_{1}, \psi\right) \leqq 2^{\kappa_{1}}$. Let $\left\{S_{i}: i<\omega_{1}\right\}$ be a partition of ω_{1} to \boldsymbol{N}_{1} pairwise disjoint stationary sets (see e.g. [17]), by Jensen's diamond [4] there are for $\alpha<\omega_{1}$, a function $f_{\alpha}: \alpha \rightarrow \alpha$, and L-models $M_{\alpha}^{0}, M_{\alpha}^{1}$ with universe $\omega(1+\alpha)$ such that for every function $g: \omega_{1} \rightarrow \omega_{1}$, and L-models M_{0}, M_{1} with universe $\omega_{1} ;\left\{\alpha: \alpha \in S_{i}, g \upharpoonright \alpha=f_{\alpha}, M_{i} \uparrow \omega(1+\alpha)=M_{\alpha}^{1, i}\right.$ for $\left.l=0,1\right\}$ is stationary for every $i<\omega_{1}$. Let N_{0}, N_{1}, N_{2} contradict the κ_{0}-amalgamation property and w.l.o.g. $N_{0}<^{* *} N_{1}, N_{0}<^{* *} N_{2}$. Now for any set $S \subseteq \omega_{1}$ we define $M_{\alpha}^{s}\left(\alpha<\omega_{1}\right)$ by induction on α, such that $\left|M_{\alpha}^{s}\right|=\omega(1+\alpha), M_{\alpha}^{s} \mid=" \psi^{\prime \prime}, \beta<\alpha \Rightarrow M_{\beta}^{s}<{ }^{*} M_{\alpha}^{s}$. For $\alpha=0$, or α a limit ordinal there is no problem. If M_{α}^{s} is defined let g be an isomorphism from N_{0} onto M_{α}^{0}. If $M_{\alpha}^{S}=M_{\alpha}^{l}, \alpha \in S_{i}$, and $i \in S \Leftrightarrow l=0$ choose $M_{\alpha+1}^{S}$ so that g (if $l=0$) or $f_{\alpha} g$ (if $l=1$) cannot be extended to an isomorphism from N_{l} onto $M_{\alpha+1}^{S}$. In any case choose $M_{\alpha+1}^{S}$ so that $\left|M_{\alpha+1}^{S}\right|=\omega(1+\alpha+1)$, $M_{\alpha}^{S}<{ }^{* *} M_{\alpha+1}^{S}$.

Let $M^{s}=\bigcup_{\alpha<\omega 1} M_{\alpha}^{S}$, so clearly $M^{s} \mid=\psi,\left\|M^{s}\right\|=\mathcal{N}_{1}$. It is easy to see that $M^{S(1)} \cong M^{S(2)}$ implies that $\cup\left\{S_{i}: i \in S(1)\right\}, \cup\left\{S_{i}: i \in S(2)\right\}$ are equal modulo the filter of closed unbounded subsets of ω_{1}, hence $S(1)=S(2)$.

Definition 3.5.
(A) A nice ψ is ($\lambda, 1$)-stable if $M|=" \psi ", A \subseteq| M|,|A| \leqq \lambda$, implies $|\{t p(\bar{a}, A, L, M): \bar{a} \in|M|\}| \leqq \lambda$
(B) A nice ψ is λ-stable if $M|=" \psi ", A \subseteq| M|,|A| \leqq \lambda$ implies

$$
\left|\left\{t p(\bar{a}, A, L, N): \bar{a} \in N, N \mid=" \psi^{"}, M<* N\right\}\right| \leqq \lambda .
$$

Lemma 3.5. Assume ψ is nice and has the κ_{0}-amalgamation property,
(A) ψ is κ_{0}-stable iff ψ is $\left(\kappa_{0}, 1\right)$-stable.
(B) Assume $2^{\boldsymbol{N}_{0}}=\mathcal{N}_{1}$; then ψ has an \boldsymbol{N}_{1}-model-homogeneous M of power \boldsymbol{N}_{1} (i.e. if $N_{1}<^{*} M, N_{2}<^{*} M,\left\|N_{1}\right\|=N_{0}$, f an isomorphism from N_{1} onto N_{2}, then f can be extended to an automorphism of M).

Proof.
(A) The direction \Rightarrow is always true, and the direction \Leftarrow follows by the κ_{0}-amalgamation property.
(B) Easy.

4. Rank

Let $\psi \in L_{\omega 1, \omega}(Q)$ be nice.
Definition 4.1. Suppose ψ is nice, $M \mid=" \psi "$. For every L-type p with m variable over a finite subset of $|M|$ we define its rank $R^{m}(p)=R^{m}(p, M)$ as an ordinal, -1 , or ∞, as follows: We define by induction when $R(p) \geqq \alpha$, and then

$$
\begin{aligned}
& R(p)=-1 \Leftrightarrow R(p) \geqq 0, \\
& R(p)=\alpha \Leftrightarrow R(p) \geqq \alpha \wedge R(p) \geqq \alpha+1, \\
& R(p)=\infty \Leftrightarrow(\forall \alpha) R(p) \geqq \alpha .
\end{aligned}
$$

(A) $R(p) \geqq 0$ if p is realized in M.
(B) $R(p) \geqq \delta$ (for a limit ordinal δ) if for every $\alpha<\delta R(p) \geqq \alpha$.
(C) $R(p) \geqq \alpha+1$ if the following conditions are satisfied
(α) there are $\varphi \in L$ and $\bar{a} \in|M|$ such that $R^{m}(p \cup\{\varphi(\bar{x}, \bar{a})\}) \geqq \alpha$, $R^{m}(p \cup\{\neg \varphi(\bar{x}, \bar{a})\}) \geqq \alpha$
(β) for every $\bar{a} \in|M|$ there is $P(\bar{x}, \bar{a})$ and $\bar{c} \in|M|(l(\bar{x})=l(\bar{c})=m)$ such that $P(\bar{x}, \bar{a})+\operatorname{tp}(\bar{c}, \bar{a}, L, M)$ (so $P(\bar{x}, \bar{a}$,$) is complete), R^{m}(p \cup\{P(\bar{x}, \bar{a})\},) \geqq \alpha$
(γ) If $M \mid=" \neg(Q y) P(y, \bar{a}) "$ and $p \vdash(\exists y)[\psi(y, \bar{x}, \bar{c}) \wedge P(y, \bar{a})]$ then for some $d \in|M|, M \mid=P[d, \bar{a}]$ and $R^{m}(p \cup\{\psi(d, \bar{x}, \bar{c})\}) \geqq \alpha$.

Remark. A natural ordering is defined among the possible ranks by stipulating $-1<\alpha<\infty$ for any ordinal α.

Definition 4.2. For any not necessarily finite p,

$$
R^{m}(p)=\min \left\{R^{m}(q): q \subseteq p,|q|<\mathcal{N}_{0}\right\}
$$

Lemma 4.1.
(A) $R^{m}(\varphi(\bar{x}, \bar{a}), M)$ depends only on $\operatorname{tp}(\bar{a}, \phi, L, M)$.
(B) $p \vdash q$ implies $R^{m}(p) \leqq R^{m}(q)$.
(C) $R^{m}(p) \geqq \omega_{1}$ implies $R^{m}(p)=\infty$.
(D) If $\quad M<{ }^{*} N, \quad N|=" \psi ", \quad M|=" \psi ", \quad \bar{b} \in|M|, \quad \bar{a} \in N, \quad \mid=\varphi[\bar{a}, \bar{b}]$, $R^{m}\left(\operatorname{tp}(\bar{a},|M|, L, N)=R^{m}(\{\varphi(\bar{x}, \bar{b}\}), A \subseteq|N|, \bar{b} \in A\right.$ then there is a unique complete L-type p_{A} over A realized in some $N^{\prime}, N<{ }^{*} N^{\prime} \mid=" \psi "$, which contains $\varphi(\bar{x}, \bar{b})$ and has the same rank. So $A \subseteq B \Rightarrow p_{A} \subseteq p_{B}$ and p_{A} does not split over \vec{b}, i.e. if

$$
\bar{c}_{1}, \bar{c}_{2} \in A, \operatorname{tp}\left(\bar{c}_{1}, \bar{a}, L, N\right)=\operatorname{tp}\left(\bar{c}_{2}, \bar{a}, L, N\right)
$$

and $\psi \in L$ then $\psi\left(\bar{x}, \bar{c}_{1}, \bar{a}\right) \in p_{A} \Leftrightarrow \psi\left(\bar{x}, \bar{c}_{2}, \bar{a}\right) \in p_{A}$.

Proof.
(A) Prove by induction on α that the truth of $R^{m}(\varphi(\bar{x}, \bar{a}), M) \geqq \alpha$ depends only on $t p(\bar{a}, \phi, L, M)$.
(B) Easy.
(C) By (A) the number of possible ranks is countable, hence necessarily for some $\alpha_{0}<\omega_{1}$ for no $p R^{m}(p, M)=\alpha_{0}$. Now prove by induction on $\alpha \geqq \alpha_{0}$ that $R^{m}(p, M) \geqq \alpha_{0}$ implies $R^{m}(p, M) \geqq \alpha+1$ (for α_{0} this is the definition of α_{0}, for α limit -immediate and $\alpha=\beta+1$ use the definition of rank and the induction hypothesis).
(D) Easy.

Lemma 4.2. The following conditions on ψ satisfy $(B) \Rightarrow(A) \Leftrightarrow(C) \Rightarrow(D)$
(A) ψ is κ_{0}-stable.
(B) ψ is $\left(\mathcal{N}_{0}, 1\right)$-stable and has the \mathcal{N}_{0}-amalgamation property.
(C) For every finite p over $M, M \mid=" \psi ", R^{m}(p, M)<\infty$.
(D) $(\alpha) \psi$ is $\left(\mathcal{N}_{0}, 1\right)$-stable, and
(β) if $N, M|=" \psi ", N<* M, \bar{a} \in| M \mid$, then $t p(\bar{a},|N|, L, M)$, is definable over a finite set $\subseteq|N|$, where

DEFINITION 4.3. Let $A \subseteq B \subseteq M|=" \psi ", \bar{a} \in| M \mid$, then $t p(\bar{a}, B, L, M)$ is definable over A, if for every $P_{1}(\bar{x}, \bar{y})$ there is $P(\bar{y}, \bar{b}), \bar{b} \in A$ such that for every $\bar{c} \in|B|, M \mid=P_{1}(\bar{a}, \bar{c}) \Leftrightarrow M \|=P(\bar{c}, \bar{b})$.

Remark. Not necessarily all the conditions are equivalent.
Proof.
$(B) \Rightarrow(A):$ This holds by $3.5(\mathrm{~A})$.
(A) $\Rightarrow(\mathrm{C})$: Let M be an N_{1}-saturated model of $T(\psi)$ and $N<M,\|N\|=N_{0}$, $N=" \psi "$. Then we prove by standard techniques (see e.g. Keisler [6]).

Claim 4.3. Let M be an N_{1}-saturated model of $T(\psi), A \subseteq|M|,|A| \leqq N_{0}$. Then there is a model N, such that
(i) $N<M, A \subseteq|N|,\|N\|=\kappa_{0}$
(ii) let $\bar{a} \in A, M \mid=" \neg(Q x) \varphi(x, \bar{a}) " \quad(\varphi \in L)$ then for some $c \in|N|-A$, $M \mid=\varphi[c, \bar{a}]$ iff there are $\theta \in L, \bar{b} \in A$,

$$
M \mid=(\exists y) \theta(y, \bar{b}) \wedge(\forall y)(\theta(y, \bar{b}) \rightarrow \varphi(y, \bar{a}))
$$

but for no $c \in A, M \mid=\theta(c, \bar{b})$. Then it is easy to prove that if $R^{m}(p)=\infty$, for some p, then there are in $M \bar{a}_{i}, i<2^{N_{0}}$, satisfying the conditions of 4.3 , and realizing in M over $|N|$ distinct L-types such that by 4.3 there are N_{i},
$|N| \cup \bar{a}_{i} \subseteq\left|N_{i}\right|, N<{ }^{*} N_{i}, N_{i}<M$ (remember $R^{m}(p) \geqq \omega_{1} \Rightarrow R^{m}(p)>\omega_{1}$, and notice that the definition of rank is tailored for this proof.
(C) \Rightarrow (D), (A): Let $N\left|=" \psi ",\|N\|=\kappa_{0}, N<{ }^{*} M\right|=" \psi^{"}$, and $\bar{a} \in|M|$. Then by (C) and 4.1 there is $P(\bar{x}, \bar{b}) \in p_{\bar{i}}=t p(\bar{a},|N|, L, M)$ with minimal rank, which is $\alpha<\infty$. Clearly by the definition of rank and the choice of $P(\bar{x}, \bar{b})$, $R^{m}(\{P(\bar{x}, \bar{b})\}) \notin \alpha+1$ implies that for no $P_{1}\left(\bar{x}, \bar{b}_{1}\right)\left(\bar{b}_{1} \in|N|\right)$ do

$$
\begin{aligned}
& R^{m}\left(\left\{P(\bar{x}, \bar{b}), P_{1}\left(\bar{x}, \bar{b}_{1}\right)\right\}\right) \geqq \alpha \\
& R^{m}\left(\left\{P(\bar{x}, \bar{b}), \neg P_{1}\left(\bar{x}, \bar{b}_{1}\right)\right\}\right) \geqq \alpha,
\end{aligned}
$$

both hold; so exactly one holds, the one contained in $p_{\bar{a}}$. This proves that $p_{\bar{a}}$ is definable over a finite subset of $N(=\bar{b})$ so (D) (β) holds. As the number of such definitions is $\leqq\|N\|+N_{0}$ also (D) (α) (A) holds.

Lemma 4.4. Suppose ψ is nice and \aleph_{0}-stable, $M<* N,\|N\|=\aleph_{0} M \mid=" \psi$ ", $N|=" \psi ", \bar{a} \in| N \mid$. Then there is a prime model M^{\prime} over $|M| \cup \bar{a}$, i.e. $M<*$ $M^{\prime}<N$, and if $M<N^{\prime}, \bar{a}^{\prime} \in N^{\prime}, \operatorname{tp}(\bar{a},|M|, L, N)=\operatorname{tp}\left(\bar{a}^{\prime},|M|, L, N^{\prime}\right)$, then there is an elementary imbedding f of M^{\prime} into N^{\prime}, which is the identity over $|M|$, and $f(\bar{a})=\bar{a}^{\prime}$, and N^{\prime} ! Range $f<N^{\prime}$.
M^{\prime} is, in fact, the prime model of the first-order theory of $(N, c)_{\in \in|M| U \bar{a}}$.
Question. Can we demand $M^{\prime}<{ }^{*} N, N^{\prime} \upharpoonright$ Range $f<{ }^{*} N^{\prime}$?
Remark. (Until then this lemma is interesting mainly for $\psi \in L_{u, \omega, \omega}$.)
Proof. Clearly it suffices to prove:
(*) If $N \mid=(\exists y) \varphi(y, \bar{a}, \bar{b})(\varphi \in L)$ where $\bar{b} \in|M|$, then there is $\varphi_{1}\left(y, \bar{a}, \bar{b}_{1}\right)$ $\left(\bar{b}_{1} \in|M|, \varphi, \in L\right)$ such that $N \mid=(\forall y)\left(\varphi_{1}\left(y, \bar{a}, \bar{b}_{1}\right) \rightarrow \varphi(y, \bar{a}, \bar{b})\right)$ and $\varphi_{1}\left(y, \bar{a}, \bar{b}_{1}\right)$ isolates a complete L-type of y over $|M| \cup \bar{a}$, and $N \mid=(\exists y) \varphi_{1}\left(y, \bar{a}, \bar{b}_{1}\right)$.

Proof of (*). Choose $\theta(y, \bar{x}, \bar{c})(\bar{c} \in|M|, \theta \in L)$ such that
(i) $N \mid=(\exists y)(\theta(y, \bar{a}, \bar{c}) \wedge \varphi(y, \bar{a}, \bar{b}))$
(ii) $\left.R^{m+1}(t p(\bar{a},|M|)) \cup\{\theta(y, \bar{x}, \bar{b})\}\right)(m=l(\vec{a}))$ is minimal assuming (i) holds.

It is easy to see that $\theta(y, \bar{a}, \bar{c}) \wedge \varphi(y, \bar{a}, \bar{b})$ isolates a complete L-type over $|M| \cup \bar{a}$, so we finish.

5: The order property

Let ψ be nice and \mathcal{N}_{0}-stable.
Definition 5.1. We say that ψ has the order property if there is a model M of ψ and $\bar{a}_{\alpha} \in|M|\left(\alpha<\omega_{1}\right)$ and formula $\varphi(\bar{x}, \bar{y}) \in L$ such that $M \mid=\varphi\left[\bar{a}_{\alpha}, \bar{a}_{\beta}\right] \Leftrightarrow$ $\alpha \leqq \beta$.

Definition 5.2.
(A) We say that ψ has the symmetry property if for $M<{ }^{*} N, N \mid=" \psi$ ", $M|=" \psi " ; \bar{a}, \bar{b} \in| N \mid$

$$
R(t p(\bar{a},|M| \cup \bar{b}, L, N)=R(t p(\bar{a},|M| L, N))
$$

iff

$$
R(\operatorname{tp}(\bar{b},|M| \cup \bar{a}, L, N))=R(\operatorname{tp}(\bar{b},|M|, L, M))
$$

(B) We say that ψ has the asymmetry property if there are M, N, \bar{a}, \bar{b} as above such that
(i) $R(t p(\bar{a},|M| \cup \bar{b}, L, N))=R(t p(\bar{a},|M|, L, N))$
(ii) for some $E=E\left(\bar{x}_{1}, \bar{x}_{2}, \bar{z}\right) \in L, E\left(\bar{x}_{1}, \bar{x}_{2}, \bar{a}\right)$ is an equivalence relation with κ_{0} equivalence classes(in any model $\left.N^{\prime} ; N<{ }^{*} N^{\prime} \mid=\psi\right)$ and \bar{b} is not $E\left(\bar{x}_{1}, \bar{x}_{2}, \bar{a}\right)$ equivalent to any sequence from $|M|$.

Theorem 5.1. The following properties of ψ are equivalent (for nice κ_{0} stable ψ)
(A) ψ has the order property.
(B) ψ does not have the symmetry property.
(C) ψ has the asymmetry property.

Proof.
(B) \Rightarrow (A).

Let M, N, \bar{a}, \bar{b} be a counter example to the symmetry property, and let $\varphi(\bar{x}, \bar{y}, \bar{c})(\bar{c} \in|M|, \varphi \in L)$ be such that:
(i) $N \mid=\varphi[\bar{a}, \bar{b}, \bar{c}]$
(ii) $R(\{\varphi(\bar{x}, \bar{b}, \bar{c})\})<R(\operatorname{tp}(\bar{a},|M|, L, M))$
(by the symmetry between \bar{a} and \bar{b} we can assume this). We can also assume w.l.o.g. that $\|N\|=\boldsymbol{N}_{0}$.

Now define by induction on $\alpha<\omega_{1}$ models N_{α}; and sequences $\bar{a}_{\alpha}, \bar{b}_{\alpha}$ for limit α only such that:
(1) $\left\|N_{\alpha}\right\|=N_{0}$
(2) for limit $\alpha, N_{\alpha}=\bigcup_{\beta<\alpha} N_{\beta}$ and $N_{0}=N$
(3) $N_{\alpha}<{ }^{*} N_{\alpha+1}, N_{\alpha+2}<{ }^{* *} N_{\alpha+3}$.
(4) for limit $\alpha, \bar{a}_{\alpha} \in N_{\alpha+1}$ and $\operatorname{tp}\left(\bar{a}_{\alpha},\left|N_{\alpha}\right|, L, N_{\alpha+1}\right)$ extends and has the same rank, as $t p(\bar{a},|M|, L, N)$.
(5) for limit $\alpha, \bar{b}_{\alpha} \in\left|N_{\alpha+2}\right|$ and $\operatorname{tp}\left(\bar{b}_{\alpha},\left|N_{\alpha+1}\right|, L, N_{\alpha+2}\right)$ extends, and has the same rank, as $t p(\bar{b},|M|, L, N)$.
This is easy to do. Clearly by (4) and (2) and Lemma 4.1A

$$
N_{\alpha+1} \mid=\neg_{\varphi}\left[\bar{a}_{\alpha}, \bar{b}, \bar{c}\right] . \quad \text { As } \quad \operatorname{tp}\left(\bar{b}_{\beta},|M|, L, N_{\beta+2}\right)=\operatorname{tp}\left(\bar{b},|M|, L, N_{\beta+2}\right)
$$

and as by 4.1D $\operatorname{tp}\left(\bar{a}_{\alpha},\left|N_{\alpha}\right|, L, N_{\alpha+1}\right)$ does not split over $|M|$, necessarily $\beta<\alpha \Rightarrow N_{\alpha+1} \mid=\neg_{\varphi}\left[\bar{a}_{\alpha}, \bar{b}_{\beta}, \bar{c}\right]$.

Similarly we can prove that for $\alpha \leqq \beta$,

$$
\operatorname{tp}\left(\bar{a}_{\alpha}^{\wedge} \bar{b}_{\beta},|M|, L, N_{\beta+2}\right)=\operatorname{tp}\left(\bar{a}^{\wedge} \bar{b},|M|, L, N_{\beta+2}\right)
$$

hence $N_{\beta+2} \mid=\varphi\left[\bar{a}_{\alpha}, \bar{b}_{\beta}, \bar{c}\right]$. As $N^{*}=\bigcup_{a<\omega_{1}} N_{\alpha}$ is a model of ψ (by 3.3(A)) letting $\bar{c}_{\alpha}=\bar{a}_{\alpha}{ }^{\wedge} \bar{b}_{\alpha} \wedge \bar{c}$ and $\theta\left(\bar{x}_{1}, \bar{y}_{1}, \bar{z}_{i} ; \bar{x}_{2}, \bar{y}_{2}, \bar{z}_{2}\right)=\varphi\left(\bar{x}_{1}, \bar{y}_{2}, z_{2}\right)$ we find that $N \mid=\psi$ and $N \mid=\theta\left[\bar{c}_{\alpha}, \bar{c}_{\beta}\right] \Leftrightarrow \alpha \leqq \beta$. So we finish.
(C) \Rightarrow (B).

Let $M, N, \bar{a}, \bar{b}, E$ be as in Definition $5.2(\mathrm{~B})$. Clearly it suffices to prove $p_{1}=\operatorname{tp}(\bar{b},|M| \cup \bar{a}, L, N)$ has rank smaller than that of $p_{2}=\operatorname{tp}(\bar{b},|M|, L, N)$. Suppose not, and let $\varphi(\bar{x}, \bar{c}) \in p_{2}$ has the same rank as p_{2}, so that (using 4.1B) $R(t p(\bar{a}, \bar{c}, L, N))=R(\operatorname{tp}(\bar{a}, M, L, N)) . \quad$ Choose $\quad \bar{b}^{\prime} \in|M|, \quad \operatorname{tp}\left(\bar{b}^{\prime}, \bar{c}, L, M\right)=$ $\operatorname{tp}(\bar{b}, \bar{c}, L, M)$, and define models $N_{\alpha}\left(\alpha<\omega_{1}\right)$ so that $N_{\alpha}<{ }^{* *} N_{\alpha+1}, N_{\delta}=$ $\bigcup_{\alpha<\delta} N_{\alpha} \mid=" \psi ", \quad\left\|N_{\alpha}\right\|=K_{0}, \quad$ and $\quad \bar{b}_{\alpha} \in N_{\alpha+1}, \quad N_{\alpha} \mid=" \varphi\left(\bar{b}_{\alpha}, \bar{c}\right) \quad$ and $\quad R(t p$ $\left.\left(\bar{b}_{\alpha}, N_{\alpha}, L, N_{\alpha+1}\right)\right)=R(\varphi(\bar{x}, \bar{c}))$. As $E\left(\bar{x}_{1}, \bar{x}_{2}, \bar{a}\right)$ has in $\bigcup_{\alpha<\omega_{1}} N_{\alpha}$ only N_{0} equivalence classes, for some $\beta<\alpha<\omega_{1}, E\left(\bar{b}_{\alpha}, \bar{b}_{\beta}, \bar{a}\right)$. We can assume not (B), so $R\left(\operatorname{tp}\left(\bar{b}^{\prime}, \bar{c}^{\wedge} \bar{a}, L, N\right)\right)=R(\{\varphi(\bar{x}, \bar{c})\})$, so by 5.2 B (below) $E\left(\bar{b}^{\prime}, \bar{b}, \bar{a}\right)$, contradicting the definition $5.2(\mathrm{~B})$.

$$
(\mathrm{A}) \Rightarrow(\mathrm{C})
$$

During this proof we shall prove several claims. Of course we can assume $\|N\|=\mathcal{N}_{1}$.

Claim 5.2. Suppose $N \mid=\psi$, and I^{*} is a set of \boldsymbol{N}_{1} sequences from N and $A \subseteq|N|$ is countable, and $\|N\|=\boldsymbol{N}_{1}$.
(A) We can find an $N_{\alpha}<{ }^{*} N, A \subseteq\left|N_{0}\right|, N_{\alpha}<{ }^{* *} N_{\alpha+1}, N_{\delta}=U_{\alpha<\delta} N_{\alpha}, N=$ $\cup_{a<\omega_{1}} N_{\alpha}$ and $\bar{a}_{\alpha} \in\left|N_{\alpha+1}\right|, \bar{a}_{\alpha} \notin\left|N_{\alpha}\right|, \bar{a}_{\alpha} \in I^{*}$ and $\bar{c} \in\left|N_{0}\right|$ and $\varphi \in L$ such that $N \mid=\varphi\left[\bar{a}_{\alpha}, \bar{c}\right]$, and $R\left(t p\left(\bar{a}_{\alpha},\left|N_{\alpha}\right|, L, N\right)\right)=R(\{\varphi(\bar{x}, \bar{c})\})$.
(B) The conditions of (A) or even $R\left(t p\left(\bar{a}_{\alpha}, \cup_{\beta<\alpha} \bar{a}_{\beta} \cup A, L, N\right)\right)=$ $R(\{\varphi(\bar{x}, \bar{c})\})$ and $N \mid=\varphi\left(\bar{a}_{\alpha}, \bar{c}\right)$ implies $\left\{\bar{a}_{\alpha}: \alpha<\omega_{1}\right\}$ is an indiscernible sequence over A, i.e. if

$$
\alpha(l, 1)<l(l, 2) \cdots<\alpha(l, n)<\omega_{1}(l=1,2, n<\omega)
$$

then

$$
\operatorname{tp}\left(\bar{a}_{\alpha(1,1)}{ }^{\wedge} \bar{a}_{\alpha(1,2)}{ }^{\wedge} \cdots^{\wedge} \bar{a}_{\alpha(1, n)}, A, L, N\right)=\operatorname{tp}\left(\bar{a}_{\alpha(2,1)}{ }^{\wedge} \bar{a}_{\alpha(2,2)}{ }^{\wedge} \cdots^{\wedge} \bar{a}_{\alpha(2, n)}, A, L, N\right)
$$

(in any case we assume $\varphi(\bar{x}, \tilde{c})$ is as in (A)).
(C) If ψ does not have the order property, in (B) we get that $\left\{\bar{a}_{\alpha}: \alpha<\omega_{1}\right\}$ is an indiscernible set over A (i.e. we demand only that $\{\alpha(l, i): i=1, n\}$ are distinct.

Proof.

(A) We can easily find appropriate N_{α} 's. Now for $\alpha<\omega_{1}$, choose inductively $\bar{a}_{\alpha}^{\prime} \in I, \bar{a}_{\alpha}^{\prime} \notin\left|N_{\alpha}\right|, \bar{a}_{\alpha}^{\prime} \notin\left\{\bar{a}_{\beta}^{\prime}: \beta<\alpha\right\}$, and choose $\varphi_{\alpha} \in L, \bar{b}_{\alpha} \in\left|N_{\alpha}\right|$ so that $R\left(\operatorname{tp}\left(\bar{a}_{\alpha}^{1},\left|N_{\alpha}\right|, L, N\right)=R\left(\varphi_{\alpha}\left(\bar{x}, \bar{b}_{\alpha}\right)\right)\right.$ and $N \mid=\varphi_{\alpha}\left(\bar{a}_{\alpha}^{1}, b_{\alpha}\right)$.
By a theorem of Fodour [2] it follows that there is $S \subseteq \omega_{1},|S|=\kappa_{1}$ such that $\alpha \in S \Rightarrow \varphi_{\alpha}=\varphi, \bar{b}_{\alpha}=\bar{b}$. By renaming we get our conclusion.
(B) and (C). The proof essentially is as in Morley [9], Shelah [13].

Definition 5.2. Let $M \mid=" \psi ", J$ an ordered set, and $\bar{a}_{t} \in|M|$ for $t \in J$. Then the indexed set $\left\{\bar{a}_{1}: t \in J\right\}$ is called nice in M if for every $\bar{b} \in|M|$ there is a finite set $S \subseteq J$ such that if $t(1) \approx t(2) \bmod S \quad$ [i.e. $\quad(\forall t \in S)$ $(t<t(1) \equiv t<t(2) \wedge t=t(1) \equiv t=t(2)] \quad$ then $\quad t p\left(\bar{a}_{t(1)} \wedge \bar{b}, \phi, L, M\right)=t p$ $\left(\bar{a}_{t(2)}{ }^{\wedge} \bar{b}, \phi, L, M\right)$.

Claim 5.3.

(A) The indexed set $\left\{\bar{a}_{\alpha}: \alpha<\omega,\right\}$ from 5.2 A is nice in N
(B) If $\left\{a_{t}: t \in J\right\}$ is nice in $M, M<* N \mid=" \psi$ " then it is nice in N.

Proof.
(A) Let $\bar{b} \in N$, so for some $\alpha \bar{b} \in\left|N_{\alpha+1}\right|, \bar{b} \notin N_{\alpha}$ or $\bar{b} \in\left|N_{0}\right|$. If $\bar{b} \in\left|N_{0}\right|$ clearly $S=\phi$ will do. We prove the existence of $S=S(b)$ by induction on α. So by 4.1C for some $\bar{c} \in\left|N_{\alpha}\right| t p\left(\bar{b},\left|N_{\alpha}\right|, L, N\right)$ does not split over \bar{c}. Choose $S(\bar{b})=\{\alpha\} \cup S(\bar{c})$, and clearly this will do.
(B) For every $\bar{b} \in N$ choose $\bar{c} \in|M|$ so that $\operatorname{tp}(\bar{b},|M|, L, N)$ does not split over \bar{c}. Clearly if $t(1), t(2) \in J, t(1) \approx t(2) \bmod S(\bar{c})(S(\bar{c})$ - the S we can choose for \bar{c} by Definition 5.3) then $t p\left(\bar{b}^{\wedge} \bar{a}_{t(1)}, \phi, L, N\right)=t p\left(\bar{b}^{\wedge} \bar{a}_{t(2)}, \phi, L, N\right)$. So we finish.

Continuation of the Proof of 5.1, (A) \Rightarrow (C)
So let $N, N_{\alpha}, \bar{a}_{\alpha}, \varphi(\bar{x}, \bar{c})\left(\alpha<\omega_{1}\right)$ be as in 5.2A. We can assume $|N|=\omega_{1}$, $\left|N_{\alpha}\right|=\omega \alpha$.

Now it is known (see e.g. [5]) that if $\theta \in L_{\omega, \ldots}(Q)$ has a model of order type ω_{1}, then it has a model which is countable and has an order type which contains a copy of the rationals.

Hence, using extra-predicates, there is an ordered set J, models $N_{t}(t \in J)$ and elements $\vec{a}_{t}(t \in J)$ such that
(1) J, N_{t} are countable, and $N_{t(0)}=N_{0}$ where $t(0)$ is the first element of J, and J contains a copy of the rationals.
(2) $N_{t} \mid=" \psi "$
(3) $t(1)<t(2) \in J \Rightarrow N_{t(1)}<* * N_{t(2)}$, and let $N^{*}=\bigcup_{t \in J} N_{t}$
(4) for each $\bar{a} \in \bigcup_{t \in J}\left|N_{t}\right|-\left|N_{t(0)}\right|$ there is $t=t_{\bar{a}} \in J$ such that $a \in\left|M_{t+1}\right|$, $\bar{a} \notin\left|M_{t}\right|(t+1$ - the successor of $t)$
(5) $\bar{c} \in\left|N_{t(0)}\right|, N_{t+1} \mid=\varphi\left[\bar{a}_{t}, \bar{c}\right]$ and $t p\left(\bar{a}_{t},\left|N_{t}\right|, L, N_{t+1}\right)$ has the same rank as $\varphi(\bar{x}, \bar{c})$
(6) for each $\bar{a} \in N^{*}$ there is a finite $S(\bar{a}) \subseteq J$ such that $t(1), t(2) \in J$, $t(1) \sim t(2) \bmod S(\bar{a})$ implies $t p\left(\bar{a}^{\wedge} \bar{a}_{t(1)}, \phi, L, N^{*}\right)=t p\left(\bar{a}^{\wedge} \bar{a}_{t(2)}, \phi, L, N^{*}\right)$
(7) for each $\bar{b} \in\left|N_{t+1}\right|-\left|N_{t}\right|$ there are $n, t(1)<\cdots<t(n)=t$ and $\bar{b}_{0} \in\left|N_{o}\right|$, and $\bar{b}_{l} \in\left|N_{t(l)+1}\right|, \bar{b}_{l} \notin \mid N_{t(l)}$, such that, for $0 \leqq k \leqq l \leqq n, t p\left(\bar{b}_{l}, N_{t(k)}, L, N^{*}\right)$, $\operatorname{tp}\left(\bar{b}_{l}, \bar{b}_{k}, L, N^{*}\right)$ have the same rank.

Remark. For the original N_{α} 's, (7) follows immediately.
As J contains a copy of the rational order, it has a Dedekind cut $\left(J_{1}, J_{2}\right)\left(J_{1}-\right.$ the lower part) with no last element in J_{1} nor first element in J_{2}, (and $J_{1} \neq \varnothing$, $J_{2} \neq \varnothing$).

By (6) there is an \boldsymbol{N}_{1}-saturated model M of $T(\psi), N^{*}<M$, and $\bar{a}^{*} \in|M|$ so that for $\bar{b} \in N^{*}, \varphi \in L$.
$M \mid=\varphi\left(\bar{a}^{*}, \bar{b}\right) \Leftrightarrow$ there are $t(1) \in I_{1}, t(2) \in I_{2}$ so that $t(1)<t<t(2)$ implies $N^{*} \mid=\varphi\left[\bar{a}_{t}, \bar{b}\right]$.

Clearly for every $\bar{c} \in\left|N^{*}\right| \cup \bar{a}^{*}, \operatorname{tp}(\bar{c}, \phi, L, M)$ is isolated. If there is a model $M^{\prime}, N^{*}<{ }^{*} M^{\prime}<M, \bar{a}^{*} \in M^{\prime}, M^{\prime} \mid=" \psi "$, then $\operatorname{tp}\left(\bar{a}^{*},\left|N^{*}\right|, L, M^{\prime}\right)$ split over every finite set $\subseteq\left|N^{*}\right|$, contradiction. By 4.3 there are $\bar{c}_{1} \in\left|N^{*}\right|, \theta_{1}, \theta_{2} \in L$ such that
(α) $N^{*} \mid=" \neg(Q x) \theta_{1}\left(x, \bar{c}_{1}\right) "$
(β) $M \mid=(\exists y) \theta_{2}\left(y, \bar{a}^{*}, \bar{c}_{1}\right)$
(γ) $M \mid=(\forall y)(\forall \bar{x})(\forall \bar{z})\left[\theta_{2}(y, \bar{x}, \bar{z}) \rightarrow \theta_{1}(y, \bar{z})\right]$
(δ) for no $d \in\left|N^{*}\right|, N^{*} \mid=\theta_{1}\left(d, \bar{c}_{1}\right)$ and $M \mid=\theta_{2}\left[d, \bar{a}^{*}, \bar{c}_{1}\right]$.
By (7) we can find $t(1) \in I_{1}, \quad t(2) \in I_{2}$ and $\bar{c}_{2} \in N_{t(1)}$ such that $\operatorname{tp}\left(\bar{c}_{1},\left|N_{t(2)}\right|, L, N^{*}\right), \operatorname{tp}\left(\bar{c}_{1}, \bar{c}_{2}, L, N^{*}\right)$ have the same rank. By notational changes we can assume $t(1)=t(0), \bar{c}_{2}=\bar{c}, \bar{c}_{1} \in N_{t(2)+1}$. Let

$$
E\left(\bar{x}_{1}, \bar{x}_{2} ; \dot{\bar{z}}\right)=(\forall y)\left[\theta_{2}\left(y, \bar{x}_{1}, \bar{z}\right) \equiv \theta_{2}\left(y, \bar{x}_{2}, \bar{z}\right)\right]
$$

Clearly $E\left(\bar{x}_{1}, \bar{x}_{2} ; \bar{z}\right)$ is an equivalence relation, and if $N^{*} \alpha^{*} M_{1} \mid=" \psi^{\prime}, \bar{c}^{\prime} \in M_{1}$. $M_{1} \mid=" 7(Q y) \theta_{1}\left(y, \bar{c}^{\prime}\right) "$ then in $M_{1} E\left(\bar{x}_{1}, \bar{x}_{2} ; \bar{c}^{\prime}\right)$ has $\leqq N_{0}$ equivalence classes (by the $\boldsymbol{\kappa}_{0}$-stability of ψ). Hence if $\vec{c}^{1} \in\left|M_{1}\right|, \quad M_{1}<{ }^{*} M_{2}\left|=" \psi^{\prime \prime}, \quad M_{1}\right|=" \neg$ ($Q y$) $\theta_{1}\left(y, \bar{c}^{1}\right)^{\prime \prime}$ then there is in M_{2} no new $E\left(\bar{x}_{1}, \bar{x}_{2} ; \bar{c}^{1}\right)$-equivalence class.

So $E\left(\bar{x}_{1}, \bar{x}_{2} ; \bar{c}_{1}\right)$ has N_{0} equivalence classes: it has $\leqq \mathcal{N}_{0}$ by the previous argument, and $t(3)<t(4)<t(2)$ implies $N^{*} \mid=\neg E\left(\bar{a}_{t(3)}, \bar{a}_{t(4)} ; \bar{c}_{1}\right)$. The last formula implies of course that a_{10} is not $E\left(\bar{x}_{1}, \bar{x}_{2} ; \bar{c}_{1}\right)$-equivalent to any sequence from $N_{t(0)}$. So clearly (C) holds with $N_{0}, N^{*}, \bar{c}_{1}, \vec{a}_{t(0)}$ for M, N, \bar{a}, \bar{b} respectively.

Theorem 5.4. If $\psi \quad$ (is nice, κ_{0}-stable and) has the asymmetry property then $I\left(\boldsymbol{N}_{1}, \psi\right)=2^{\boldsymbol{N}_{1}}$.

Proof. Let $M, N, \bar{a}, \bar{b}, E$ be as in Definition 5.2(B). $\|N\|=N_{0}$ w.l.o.g. Now we define by induction on $\alpha<\omega_{1}$ models N_{α} such that:
(1) $N_{0}=N$
(2) $N_{\alpha} \mid=" \psi ",\left\|N_{\alpha}\right\|=\kappa_{0}$
(3) $N_{\alpha}<{ }^{*} N_{\alpha+1^{\prime}}$ and $N_{\alpha+1}<{ }^{* *} N_{\alpha+2}$. Moreover every L-type over $N_{\alpha+1}$ realized in some $N^{\prime}, N_{\alpha+1}<^{*} N^{\prime}$, is realized in $N_{\alpha+2}$.
(4) $N_{\delta}=\bigcup_{i<\delta} N_{i}$ for limit δ
(5) $N_{\delta+1}$ is prime over $\left|N_{\delta}\right| \cup \bar{a}_{\delta}$ (see Lemma 4.4) where $t p\left(\bar{a}_{\delta},\left|N_{\delta}\right|, L, N_{\delta+1}\right)$ extend and has the same rank as $\operatorname{tp}(\bar{a},|M|, L, N)$; for limit δ.
(6) $\vec{b}_{\beta+1} \in\left|N_{\beta+2}\right|$

Where $t p\left(b_{\beta+1},\left|N_{\beta+1}\right|, L, N_{\beta+2}\right)$ extend and has the same rank as $\operatorname{tp}(\bar{b},|M|, L, N)$

So clearly $N^{*}=\bigcup_{\alpha<\omega_{1}} N_{\alpha} \mid=\psi$. Note that if $\delta<\omega_{1}$ (is a limit ordinal and $\bar{c} \in\left|N_{\delta}\right|$ then for every $\alpha<\delta, \bar{c} \in\left|M_{\alpha}\right|$ and for all $\beta, \alpha<\beta<\delta$ the types $\operatorname{tp}\left(\bar{c}^{\wedge} \bar{b}_{\beta+1}^{\wedge} \bar{a}_{\delta}, \phi, L, N^{*}\right)$ are equal. (i.e., the type does not depend on β nor on $\delta)$.

Notice that all the $E\left(\bar{x}, \bar{y} ; \bar{a}_{\delta}\right)$ equivalence classes are representable in $N_{\delta+1}$ (otherwise we can get a contradiction to the choice of E by (3)). Now for no $\bar{b}^{\prime} \in N^{*} \quad$ is $\quad \operatorname{tp}\left(\bar{a}_{\delta}^{\wedge} \bar{b}^{\prime},\left|N_{\delta}\right|, L, N^{*}\right)=t p\left(\bar{a}_{\delta+\omega}, \bar{b}_{\delta+1},\left|N_{\delta}\right|, L, N^{*}\right)$. Otherwise choose $\bar{b}^{\prime \prime} \in N_{\delta+1}$ such that $N^{*} \mid=E\left[\bar{b}^{\prime}, \bar{b}^{\prime \prime}, \bar{a}_{\delta}\right]$, so by the conditions in Definition $5.2(\mathrm{~B}), N^{*} \mid=\neg E\left[b^{\prime \prime}, \quad \bar{b}_{\alpha}, \bar{a}_{\delta}\right]$ for any $\alpha<\delta$. By 4.4 we can choose $\bar{c} \in\left|N_{\delta}\right|$ and φ so that $N^{*} \mid=\varphi\left[\bar{b}^{\prime \prime}, \bar{a}_{\delta}, \bar{c}\right]$ and $\varphi\left(\bar{x}, \bar{a}_{\delta}, \bar{c}\right) \vdash \operatorname{tp}\left(\bar{b}^{\prime \prime}, \bar{a}_{\delta} \cup\left|N_{\delta}\right|, L, N^{*}\right)$ and let $\bar{c} \in\left|N_{\alpha}\right|, \alpha<\delta$ and $\alpha<\beta<\delta$. Then $\varphi\left(\bar{x}, \bar{a}_{\delta}, \bar{c}\right) \vdash \neg E\left(\bar{x}, \vec{b}_{\beta}, \bar{c}\right)$ hence

$$
\varphi_{1}\left(y_{1}, \bar{a}_{\delta}, \bar{c}\right) \stackrel{d f}{=}(\exists y)\left(E\left(\bar{x}, \bar{y}, \bar{a}_{\delta}\right) \wedge \varphi\left(\bar{y}, \bar{a}_{\delta}, \bar{c}\right)\right) \vdash \neg E\left(\bar{x}, \bar{b}_{\beta}, \bar{c}\right)
$$

but $N^{*} \mid=\varphi_{1}\left[\bar{b}_{\beta}, \bar{a}_{\delta}, \bar{c}\right]$ so $N^{*} \mid=\neg E\left(\bar{b}_{\beta}, \bar{b}_{\beta}, \bar{a}_{\delta}\right)$, a contradiction.
As in the Proof of $5.1(\mathrm{~A}) \rightarrow(\mathrm{C})$, using [16], 2.14 , for every set $S \subseteq \omega_{1}$ we can find an order J, and models $N_{t}, t \in J$, and sequences \bar{a}_{t}, \bar{b}_{t}, such that
(A) $J=\bigcup_{\alpha<\omega_{1}} J_{\alpha},\left|J_{\alpha}\right|=\boldsymbol{N}_{0},|J|=\boldsymbol{N}_{1}, J_{\alpha}$ is an initial segment of $J ; J-J_{\alpha}$ has a first element iff $\alpha \in S$; and J is elementarily equivalent to ω_{1}. Also $\alpha<\beta \Rightarrow$ $J_{\alpha} \subseteq J_{\beta}$ and $J_{\delta}=\bigcup_{\alpha<\delta} J_{\alpha}$ for limit δ.
(B) The conditions parallel to (1)-(6) above holds. We denote $\cup_{i \in J} N_{t}$, which is a model of ψ of cardinality κ_{1}, by N_{s}. Let $\bar{c} \in M, \varphi_{1}, \varphi_{2} \in L$ be such that $N \mid=\varphi_{1}[\bar{a}, \bar{c}] \wedge \varphi_{2}\left[\bar{a}^{\wedge} \bar{b}, \bar{c}\right]$ and $\varphi_{1}(\bar{x}, \bar{c}), \varphi_{2}(\bar{x}, \bar{y}, \bar{c})$ has the same rank as $t p(\bar{a},|M|, L, N), \operatorname{tp}(\bar{a} \wedge \bar{b},|M|, L, N)$ resp.

Now clearly
(*) Let $\alpha<\omega_{1}, N^{\alpha}=\bigcup_{t \in J_{\alpha}} N_{t}$. Then $\alpha \in S$ iff there are $\bar{c}^{\prime} \in N^{\alpha}$,
$t p(\bar{c}, \phi, L, N)=t p\left(\bar{c}^{\prime}, \phi, L, N^{\alpha}\right)$, and $\bar{a}^{\prime} \in N_{s}, N_{s} \mid=\varphi_{1}\left[\bar{a}^{\prime}, \bar{c}^{\prime}\right]$, and $\varphi_{1}\left(\bar{x}, \bar{c}^{\prime}\right)$ has the same rank as $\operatorname{tp}\left(\bar{a}^{\prime},\left|N^{\alpha}\right|, L, N_{s}\right)$ such that for no $\bar{b}^{\prime} \in\left|N_{s}\right|$ does $N_{s} \mid=$ $\varphi_{2}\left[\bar{a}^{\prime \wedge} \bar{b}^{\prime}, \bar{c}^{\prime}\right]$ and $\varphi_{2}\left(\bar{x}, \bar{y}, \bar{c}^{\prime}\right)$ has the same rank as $\operatorname{tp}\left(\bar{a}^{\prime \wedge} \bar{b}^{\prime},\left|N^{\alpha}\right|, L, N_{S}\right)$.
(**)

$$
\text { If } N_{S}=\bigcup N_{\alpha}^{1}\left(\alpha<\omega_{1}\right), N_{\alpha}^{1}<^{*} N_{S},\left\|N_{\alpha}^{1}\right\|=\kappa_{0}, N_{\alpha}^{1}<^{*} N_{\alpha+1}^{1}, N_{\delta}^{1}=\bigcup_{\alpha<\delta} N_{\alpha}^{1}
$$

then $\left\{\alpha: N_{\alpha}^{1}=N^{\alpha}\right\}$ is a closed and unbounded subset of ω_{1}.
We can easily conclude that $N_{S_{1}} \cong N_{S_{2}}$ implies that S_{1}, S_{2} are equal modulo the filter on ω_{1} generated by the closed unbounded subsets of ω_{1}. Hence e.g. by Solovay [17], $I\left(\mathcal{N}_{1}, \psi\right)=2^{\boldsymbol{N}_{1}}$.

The κ_{0}-Amalgamation Lemma 5.5.
(A) Let ψ be nice and κ_{0}-stable, $N \mid=" \psi ",(l=0,1,2) N_{0}<* N_{1}, N_{0}<{ }^{*} N_{2}$. Then there is a model M of $T(\psi)$ and elementary embeddings f_{l} of N_{1} into M $f_{i}| | N_{0} \mid=$ the identity, f_{i} maps N_{i} onto $N_{i}^{\prime}(l=1,2)$, and for $\bar{a} \in\left|N_{2}^{\prime}\right|$ $t p\left(\bar{a}, N_{1}^{\prime}, L, M\right)$ has the same rank as $\operatorname{tp}\left(\bar{a},\left|N_{0}\right|, L, M\right)$.
(B) Under the conditions of (A), if $\left\|N_{1}\right\|=\left\|N_{2}\right\|=\boldsymbol{N}_{0}$ there is $M^{\prime}<M$, $M^{\prime} \mid=" \psi ", N_{i}^{\prime}<{ }^{*} M^{\prime}$.
(C) If ψ has the symmetry property, then in (B) we can have also $N_{z}^{\prime}<{ }^{*} M^{\prime}$.
(D) If ψ has the symmetry property, it has the \mathcal{N}_{0}-amalgamation property.

Proof.
(A) Immediate.
(B) Follows by claim 4.3 .
(C) Immediate by 4.3, as then the conditions in (A) are symmetric for N_{1}^{\prime} and N_{2}^{\prime}.
(D) Immediate by (C).

Lemma 5.6. Suppose ψ is nice, \mathcal{N}_{0}-stable and with the symmetry property.
(A) If $N \mid=\psi,\|N\|=N_{1}$ then there is $M, M \mid=\psi, N<{ }^{*} M, M \neq N$.
(B) Moreover there is such an M of cardinality \boldsymbol{N}_{2}.

Proof.
(A) Let $N=\bigcup_{\alpha<\omega_{1}} N_{\alpha},\left\|N_{\alpha}\right\|=\boldsymbol{N}_{0}, N_{\alpha}<{ }^{* *} N_{\alpha+1}, N_{\delta}=\bigcup_{\alpha<\omega_{1}} N_{\alpha}$, and let $N<M, M$ an \mathcal{N}_{2}-saturated model of $T(\psi)$. We now define by induction on α models M_{α} and embedding $f_{\beta, \alpha}$ (for $\beta<\alpha$) such that:
(1) $N_{\alpha}<{ }^{*} M_{\alpha}, M_{0} \neq N_{0}$
(2) $f_{\beta, \alpha}$ is an elementary embedding of M_{β} into M_{α}
(3) $M_{\alpha} \uparrow$ Range $f_{\beta, \alpha}<{ }^{*} M_{\alpha}$
(4) $f_{\beta, \alpha} \uparrow N_{\beta}=$ the identity
(5) if $\gamma<\beta<\alpha$ then $f_{\gamma, \alpha}=f_{\beta \alpha} f_{\alpha, \beta}$
(6) if $\bar{a} \in\left|M_{\beta}\right|, \beta<\alpha$, then $\operatorname{tp}\left(\bar{a},\left|N_{\beta}\right|, L, M_{\beta}\right)$ has the same rank as $\operatorname{tp}\left(f_{\beta, \alpha}(a), N_{\alpha}, L, M_{\alpha}\right)$.

We can define $M_{0}=N_{1}$, and then proceed by 5.5 for successor ordinal, and using the limit for limit ordinal. We can assume $M_{\beta}<{ }^{*} M_{\alpha}$ for $\beta<\alpha$.

Clearly $\cup_{\alpha<\omega_{1}} M_{\alpha}$ is the required model.
(B) By repeating (A) we get $M_{\alpha}\left(\alpha<\omega_{2}\right), M_{\beta}<* M_{\alpha} \neq M_{\beta}$ for $\beta<\alpha, M_{0}=N$. Clearly $\bigcup_{\alpha<\omega_{2}} M_{\alpha}$ is as required.

Without any assumptions on ψ let us prove.

Main Theorem 5.7. ($V=L$ or $\diamond_{N_{1}}$) If $\psi \in L_{\omega_{1}, \omega}(Q), I\left(\mathcal{N}_{1}, \psi\right)<2^{\boldsymbol{N}_{1}}$, but ψ has an uncountable model, then ψ has a model of cardinality \boldsymbol{N}_{2}.

Proof. Clearly we can replace in the proof ψ by ψ^{\prime} if $I\left(\lambda, \psi^{\prime}\right) \leqq I(\lambda, \psi)$ for $\lambda>\mathcal{N}_{0}$, but $I\left(\boldsymbol{N}_{1}, \psi^{\prime}\right) \geqq 1$.

Let M be an uncountable model of ψ, so by the downward LöwenheimSkolem theorem we can assume $\|M\|=\boldsymbol{N}_{1}$.

By 2.1A for every fragment L^{*} of $L_{\omega \mid, \omega}(Q)$, only countably many L^{*}-types are realized in M. By Theorem 2.3A, ψ has a model M_{1} of cardinality \boldsymbol{N}_{1} in which only countably many $L_{\omega_{1}, \omega}(Q)$-types are realized. By 2.5 A for some fragment L^{*} of $L_{\omega 1, \omega}(Q), M_{1}$ is $\left(L^{*}, \kappa_{0}\right)$-homogeneous. By $3.1(\mathrm{C}), 2.5(\mathrm{C})$ for some almost nice $\psi_{1}, M_{1} \mid=\psi_{1}, \psi_{1} \vdash \psi$, so we can replace ψ by ψ_{1}. By 3.1(A) we can replace ψ_{1} by a nice ψ_{2}. By $3.4 \psi_{2}$ has the κ_{0}-amalgamation property, and by $2.1(\mathrm{~B})$ it is $\left(\boldsymbol{N}_{0}, 1\right)$-stable. By Theorem $4.2 \psi_{2}$ is \boldsymbol{N}_{0}-stable. By Theorem $5.4 \psi_{2}$ does not have the asymmetry property, hence by 5.1 it has the symmetry property. Hence by $5.7 \psi_{2}$ has a model of cardinality $\boldsymbol{\kappa}_{2}$.

Conjecture. If $\psi \in L_{\omega_{1}, \omega}(Q)$ has an uncountable model, then it has at least $2^{\boldsymbol{N}_{1}}$ non-isomorphic models.

6. Various results

We give here various additional results, but do not elaborate the proofs or omit them.

Lemma 6.1. Suppose $\psi \in L_{\omega_{1}, \omega}(Q)$ has a model of cardinality $\boldsymbol{1}_{\omega_{1}}$.
(A) Then some model of ψ of cardinality $\geqq \boldsymbol{1}_{\omega_{1}}$ satisfies an almost-nice sentence ψ^{\prime}.
(B) So $\lambda>\boldsymbol{N}_{0} \Rightarrow I(\lambda, \psi) \geqq I\left(\lambda, \psi^{\prime}\right)$ and equality holds if ψ is categorical in some $\mu \leqq \lambda$.
(C) If ψ is categorical in \boldsymbol{N}_{1} then it is $\left(\boldsymbol{N}_{0}, 1\right)$-stable.

Proof. Let M be an Ehrenfeucht-Mostowski model of ψ of cardinality $\boldsymbol{\Xi}_{\omega_{1}}$ (see e.g. [5]), with dense skeleton. Then in M only countably many $L_{\omega_{1}, \omega}(Q)$ types are realized. Hence we finish (A), and (B) is immediate. By the proof of Morley [9] (C) is immediate.

Lemma 6.2. Suppse $\psi \in L_{\omega_{1}, \omega}(Q)$ is nice and has a model of cardinality $\boldsymbol{\beth}_{\omega_{1}}$ and is categorical in \boldsymbol{N}_{1}. Then ψ is $\boldsymbol{\aleph}_{0}$-stable.

Proof. Let M^{1} be an Ehrenfeucht-Mostowski model of ψ. (M^{1} is an L_{1} model, $L \subseteq L_{1}$) which is the closure of the indiscernible sequence $\left\{y_{i}: i<\omega_{1}\right\}$. Let M_{α}^{1} be the closure of $\left\{y_{i}: i<\alpha\right\}$ and $M\left(M_{\alpha}\right)$ the L-reduct of $M^{1}\left(M_{\alpha}^{1}\right)$. It is easy to see that $\alpha<\beta \Rightarrow M_{\alpha}<{ }^{*} M_{\beta}$. By [12] in M we cannot find a set of κ_{1} sequence which some $\varphi \in L$ ordered. From this it is not hard to deduce that if $\bar{a} \in|M|, \beta$ limit for some $\alpha<\beta \operatorname{tp}\left(\bar{a},\left|M_{\beta}\right|, L, M\right)$ does not split over M_{α}, and there is $\bar{a}^{\prime} \in\left|M_{\alpha}\right|$ such that $\operatorname{tp}\left(\bar{a},\left|M_{\beta}\right|, L, M\right)=t p\left(a^{\prime},\left|M_{\beta}\right|, L, M\right)$. If T is not \boldsymbol{N}_{0}-stable, we can find models $N_{\alpha}\left(\alpha<\omega_{1}\right)$ such that $N_{\alpha}<{ }^{* *} N_{\alpha+1}$ $N_{\delta}=\bigcup_{\alpha<\delta} N_{\alpha},\left\|N_{\alpha}\right\|=\kappa_{0}, N_{\alpha} \mid=" \psi "$ and the condition mentioned above does not hold (i.e. for every δ there is $\bar{a} \in\left|N_{\delta+1}\right|$ such that: $\operatorname{tp}\left(\bar{a},\left|N_{\delta}\right|, L, N_{\delta+1}\right)$ split over every $\left|N_{\alpha}\right|,(\alpha<\delta)$ or for some $\alpha<\delta, t p\left(a,\left|N_{\alpha}\right|, L, N_{\delta+1}\right)$ is not realized in $N_{\delta \delta}$.)

It is easy to check that $N=\bigcup_{\alpha<\omega_{1}} N$ is not isomorphic to M, but is a model of ψ of cardinality $\boldsymbol{N}_{\mathbf{1}}$, contradiction.

The following lemma was once used in the proof of 5.6 so we do not prove it.

Lemma 6.3. Let ψ be nice, \boldsymbol{N}_{0}-stable, with the symmetry property. Let M be a model of $T(\psi), N_{1}<N_{2}<M,\left\|N_{2}\right\|=\kappa_{0}, \bar{a} \in|M|, M_{l}<M$ is prime over $\left|N_{1}\right| \cup \bar{a} ;$ and $N_{1}, N_{2}, M_{1}, M_{2} \mid=" \psi "$. Then there is an elementary embedding f of M_{1} into $M_{2}, f\left(\left|N_{1}\right| \cup \bar{a}\right)=$ the identity and $M_{2} \upharpoonright$ Range $f<{ }^{*} M_{2}$.

From here we work in $L_{\omega_{1}, \omega}$.
We could reduce all the previous discussion to $L_{\omega_{1}, \omega}$. The only noticeable changes are the omitting of (γ) in Definition 4.1 (of rank), and replacing $" \psi \vdash(Q x) x=x "$ by " ψ has an uncountable model" in Definition 3.1 (of niceness), and we can drop $<^{*},<^{* *}$ and

Lemma 6.4. If ψ is nice and \boldsymbol{N}_{0}-stable, then it does not have the order property (and does have the symmetry property.

Proof. Follows by the proof of $5.1(\mathrm{~A}) \Rightarrow(\mathrm{C})$ (as we lack the alternative followed there).

Definition 6.1. Let $M \mid=" \psi "$,
(A) the formula $\varphi(\bar{x}, \bar{a})(\bar{a} \in|M|, \varphi \in L)$ is big if there is a model N, $N \mid=" \psi ", M<* N$, and some $\bar{c} \in|N|, \bar{c} \notin|M|$ satisfies $\varphi(\bar{x}, \bar{a})$.
(B) The formula $\varphi(\bar{x}, \bar{a})$ is minimal if it is big but for no $\theta \in L, \bar{b} \in|M|$, are both $\varphi(\bar{x}, \bar{a}) \wedge \theta(\bar{x}, \bar{b})$ and $\varphi(\bar{x}, \bar{a}) \wedge \rightharpoondown \theta(\bar{x}, \bar{b})$ big.
(C) If $\bar{a} \in M, A \subseteq M, \operatorname{tp}(\bar{a}, A, L, M)$ is big (minimal) if some formula in it is.

Lemma 6.5.
(A) The properties " $\varphi(\bar{x}, \bar{a})$ is big", " $\varphi(\bar{x}, \bar{a})$ is minimal" depends only on $\operatorname{tp}(\bar{a}, \phi, L, M)$
(B) If $\varphi(\bar{x}, \bar{a})$ is minimal $\bar{a} \in A \subseteq M \mid=" \psi "$, then there is a unique complete L-type over A realized in some $N, M<{ }^{*} N \mid=" \psi "$, which is big and contains $\varphi(\bar{x}, \bar{a})$.

Proof. Immediate.
Lemma 6.6. Let ψ be nice and κ_{0}-stable.
(A) If $M \mid=\psi$ there is a minimal formula $\varphi(\bar{x}, \bar{a}), \vec{a} \in A$.
(B) If $M|=\psi, \bar{a} \in| M \mid, \varphi(\bar{x}, \bar{a})$ is minimal, then the dependence relation among sequences satisfying $\varphi(\bar{x}, \bar{a})$, defined by " \bar{b} depends on $\left\{\bar{b}_{1}, \bar{b}_{2}, \cdots\right\}$ if $\operatorname{tp}\left(\bar{b}, \bar{a} \bigcup_{i} \bar{b}_{i}, L, M\right)$ is not big" satisfies the axioms for linear dependence (which enable us to define dimension).

Proof.

(A) Choose $\varphi(x, \bar{a})$ with minimal rank such that for some $N, M<N, N \mid=\psi$, and $c \in|N|-|M|, N \mid=\varphi[c, \bar{a}]$.
(B) Easy, remembering 6.5 .

Lemma 6.7. Let ψ be nice and $\boldsymbol{\kappa}_{0}$-stable. Then ψ is categorical in $\boldsymbol{\aleph}_{1}$, iff for every model $N,\|N\|=N_{1}, N \| \psi$ for every minimal $\varphi(x, \bar{a}) \quad(\bar{a} \in N)$ $|\{c \in|N|: N \mid=\varphi[c, \bar{a}]\}|=\boldsymbol{N}_{1}$ iff for every model M, N of $\psi, M<N$, and
minimal $\varphi(x, \bar{a})(\bar{a} \in|M|)$ for some $c \in|N|-|M|, N \mid=\varphi[c, \bar{a}]$ iff over every countable $N \mid=\psi$, there is a prime model M, of ψ i.e. $N<M \mid=\psi, N \neq M$, and if $N<M^{\prime} \mid=\psi, N \neq M^{\prime}$, then there is an elementary embedding of M into M^{\prime} which is the identity over $|N|$.

Proof. Left to the reader.
This seemed a reasonable characterization of categoricity.
CONCLUSION 6.8. Let ψ be nice, \boldsymbol{N}_{0}-stable and categorical in \boldsymbol{N}_{1}. Then its model M of cardinality \boldsymbol{N}_{1} is \boldsymbol{N}_{1}-model-homogeneous, i.e. if $\boldsymbol{N}_{1}, \boldsymbol{N}_{2}<M$, f an isomorphism from N_{1} onto N_{2}, N_{1}, N_{2} are countable then we can extend fo an automorphism of M.

Remarks. (1) We can easily generalize Lemma 3.4 (that the lack of the amalgamation property implies $I\left(\boldsymbol{N}_{1}, \psi\right)=2^{\boldsymbol{N}_{1}}$) to higher cardinals and to pseudo-elementary classes.
(2) If $T \subseteq L(Q)$, and for every finite set of formulas $\Gamma \subseteq L(Q)$ there is a model M of $T,\|T\|=\kappa_{1}$ such that for every countable $A \subseteq|M|$ $|\{t p(\bar{a}, A, \Gamma, M): \bar{a} \in|M|\}| \leqq \boldsymbol{N}_{0}$ then T has a model $N,\|N\|=\boldsymbol{N}_{1}$, such that the number of $L_{\omega, \omega}(Q)$-types realized in N is countable. The proof is analagous to 2.3.
(3) Claim 5.2 generalizes easily to any regular cardinality.
(4) We can strengthen the definition of nice indexed set (Def. 5.2) as in [S6] without changing the conclusions.
(5) We can generalize 6.4-6.8 to $\psi \in L_{\omega_{1}, \omega}(Q)$.
(6) We can define niceness for all reasonable logics.

Note added October 6, 1974.
(1) A Variant of 2.3 was proved, later and independently by M. Makkai, An addmissible generalization of a theorem on countable Σ_{1}^{1} sets of reals with applications, to appear.
(2) Recently, the author has proven that e.g., if $\psi \in L_{\omega_{1}, \omega}$ is categorical in \boldsymbol{N}_{n} for $0<n<\omega$ then ψ is categorical in every $\lambda>\boldsymbol{N}_{0}$, assuming $V=L$.

References

1. Baumgartner, On N_{1}-dense sets of reals, Fund. Math.
2. G. Fodor, Eine Bemerkung zur Theorie der regressiven Funktionen, Acto. Sci. Math. 17 (1965), 139-142.
3. H. Friedman, Ninety-four problems in mathematical logic, to appear in J. Symbolic Logic.
4. R. B. Jensen, The fine structure of the constructible hierarchy, Ann. Math. Logic 4 (1972), 224-308.
5. H. J. Keisler, Model theory for infinitary logic, North Holland Publ. Co., Amsterdam, 1971.
6. H. J. Keisler, On the quantifier "there exist uncountably many x", Ann. Math. Logic 1 (1970), 1-91.
7. J. Knight, Minimal sets in infinitary logic, preprint.
8. L. Marcus, A prime minimal model with an infinite set of indiscernibles, Israel J. Math. 11 (1972), 180-183.
9. M. D. Morley, Categoricity in power, Trans. Amer. Math. Soc. 114 (1965), 514-538.
10. M. D. Morley, The number of countable models, J. Symbolic Logic 35 (1970), 14-18.
11. S. Shelah, Finite diagrams stable in power, Ann. Math. Logic 2 (1970), 69-118.
12. S. Shelah, The number of non-isomorphic models of an unstable first-order theory, Israel J. Math. 9 (1971), 473-487.
13. S. Shelah, Stability, the f.c.p. and superstability; model theoretic properties of formulas in first order theory, Ann. Math. Logic, 3 (1971), 271-362.
14. S. Shelah, Categoricity of uncountable theories, Proc. of Symp. in honor of Tarski's Seventieth birthday, Berkeley 1972; Proc. of Symp. in Pure Math., Amer. Math. Soc., Providence, R.I., 1974. pp. 187-204.
15. S. Shelah, Various results in Math. Logic, Notices Amer. Math. Soc. 22 (1974).
16. S. Shelah, Generalized quantifiers and compact logic, Trans. Amer. Math. Soc., to appear.
17. R. Solovay, Real-valued measurable cardinals in axiomatic set theory, Proc. Symp. Pure Math. XIII Part I, Amer. Math. Soc. Providence, R.I., 1971, pp. 397-428.

Institute of Mathematics
Hebrew University of Jerusalem
Jerusalem, Israel.

