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1 Introduction

Let « be a regular uncountable cardinal, and A be a cardinal greater than or equal to k.
An ideal on [A]=" is said to be normal if it is closed under diagonal unions of A many
of its members. Building on work of Jech [10] and Menas [19], Carr [2] described the
smallest (in terms of inclusion) such ideal. Called the nonstationary ideal on [A]<*, it
is usually denoted by N S, ;. Numerous variations on the original notion of normality
have been considered over the years. We are interested in two of these variants. First
there is the notion of strong normality that has been rather extensively studied (see e.g.
[3.4,8,13]). The definition involves diagonal unions of length A <*. Carr et al. [3] give
necessary and sufficient conditions for the existence of strongly normal ideals on [A] ="
and describes the least such ideal when there is one. As the terminology implies, any
strongly normal ideal is normal. The other notion is that of 6-normality for an ordinal
8 < A. An ideal on [A]=" is called §-normal if it is closed under diagonal unions of
length §. Thus A-normality is the same as normality. This notion of §-normality has
been studied by Abe [1] who gave a description of the smallest §-normal ideal on
[ )\‘] <k

We introduce a more general concept, that of [8]<9-n0rmality, where § is, as above,
an ordinal less than or equal to ), and 6 a cardinal less than or equal to k. The definition
is similar to that of strong normality, with this difference that diagonal unions are now
indexed by [8]<. So [A]<¥-normality is identical with strong normality, whereas
[8]<2-normality is the same as §-normality.

We give necessary and sufficient conditions for the existence of [§]<?-normal ideals

<6
on [A]=¥ and describe the least such ideal, which we denote by N S,Esl .

The notion of [A]<9-n0rmality (with 6 a regular infinite cardinal less than «) has

been independently studied by DZamonja [6]. In particular, Claims 2.9 and Corollary

<0
2.13 of [6] provide alternative descriptions of N S ,EA;\

By the cofinality of an ideal J, we mean the least number of generators for J, that is
the least size of any subcollection X of J such that each member of the ideal is included

<0
in some element of X. We determine the cofinality of NS /ES]A . Its computation involves
a multidimensional version of the dominating number ?,, which is no surprise, as
Landver (Lemma 1.16 in [12]) proved that the cofinality of the minimal normal ideal
on Kk is 0.

Part of the paper is concerned with the problem of comparing the various ideals that

<0
are considered. Given two pairs (8, ) and (8, 8’), we investigate whether N S ,E‘S]\ and

<6’
NS EA] are equal, and, more generally, whether one of the two ideals is a restriction
<6
of the other (there is more about this in [18]). For instance, it is shown that N Sl[f]A =

NSEi”d |A for some A.

The paper is organized as follows. Section 2 collects basic definitions and facts
concerning ideals on [A]=*. This is standard material except for Proposition 2.6. In
Sect. 3 we introduce the property of [8]<?-normality and state necessary and sufficient
conditions for the existence of a [§]<?-normal ideal on [A]<¥. The discussion is very
much like the one regarding the existence of a strongly normal ideal, and arguments are
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routine. We briefly consider various weaker properties (compare e.g. Proposition 3.4
((ii1) and (iv)) and Corollary 3.8 (ii) with Proposition 3.6 (ii)) and characterize the
ideals that satisfy them. In Sects. 4 and 5 we show that we could without loss of
generality assume that 6 is an infinite cardinal, and § either a cardinal less than «,
or an ordinal multiple of x. We describe the smallest [8]<Y-normal ideal on [A]<¥,
which we denote by NS }ffe. Section 6 is concerned with the case when 6 is a limit
cardinal. It is proved among other things that if § > « and 6 is a singular strong limit
cardinal, then any [81<?-normal ideal on [A]<¥ is [8]<9+-normal. Sections 7 and 8
deal with the question of the existence of an ordered pair (§', 0’) # (8, 0) such that

<6 <60’
§ <68,0 <6 and NS,[('?)]L = NS,I(’?A] |A for some A. In Sect. 9 we show that for

: <6
any cardinal A’ withx < ' < A, N S,[(”;,n @217 can be obtained as a projection of

<6
NS ,58}\ . This generalizes a well-known result of Menas [19].
In Sect. 10 we introduce a three-cardinal version, denoted by 05 5.» of the dominating
number 0. There are many identities involving the Df , s and we present some of them.

<6
Finally, the cofinality of N S,E‘S]k is computed in Sect. 11.

2 Ideals

Definition For a set A and a cardinal t, we set [A]"" ={a C A : |a| < 1}.

Throughout the section p will denote an infinite cardinal, and u a cardinal greater
than or equal to p.

The section presents some basic material concerning ideals on [] <. We start by
recalling a few definitions.

Definition Fora € [u]~", we seta = {b € [u]~" : a C b}.

Definition 1, , denotes the collection of all A C [u]= such that BNa = @ for some
a e [pul=".

Definition By an ideal on [11]=P we mean a collection J of subsets of [1]= such that

(kI=" ¢ J.

Iy, CJ.

P(A) C J forall A e J.

UY € J whenever Y e [J]<¢I®),

The following is readily checked.
Fact 2.1 (folklore) I, , is an ideal on []=".

Definition Given a partially ordered set (P, <), we let cof (P, <) denote the least
cardinality of any subset D of P such that for any p € P, thereisd € D with p <d.

Definition Let J be an ideal on [u]<P. We set JT = {A C [u]=P : A ¢ J},
J*={AC[ul=P:[ul"P\A € J}, and J|A = {B C [u]=P : AN B € J} for every
AeJt.
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We let non(J) denote the least cardinality of any A C [u]~P with A € JT.
We set cof(J) = cof (J, Q).

Fact 2.2 (folklore) Let J be an ideal on [;]=°, and A € J . Then J|A is an ideal on
[u]=" extending J. Moreover, cof (J|A) < cof (J).

Proof Usethe factthatforany B C []=", B € J|Aifandonlyif B C EU([]="\A)
for some E € J. O

We will also use the following observation.

Fact 2.3 (folklore) Let I, J, K be three ideals on [u]<P such that I < J C K.
Suppose that there is A € I'" such that K = I|A. Then J|A = I|A.

Proof Since A € K*, we have K|A = K = I|A. Being sandwiched between I|A
and K| A, the ideal J|A must be equal to both of them. m|

Fact 2.4 (folklore) Let J be an ideal on [u]=". Then non(J) < cof (J).

Proof Let S € J besuchthat J = |Jz.g P(B).Pickap € [u]<*\B for B € S. Then
lap: BeS}eJt. O

Definition We put u(p, 1) =non(l, ;).

Proposition 2.5 (i) u <u(p, u).

(i) cf(p) = ct(u(p, p)).

(iii) u(p. 1) = cof (1=, ©) = cof (I, ).

Proof (1) Given A € I;M, we have u = | J A and therefore u© < max(p, |A|). This
proves the desired inequality in case u > p. Given B C [p]~" with |B| < p,
pick o € p\b for b € B. Then {ay : d € B}\b # ) forall b € B, and
consequently B € 1, ,. Hence u(p, p) > p.

(ii) Use the fact that []=” is closed under unions of less than cf(p) many of its
members.

(iii) By Fact 2.4, u(p,u) < cof(lp,). If A C [u]=" is such that [u]=" =
Ugaea P(a), then clearly, I, , = {B € [u]=” :3a € A (BNa = M)} It
follows that cof (1, ) < cof([u]=", ©). Finally, cof ((u]=*, S) < u(p, )
because [u]~" = | P(a) forany H € I} . O

acH

The following will be used in Sect. 10.

Proposition 2.6 Let K be an ideal on [1]<". Set x = min({|C| : C € K*}). Suppose
that cof (K) < x. Then x = the largest cardinal T such that there exists a partition
of []=" into T sets in K.

Proof Select D € K* with |D| = y. First there is no partition IT of []<” into
more than x sets in K* because D has to meet every set in I1. Let us next show
that there is a partition [T = {P, : y < x} of [u]=” into x sets in K. Fix a
family F = {By : « < x} cofinal in K. For @ < y, set C,, = [t]~"\By and let
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(cq,j 1 J < x) beaone-to-one enumeration of DNC,. Let ((«;, Bi) : i < x) beaone-
to-one enumeration of x x x. By induction define j; < x fori < x by j; = the least
J < xsuchthatcy ; & {cy,j, : 1 <i}.Nowgiveny < x,put A, = {co, j; i < X
and y = B;}. Let H, be the setof all a € (Ua<x C‘Y)\(US<X Ag) with the property
that y = the least @ < x such that a € C,. Finally put P, = A, U H, if y # 0,
and Py = Ag U Hy U ([,u]</’\(Ua<X Cq)). Note that for each y < x, |P,| > x, and
moreover, P, € C,, U ([,u]<p\(Ua<X Cy)). O

Corollary 2.7 There is a partition I1 = {P, : e € [u]="} of [u]=P such that for any
e € [ul=f, P € If, N P(@) and |P,| = u=".

Proof We have that
cof (Ip.u) = u(p, ) < =" =min({|C| : C € I} ,}.

Let (eq : @ < (=) be a one-to-one enumeration of [£]<*. Then by the proof of
Proposition 2.6, there is a partition IT = {P, : &« < u =P} of [u]=* such that for each
o < u=P,|Py| = p="and P, C é,. ]

3 [4] <6’-n0rmality

Throughout the remainder of the paper x denotes a regular infinite cardinal, A a cardinal
greater than or equal to k, 0 acardinal with2 < 0 < k,and § anordinal with1 < § < A.

We let 6 denote the supremum of all the cardinals that are both less than « and less
than or equal to 6.

Thus = 0 if 6 < k, or @ = k and « is a limit cardinal, and § = v if 0 = x = vT.

Throughout the remainder of the paper J denotes a fixed ideal on [A]<¥.

In this section we introduce the notion of [§]<7-normal ideal on [A]<¥ and describe
necessary and sufficient conditions for the existence of such ideals. We start with a
few definitions.

Recall that J is normal if it is closed under diagonal unions indexed by 2, i.e. if
Va<iBy € J whenever {B, : o < A} C J, where Vy) By = {a € [A]™F : Ja €
a (a € By)}. We could choose to work with {«} instead of «, which would lead us
to replace in the definition of the diagonal union “there is an element of a” by “there
is a subset of a of size 1”. The diagonal unions indexed by [6]<Y that we will now
introduce are defined in this spirit. This time we consider subsets of a (or rather, of
a N §) that are small in the sense that they have size less than |a N ].

Definition Given X, C [A]<¥ for e € [8]1<Y, we let
Veeisj<o Xe = {a € [A]7* 1 3e € [a N 817 (a € X,)).
and

Aers<6 Xe = {a € [M™ : Ve € [a N 817 (a € X)),
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Notice that the set {a € [A]=* : a N6 = @} is included in A, [5;<0 X, and disjoint
from Vee[8]<9 Xe.
The following is readily checked.

Lemma 3.1 (i) Let X, C [A]<“ fore € [8]<Y. Then
Agersr<o0 Xe = M\ (Voepsp=o (IMTF\Xe)).
(ii) Let A C[A]™F, and X, C [M]™ fore € [81<¢. Then
Apeps¢ (XeNA) ={a € [M™ :a N0 =P} U ((A,cpsp-6 Xe) N A).

(iii) Let p > 0 be a cardinal, and X3 C [A]=" fore € [61<¢ and a < p. Then

U (Vee[5]<9 Xg) = V€€[5]<6 (U Xg)

a<p a<p

Definition We let VI J denote the collection of all B C [A]= for which one may
find B, € J fore € [81<? such that

BClaeM™:ang =0} U (Vo= Be)-

Lemma32 (i) J C V™.
(i) UY e VI J forall Y e [V )<<,
(iii) Suppose that §' is an ordinal with § < 8’ < A, 0" is a cardinal with 0 < 0’ < «k,
and J' is an ideal on [\]=* with J  J'. Then V1™ J < V917" /.

Proof (i) It suffices to observe that for any B € J,
B - {a € [)\.]<K rang = @} @) (V€€[5]<HB)'

(i1) Use Lemma 3.1 (iii).

(iii) Use (i) and (ii) and the following observation. Let B, € J for e € [61<. For
d € [§'1<Y, define X4 by: Xy = By if d € [8]<, and Xz = ¥ otherwise. Then
Veers)<¢ Be S Ve Xa> and consequently Veis<6 By € v,

[}

Proposition 3.3 (i) VP17 = vi¥I7 .
i) IF 1817 < «, then J = V17" .

Proof (i) Suppose that & = x = vt. Then clearly, P() N VPI™J = P@®) N
VI8I™" J Hence by Lemma 3.2 ((i) and (ii)), VI¥1™ J = vI¥1™" J,
(i1) Use Lemma 3.2 (i). O

Definition Given A C [A]<%, f : A — [8]<0 is [8]<-regressive if f(a) € [a N
815191 foralla € A witha N6 # ¢.
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Proposition 3.4 The following are equivalent:

(@) (= ¢ VEIT ).
(i) VI~ J is an ideal on [A]=".
(iii) A, ci51<6Ce € J* whenever C, € J* fore € [81<°.
(iv) A,es1<0Ce € I:,_x whenever C, € J* for e € [8]<Y.
(V) For any [81<0-regressive f : [\]<X — [81<Y, there is D € J* such that f is
constant on D.

Proof (i) — (ii) : By Lemma 3.2 ((i) and (ii)).
(i) — (ii1) : Use Lemmas 3.1 (i) and 3.2 (i).
(iii) — (iv) : Trivial.
(iv) = (v) : Use the fact that for any [8]<%-regressive f : [A]< — [8]<Y,

Apepsy=o M\ f ' ({e)) = {a € M 1an g = B).

(v) = (i) : Suppose that we may find B, € J for e € [6]<Y such that {a € [A]<* :
and # ¢} C Veers<t Be- Then there is a [8]<9-regressive f AT - [61<¢ with
the property that a € By, forall a € [A]™* witha N O # @. Clearly, f ey e
for every e e [8]<7. O

<6

Definition J is [8]<7-normal if J = V17" J.

Proposition 3.5 Let 8’ be an ordinal with 1 < §' < 8, and 9’ be a cardinal with
2 <0’ < 6. Then every [81<-normal ideal on [\]=* is [8'1<% -normal.

Proof By Lemma 3.2 ((i) and (iii)). O
Proposition 3.6 The following are equivalent:
() J is [8]1<?-normal.
(i) A,cis<0Ce € J* whenever C, € J* for e € [81<°.
(iii) [A]<< ¢ VI (J|A) forall A € JT.
(iv) Given A € JT and a [8]<9-regressive f : A — [8]<Y, there is D € J* N P(A)
such that f is constant on D.
Proof (i) <> (ii) : Use Lemmas 3.1 (i) and 3.2 (i).

(ii) <> (iii) : By Lemma 3.1 (ii) and Proposition 3.4 ((i) <> (iii)).
(iii) <> (iv) : By Proposition 3.4 ((i) <> (v)). O

Proposition 3.6 ((i) <> (iii)) shows that the [8]<¢-normality of J can be seen as the

global version of the local property “[A]=* ¢ V8™ 7. Let us next briefly consider
another, weaker local property. The corresponding global property will be dealt with
in Corollary 3.8.

Definition Two ideals I, K on [A]~* cohere if UK C H for some ideal H on [A]=.

Proposition 3.7 Let K be an ideal on [A]~" such that K C J and [\]=" ¢ vk
Then the following are equivalent:
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(1) J and VI~ K cohere.
(i) A,p51<0Ce € JT whenever C, € K* fore € [61<7.
(iii) Given A € J* and a [81<0-regressive f : A — [8]<Y, thereis D € KT N P(A)
such that f is constant on D.

Proof (i) — (ii) : Straightforward.

(i) — (iii) : Suppose that A € J* and f : A — [8]<? are such that
f'({e)) € K for every e € [8]<C. Then f(a) ¢ [a N 8]<1“I for all a €
AN Agers=o (N (D).

(iii) — (i) : Assume that (iii) holds. Given B, € K for e € [8]<Y, define f :
vl B. — [8]1<Y so that for any a € G Be, f(a) € [ans]<l“Pland a € By).
Then f is [8]<9—regressive. Moreover, f _1({6‘}) € K for every e € [81<7. It follows
that V161~ B, ¢ J*. Hence

H={BUE:BeJandE e V¥ k)

is an ideal on [A]=* that extends both J and VeI K. O

]<0

Corollary 3.8 Let K be an ideal on [\]< such that K € J and [*\]<¥ ¢ VUIT K.

Then the following are equivalent:

(1) J|A and Vil g cohere for every A € J7T.
(i) A,ci5<6Ce € J* whenever C, € K* for e € [81<°.
(iii) Given A € JT anda [8]<9-regressive fiA— [81<0, thereis D € KT N P(A)
such that f is constant on D.
(v) VK C J.

We will now show that §-normality, which was studied by Abe [1], is the same as
[8]<2-normality.

Definition Given X, C [A]<" for a < 8, we let

Aa<6on = m (Xa U ([)‘]<K\{07}))

a<d

and

Va<sXo = U(Xot N {W/\})

a<d

Definition Given K C P ([AL]™%), welet Vy s K denote the collection ofall B C [L]~*
for which one may find By € K for a < & such that

B C ([A\{0}) U Vg5 Bq.

Definition J is §-normal if J = Vy5J.
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Proposition 3.9 V,_;J = V147 J.

Proof The result easily follows from the following two remarks:

(1) Let X, € [A]7" for o < 8. Define Y, for e € [6]<2 by: Yo} = X, fora € §, and
Yy = @. Then

([M\2) U Va5 Xg = (MT\2) U V512 Ve
2) Let X, C[A]"* fore € [6]<2. Define Y, fora < § by Yy = X{q}. Then

(M™\2) U Xy U Vges¥y = (IN7\2) U Vo572 X

Corollary 3.10 J is §-normal if and only if it is [8]<>-normal.

We finally turn to the question of the existence of [8]<-normal ideals. Let us first
deal with the degenerate case k = w.

Proposition 3.11 Assume k = w. Then there exists a [8]1<0-normal ideal on [\]<* if
and only if § < w.

Proof The right-to-left implication is immediate from Proposition 3.3 (ii). For the
reverse implication, observe that [A]<“ = ([A]=“\2) U Vee[w)<2 Bes Where By = ]
and

By = {a € [A]™“ : max(a N w) = n}

for n € w. Hence by Lemma 3.2 ((i) and (ii)), [A]<® € V[“’]dlw,)\. If § > w, then
[A]=? € V[‘S]<H J by Lemma 3.2 (iii), and therefore J is not [8]<9-n0rmal. 0O

We will now look for sufficient conditions for the existence of [§]<-normal ideals
on [A]=¥ in the case k > w. The following is a key lemma.

Lemma 3.12 (i) Suppose that max(w, 0) < k, and |[,u]<0| < K for every cardinal
uw < k. Then [A]=F ¢ v L.
(i) ([13]) Suppose that « is Mahlo. Then [A\]<* ¢ V'™ I, ;.

Proof (i) Let b, € [A]<¥ for e € [A]<?, and a € [A]<¥. Set p = max(w, 0) if
max(w, 0) is regular, and p = (max(w, #))" otherwise. Note that p < «. Now
define x, € [A]=F for a < p so that
e xgo=alb#. R
e If o > 0, then Uﬁ<a xg < Xxq, and moreover xo € ({be : e €

[Uﬂ<a Xﬁ]<9}.
Set x = Uy, ¥a- Given e € [x]<PM91 there must be B < p such that e €
[xg]=0. Then b, € xp41 C x. Thus @ N A,cp3y<sbe # @. By Proposition 3.4

((iv) — (1)), it follows that [A]<< ¢ VIN™" [, .
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(ii) Let b, € [A]=* for e € [A]™¥, and a € [A]=¥. Define x, € [A]=¥ fora < k so
that
e Xxp=ad.
o o U((up(ta N6)) + DU (Usey, be) S Xasi-
o xg = Jp_qXp in case o is an infinite limit ordinal.
There must be a regular infinite cardinal T < « such that x; N« = t. Then
Xr € @N Ageppy=«b,. Hence by Proposition 3.4 ((iv) — (i), [A]<% ¢ VIH™ I ;.

O

Menas [19] proved that N S, (the smallest normal ideal on [1] =) is generated by
sets of the form

[A17\{a € [A]™\{0} : Yo, B € a (f (e, B) € @)},

where f is a function from A x A to [A]=. We are looking for an analogous result
concerning the smallest [81<Y-normal ideal on [A]<¥. This motivates the following
definition.

Definition For f : [8§]=% — [A]7¥, C;"\ denotes the set of all a € [A]<* such that
an® # @, and f(e) C a foreverye € [aN §]<lanél,

The following is straightforward.

Lemma 3.13 Given B C [\]"", B € v Iy ifand only if BN C';-”x = ) for some
[ 8170 — [Al~.
Lemma 3.14 Assume that § > «k and either O = «k and « is Mahlo, or 3 < 0,

max(w, 0) < « and |[u]<?| < « for every cardinal u < k. Then visI= Iy isa
[81<0 -normal ideal on [A]<¥.

Proof By Lemmas 3.12 and 3.2 (iii) and Proposition 3.4 ((i) — (ii)), V9™ I, ; is
an ideal on [A]<¥. Let us first suppose that & > w. Given g, : [6]<¢ — [A]<¥ for
b e [8]<7, define f : [6]<¢ — [A]" by f(e) = Up.cce gp(c). Then & N C';’”\ -
Apersy<t C&*. Hence by Proposition 3.6 ((ii) — (i) and Lemma 3.13, VI, s
[8]1<?-normal.

Suppose next that 3 < 6 < . Select a bijection j : [61<¢ — [8]<2. Given
g 2 18159 — [A]=* for b € [8]<7, define f : [§]<¢ — [A]=¥ by

fle)=|Jigp() :b.c € [81"% and j(b) U j(c) C e}.
Then 6 N C;’)‘ N C;’)‘ C Apeps)o Cgl;)‘. Hence by Proposition 3.6 ((ii) — (i)) and
Lemma 3.13, \ACI I 5 is [61<? -normal. O
Lemma 3.15 Assume that J is [8]<max(3’9_)-n0rmal. Then J is [8]1<-normal.

6]<max(3,(~f)

J =V e < 3,
J C J. O

Proof If 6 > 3, then by Proposition 3.3 (i) J = V!
then by Lemma 3.2 ((i) and (iii)), J € Vil g cvis

]<3
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It remains to show that our sufficient conditions are also necessary ones.

Lemma 3.16 Assume that [A\]=* ¢ G L2, and let 1 and T be two cardinals such
that © < min(k, 8 + 1) and 0 < t < min(@, k). Then |[1]<7| < k.

Proof Suppose otherwise, and pick a one-to-one j : k — [u]<7. Define f : /L/Lﬁ —
(L] by f(a) = j(sup(aNk)). Then f is [§]<?-regressive, which contradicts Propo-
sition 3.4 ((i) — (v)). O

Lemma 3.17 (i) Suppose that § > k > w and § is a limit ordinal. Then the set of
all a € [M]=F such that sup(a N §) is a limit ordinal that does not belong to a
lies in (V1 I 3)*.
(ii) Suppose § > k > w. Then the set of all a € [A]~" such that cf(sup(a N n)) <
la N 6| for some limit ordinal n with k < n < § and cf(n) > 0 lies in LI L.
(iii) Suppose k > w, and let C be a closed unbounded subset of k. Then

{aeM™:ankeC)e (V[K]<21K,/\)*~

Proof Use Lemmas 3.2 (iii) and 3.12 (i) and Propositions 3.3 (i) and 3.4 ((i) — (v)).
O

Lemma 3.18 Assume that k is an uncountable limit cardinal and [M]=* ¢ vl L s
Then k is Mahlo.

Proof « is inaccessible by Lemma 3.16, and weakly Mahlo by Lemmas 3.2 (iii) and
3.17. O

Our study of the case ¥ > w culminates in the following.

Proposition 3.19 (i) Suppose that k > w. Suppose further that either 5 < «k, or
0 < k, or k is not a limit cardinal. Then there exists a [81<0 -normal ideal on
[A1=% if and only if |[1]=?| < & for every cardinal ;» < min(k, 8 + 1).

(1) Suppose that § > k = 0 > w and « is a limit cardinal. Then there exists a
[81<? -normal ideal on [A]<¥ if and only if k is Mahlo.

Proof (i) Let us first assume that there exists a [81<?-normal ideal on [A]<¥. Then

by Lemma 3.2 (iii), [A\]<¢ ¢ A I.5.. Observe that if § < x¥ = 0 and «
is a limit cardinal, then setting = = [§|*, we have that 0 < 7 < min(6™, «)
and [|8]]<? = [|6]]<7. Hence by Lemma 3.16, |[1]<?| < « for every cardinal
W < min(k, § + 1). )
Conversely, assume that_I[pL]<9| < k for any cardinal 4 < min(k,§ + 1). If
8 < K, then |[8]<™&G.9)| < k and therefore by Proposition 3.3 (ii), I.;. is
[8]<max(3’?)-normal. If § > k, then § < «, and consequently by Lemma 3.14,
ylsr=m G Iy isa [8]<ma"(3'9_)—normal ideal on [A]=¥. Thus by Lemma 3.15,
there exists a [§]<?-normal ideal on [A]<¥.
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(@ii) If k is Mahlo, then by Lemma 3.14, V[5]<9 Icaisa [81<Y-normal ideal on [A]<¥.
Conversely, if there exists a [8]<¢-normal ideal on [A]<¥, then by Lemmas 3.2
(iii) and 3.18, « is Mahlo.

O

Corollary 3.20 There exists a [81<9-normal ideal on [\]=* if and only if there exists
a [min(3, K)]<m‘n(9’|5|+)-n0rmal ideal on [k]=¥.

Proof By Propositions 3.11 and 3.19. O

Corollary 3.21 Assume that § < k and there exists a [81<0 -normal ideal on [A]<¥.
Then every ideal on [A]<* is [§1<?-normal.

Proof By Propositions 3.3 and 3.19 (i). O

The following (see e.g. Theorem 7.12 in [7]) is due independently to Hajnal and
Shelah.

Fact 3.22 Let u be an infinite cardinal. Then u? assumes only finitely many values
for p with 2P < .

Lemma 3.23 Let i, x be two infinite cardinals such that 2<% < . Then (W=*)~% =
w=x

Proof 1If there exists a cardinal T < x such that 2° = py, then u~*¥ = 27)<X =
2<X = u. Otherwise, there exists by Fact 3.22 a cardinal p < y such that <% = u”.
Then (u=*)=% = (uP)=* = p~x. o

Proposition 3.24 Assume that there exists a [k1<0-normal ideal on [\]<¥. Then the
following hold :

i) e/ =k
(i) (=<0 = u=? for every cardinal n > «.

Proof A proof of (i) can be found in [15]. As for (ii), it follows from Lemma 3.23,
since by Proposition 3.19, 2<0 < . |

<6
4 NS,E‘f]x

In this section we describe the smallest [8]<?-normal ideal on [A]<¥. We start with
the following that shows that we could without loss of generality assume 6 to be an
infinite cardinal.

Proposition 4.1 Assume that J is [81<?-normal. Then J is [§]=™*©-9) _normal.

Proof We can assume that § <  since otherwise the result is trivial. The desired
conclusion is immediate from Proposition 3.3 (ii) in case § < w. Now assume § > w.
We have k > w by Proposition 3.11. Fix A € JT and a [§]~“-regressive f : A —
[6]<¢. We define a [8]<%-regressive g : A N® — [8]<Y by g(a) = {|f(a)|}. By
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Proposition 3.6 ((i) — (iv)), we may find C € J* N P(A N ®) and n € w such that
g is identically n on C. If n = 0, then f is clearly constant on C. Otherwise select a
bijection j, : n — f(a) for each a € C. Using Proposition 3.6 ((i) — (iv)), define
CreJtfork <n,andh; : C; — [8]<Y fori < n so that

Co=C.

Ciy1 € Ci.

hi(a) = {ja ()}

h; is constant on Cj4 1.

Then f is constant on C,,. Hence by Proposition 3.6 ((iv) — (i)), J is [§]~“-normal.
m}

Proposition 4.2 If there exists a [8]1< -normal ideal on [X]<¥, then the smallest such

ideal is VO™ .

Proof Assume that there exists a [6]<9-normal ideal on [A]=*. Then by Lemma 3.2
gl I, € K for every [6]<?-normal ideal K on
[A]=¥. Morever by the proofs of Propositions 3.11 and 3.19, V! I, isitself a

[8]1<?-normal ideal on [A]<¥. O

(iii) and Proposition 4.1, V!

3]<max(3.§)

<6
Definition Assuming the existence of a [§1<?-normal ideal on [\]<¥, we set N Sl[ﬂ =
V[5]<max(3,(-)) IK,A,

Proposition 4.3 Let 8’ be an ordinal with 1 < 8 < 6§, and 0’ be a cardinal with
2 <0 < 6. Then NPV < NSl

Proof By Proposition 3.5. O

S[5]<max(a).0) [5]<(§

<6
Proposition 4.4 NS,[(’?]A =NS. =NS.; -

Proof By Propositions 3.3 (i), 4.1, 4.2 and 4.3,

[5]<max(a),9)

<max(w,0) <6 <0
NS TSNS SNSYT S NS

<6
Proposition 4.5 If§ < «, then N S,[(Si = I
Proof By Corollary 3.21. O

<2

Definition We pur NS2, = NP1 .

It follows from Corollary 3.10 and Proposition 4.2 that N S;f, , is the smallest §-

normal ideal on [1]=. We will conform to usage and denote N S;/«\, 5 by NS .
The following is due to Abe [1].

Proposition 4.6 Assume k < § < k. Then NS,‘E’A = V[6]<z I
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Proof Let us first prove the assertion for § = k. Given fj : [k]<2 — [A]<¢ for
b € [x]<2, define f: k]2 = [A]<¢ by f(e) = Ub,ce[(Ue)+l]<2 fp(c). Then C'}"\ -
Apepe)=? C'}:‘. Hence by Lemma 3.13 and Proposition 3.6 ((iii) — (i), V<™ I, ;
is [k]<2-normal. By Proposition 4.2 and Lemma 3.2 (iii), it follows that N S/f, =
VI,

Now assume k < 8 < k™. By Propositions 3.19 (i) and 5.4 (below), there is
A€ (V1 [ )* such that NSP) ™ = N7 |4, Then by Lemma 3.2 i),

< <2 < <
V[a] 21’(’)\ c NS’ESJL — (V[K] ZIK,A)|A C V[S] ZIKV)L.

Abe [1] also showed that for § > « T, NS,‘?’)L\V[‘S]QIK,A # (. In fact,
(VI (VT 1 NV T L 0

<6
By Lemma 3.13, NS,[(’?/]\ is the set of all B C [A]<* such that B N C;’)‘ = ¢ for

some f : [8]<ma"(3'9_) — [A]™F. The following generalizes a well-known (see e.g.
Lemma 1.13 in [19] and Proposition 1.4 in [14]) characterization of NS ;.

<6
Proposition 4.7 Assume § > k. Then given B C [A]~%, B € NS,[(’H if and only if
BN{a e Cg’)‘ aNk €k} =0 forsome g : [A]<maxG.0) _ [2]<3.

Proof Sett =2if6 < wand8 < kT, 7 =3if0 <wands > «k+,andt = 0
if > w. Then by Lemma 3.13 and Propositions 4.4 and 4.6, it suffices to show that
for any f : [8]<7 — [A]<X, there exists g : [6]<™30) — [1]<3 with the property
that {a € C§* 1 aNk € k) € C* Thus fix £ : [§]<7 — [A]<*. Pick a bijection
je i 1f(e)] = f(e) foreache € [5]<".

Let us first assume that & > w. Define & : [§]<7 — « by

h(e) = max(w, ((sup(e Nk)) + 1) 4 [f(e)]).

We define k : [§]<7 — X as follows. Given e € [§]=7, set @ = sup(e N k). We put
k(e) = 0if o ¢ e. Assuming now that o € e, put ¢ = e\{o} and & = sup(c N k),
and let B denote the unique ordinal ¢ such that ¢ = (§ + 1) + ¢. We put k(e) =
Je(B) if B € | f(c)|, and k(e) = O otherwise. Finally define g : [§]<7 — A]=3 by
g(e) = {h(e), k(e)}. Now fix a € Cg"\ witha Nk € «, and ¢ € [a N 8151477, Put
& = sup(c Nk). Given B € | f(c)|,sete = cU {(§ + 1) 4+ B}. Since h(c) C a, we
have w C a and (¢ 4+ 1) + 8 € a, and therefore ¢ € [a N §]<1“"*! Hence j.(B) € a,
since clearly k(e) = j.(B). Thus f(c) C a.

Let us next assume that & < @ and § > . Select a bijection 4 : [6]1<3 — S\k.
Define k : [8]<3 — A so that k() = 2, and given e € [8]<3, k({h(e)}) = | f(e)| and
for each B € | f(e)|, k({B, h(e)}) = j.(B). Then define g : [§]<™&3) — [A]1<3 s0
that g(e) = {h(e), k(e)} forall e € [§]<3. It is readily checked that g is as desired.
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Finally assume that 0 <wand§ < kT. Define & : [8]<2 — by:
h(@) =2+ |f D).
h{a}) =@+ 1)+ | f({a})] fora € k.
h(fa}) = [ f{a}] fora € §\k.
Then define & : [§]<3 — A so that
k({B}) = ju(B) whenever B € | f (V).
k({a, (@ + 1) + B}) = jia)(B) whenever @ € k and B € | f({a})].
k({a, B}) = jia)(B) whenever o € 8\«k and B € | f({a})].
Finally define g : [§]<™*G) — [A]<3 so that g(e) = {h(e), k(e)} if e € [6]<2, and
g(e) = {k(e)} if e € [6]°3\[8]<2. Then g is as desired. o

5 Variations of §

This section is concerned with the case when § is not a cardinal.

Throughout the section it is assumed that § > «.

Our first remark is that we do not lose generality by assuming that § is the ordinal
product ko for some o > 0. Lemma 5.1 and Proposition 5.2 generalize results of Abe

[1].

Lemma 5.1 Assume that § = ka for some ordinal o« > 0, and J is [81<¢ -normal.
Then J is [8 + 1<% -normal for every & < «.

Proof Fix ¢ < k.Since§ +6 =65, wecandefine j :6+& — dby: j(B) =&+ 8
for B <§,and j(§ +y) =y fory < &. Set

C=ENnfaec[A~:VBeans (j(B) ca).

Then clearly C € (NS,E‘?];G)*. Now given A € J* and a [§ + £]<?-regressive
f:A—> [8+&]0 defineg : ANC — [8]<Y by g(a) = j“(f(a)). Since
ANC e J7 by Proposition 4.2, and g is [§]<?-regressive, we have by Proposition 3.6
((i) — (iv)) that g is constant on some D € JT. Then f is constant on D. Hence by
Proposition 3.6 ((iv) — (1)), J is [6 + £1<?-normal. O

Proposition 5.2 Assume that § = k« for some ordinal @ > 0. Then the following
hold:
1 NSEYG = NSE:SFH forevery & < k.
<2 <6
Gi) NSPTIANSET £
Proof (i) By Lemma 5.1 and Propositions 4.2 and 4.3.
(i) Select f : [§ + x]<2 — [A]™* so that f({B}) = {B + 1} for every B € § + «.
Given g : [§]<™*G0 5 [A]<¥, pick a € C&* and y € (§ + «)\§ with
y > sup(a N (8 + «)). Then a U {y} € cg’k\cj";*. Hence by Lemma 3.13,

s [8+x]1<2 [s1<¢
[)\]<K\C§ eNSM" \NS.; .

K,
O
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Lemma 5.3 The following are equivalent:

() J is [81<?-normal.
(i) V8I.; C J and J is [|8|1<0-normal.

Proof (i) — (ii) : By Lemma 3.2 (iii).

(i) — (i) : Select a bijection j : § — [§] and set D = Aa<5m/om. Then D
lies in (V‘SIK,;L)* and hence in J*. Now fix A € JT and a [6]<ma"(3’9_)-regressive
[ A= [81""GD Define g : AND — [|5]]<™CD by g(a) = j“(f(a)). Since
gis ||8]]1°™*G:9) _regressive, we may find C € JT N P(AN D) and u € [|§]]<"*G0)
so that g(a) = u forall a € C. Then f takes the constant value j_1 (u) on C. m]

Let us remark in passing that Lemma 5.3 can be combined with a result of [16] to
show that J is [8]<9—normal_if and only if it is §-normal and (i, |§])-distributive for
every infinite cardinal u < 6.

§1<0

<0
Proposition 5.4 N1 = NSU D for some D € (V31 )*.

Proof By the proof of Lemma 5.3. O
Using Cantor’s normal form for the base |§|, one easily obtains the following.

Proposition 5.5 Assume that y < § < y?, where y = |8|. Then NS,‘E’A = NS,Z,\M’
where A isthe setofalla € [A]=" with the following property : Supposethat1 < o < §
ando = yME +- - -+y"E, wherel < p <w,y >n1>--->npandy > & > 1
for1 <i < p.Thena € aifandonlyif{ni,&1,...,np,.&p} Ca.

Thus for example NSfj’( = NS;,|A, where A is the set of all @ € [A]= such

that a\w = {k + @ : @ € a Nk}, and NSE?X = NSZ,;JB, where B is the set of all
a € [A]"F suchthata\k = {kf+a:a,B €aNkand B > 1}.

6 Variations of 0

Proposition 6.1 Assume that § > k and max(w, 0_) is a regular cardinal, and let 6’
be a cardinal such that ' < k and max(w, ) < 6'. Then NSlE'f)]fe \NSErg #+ @ (and

<6 <0’
therefore N S,E‘Si #N S,E‘Sl ).
Proof Let us assume that there exists a [K]<6/-n0rmal ideal on [A]=¥. Given f :

[6]<ma"(3_~é) — [A]7¥, we use Proposition 3.19 (i) to define ay, € [A]~* for ¢ <
max(w, 0) as follows:

e ap=max(3,0). :
o ayi1 = dag U ((suplag Ni)) + 1) U (U f“(lag N 8]~
e ay= p<q dp in case o is an infinite limit ordinal.
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Put a = Ua<max(w)9—) ay. Then a € C;’)‘, and moreover cf(sup(a N «)) =

max(w, 0). Hence by Lemma 3.13,

{a e [A]7F: cf(sup(a Nk)) = max(w, 9‘)} c (NS,[((H<9)+_

It remains to observe that by Lemma 3.17 (ii),

{a € [A\]™ : cf(sup(a Nk)) > max(w, )} € (vWé/ L™

O

We will see that the conclusion of Proposition 6.1 may fail if 6 is a singular cardinal.
The remainder of the section is concerned with the case when 0 is a limit cardinal.
The following is immediate from Proposition 3.19 (i).

Proposition 6.2 Suppose that 0 is a limit cardinal less than k. Then the following are
equivalent:

(i) There exists a [8]<?-normal ideal on [1]=¥.
(ii) For each cardinal p with2 < p < 0, there exists a [8]<"-normal ideal on [)]<¥.

Notice that if 6 = « and « is an inaccessible cardinal that is not Mahlo, then by
Proposition 3.19, (ii) holds but (i) does not.

Proposition 6.3 Assume that § > « and 0 is a limit cardinal . Then the following are
equivalent:

() J is [81<?-normal.
(ii) J is [8]°P-normal for every cardinal p with2 < p < 0.

Proof (1) — (ii) : By Lemma 3.2 (iii).

(ii) — (i) : By Proposition 3.6, it suffices to show thatif A € JT and f : A —
[81<7 is [8]<9-regressive, then f|D is [8]<P-regressive for some D € J* N P(A)
and some cardinal p with 2 < p < 6. This is clear if 6 < «. Assuming 6 = «, put
B={aeA:ank €«}. Then |f(a)| € aNk forevery a € B witha Nk # .
It remains to observe that by Lemmas 3.2 (iii) and 3.17 (iii), J is [x]<2-normal and
BN2eJ+. a)

<0
We have the following corresponding characterization of NS IE‘S}L .

5<H

Proposition 6.4 Assume that § > « and 0 is a limit cardinal. Then N SHL =
81<P
VCf(H)(U2§p<9 NSI[(,i )

Proof By Lemma 3.2 (iii) and Proposition 3.9,

< <0 <6
ch(a)( U NS,E(S]A ﬂ) gVCf(a)NS,[fl gNS[‘S] )

2<p<0
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For the reverse inclusion, select an increasing, continuous sequence (p; : i < cf(6))
of cardinals greater than or equal to 2 with supremum 6. Define D by: D = 0 if 6 < «,
and

D = {a € [\]™" : a N« is an infinite limit ordinal}
<2
otherwise. Note that D € (NS,E'fi )* by Lemma 3.17 (iii). Set
H={aec[AM~:Viecancf®) (p; € a)}.

Note that H € (NS,E"()]iz)*. Moreover, H C {a € [A]™F : a Nk = pgni} in case
6 = k. Now fix B € NS,[frg. Then by Lemma 3.13, there is f : A0 — [A]=¢
such that B N C;’k = @.Fori < cf(0), set fi = f|[8]=7. It is simple to see that
DNHN A,-<cf(9)c;;A C cjﬂ. Hence, B C ([A]*\{0}) U Vi_ct(9)Bi, where B;
equals [A]<*\(DN H N C;-(’)’\) ifi =0, and [)»]<K\Cf;-lf’x otherwise, and consequently

1=r

£(0 [
B e VIO Uy, g NS ). o
Let us now concentrate on the case when 6 is a singular cardinal.

Proposition 6.5 Suppose that there exists a [8§1<0-normal ideal on [\]1<¥, 6 is a sin-
gular cardinal, and either § > 2<0 or8§ > 0 and cf(0<Y) = cf(0). Then there exists
a [8]<0+—n0rmal ideal on [A]=¥.

Proof Note that by Proposition 3.19 (i), 2<¢ < #<Y < k. First suppose that § < § <
2<% and cf (6<Y) # cf(0). Then there is a cardinal T < 0 such that 6<¢ = 7. We get

|8|6 S (29)9 — 99 — (9<9)Cf(9) — emax(r,cf(e)) — 9<9’

so the desired conclusion follows from Proposition 3.19 (i). Now suppose § > 2<7.
Let 1 be a cardinal with 2<¢ < < min(k, 8§ + 1). Then by Lemma 3.23 and Propo-
sition 3.19 (i), n? = (u=?)<? = u<? < k. From this together with Proposition 3.19
(i), we get the desired conclusion. m|

Observe that if 0 is a singular cardinal with cf (0<% = cf(#), then for § = # and
k = (09T, (a) there is a [§]<?-normal ideal on [A]<¥, but (b) there is no [8]<9+-
normal ideal on [A]<¥ (since 8¢ = (0<7)f@) > ,),

Corollary 6.6 Assume that there exists a [81<?-normal ideal on [\]1<%, 0 is a singular
cardinal and § > k. Then there exists a [8]<0+-n0rmal ideal on [A]=F.

Proof This is immediate from Proposition 6.5, since by Proposition 3.19 (i), 2<0 <
0<f < <38. O

It is then natural to ask whether, under the assumptions of Corollary 6.6, the notions
of [81<¢ -normality and [§] <6* -normality coincide. We will see that they do in a number
of cases. We start by recalling a few facts concerning covering numbers.

@ Springer



Sh:713

Cofinality of normal ideals on [A]<* I 817

Definition Given four cardinals pi, pa, p3, p4 greater than or equal to 2, we let
cov(p1, p2, p3, p4) = the least cardinality of any X in Xy, pyp3p4 i Xo1pop308 7 9,
and cov(p1, p2, p3, p4) = 0 otherwise, where X, pyp3ps 1S the collection of all
X C [p11°°2 such that for any a € [p1]1="3, there is Q € [X]=P* witha C | Q.

It is simple to see that cov(py, p2, p3, p4) = 1 if po > p;. Note thatif < p3 =
p2 < p; and pgs = 2, then cov(p1, 2, p3, p4) = u(p2, p1). We are interested in
situations when p» = p3 and cov(py, P2, P3, P4) = P1.

Fact 6.7 ([17], [20, pp. 85-86]) Let p1, p2, p3 and pa be four cardinals such that
P1 > P2 = p3 > wand p3 > ps > 2. Then the following hold:

() If p1 = p2 and either cf(p1) < p4 or cf(p1) = p3, then cov(p1, p2, 3, P4) =
cf (p1).
(ii) Ifeither p1 > p2, or p1 = p2 and ps < cf(p1) < p3, then cov(p1, p2, P3, p4) =
1.
(iii) cov(pi, p2, p3, pa) = cov(p1, p2, p3, max(w, pa)).
(iv) cov(py, pa, p3, p4) = max(p;", cov(pr, p2, p3., p4)).
(V) If p1 > p2 and cf(p1) < p4 = cf(p4), then

cov(pi, p2, p3, p4) = sup({cov(p, 2, p3, p4) : P2 < p < p1})-

(vi) If py is a limit cardinal such that p1 > p2 and cf(p1) > p3, then

cov(pi, p2, p3, pa) = sup({cov(p, p2, p3, p4) : p2 < p < p1}).

(vii) If p3 > p4 > w, then

cov(p1, p2. p3, p4) = sup({cov(pi, p2, p*, pa) : ps < p < p3)).
(viii) If p3 < cof(p2) = p2 @ =< cf(p) = ps and p1 < p3", then
cov(p1, p2, 3, P4) = PI.
(ix) If p3 = cf(p3), then either cf(cov(p1, p2, p3, P4)) < p4, or cf(cov(p1, 2, 3,
p4)) > p1.

Fact 6.8 ([21]) Let , T and o be three infinite cardinals such that 1 > t > o and
cf(o) > cf(t). Then cov(m, t,7,0) = cov(m, t+, 1T, o).

We omit the definition of the pp function, which can be found on p. 41 of [20].
Shelah’s Strong Hypothesis (SSH) asserts that pp(x) = x* for any singular cardinal
x - Its failure (the exact consistency strength of which is not known) entails the existence
of inner models with large large cardinals.

Lemma 6.9 Let w, v and o be three infinite cardinals such that 1 > © > o =
cf (o) > cf (1), and either cf () < o, or cf () > . Suppose that pp(x) = x ™ for
any cardinal x such that cf(x) =0 < x < m. Thencov(m,t, 17, 0) = 7.

Proof By Proposition 3.1 in [17], cov(u, T+, T+, 0) < u™ for any cardinal 1 with
T < u < m. The desired conclusion now follows from Fact 6.7. O
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Let us finally recall the statement of Shelah’s Revised GCH Theorem.

Fact 6.10 ([21]) Let p be a singular strong limit cardinal, and w > p be a cardinal.
Then there is a regular cardinal o < p such that cov(w,1,7,0) = 7 for every
cardinal T witho <t < p.

Proposition 6.11 Assume that 0 is a singular cardinal, § > «k and there is a cardinal
o suchthat2 < o < 0 and cov(|8], 0,0, o) = |8|. Then every [8§1<0-normal ideal on
[A]=F is [3]<9+—n0rmal.

Proof Suppose that J is [§]<?-normal. Since by Proposition 3.19 (i) 2<? < §, we may
find x¢ € [6]<7 for&é € §,and f : [81<¢ — [8]<¢ such that ¢ = Usef(c) x¢ for every

c € [5]<. Now fix A, € J* fore € [6]<¢". Put By = AU ey for d € [817. Set
C = Ace[3]<9f(c\), D= Aycsp<oBaand E=CNDN 6. Then by Proposition 3.6,

EcJ*.Letac Eande € [aN 8]<|“r‘9ﬂ be given. Select ¢; € [81<Y for ¢ < cf(0)
sothate = (J, _f(p) ¢ Foreach ¢ < cf(6), wehavec; € [aN8]=1“"%" and therefore

fleg) € a.Sosettingd = (J, _op( f(cz), wehaved € [ans]1<1*"?! and consequently
a € B;. Notice that B; = A,, since

U= U U w= U a=c

ged ¢ <cf(0) E€f(cr) ¢ <cf(0)

Thus E C A (5]<0+ A., and therefore Ae€[6]<9+ A, € J*. Hence by Proposi-

ee
tion 3.6, J is [5]<9+-normal. O

Corollary 6.12 Suppose that 0 is a singular cardinal, 5 > «k and one of the following
holds:

(1) SSH holds.
(i) |8] <617,
(iii) O is a strong limit cardinal.

Then any [81<?-normal ideal on [\]=¥ is [8]<9+-n0rmal.

Proof For (i), use Fact 6.8, Lemma 6.9 and Proposition 6.11 (with o = (cf(9))™ if
cf(]8]) > 0, and o = max((cf(8))T, (cf(|8]))T) otherwise). For (ii), use Fact 6.7
(viii) and Proposition 6.11 (with o = (max(cf(), |€]))T if |8] = 07%). Finally for
(iii), use Fact 6.10 and Proposition 6.11. O

7 The case k < § < i+

Definition We let E, ) denote the set of all a € [A]~" such that a Nk # ¥ and
aNk =@nNk).

Fact 7.1 ([15]) Assuming the existence of a [k1<? -normal ideal on [\]<¥, the following
are equivalent:
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() J is [k]1<Y-normal. .
(ii) J is k-normal and {a € E, ; : cf(a Nk) > sup(a N )} € J*.

We will show that this result can be generalized.

Definition Let p be a cardinal withk < p, and 8 be an ordinal with 1 < B < k. Then
Aﬁ,’f denotes the set of alla € [A]=" such that (i)a+1 € a foreverya € aﬁ(,o'“g\,o),
and (ii) p*7 € a for every y < B.

Thusifa € Aﬁ”f andy < B, then sup(a N p* D) is a limit ordinal that is strictly
greater than p*7 and does not belong to a.

Proposition 7.2 Assume that § = ot where p is a cardinal with k < p, and B an
ordinal with 1 < B < 6. Then the following are equivalent:

() J is [81<?-normal.
(i) Jis [8]<|’3|+—n0rmal and [p]<?-normal, and the set of all a € Afj”f such that
cf (sup(a N pT@*tDY)) > sup(a N 6) for every a < B lies in J*.

Proof (i) — (ii) : By Lemma 3.17(ii) and Proposition 3.5.

(ii) — (@) : By Proposition 6.3 it suffices to prove the result for 6 < «. We can also
assume that |8|T < @ (since otherwise the result is trivial) and (by Proposition 4.1)
that 6 is an infinite cardinal.

For y € §\p, select a bijection y : y — |y|. Let B be the set of all a € Af()”f
such that @ C a, cf(sup(a N pT@+D)) > @ forall @« < B, and 7 (&) € a whenever
y €anN(@\p)and &€ € aN y. Notice that B € J*. Fora € B and @ < B, select
74 C an (ket@FD\eF9) 5o that 0.t.(z4) = cf(sup(a N kT@+D)) and sup(z%) =
sup(a N kT@*+D) Now fix C € JT and a [§]<P-regressive F : C — [8]<Y. Set
D=CnNB.Fora e Dand1 <n < B, define ky : [a N o< = [an ,o*"7]<|’7|Jr
as follows:

k{(e) = {y}, where y = the least { € z{j such thate C ¢.
If e\p*" # ¢, then kg_H(e) = {y} Uk, (y“e), where y = the least { € zj such
that e C ¢. Otherwise, k; +l(e) = kg (e), where & = the least x > 1 such that
e C ptx,

e Suppose that 7 is a limit ordinal. If sup(e) = x 7, then kZ (e) = Ua<n kg q(en
p @Dy Otherwise, kij(e) = k¢ (e), where & = the least x > 1 such that e C
pHx.

Leta € D.For1 < & < B, let ®¢ assert that given ¢ € e € [a N p+5]<9, we
may findn € w and yp, ...,y € kg’(e) such that ¢ € yo, (Yj 0 -+ 0 0)(C) € ¥j+1
for j =0,...,n—1,and (y, 0o --- 0 Y)(¢) € a N p. Let us prove by induction
that ®¢ holds. For e € [a N ,0+]<0, let k{(e) = {y}. Then e C y, and moreover
y(&) € anp forall { € e. Thus @1 holds. Next suppose that 1 < o < f and ®¢
holds for 1 < & < a. Lete € [a N pt®]<? be such that e\p ¢ # @ for every £ < a.
Given ¢ € e, define &, yp and ¢ as follows:

e If @ is a limit ordinal, then & = the least o such that { € p+(©+D. Otherwise
E+1=a.
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o o =theleasty € z{ such thate N ptE+D
o d=RenptE),

Thené <aand¢ € y € zg N k& (e). Moreover yp(¢) € € € [aN p+$]<9, and
kg (¢') € k& (e) since

) UK () = kg1 (e ptEFD) S kG (e).

If & = 0, then y(¢) € a N p. Otherwise, we may find yq, ..., v, € kg (e"), where
1 <n <o,suchthat yo(¢) € y1, (Yjo---oy)(0()) € yjpiforj=1,....n—1,
and (y, 0---0y1)(Y0(¢)) € an p. So ®, holds.

Define G — [8]</PI" by G(a) = k§(F(a)). Since G is [6]</A!" -regressive, there
mustbe T € J*TNP(D)andx € [5]<|/3|+ such that G takes the constant value x on 7.
Fora € Tand¢ € F(a),wemayﬁndxg eanp,n € wand yy, ..., ¥» € x such that
¢ €yo, (Vjor--0y)(§) € yjgrforj =0,....n—1,and (yyo---01)(¢) = X/ Now
define H : T — [p]< by H(a) = {Xg : ¢ € F(a)}. Since H is [p]<?-regressive, we
may find W € J* N P(T)and y € [,o]<9 so that H takes the constant value y on W.
Let d be the set of all ¢ € § for which one can find n € w and yp, ..., ¥, € x so that
ey, (Yjo--op)(&) €yjpiforj=0,....,n—1,and (yy0---0p)() € y.
Then |d| < 6 and F*W C [d]<?. Since |[d]<?| < « by Proposition 3.19 (i), there
mustbe Z € JT N P(W) and v € [d]<? such that F takes the constant value v on Z.

O
Corollary 7.3 (i) Suppose that |8| = k1", where n < w. Then N SIE‘?TG =
NS,’EJ|C, where C is the set of all a € [A]=¥ such that cf(sup(a N k")) >
sup(a N @) for allm < n.
(i1) Su that = xtP < 5 510 _ [s 71"
ippose that |5 kP, where o < B < 0. Then NS, ; NS, |C,
where C is the set of all a € [A]=* such that cf (sup(a N k)) > sup(a N 6), and
cf (sup(a Nk T*1)) > sup(a N ) for all a < B.

Proof By Lemma 5.3, Fact 7.1 and Proposition 7.2. m|
: +o [A]=%2 A=
So for example, if kK > @y and A = k™, then NSK’)\ = NSK’)\ |C, where C

is the set of all @ € [A]=¥ such that cf(sup(a Nk ™)) > w, for alln < w. We will see

i e R ) [A]=%2 [A]=%o
later (see Proposition 11.6) that if A™ = 2%, then NS, "TTA#NSS 1A for all
A.

8 NSPI” |4

In this section we continue to investigate whether given §' > § and 8’ > 6 with

11<6’ <0
(8,0') # (5,0, itis possible to find A such that NSI°, = NS’} | A. The follow-
ing is obvious.

Proposition 8.1 Let 8’ be an ordinal with § < §' < A, and 0’ be a cardinal with
0 < 0’ < k. Then the following are equivalent:
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<6 11<6’ <6
(i) There exists A € (NSE;) )T such that NS,[(‘?A] = NS,[(‘?J\ A
(i) Thereis f : [8']1<max(3.0) — [A]=% such that for any h : [6/]<max(3.6") _ [p]<*,
one may find k : [§]< ™G0 5 [A1<¥ with C';-”\ N C,'((’)” - CZ”\.

We start with a positive result.

Lemma 8.2 Let &' be an ordinal with § < §' < A, and 0’ be a cardinal with @ < 0’ <
~ o 1<’ <6

K. Suppose that § > « and |8|<¢ = |8'|<?". Then NS,[(‘?A] = NSE]A |A for some

Ae (VT [ %,

Proof Select a bijection j : [8/]<é' — [8]<é with j () = 0, and let i denote its
inverse. Define f : [8'1<Y — [A]<¥ by: f(b) = max(3,0) U j(b) ifﬂ_ < k, and
f(b) =|j(b)|* U j(b) otherwise. Then by Lemma 3.13 cj;A e (VI Ic.2)*. Now
given /i : [8/]<MXG0) 5 [2]1<K define k : [§]<™&XG-0) s [A]<¥ so that

e k(e) = (hoi)(e) whenevere € [8]<§.
o If0' =2, thenk({o, B}) = h(i({a}) Ui({B})) whenever o and B are two distinct
members of §.

<6’ <0
It is readily checked that C;’k N C:’A - CZ’}‘. Hence NS,E‘?)} = NS,E‘?]A |C;’A. O

Lemma 8.3 Assume that there exists a [K]<9-n_0rmal ideal on [X]=%. Let v > k be a
cardinal, and o be the least cardinal t with t<0 > v. Then the following hold:
1) o > k.
(i) u<Y < o forevery cardinal n < o.
(iii) o< = v=?, i
(iv) o< = o ifcf(0) > 0, and 0= = 1@ otherwise.

Proof Proposition 3.24 tells us that k<0 = k,80 o > k. Moroever for any cardinal u
withk < u <o, w<? < o since otherwise by Proposition 3.24 w<? = (u<H=<? >
0<? >y, vyhiqh would contradict thg: deﬁni}ion of 0. Again by Proposition 3.24,
o< = (6<9)<% > v<% and hence o <¢ = v=<?_ It only remains to prove (iv). We can
assume that 6 > w since otherwise the result is trivial. For any infinite cardinal y < 0,
we have that ©=* < o for every cardinal & < o, and therefore by Lemma 1.7.3 in
[9], 0% equals o if cf(0) > x, and 1) otherwise. It immediately follows that o<0
equals o if cf(o) > 0, and o°f©) otherwise. O

Proposition 8.4 Assume § > k, and let o be the least cardinal tsuch that 1:<9— > 6]
<6 <0 — <6
Then NSP)™ = NS, |A for some A € (VO 1 ,)* if cf(0) = 6, and NP, =

[o]<fen™ (5]<0 « .
NS, | D for some D € (V I5)* otherwise.

Proof By Lemmas 8.2 and 8.3. O

Lemma 8.2 has the following generalization.
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Proposition 8.5 Assume |8/|<9_/ = |5|<9_, where 8 is an ordinal with k < §' < A,
11<6’ <6

and 0’ a cardinal with 2 < 0’ < k. Then NSEA] |C = NSE}» |C for some C €

(V[‘SH]<0” Ic.2)*, where 8" = max(8,8") and 0" = max (8, 6").

11y<6" <0
Proof By Lemma 8.2 we may find A, B € (v1¥1 ‘ I,)* so that NSI[(‘H A =

[8//]<6 [8/]<9, _ . .
NS, =NS., |B. Then C = A N B is as desired. O

We will now describe some situations in which § < &, 6 < 6', 18|<¢ < |8'|<¢

<6’ <6
and there is no A such that N S,E‘? =N S,E‘sl |A, thus providing partial converses
to Lemma 8.2.

Definition Assume 6 < k. Then for f : [8] ]<max@. 0 [AI=F and X C X, we
define " ¢ (X) as follows. Let p = max(w, 0) if max(w, 0) is a regular cardinal, and
o = (max(w, 0))T otherwise. Define Xo C A for o < p by:
e Xo=X. B
o Xot1 = Xo U (U f([Xe NG,
o Xy = Uﬁ<a Xg if a is an infinite limit ordinal.
Thenlet Ty (X) = Uot<p Xg.

Notice that
T/(X)= ﬂ{Y :X CY ChrandVe e [Y NG (f(e) C ¥)).

Definition Let &’ be an ordinal with § < 8’ < A, and 0’ be a cardinal with 0 <
0’ < k. Given f : [§']<maxG, ) (A1 and k : [8]1<™G0) 5 [A]<¢, we define

Q(f, k) : [8/]7mxC: 9’) — [AI¥ by: (p(f.K)(e) = f(e) Uk(e) if e € [§]mX30),
and (¢(f, k))(e) = f(e) otherwise.

Notice that 1f 0’ < K and there exists a [8']<% -normal ideal on [A]<¥, then
Cy(rh(a) € Cf ncy * for any a € [A]<* with max(3,6’) C a.

Proposition 8.6 Let 8’ be an ordinal with max(k, §) < 8’ < A, and 0’ be a cardinal
with 0 < 0' < k. Suppose that 1817 < |8'|<" < 1. Then NSV NS |4 for
all A € (NS[‘“A ).

Proof Fix f : [8’]<max(3’97)_—> [A1=F. Set v = max(«, (|8|<é)+) and select a one-
to-one i : v — [8'1°™G-¢") and a one-to-one j : v — A\(v U S U (Uran())).
Define & : [3/1<max(3v9"> — [A]1=2 so that k(i (§)) = {j(£)} for every & € v. Now let
k : [8]<mxG0) 5 [A]<¥. Pick & € v so that j (&) ¢ |Jran(k).

First assume 6/ < . We set b = Cy(r.@(§) U max(3, 6")). Then b € Cf;-"\ N

C,'{(’)‘ N7 (£). On the other hand, b ¢ CZ‘)‘ since j (&) ¢ b. Next assume 0/ = «. We
define dg € [A]=" for B < k as follows:
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o dy={0}Ui(&)U|i(&)|Tif6 =k, and dy = max(3, 6) Ui (€)U|i(§)| otherwise.
o dpi1=dgU((sup(dg Ni)+ D UUL@(f. k) (e) : e € [dg N §T=1pNx1},
o dg=J,_pdq if B isan infinite limit ordinal.

Select a regular infinite cardinal T < « so that sup(d; N k) = 7, a_nd § < T in case
0 < k.Thend, € Cj;*mc,f“.Moreover,i(g) € [d; N/ =<ld="maxG.6)1 and j (&) ¢ d,
sod; ¢ CZ’)‘. m|

Proposition 8.7 Let u be a cardinal with k < ju < . Assume that either X is regular,
oru(u*, ) = Then NS, # NS, ,|A forall A € (NS, ;)"

Proof Let us first deal with the case when A is regular. Fix f : [A]<> — [A]<*. Let
C be the set of all B € A such that f(e) B for every e € [B]=>. Notice that C is a
closed unbounded set. Define / : [A]<2 — [A]<2 so that h({£}) = {Be}, where B¢ is
the least element 8 of C with 8 > max(3, £). Now given k : (] — [A]=¥, select
& € A sothat | Jran(k) C &. Setting b = Ty (7.1 (3 U {£}), we have b ¢ CZ’)‘ since
h({EP\b # V.

Next suppose that A is singular. Fix f : [A]=2 — [A]™¥. Select a one-to-one j :
A — [A]<H" sothatran(j) € I+ ;. Define h : [A]=% — [A]=% sothat h({€}) = {B&}.
where B is the least element 8 of A with 8 ¢ I' s ({£}U j (§)). Now givenk : n]<3 —
[A]=*, select & € A so that 3U (|J ran(k)) € j(§). Set b = Ly (3 U {£}). Then
b C T y({£} U j(&)) and therefore b ¢ Cj*. O

<3

Proposition 8.8 Let v and o be two cardinals such that = (cf(o))t <k <v <
c<i<o<? Suppose that M<0 < o for every cardinal © < o, and u(o, A) < A<0.

<6 <6 <6
Then NS\7)™ # NS} |A for every A € (NS} )*.

Proof Fix f : [0]%% — [A]7*. Select A € I}, sothat A C {a € [A]7 : k C
a} and |A] < A=Y, From Lemma 8.3 we get A<¢ = o<, so we can find a one-
to-one j : A — [0]<?. Notice that if a € A, then setting u = |a U j(a)|, we
have [I'r(a U j(a))| < w<? since by Proposition 3.24 (1<) = 1<¢. Define
h i [0]<% — [A]<? so that for any a € A, h(j(a)) = {&}, where &, is the least
element of the set A\I"s(a U j(a)). Now given k : W1<¢ — [A]<, picka € A
so that | Jran(k) C a, and put b = Cy(r)(@ U j(a)). Then h(j(a))\b # ¥ since
b C T (aUja)), hence b ¢ C*. O

Corollary 8.9 Assume that 0 = (cf(A\)T < «, and ,u<9 < A for every cardinal
<0 <0
W < A. Then for any cardinal v withk < v < A, andany A € (NSEj ) NS,E):;L #
[ ]<9
N SI(‘,))\ |A.
9 Projections

Definition Let p be a cardinal with k < p < A, and f be a function from [A]=“ to
[p]<¥. Thenwe let f(J) denote the collection ofall B C [p]=* such that f~'(B) € J.
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Menas [19] showed that for any cardinal p withk < p < A, NS¢, = p(NSk ),
where p : [A]™ — [p]=¥ is the projection defined by p(z) =z N ,o Our aim in this

section is to generalize this result, that is to prove that N S,E%m(‘s’p N p(N S[SA ).
Using Proposition 4.5, this is readily checked in case § < «, since IK, o = pU,;). So
in the remainder of the section we concentrate on the case § > «.

Lemma 9.1 Suppose that 8 > «k, 0 > w and p is a cardinal withk < p < . Suppose
further that either 8 < p, or 0 is regular. Then {yNp : y € Ch } € (NS[mm(‘s N )*
forany h : [8]<9 — [A]TF.

Proof Fix h : [§]<% — [A]=*. Define ¢ : [min(8, p)]=¢ — &, f : [min(3, p)]<% —
[A]=* and g : [min(8, p)]<0 — [p]=* by:
e Y(a)=0iff <«,and ¥(a) = |w Ua|" otherwise.
e f@=NxeC*:aUy@) Cx}.
o g(a)= f(a)Nop.
Notice that for any a € [min(8, p)]<%, ¥ (a) € f(a) and a € [ f(a)]<14"!.

Claim ran(f) C Cj™.

Proofofthe claim Fix a € [min(8, p)]<% and e € [f@nsnpl=l/ (@N91 Then for
any x € Ch withaU¢r(a) Cx,ee[xnNdsnN ,o]<|m@| and consequently A (e) C x.
It follows that i(e) € f(a), which completes the proof of the claim. O

Let D be the set of all d € Cg’p such that @ € dif§ < k,andd Nk is a
weakly inaccessible cardinal otherwise. Note that by Lemmas 3.13 and 3.17, D €

(N SIIn®-21 ) We will show that D € {y N p : y € Cy*). Thus fix d € D.
Sety =dU (U{f@) :aeldn 8]<|‘m9—‘}). Note that y N p = d. Moreover by
Proposition 3.19, y € [A]<¥. Let us prove that y € CZ’)". Thus lete € [y N 5]<|yné|'
First assume thate C p. Thene € [d 08]<‘dﬂ9—|, and therefore f'(e) C y. Furthermore
h(e) C f(e), since e € [f(e) N 811/ @] and f(e) € CI*. Hence h(e) < .

Next assume that e\p # @. Then clearly § > p. For § € e\p, select bg € [d N
81401 with & € f(be). Set1 = (e N p) U (Ugeep b2)s and puta = 1 if 6 < «,
and a = t U |e| otherwise. Then clearly a € [d N 8]<|‘m§‘, so f(a) C y. Itis simple
to see that |e] < |f(a) N O|. Moreover e C f(a) sincee N p € a C f(a) and
for any £ € e\p, & € f(bs) C f(a). Thuse € [f(a)]<|f(“)m§|, and consequently
h(e) € f(a) since f(a) € CZ’}‘. Hence, h(e) C y. O

Proposition 9.2 Suppose that § > k, 0 > w and p is a cardinal with Kk < ,o < A

Suppose further that either § < p, or 0 is regular. Then NS,E[EH(B’M (NS A )
where p : [A]<F — [p]=* is defined by p(z) =z N p.

: <6
Proof Fix B C [p]=*. Let us first assume that B € (NS,[(?En(a’p)] )*. Then by
Lemma 3.13 there is k : [min(8, p)]<Y — [p]=* such that C;"” < B. Pick [ :
[81<¢ — [p]=* with k C .
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Claim C/* C{z e[\ :zNpeCyr).

Proof of the claim Fix z € CIK’)‘. Then for any e € [(zNp) N (SN 0)]<1ENPNGI
we have ¢ € [z N (8 N p)]<F" and consequently k(¢) = I(e) € z N p. Hence

zN p € C;?, which completes the proof of the claim. O

It follows from the claim that {z € [\]< : zN p € B} € (NS[‘SA )*.

For the converse, assume that C € (NSEA )*, where C = {z € [A]"* : zNp € B}.
Then by Lemma 3.13 we may find & : [(S]<§ — [A]=¥ such that CZ”\ C C. Put
D={yNp:ye CZ‘)‘}. Then by Lemma 9.1, D € (NS,[(I’I},m(’S’p)]d)*. It follows that
B e (NS,[(?EH(‘S"))FH)*, since clearly D C B. O

10 Dominating numbers

Throughout the section u will denote a cardinal greater than 0.

The dominating numbers we will consider now are three-dimensional generaliza-
tions of the cardinal invariant .. The connection with the notion of [§]<? -normality
will be established in the next section.

Definition We let DK , denote the smallest cardinality of any F C *([A]=") such that
forany g € ”([A]“) thereis f € F with [{a € u: g()\ f(a) # @} < .

Recall from Sect. 2 that u(k, 1) denotes the least size of any A € It e,
Proposition 10.1 0,’:’)» > u(k, A).

Proof Given F C *([A]=") with |F| < u(k, X), it is easy to define g € *([A]=¥) so
that g(a)\ f() # P forallae € pand f € F. O

Corollary 10.2 0, > A.
Proof By Propositions 10.1 and 2.5 (i). O
Proposition 10.3 ¢f (0 ;) > j.

Proof We can assume that 4 > w, since otherwise the result is immediate from
Corollary 10.2. Suppose toward a contradiction that we may find F,, C #([A]=*) for
y < W such that

|F,| < Df:,x forall y < pu.

F, N Fz = for any two distinct members y, & of .

e For each g € *([A]™Y), there is f € Uy<ﬂ F, with {a € p : gl@)\ f(a) #
A < u.

Select a bijection j : u x u — u. For each y < p, there is g, € *([A]=") such

that [{a < p @ gy (@)\ f(a) # B} = p forevery f € F,. Define h € *([A]=¥) by:

h(j(y,a)) = gy (a) whenever (y,a) € u x p. There mustbe y < wand f € F),

such that [{o € 1 : g(e)\ f(@) # B} < . Then [{ar € 2 h(j (v, )\ F (i (v, @) #
#}| < u, a contradiction. O
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Definition F C “([A]™Y) is “([A]™")-dominating if for any g € *([A]=X), there is
f € F such that g(a) C f(a) foralla < p.

Definition 81’:)\ is the least cardinality of any " ([A\]=°)-dominating F < *([A]~").
Proposition 10.4 Assume i < k. Then 8,’: = u(k, X).

Proof Since clearly 8” > OK 5> We get 8 , = u(k, A) by Proposition 10.1. For the
reverse inequality, observe that given g € “([A]“ ), we have g(a) C |Jran(g) for
all o < p. O

Proposition 10.5 0/, =5,

Proof It is immediate that 8” > D“ In case u < «, the reverse inequality follows
from Propositions 10.1 and 10 4. Now assume that & > k. Let F C #([A]=¥) be such
that for any g € #([A]<"), there is f € F with [{@ € u : g(o)\f(a) # @} < u.
Select a bijection j : ;4 X u — p.For f € F and B < p, define fg € #([A]=F) by
f8(&) = f(j(B,%)). Notice that by Proposition 10.3, [{fg : B < pand f € F}| <
|F|. Given h € H*([A]™), define g € H“([A]~F) by: g(j(B,&)) = h(§) whenever
(B,&) € w x w. Pick f € F with [{e € u : g(a)\ f() # B} < w. There exists
B < u such that

la <p:g@\fla) #0N0{j(B. &) & < pup=0.

Then

h(€) =g(j(B.8) S f(j(B,8) = fp(&)

for every & < . O

Let us consider another variation on the definition of Dl’: e

Definition A" w0 18 the least cardinality of any F < " ([A]1=") with the property that
forany g € “A there is f € F such that g(a) € f(a) foralla € .

Proposition 10.6 AM < DM < AmaX(M ) , Where T = «k if k is a limit cardinal, and
T=vifK =vt

Proof Tt is immediate that A” < D“ Let us prove the other inequality. Select a

bijection j, : |a| — a for eacha € [A]<K. Let F € X0 ([1]<¥) be such that for any
g € WX ([A]=X), there is f € F with the property that g(y, &) € f(y, £) whenever
(y,6) e u x t.For f € F,define ky € *“([A]™F) by

k() = U (r. 1+ 6) 1 & < sup(c N (. )}

Given h € *([A]=X), define g € “XP) 1 as follows:
e g(¥,0)=|h(y)l
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o gy, 14+&)=jry)(E)if € < g(y,0),and g(y, 1 + &) = 0 otherwise.

There is f € F such that g(y, &) € f(y, &) whenever (y, &) € u x t. We have
that h(y) € ks (y) for all y € u. Hence {ky : f € F}is *([A]~*)-dominating, and
SO Dfik < |F]|. m|

We will now see that ij , 1s easy to compute if A is large with respect to p.

Lemma 10.7 (i) Assume u < k. Then A= = max(bfik, 2=K9.
(i) Assume p > k. Then M = max(DK 50 21,
Proof (i) Itis well-known (see e.g. [S]) that L=* = max(u(k, A), 2=*). By Propo-

sitions 10.4 and 10.5, the result follows.
(i) By Proposition 10.5,

A=) < max@),, 112D < [FIATT)I.

Proposition 10.8 (i) Assume that u < k and . > 2<%, Then fo’ , =AT
(ii) Assume that i > x and A > 2*. Then DZ‘A =AM,
Proof By Lemma 10.7 and Corollary 10.2. O
Proposition 10.9 Assume GCH. Then the following hold.
() oy =t ifu =
(ii) D”A = AT ifu < X and max(u™, k) > cf(A).
(iii) DK’)\ = Aifmax(ut, k) < cf(A).
Proof (i) : By Lemma 10.7 (ii) and Proposition 10.3.
(i1) and (iii) : By Proposition 10.8. O
Notice that by Corollary 10.2 and Propositions 2.5 (ii), 10.3, 10.4 and 10.5, DI’:A > A

and cf (Dg 3) = max(u™, k). Thus Proposition 10.9 shows that Dg , assumes its least
possible value under GCH. Let us now show that « -c.c. forcing preserves this minimal
value in case k > .

Proposition 10.10 Assume « > w, and let (P, <) be a k-c.c. notion of forcing. Then
lulyv P 17N 4

)" =@;)"

Proof Let G be P-generic over V. Given an ordinal § and f : £ — A in V[G], there

is by Lemma 6.8 in Chapter VII of [11], F : & — [A]~" in V with the property that

f(a) € F(a) for every o < £. It immediately follows that (ALP‘LJL)V[G] < @)Y,

which by Proposition 10.6 gives (D“LI WIEh < @ )Y if = k.

Now assume g < k. Then by Propositions 10.4 and 10.5, (D“‘l)V[G

(e, M)V and (@) ,)Y = (u(c, 1)V In V,let A € I, with [A] = (u(x, 1))" . In
VIG], letb € [A]7F, and select a bijection j : |b| — b. Therels F:|b| = [A]"*inV
such that j (o) € F(x) forall @ < |b|. Picka € A with |Jran(F) C a. Thenb C a.
Thus it is still true in V[G] that A € 17, . It follows that (u(k, 1)1V < (u(x, 2))".

O
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We will present a few identities and inequalities that can be used to evaluate 05 2
in the absence of GCH. The following is immediate.

Lemma 10.11 Let t and v be two cardinals such that t > A and v > . Then

v 123
DKT—DKA

Proposition 10.12 Assume that . > « and cf(A) > max(x, u*). Then Dﬁ,x =
max(X, sup({dk., i k < p < A})).

Proof < :Use that #([A]~") = UKSD[<A K ([a]=%).
> : By Corollary 10.2 and Lemma 10.11. O

Definition We let 0 denote the least cardinality of any F C "k with the property
that for any g € "k, thereis f € F such that g(a) < f(«) forall o < p.

Note that 0 = ;.
Lemma 10.13 Assume cf(L) > k. Then Aﬁ)\ > ok

Proof Let F C *([A]=") be such that for any g € #A, thereis f € F with the property
that g(«) € f () for all @ < p. To each f € F, assign the function « — J f (),
and note that these assigned functions witness 0% . O

Proposition 10.14 0}, = 0f.

Proof By Proposition 10.6 and Lemma 10.13, D,’f,,( > 0,’(‘. Now let F C *k be such
that for any g € *«, there is f € F with the property that g(a) < f(«) for every
a € u. Given h € #([k]=¥), select f € F so that sup(h(a) < f(«) forall ¢ € pu.
Then h(a) € f(e) for every € . Hence 0, < 0f. i

The following is very useful.

Proposition 10.15 (i) 0}, < max(d,, 0" es) = Dmax(“ #) for every cardinal p
withk < p < A
(i) ijx < max(b,’f’p, DZ ) = Dlr:lix(“’p)for every regular cardinal p withk < p <
A

IA

Proof Fix a cardinal p with k < p < A, and let T be a regular cardinal with p <t
min(x, pT). Selectabijection ja :lal = aforeacha € [A]<T.

Let us first show that 0" o = max (0, Py Dl:x) Pick a *([p]~")-dominating F C
“([p]=*) and a #([A]=F)- dommatmg G C “([A]“) Define ¢ : F x G — H*([A]™9)
by (W (f,8)(@) = Jg“(f(@) N |g(a)]). We claim that ran(y) is *([A]7°)-
dominating. Let r € #([A]<*). Pick g € G so that r(«) C g() for all @ < . Then
select f € F so that jgf(b(r(oz)) C f(a)forevery o < . Thenr(a) € (Y (f, g))(x)
for all @ < u, which proves our claim.

Let us next show that max(dy.,, ”) < Dmdx(“ *») By Lemma 10.11, W, <

OKm’iX(“ ?) Now let H C (WXP)([A]<¥) be such that for any p € **P)([A]<¥), there

is h € H with the property that p(a, ) € h(a, B) whenever (o, 8) € n X p.
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Given g € *([A]~7), select h € H so that {j;«)(B)} S h(a, B) whenever o €
and B € |g(a)|. If T = p™T, then g(a) < Uﬂeph(o( B), and we can conclude that

Dl;x = amdxw *#) Now assume 7 = 0, and let K C ¢ be such that for any i € #t
there is k € K with the property that i (o) < k(o) for all @ < . Then there is k € K
such that |g(«)| < k(x) for every @ < u. We have g(a) C Uﬁek(a) h(a, B) for all

a < p. Thus Y, < max(bmdx(“ ) o), which gives o < kaix(“’p), since by

Lemmas 10.11 and 10.3 and Proposition 10.6, < Dﬁ,t < DKm’ix(”’p). O

Corollary 10.16 (i) DK N = max(DK 05 i ot A)for every cardinal p with k < p <
min(i, A).
(i) D”A = max(DK 0 p A)for every regular cardinal p with k < p < min(u, A).

Corollary 10.17 Suppose i > w, and let x be an uncountable cardinal. Then there
is a regular infinite cardinal o < min(w, x) such that Dg,x = Dg,x for every regular
cardinal p with o < p < min(u, x).

Proof Suppose otherwise. Then, using Corollary 10.16, we may define an increasing
sequence (o, : n < w) of regular cardinals less than min(u, x) such that

e 0p=ow.

hd 0g’n»)( > a‘l;fn-%—ls)('

Contradiction. O

Corollary 10.18 Suppose that u(k, A) = A. Then Dgy)\ = max(0h ., Dfék) for every
regular infinite cardinal o < k.

Proof Let 0 < « be a regular infinite cardinal. If « < g, then by Corollary 10.16

(>i1), Dg = max(bg P f:x) Let us now assume that k < w. Then by Lemma 10.11,
ng > 04 . Moreover, by Corollary 10.2 and Proposition 10.4, 9" A = DU ey =

u(k, ) =o «.,.- Hence by Proposition 10.15 (ii), 0(7 B = max(D(I s O /\) O

Corollary 10.19 Assume k < pu < . Then d); , = max(j ., u(u™, 1)).
Proof By Propositions 10.4, 10.5 and 10.15 (). O

Proposition 10.4 and Corollary 10.19 show that for © < A, the value of fo’)\ is
determined by the values taken by 0¢ . and u(7, A) when 7 ranges from « to A.
Let us next consider the relationship between 0}, and o', .

Proposition 10.20 (i) o', ., = max (v}, []}_, D}Lﬂ)for every n € w\{0}.
(i) Assume yu < \. Then ij ot = max(Dg’k, A for every n € w.

Proof (i) By Propositions 10.14 and 10.15 (i), Dfﬁ < max(bféwbﬁr )
max(DKA, +). Moreover, Dféx < OI’:H by Lemma 10.11, and D’Aﬁ

A" . <" | by Lemma 10.13 and Proposition 10.6. It follows that 0", .

KAt KA KA

max(Df’ 5 Df}). The desired result is then obtained by induction.

IATA
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(i) The result follows from (i) and Propositions 10.4, 10.5 and 10.14 if n > 0, and
from Corollary 10.2 otherwise. O
Corollary 10.21 (i) o s | ol foreveryn € .
(i) O v = max(dc, k) for every n € w.
(iii) o* oot = DK 3
Proof (i) By Propositions 10.20 (i) and 10.14.
(i) By Propositions 10.20 (ii) and 10.14.
(iii) By Propositions 10.20 (ii) and 10.3.

Let us now deal with the computation of 0? a<n-

Proposition 10.22 (i) ), ., =0}’

Kk,max(X,
(i1) Dl’fkq = max(bfj 2<ns D’;k)for every regular cardinal n with k < n < A.

K<n)f0r every cardinal n withw < n < k.

(iii) 0,’:’)\«, = max(Dfézq,, D;ﬂ,’k)for every regular cardinal n such thatk <n < A
and either n < p, or n™ =

@iv) DK B = max(DK n<n 77+’A)for every cardinal n such that cf(n) <k <n < A
and either n < u, or n* = A.

Proof (1), (ii) and (iv) : Let n < XA be an uncountable cardinal. We assume that n # A

in case 7 is singular. We define p and 7 by:

e Ifn<ui,thenp =xandt =«~".

o Ifx <np=cf(n),then p=nand t =27,

o Ifcf(n) <« <n,thenp=ntandt =n="

Let F € *([A]=P) be *([A]=")-dominating, and K < #([t]~*) be #([t]~")-
dominating. Fix a bijection j : A="7 — [A]~". For f € F and a € pu, select a
one-to-one i : F N f@)]1=") — 1. Given h € *([A<"]<¥), pick f € F so that
U j“(h(a)) € f(a)forevery o € p.Then pickk € K sothatisq“(h(a)) € k(o) for
each « € p. Then h(x) C i;}x(k(oc)) for all @ € w. Hence fo’)ﬂ, < max(dj ¢, OZ’)\).

Since © < A<", we have Off’xq > 0k by Lemma 10.11. If p = «, then by
Lemma 10.11, 0 ; -, > Dﬁ,l. If p = A, then by Lemmas 10.11 and 10.13 and Propo-
sitions 10.6 and 10.14, ijkq > D“ > Df{ = DM ,- Ik < p < min(A, uT), then
by Proposition 10.15 (ii) and Lemma 10.11, 0}, -, = kaixf# P > Dg - Dﬁ’k.
Finally if n = p > pu, then by Corollary 10.2 and Propositions 10.4 and 10.5,
O pen = AT = u(p, A) =00 ;.

(iii) : Let n be a regular cardinal with k < n < A. Let us first assume that n < .
Then by (ii) and Corollary 10.16 (i),

woo_ u w) _ u
Oy = max (5, 00 ) = max (o0 5o 000

It follows that DK < = max(DK 9=<ns ot - )L) since by Lemmas 10.11 and 10.13 and
Propositions 10.6 and 10.14,
Vigen Z O = AL > 08 =0l
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Now assume that n > p and n* = A. Since (n")=" = max(n=<", ™) and

n="T = 2=" we have by Lemma 10.11 and Proposition 10.20 (ii) that Dfi)\q =

DI"L
K,max(2<1,77F)

remains to observe that by Propositions 10.4 and 10.5, n* = Dl;tx' O

= max(bfézq, DfinJr) = max(bf’zq, V0T = max(bﬁzq, nt). It

Let us make the following remark concerning Proposition 10.22 (iii). Suppose
that GCH holds and max(k, u) < cf(A) < A. Set n = cf(X). Then Dg’lq #*

max 0y 5=y, °§+,x)’ since by Proposition 10.9, 0}, -, = A and OZ‘J% =1t

Corollary 10.23 Let n € w. Suppose that either n # 0, or © > w. Then for any
. Iz _ Ak

cardinal o > wy,, awn,aNO = Dwn,max(a,zNO)'

Proof Fix a cardinal 0 > w,. The desired equality follows from Proposition 10.22

(i) if n > 2, and from Proposition 10.22 (ii) if n = 1. Let us now assume that n = 0.

If o = w, the result is obvious. Otherwise, by Propositions 10.22 (ii) and 10.16

: w _ % 7 _ % W W _

(i) and Lemma 10.11, Dw,aNO = max(bw’zxo, Vwi0) = max(bwyzxo, 00,0, Vwy,0) =
% RN

max(Dw’zﬁo, Vo) = Dw’max(mzxo). 0O

Notice that if » = 0 and © < o, then by Propositions 10.4, 10.5 and 2.5 (i),

n _ R n _ Ro n W
= o0 and = max(o, 2 and so and
oa),,,aRO aa),,,max(tr,ZNO) (0, ) oa),,,aNO 0w,,,max(U,ZNO)

are not necessarily equal.
Corollary 10.24 [f 1 > 2=, thend; , .. =0, ,.
Proof By Proposition 10.22 (ii) and Lemma 10.11. O

Corollary 10.25 Let o be an infinite cardinal such that cf (o) < « and k'@ < o <
A < of@) Then D,’:k = Dfég.

Proof If (cf(0))* < k, then by Lemma 10.11 and Proposition 10.22 (i),

w " Y o n
DKJ = DK,(TCf(”) - D/(,max(<7,/(°f<‘7)) - DK"’ = DK,)\'

If (cf(0))™ = «, then by Lemma 10.11 and Proposition 10.22 (ii),

w w
aK,)\. <0

= w M — M H
k,o¢f(@) — maX(DK’ch(a)’ DK,O') =0 = OK,A'

K,o —

. . <p
We conclude the section with a look at Dl’f W

Proposition 10.26 (i) Let p < u be an infinite cardinal. Then Dgzp is the least
cardinality of any F < W™)((\]1<%) with the property that for any g €
U (A=), there is f € F with {d € [u]=° : g(d) € f(d)} € I},
(ii) Let p < p be an infinite cardinal such that 2° < « for every cardinal T < p.
Then Df:;p = Dfo’“).
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Proof (i) Let F C {11"") ([A]<%) be such that for any g € L™ ([A]=%), there
is f € F with the property that {d € [u]~” : g(d) S f(d)} € I],. By
Corollary 2.7, we may find A, € P(e) N I;,L for e € []=” such that
o |A,=pu~Pforalle € [u]=".

e A.,N A, = whenever e, ¢ are two distinct members of [£]<".

L4 Ugg[”,]<,0 A = [u]™*.

Select a bijection j, : A, — [u]=P for each e € [u]=P. Given h €
(1= ([A]=%), define g € ™) ([A]<%) so that g(d) = h(j.(d)) whenever
dc A,.Pick f ¢ Fande € [u]~? sothate C {d € [u]=" : g(d) C f(d)}.
Then h(je(d)) € (f 0 j; ) (je(d)) foralld € A,. Thusd," < max(|F|, £=°),
and therefore by Proposition 10.3, Of:;p <|F|.

(i) By Lemma 10.11, Oz’f’“) < Dfé;p. For the reverse inequality, fix A € I;,u with
|A| = u(p, ), and F € A([A]=¥) with the property that for any g € 4([A]<¥),
there is f € F such that g(a) € f(a) for all a € A. For f € F, define
e W) ([A1=%) as follows. Given b € []<", pick a € A with b C a,
and set f/(b) = f(a). Now given h € ™) ([A]<K), define g € A([A]<¥) by
g(a) = Upc, h(D). Select f € F so that g(a) € f(a) for all a € A. Then
h(b) C f'(b) forall b € [u]=". O

11 Cofinality of J
This section is devoted to the computation of cof (N SE}:Q).

_ <0
Lemma 11.1 Assume VI GIK,A C J. Then cof(J) > D,I([S)g :

Proof Fix § € J with J = |J g P(B). For B € S, define h : [§]=0 — [A]<*\B
so that e € [hg(e)]<1?" 8@ for all e € [8]<Y. Given g : [8]<¢ — [A]=¥, there is by
Proposition 3.3 (i) and Corollary 3.8 ((i\i) — (1)) B € Swith[A]“\B C Ae€[5]<§g(e).
Then g(e) C hp(e) for every e € [8]<7. o

4 <6 <0
Proposition 11.2 cof (NS |4) = 0! for each A € (NSP] )™

Proof Let us first observe that if f : [§]<™*G-0) — [A]<% and g : [§]<™*CG)

[A]<% are such that f(e) C g(e) for all e € [§]<™*GO) then C&* < cjﬂ.
[81<¢ I : [51<¢\ 4

Hence cof(NSMA ) < 0,5 by Lemma 3.13. So given A € (NSK’)L )™, we have

< <9_
cof (N SE}\ ’ |A) < DL[SA] ! by Fact 2.2. The reverse inequality holds by Lemma 11.1

. 18191 A+ 157<6_
since NSK’A |A is [§]="-normal. O
The following is well-known.

Fact 11.3 cof (I, 1|A) = u(k, A) for each A € IZ}U
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<2
Proof By Propositions 4.5, 3.11 and 3.19 (i), I,y = NS;Eﬂ , so the result follows
from Propositions 11.2 and 10.3. O

<6
It follows from Proposition 4.5 and Fact 11.3 thatif § < «, then cof (N S,E‘S]A |A) =

<0
u(x, L) forall A € (NS,E‘?]A )*. For 8§ > k we have the following.

<60 )
Proposition 11.4 Assume 8 > k. Then cof(NS,Eﬂ |A) = DZfTax(w’g)’lsl)for every
<0
Ae (NSPTH*.

Proof By Propositions 11.2, 10.26 (ii) and 3.19. O

Under GCH we obtain the following values.

Proposition 11.5 Assume that the GCH holds and § > «, and let A € (NS1®1")*.
Then the following hold.

@) cof(NSIE‘?re |A) = A+ if 8 = & and cf (L) < 6.

(ii) cof(NSIE‘?rGM) =2t ifef(0) < 18]<% < A, or & = |5]<% and cf (1) > 6.
(iii) cof(NSE];e |A) = A if 18]<0 < cf ().

Proof By Propositions 10.9 and 11.2. O

Proposition 11.6 Let §' be an ordinal with k < §8' < A, and 0" be a cardinal with

2 < 0’ < k. Suppose that either AT = 1819, or AT = & and cf(n) < 18]<7.
- 610\ + 67"\ + 619 4 _ nl81<

Then there is no A € (NSKJ\ )™ N (NSK’A )T such thatNSK,A |A = NSK’)L |A.

) )/
‘5/|<H |<0

<4 . 81 _ s <G _ 8l
Proof 1f A = |8|=", then by Proposition 103,3,@ <X =1817" <0, -

/
|8/|<0

1t A1 = A and of (1) < 18]<7, then by Propositions 10.1 and 10.3, 0,”,

1 <0’ <6 L.
AT = < D,‘i l/\ . The result now follows from Proposition 11.2. O

Proposition 11.7 Assume § > «. Then

cof(NSL‘ffg) — max(cof(NSEjgfg), covh, (181<9)7F, (181<9)F, 2)).

— L. . |3‘<9- _ |8|<§ _
Proof If 6 < «, then by Propositions 10.22 (i) and 3.24, OK,\5\<§ =0 man(slc<ly =
<6 -
20y 1t 6 = . then by Lemma 10.11 and Propositions 10.22 (ii) and 3.19 (i),
oe max(Dwdg Dwd;) = D|5|<g Thus in each case Dl5l<§ = D|6|<é Hence if
K,‘5|_<g - 1,260 Ve |8 7 T Vi8]t ’ I(,|5|<0— — Vk,|8] "

18]<¢ < A, we may infer from Corollary 10.19 that
8 <é 6 <g N 6 <é o <_
ok = max(@y, u (815, ) = max(@)y), cov(r, (181°)F, (81T, 2)).
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6 <6 <6
BN

If 18]< > &, Lemma 10.11 tells us that 0’| < of’) 815"
, , .

SO
|5‘<9_ |8\<9—

<6 _ _
ol =00 = max @l cov(r. (1815 F, (181<%)F. 2).

The result now follows from Proposition 11.2. O
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