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Abstract

A ring R with 1 is called an E-ring if EndZ R is ring-isomorphic to R under the canonical homomorphism
taking the value 1σ for any σ ∈ EndZ R. Moreover R is an absolute E-ring if it remains an E-ring in every
generic extension of the universe. E-rings are an important tool for algebraic topology as explained in the
introduction. The existence of an E-ring R of each cardinality of the form λℵ0 was shown by Dugas, Mader
and Vinsonhaler (1987) [9]. We want to show the existence of absolute E-rings. It turns out that there is a
precise cardinal-barrier κ(ω) for this problem: (The cardinal κ(ω) is the first ω-Erdős cardinal defined in
the introduction. It is a relative of measurable cardinals.) We will construct absolute E-rings of any size
λ < κ(ω). But there are no absolute E-rings of cardinality � κ(ω). The non-existence of huge, absolute
E-rings � κ(ω) follows from a recent paper by Herden and Shelah (2009) [24] and the construction of
absolute E-rings R is based on an old result by Shelah (1982) [31] where families of absolute, rigid colored
trees (with no automorphism between any distinct members) are constructed. We plant these trees into
our potential E-rings with the aim to prevent unwanted endomorphisms of their additive group to survive.
Endomorphisms will recognize the trees which will have branches infinitely often divisible by primes.
Our main result provides the existence of absolute E-rings for all infinite cardinals λ < κ(ω), i.e. these
E-rings remain E-rings in all generic extensions of the universe (e.g. using forcing arguments). Indeed
all previously known E-rings (Dugas, Mader and Vinsonhaler, 1987 [9]; Göbel and Trlifaj, 2006 [23]) of
cardinality � 2ℵ0 have a free additive group R+ in some extended universe, thus are no longer E-rings, as
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explained in the introduction. Our construction also fills all cardinal-gaps of the earlier constructions (which
have only sizes λℵ0 ). These E-rings are domains and as a by-product we obtain the existence of absolutely
indecomposable abelian groups, compare Göbel and Shelah (2007) [22].
© 2010 Elsevier Inc. All rights reserved.
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1. Introduction

We want to investigate E-rings and their absolute behavior. E-rings appeared while study-
ing rings R with the property that the endomorphism ring EndZ R of the underlying additive
structure is ring-isomorphic to R. (These rings are now called generalized E-rings.) However,
Schultz [30] was able to isolate in 1973 an important class of rings which since then are called
E-rings: R is an E-ring if the evaluation map EndZ R −→ R (σ �→ 1σ) is an isomorphism. (The
name E-ring refers to this particular mapping.) E-rings can also be defined dually: The homo-
morphism R −→ EndZ R (r �→ ρr) (with ρr scalar multiplication by r ∈ R on the right) is an
isomorphism. Moreover, it is not hard to see that R is an E-ring if and only if EndZ R ∼= R and R

is commutative; see [23, pp. 468, 469, Proposition 13.1.9]. Thus R is an E-ring if and only if it
is a commutative generalized E-ring. (This, of course, suggests the question about the existence
of proper generalized E-rings, first noticed 50 years ago by Fuchs [14] and answered recently by
providing (in ordinary set theory, ZFC) the existence of a proper class of such non-commutative
rings in [21].) The first examples of E-rings are the 2ℵ0 subrings of Q.

The class of E-rings was in the focus of many papers since then. The algebraic properties were
considered in fundamental papers by Mader, Pierce and Vinsonhaler [27–29] and the existence
of arbitrarily large E-rings was first shown by examples of rank ℵ0 in Faticoni [11] (extended to
ranks � 2ℵ0 in [23, p. 471, Corollary 13.2.3]) and above 2ℵ0 in Dugas, Mader and Vinsonhaler
[9] using Shelah’s Black Box as outlined in Corner and Göbel [4]. The existence of related
E-modules as a natural by-product appeared soon after in [7]. From [30] also follows that the
torsion-part of an E-ring can be classified; the same holds for the cotorsion-part as shown in [17].
In contrast the quotients of the ring modulo the ideal of torsion-elements and the ideal generated
by the cotorsion submodules can be arbitrarily large as shown in [1,17], respectively.

The existence of E-rings contributes to algebraic topology: We rephrase the definition by the
diagram

Z
η

ϕ

R

ϕ

R,

where η is the inclusion 〈1〉 ⊆ R and for any ϕ there is a unique ϕ such that the diagram holds.
However, this is the definition of a localization R of Z, see [3]. This notion makes sense in many
categories, and in particular can be studied in homotopy theory, as discussed in Dror Farjoun [5].
He raised the question if for a fixed compact space X, the distinct homotopy types of the form
Lf X form a set, where f : Y −→ Z is running through all possible maps between topological
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spaces and Lf denotes homotopical localization with respect to these maps f . The following
result is not hard to see, but is an important observation in the context of localizations of abelian
Eilenberg–Mac Lane spaces. It will appear in Casacuberta, Rodríguez and Tai [3]: If a space X is
a homotopical localization of the circle S1 (i.e. X ∼= Lf S1), then X is the Eilenberg–Mac Lane
space K(R,1) with R an E-ring and any E-ring appears this way (take f : S1 −→ K(R,1)

induced by the inclusion of 1 into R). (The Eilenberg–Mac Lane space K(R,1) is the connected
space which has (abelian) fundamental group R and trivial higher homotopy groups. It is unique
up to homotopy and it is well known how to construct such cellular models.) Thus the existence
of a proper class of E-rings provides a negative answer to Dror Farjoun’s question. Below we
will discuss an ‘absolute version’ of this result.

Note that E-rings constructed earlier and here have also impact to other areas of algebra. They
are useful for constructing nilpotent groups of class 2 (see Dugas and Göbel [8]) and build the
core for investigating abelian groups with automorphism groups acting uniquely transitive, see
[18–20]. Surveys and classical results on E-rings can be found in [12,13,23,32].

The second ingredient of this paper is the notion of absolute structures. The recent activity
on this topic was initiated by Eklof and Shelah [10], who studied the existence of absolutely
indecomposable abelian groups. Here a property of a structure is called absolute if it is preserved
under generic extensions of the given universe (of set theory), in particular it is preserved un-
der forcing. Absolute formulas are discussed in detail in a classical monograph by Levy [26],
examples are the subset relation, or the property to be an ordinal. A quick survey on absolute
formulas is given in [2, pp. 408–412]. However, the powerset relation is not absolute. Here is a
more striking algebraic counterexample. The following statement (i) is not absolute.

(i) A �= Z is an indecomposable abelian group and its subgroups of finite rank are free.

First we note that the freeness condition by Pontryagin’s theorem (Fuchs [15, Vol. 1, p. 93])
is equivalent to say that all countable subgroups of A are free, i.e. A is ℵ1-free. We can find a
generic extension of the underlying model of set theory (the Levy collapse) such that |A| becomes
countable, hence A �= Z is free and definitely not indecomposable. We immediately note, that all
E-rings constructed in the past (and of size � 2ℵ0 ) are ℵ1-free and thus can be treated the same
way. They become free in an extended model and thus are no longer E-rings. The problem settled
in this paper becomes obvious.

Can we find absolute E-rings?

As a by-product of these considerations we obtain new, very useful methods for the con-
struction of ‘complicated’ structures. The crucial point is, that often the old constructions use
stationary sets or tools which are not that friendly from a constructive point of view: the new
methods are based on inductive arguments and thus provide a more elementary approach to the
desired complicated structures.

Surprisingly, there is a precise cardinal bound κ(ω) for the construction of absolute E-rings.
Here κ(ω) denotes the first ω-Erdős cardinal defined in Section 2. We note immediately that
κ(ω) (like the first measurable cardinal) is a large inaccessible cardinal which may not exist in
any universe; see [25]. Any model of set theory contains a submodel of ZFC which has no first
ω-Erdős cardinal and it is also well known that Gödel’s universe has no first ω-Erdős cardinal.
In a recent paper Herden and Shelah [24] have shown that there are no absolute E-rings of size
� κ(ω). We want to prove the converse.
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Main Theorem 1.1. If λ is any infinite cardinal < κ(ω) (the first ω-Erdős cardinal), then there
is an absolute E-ring R of cardinality λ. Moreover Z[X] ⊆ R ⊆ Q[X] with X a family of λ

commuting free variables.

The new method of constructing E-rings differs from those described in the references and
above. For example, the construction in [9] (which does not provide any absolute E-rings) – due
to the Black Box – also does not allow to show the existence of E-rings of cardinality cofinal
with ω. However, Theorem 1.1 gives an answer for all infinite cardinals < κ(ω). In Corollary 5.2
we explain how to extend this result to obtain rigid families of (absolute) E-rings.

The following application to algebraic topology is immediate by the above remarks.

Corollary 1.2. The family Lf S1 (for any map f ) of absolute localizations of the circle S1 (based
on Theorem 1.1) is a proper class, if and only if there is no ω-Erdős cardinal.

Thus, in models of ZFC without ω-Erdős cardinals the negative answer to Dror Farjoun’s
problem is absolute.

Some absolute constructions for other categories of modules, trees and graphs can be seen
in [22,16,31,6]. In these cases it also follows that the upper bound κ(ω) is sharp. However, it is
still an open problem, if for the family of absolutely indecomposable abelian groups the upper
bound can be larger than κ(ω), see also [10]. The strategy for the construction of absolute E-
rings utilizes the existence of absolutely rigid, colored trees from Shelah [31], which we will
describe in Section 2. In fact, in order to apply this to E-rings, we first must strengthen [31] in
Theorem 2.8.

Finally we explain the strategy of this paper in the simpler case of Theorem 1.1 when X is
(non-empty and) countable. In this case we can replace the existence of absolutely rigid trees
by a countable family of primes automatically resulting in an absolute construction. Consider
the family F = {x − z, xn | x ∈ X, z ∈ Z, 0 < n < ω} ⊆ Z[X] of polynomials. For each f ∈ F
we choose a distinct prime pf . If a ∈ A and A is a torsion-free abelian group, then recall that
p−∞a ⊆ Q ⊗ A is the family of unique quotients p−na (n < ω) and p∞A = ⋂

n<ω pnA is the
first Ulm subgroup of A. The group A is p-reduced if p∞A = 0. Finally U∗ ⊆ A denotes the
unique minimal pure subgroup of A containing U ⊆ A.

Proposition 1.3. The subring

R = 〈
Z[X],p−∞

f f
∣∣ f ∈ F

〉

of the polynomial ring Q[X] in countably many variables is an E-ring.

Proof. It is easy to show that p∞
f R = (f R)∗ holds for all f ∈ F . So by linearity the purification

of the principal ideal f R of R is fully invariant for all polynomials f = (x − z)m with m a
monomial in 〈X〉, x ∈ X, z ∈ Z. Since R now has visibly many fully invariant ideals it will also
be easy to show the proposition:

Consider any (x − z)m with m a monomial in 〈X〉, x ∈ X, z ∈ Z and ϕ ∈ EndZ R.
From the invariance of the pure ideals related to m,xm and (x − z)m follows the existence of

gm,gxm,g(x−z)m ∈ Q[X] such that mϕ = mgm, (xm)ϕ = xmgxm and

(
(x − z)m

)
ϕ = (x − z)mg(x−z)m = (xm)ϕ − z(mϕ) = xmgxm − zmgm.



R. Göbel et al. / Advances in Mathematics 226 (2011) 235–253 239

Sh:948
Thus (x − z)mg(x−z)m = xmgxm − zmgm or seen as functions depending on x

(x − z) · m(x) · g(x−z)m(x) = x · m(x) · gxm(x) − zm(x) · gm(x)

holds for every integer z ∈ Z. Substituting x := z we get 0 = zm(z) · (gxm(z) − gm(z)). Hence
h(z) = 0 follows for h(x) = gxm(x) − gm(x) and for all 0 �= z ∈ Z as zm(z) �= 0. Thus x − z is
a factor of h(x) for infinitely many z ∈ Z, which is only possible if h is the zero-polynomial and
gm = gxm. Beginning with g = g1 = 1ϕ ∈ R we get by recursion that ϕ acts by multiplication
with g on the set of all monomials. But the monomials generate R additively, hence ϕ = g idR

and R is an E-ring. �
Proposition 1.3 is a new proof of the main result in [11] and the problem we must settle

becomes also obvious: Even if we search for an (absolute) E-ring of size ℵ1, then we must find
a suitable substitute for primes, and this is how the large family of absolutely rigid trees comes
into play.

2. Constructing strongly rigid colored trees

In this section we strengthen an earlier result by Shelah [31] on better quasi-orders which will
be applied for E-rings. Thus we must first state one of the main results on colored trees from
this paper. The reader should keep in mind that in the following tree maps will act on the left
and module homomorphisms will act on the right of the argument, so as usual the order of the
composition of two maps ϕπ depends on the domain which is a tree or a module, respectively.

Let κ(ω) denote the first ω-Erdős cardinal. This is defined as the smallest cardinal κ such that
κ → (ω)<ω holds, i.e. for every function f from the finite subsets of κ to 2 there exist an infinite
subset X ⊂ κ and a function g : ω → 2 such that f (Y ) = g(|Y |) for all finite subsets Y of X.
This well-studied cardinal κ(ω) is strongly inaccessible; see Jech [25, p. 392]. Thus κ(ω) is a
very large cardinal. We should also emphasize that κ(ω) may not exist in any universe of ZFC.
In this case the restriction λ < κ(ω) on a cardinal λ will be irrelevant.

If λ < κ(ω), then let

T =ω> λ = {f :n −→ λ: with n < ω and n = Domf }

be the tree of all finite sequences f (of length or level lgf ) in λ. Since n = {0, . . . , n − 1} as
ordinal, we also write f = f (0)∧f (1)∧ . . .∧f (n − 1). By restriction g = f �m for any m � n

we obtain all initial segments of f . We will write g � f to denote that g is an initial segment
of f . Thus

g ⊆ f as graphs ⇐⇒ g � f.

We denote the empty map by the symbol ⊥ and call it the root of the tree. A subtree T ′ of T is
a non-empty subset which is closed under initial segments and a homomorphism between two
subtrees T1, T2 of T is a map ϕ : T1 → T2 (η �→ ϕ(η)) that preserves levels and initial segments,
i.e. lgη = lgϕ(η) and ϕ(ν) � ϕ(η) for all ν � η ∈ T1. (Note that a homomorphism does not
need to be injective or preserve �.) If T ′ comes with a coloring map c : T ′ −→ ω (η �→ c(η))

we call this tree an ω-colored (or just a colored) tree and write (T ′, c). Colored trees in this
paper will always be ω-colored, and we often omit ω. Now, Hom((T1, c1), (T2, c2)) will denote
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the homomorphisms ϕ between two such colored trees which are ordinary tree homomorphisms
ϕ : T1 → T2 that in addition preserve colors, i.e. c2(ϕ(η)) = c1(η) for all η ∈ T1. Shelah [31]
showed the existence of an absolutely rigid family of 2λ colored subtrees of T = ω>λ.

Theorem 2.1. If λ < κ(ω) is infinite and T = ω>λ, then there is a family (Tα, cα) (α < 2λ) of
ω-colored subtrees of T (of size λ) such that for α,β < 2λ and in any generic extension of the
universe the following holds:

Hom
(
(Tα, cα), (Tβ, cβ)

) �= ∅ �⇒ α = β.

Remark 2.2. Such a family of colored trees (Tα, cα) (α < 2λ) is called an absolutely rigid family
of trees of size λ. In the following we will show how to implement such a family to construct
absolute E-rings of any infinite cardinality < κ(ω). For λ > κ(ω) such an absolutely rigid family
of trees does not exist.

We fix such a family and write

(
T ′′

α , c′′
a

) (
α < 2λ

)
for an absolutely rigid family of trees

(
for a fixed λ < κ(ω)

)
. (2.1)

2.1. A shift map for trees

In order to modify the family (2.1) we introduce two coding maps, which are bijections:

cd : ω>ω → ω

and

cdλ : ω>
(
λ ∪ {∗}) → λ,

where ∗ denotes a new symbol (which does not appear in the set λ).
If α < 2λ, then let σα := cd−1

λ (α) and define a subset T ′
α ⊆ ω>λ consisting of all elements

η ∈ ω>λ satisfying to the following two conditions. We let lgη = n.

(a) For 
 < n let lgση(
) = 
 + 1.
(b) For any 
 < n there is νη
 ∈ T ′′

α such that

ση(
+m)(
) =
{

νη
(m) for m < lgνη
,

∗ for lgνη
 � m � n − 
 − 1.

This in particular implies that lgνη
 � n − 
− 1 must hold. Given η, then the choice of elements
νη
 is illustrated by the following diagram.



R. Göbel et al. / Advances in Mathematics 226 (2011) 235–253 241

Sh:948
The triangular shape of the diagram is a direct consequence of the above conditions (a) and
(b). The 
th line of the diagram is of the form νη


∧〈∗,∗,∗, . . .〉, where the element νη
 ∈ T ′′
α is

uniquely determined by η and condition (b). Conversely, any choice of elements ν
 ∈ T ′′
α (
 < n)

with lgν
 � n − 
 − 1 by (b) determines some η ∈ T ′
α of length n with νη
 = ν
 (
 < n), thus

T ′
α �= ∅. We get an immediate

Proposition 2.3. Let ℵ0 � λ < κ(ω). The above set T ′
α is a colored subtree of ω>λ with the

coloring map

c′
α : T ′

α −→ ω, η �→ c′
α(η) = cd

(〈lgνη
 | 
 < lgη〉∧〈
c′′
α(νη
) | 
 < lgη

〉∧〈
c′′
α(⊥)

〉)
.

Hence we have a family 〈(T ′
α, c′

α) | α < 2λ〉 of colored trees.

The relevant point here is that the color c′
α(η) encodes the length and the color of the branches

νη
 for all 
 < lgη.

Proof. We have T ′
α �= ∅ from above. Let η′ � η ∈ T ′

α be an initial segment. We must show that
η′ satisfies the two conditions (a), (b) above. Condition (a) is obvious. Condition (b) is satisfied
with

νη′
 =
{

νη
 �(lgη′ − 
 − 1) for lgη′ − 
 − 1 < lgνη
,

νη
 otherwise.

Hence η′ ∈ T ′
α . It is clear that c′

α defines a coloring of T ′
α . �

In particular, νη′
 � νη
 holds for η′ � η ∈ T ′
α and 
 < lgη′. Finally we illustrate the above

coloring c′ (η) for a tree.
α
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Next we will show that these trees are strongly rigid (in the sense of Theorem 2.5 below). We
will use the following natural definition.

Definition 2.4. If α < 2λ and η ∈ T ′
α , then let (T ′

α)�η := {ν ∈ T ′
α | η � ν} be the part of the tree

T ′
α above η.

Using Theorem 2.1 we will establish the following

Theorem 2.5. If α,β < 2λ are distinct, and η ∈ T ′
α , then there is no color preserving partial tree

homomorphism ϕ′ : (T ′
α)�η −→ T ′

β in any generic extension of the universe.

Proof. Suppose for contradiction that ϕ′ : (T ′
α)�η −→ T ′

β is a color preserving partial tree ho-
momorphism. First we define an injective projection map

π : T ′′
α −→ (

T ′
α

)
�η

,

which we then want to compose with ϕ′. If τ ∈ T ′′
α and 
 < lg τ , then we determine a branch

τ ′

 ∈ ω>(λ ∪ {∗}) of length lg τ ′


 = 
 + lgη + 1. Let

τ ′

(m) :=

{
τ(
) for m = lgη,

∗ otherwise.

Then put π(τ) = η∧〈cdλ(τ
′

) | 
 < lg τ 〉 which belongs to (T ′

α)�η as required: Condition (a)
above is clear and (b) can be seen directly from the diagram below. Thus lgπ(τ) = lg τ + lgη, and
νπ(τ),lgη = τ holds for τ �=⊥. Moreover, if τ �τ ′, then also π(τ)�π(τ ′). So π : T ′′

α −→ (T ′
α)�η

is an injective map that preserves initial segments.
Finally we want to define a color preserving tree homomorphism

ϕ : T ′′
α −→ T ′′

β (2.2)

by setting

ϕ(τ) = ν(ϕ′π)(τ),lgη
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for τ �= ⊥ and ϕ(⊥) = ⊥. Note that ϕ(τ) is well-defined: For this we must show that lgη <

lg(ϕ′π)(τ) for τ �= ⊥. But note that by the above (using that ϕ′ preserves length)

lg
(
ϕ′π

)
(τ ) = lgπ(τ) = lg τ + lgη > lgη

as desired.

It is clear that ϕ(τ) ∈ T ′′
β . Finally we have to show that ϕ preserves the length and color of

branches as well as initial segments.
If τ � τ ′ ∈ T ′′

α then by the properties of π mentioned above we have π(τ) � π(τ ′) ∈ (T ′
α)�η,

and using that ϕ′ is a tree homomorphism also (ϕ′π)(τ) � (ϕ′π)(τ ′) and

ϕ(τ) = ν(ϕ′π)(τ),lgη � ν(ϕ′π)(τ ′),lgη = ϕ
(
τ ′)

holds. To show that ϕ preserves length and color we recall c′
α(π(τ)) = c′

β((ϕ′π)(τ)) for τ ∈ T ′′
α

as ϕ′ preserves colors. However c′ codes the length and color of the elements of the form ν... lgη

(if τ �= ⊥) and it follows by definition of π and ϕ, respectively, that

lg τ = lgνπ(τ),lgη = lgν(ϕ′π)(τ),lgη = lgϕ(τ)

and similarly c′′
α(τ ) = c′′

β(ϕ(τ)). As c′ always codes the color of the root ⊥ we also have
c′′
α(⊥) = c′′

β(⊥) = c′′
β(ϕ(⊥)), while lg⊥ = lgϕ(⊥) is obvious.

Hence ϕ is a color preserving tree homomorphism, which by Theorem 2.1 cannot exist unless
α = β . This case however was excluded. �
2.2. Strongly rigid trees

In the final step of the tree construction we will modify the trees from Section 2.1 to prove
the non-existence of color preserving partial tree homomorphisms on an even smaller domain. It
helps to consider for branches η ∈ ω>λ and σ ∈ ω>ω with lgη = lgσ the induced branch

η • σ := 〈
ω · η(
) + σ(
) | 
 < lgη

〉 ∈ ω>(ω · λ) = ω>λ.

If η ∈ ω>λ, then there is an obviously unique decomposition η = η′ • σ with η′ ∈ ω>λ, σ ∈ ω>ω

and lgη′ = lgσ . Furthermore, η′ • σ1 � η′ • σ2 holds iff η′ � η′ and σ1 � σ2.
1 2 1 2
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Using the trees T ′
α (α < 2λ) from Theorem 2.5 we put

Tα := {
η ∈ ω>λ

∣∣ η = η′ • σ,η′ ∈ T ′
α, σ ∈ ω>ω and lgη′ = lgσ

}

and define a coloring

cα(η) = cd
(〈
c′
α

(
η′ �


) | 
 < lgη′〉∧σ
)

for η = η′ • σ ∈ Tα.

Here cd is the coding map from the beginning of Section 2.1.
Our final tree-results are the following two theorems.

Theorem 2.6. Let (Tα, cα) (α < 2λ) be as above. Then the following holds.

(i) Tα ⊆ ω>λ is a subtree.
(ii) cα : Tα −→ ω is a coloring.

(iii) For η ∈ Tα and ν ∈ Tβ with cα(η) = cβ(ν) follows
(a) lgη = lgν.
(b) cα(η �
) = cβ(ν � 
) for all 
 < lgη.
(c) If η = η′ • σ , ν = ν′ • τ then σ = τ .

Proof. It is clear that Tα �= ∅, and conditions (i) and (ii) are obvious. For (iii) we consider
cα(η) = cβ(ν). Thus 〈c′

α(η′ �
) | 
 < lgη′〉 ∧σ = 〈c′
β(ν′ � 
) | 
 < lgν′〉 ∧τ by definition of the

coloring. We get lgη = lgη′ = lgν′ = lgν, σ = τ and c′
α(η′ �
) = c′

β(ν′ � 
) for all 
 < lgη. Now
(a), (b) and (c) are obvious. �

In preparation of the next theorem we define a special closure property.

Definition 2.7. We will also use the following closure condition for subsets T ∗
α ⊆ Tα and η =

η′ • σ ∈ T ∗
α :

(1) If ν = ν′ • τ ∈ T ∗
α then ν′ ∈ (T ′

α)�η′ .
(2) If ν = ν′ • τ ∈ T ∗

α and ν′ � ξ ′ ∈ T ′
α and lg ξ ′ = lgν′ + 1, then there is τ � υ ∈ ω>ω with

lgυ = lg τ + 1 and ξ ′ • υ ∈ T ∗
α .

Theorem 2.8. If (Tα, cα) (α < 2λ) is as above and T ∗
α ⊆ Tα satisfies the closure condition from

Definition 2.7 for η = η′ • σ ∈ T ∗
α and α �= β < 2λ, then there is no color preserving partial tree

homomorphism T ∗
α −→ Tβ in any generic extension of the universe.

Proof. Let η = η′ • σ be as in the theorem and suppose for contradiction that ϕ : T ∗
α −→ Tβ is

a color preserving partial tree homomorphism. We want to define a color preserving partial tree
homomorphism

ϕ′ : (T ′
α

)
�η′ −→ T ′

β.

In the first step we define recursively a partial tree homomorphism

g : (T ′
α

)
′ −→ ω>ω
�η
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such that ν′ • g(ν′) ∈ T ∗
α for all ν′ ∈ (T ′

α)�η′ . The (relative) bottom element is η′ ∈ (T ′
α)�η′ and

we put g(η′) = σ and note that η = η′ • σ ∈ T ∗
α by assumption of the theorem. For the inductive

step we consider ν′ ∈ (T ′
α)�η′ , ν′ • g(ν′) ∈ T ∗

α , let ν′ � ξ ′ be with lg ξ ′ = lgν′ + 1 and define
g(ξ ′) with the help of Definition 2.7(2). In particular g(ν′) � g(ξ ′) and lgg(ξ ′) = lgg(ν′) + 1 =
lgν′ + 1. Hence g is well defined on (T ′

α)�η′ and preserves lengths and initial segments.
Recall that for any ν′ ∈ (T ′

α)�η′ we have ν = ν′ •g(ν′) ∈ T ∗
α . In particular, ϕ(ν) = ν′′ • τ ∈ Tβ

is well defined, and since ϕ preserves colors, we derive from Theorem 2.6(iii)(c) that τ = g(ν′);
hence

ϕ
(
ν′ • g

(
ν′)) = ν′′ • g

(
ν′) (2.3)

and we put ϕ′(ν′) = ν′′ ∈ T ′
β . Thus the map ϕ′ above is defined and we must check that it pre-

serves initial segments, lengths and colors.
Let ν′ � ξ ′ and recall that g preserves initial segments. Hence also g(ν′) � g(ξ ′) and

ν′ • g(ν′) � ξ ′ • g(ξ ′), and since ϕ is a partial tree homomorphism we conclude ϕ′(ν′) • g(ν′) �
ϕ′(ξ ′) • g(ξ ′) and ϕ′(ν′) � ϕ′(ξ ′) from (2.3).

From ϕ(ν′ • g(ν′)) = ϕ′(ν′) • g(ν′) and the assumption that ϕ preserves colors [together with
Theorem 2.6(iii)(b), (c)] we get c′

α(ν′) = c′
β(ϕ′(ν′)) and see that also ϕ′ preserves colors. More-

over lgν′ = lg(ν′ • g(ν′)) = lg(ϕ′(ν′) • g(ν′)) = lgϕ′(ν′) and ϕ′ also preserves the length. Such
a map ϕ′ however is forbidden by Theorem 2.5 for α �= β , so Theorem 2.8 holds. �
3. The construction of E-rings

Let λ < κ(ω) be a fixed infinite cardinal and enumerate by

Π = {pnki, qnki | n, k, i < ω}

some of the primes of Z without repetition. Let Q denote the field of rational numbers. If p ∈ Π

and a is an element of a torsion-free abelian group M , then we denote (as usual) by p−∞a the
family of unique elements {p−na | n < ω} of the divisible hull QM = Q ⊗ M using M ⊆ QM .
If p−∞a ⊆ M , we will also write p∞ | a (in M).

First we decompose λ into λ = ⋃
n<ω Un with equipotent subsets Un of size λ, write U<n =⋃

i<n Ui and constitute a chain {Xn | n < ω} with the help of some of the absolute trees Tα ⊆ ω>λ

(α < 2λ) given by Theorem 2.8 as follows. Let

Xn = {
xγ , xαη

∣∣ γ < λ, α ∈ U<n, η ∈ Tα \ {⊥}} for all n < ω and X =
⋃
n<ω

Xn.

Note that X0 = {xγ | γ < λ} (because U<0 = ∅).
By induction on n we define a chain {Rn | n < ω} of subrings Rn of Q[Xn] and let

R = ⋃
n<ω Rn. Let R0 = Z[xγ | γ < λ] be the polynomial ring with integer coefficients in λ

commuting variables. Given Rn, we will choose an enumeration

Rn = {rαn | α ∈ Un}

(without repetition) of all polynomials from Rn \ {0} to define Rn+1.
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Let xα⊥ := rαn ∈ Rn and put

Rn+1 = 〈
Rn,p

−

nkixαη, q

−

nki(xαη − xαν)

∣∣ α ∈ Un, η ∈ Tα \ {⊥}, i, k, 
 < ω
〉 ⊆ Q[Xn+1]

subject to the conditions

cα(η) = i, lgη = k + 1, η � k = ν

where 〈S〉 denotes the ring generated by the set S.
Using the notation p−∞a from above Rn+1 is generated as a ring by the set

{
R0, p−∞

mki xαη, q−∞
mki (xαη − xαν)

∣∣ α ∈ Um, η ∈ Tα \ {⊥}, m � n, and i, k < ω
}

with the restrictions of the last display.
The ring R is situated between the polynomial rings Z[X] and Q[X]. Our main result will

then be the following

Main Theorem 3.1. If λ is any infinite cardinal < κ(ω) (the first ω-Erdős cardinal), then R is an
absolute E-ring of cardinality λ. Moreover Z[X] ⊆ R ⊆ Q[X] with X a family of λ commuting
free variables.

The main step for a proof of this theorem is the central result of the next section.

4. Invariant principal ideals of R

Theorem 4.1. If ϕ ∈ EndZ R and r ∈ R, then rϕ ∈ (Rr)∗.

Here (Rr)∗ denotes the (unique) group purification of the principal ideal Rr of R, which is
the smallest ideal I of R containing Rr with torsion-free abelian quotient R/I . Theorem 4.1 can
be rephrased saying that all purified principal ideals of R are fully invariant under the action of
EndZ R.

Recall that a submodule U of an R-module M is fully invariant if U is an EndR M-submodule
of M . We begin with a countable family of ideals which by arithmetical reasons are obviously
fully invariant ideals of the ring R:

• If p = pnki ∈ Π , then Inki := p−∞R = ⋂

<ω p−
R is a fully invariant ideal of R.

• If q = qnki ∈ Π , then Jnki := q−∞R = ⋂

<ω q−
R is a fully invariant ideal of R.

We want to characterize these ideals in different ways and define two families of ring homo-
morphisms accordingly.

Definition 4.2. Let p = pnki ∈ Π and q = qnki ∈ Π , respectively.

(i) The ring homomorphism F
p
nki : R −→ Q[X] is defined by

xαηF
p
nki :=

{
0 if α ∈ Un,η ∈ Tα, cα(η) = i, lgη = k + 1,

xαη otherwise.
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(ii) The ring homomorphism F
q
nki : R −→ Q[X] is defined by

xαηF
q
nki :=

{
xαν if α ∈ Un,η ∈ Tα, cα(η) = i, lgη = k + 1, ν = η �k,

xαη otherwise.

The maps F
p
nki , F

q
nki extend uniquely from the free generators of Q[X] to ring endomorphisms

of Q[X] that can be restricted to R. The following lemma characterizes the ideals Jnki .

Lemma 4.3. For q = qnki ∈ Π the following holds.

Jnki = kerFq
nki = 〈

R(xαη − xαν)
∣∣ α ∈ Un, η ∈ Tα

〉
∗ ⊆ R

subject to the conditions: cα(η) = i, lgη = k + 1, ν = η �k.

Here 〈S〉∗ denotes the group purification in R of the ring 〈S〉 generated by the set S.

Proof. The inclusion 〈R(xαη − xαν) | α ∈ Un, η ∈ Tα〉∗ ⊆ Jnki holds because Jnki is pure in R.
Next we show that Jnki ⊆ kerFq

nki :
Note that (xαη − xαν)F

q
nki = 0 whenever α ∈ Un, cα(η) = i, lgη = k + 1 and ν = η �k, thus

RF
q
nki ⊆ 〈

p−∞Z[X] ∣∣ qnki �= p ∈ Π
〉 ⊆ Q[X].

If r ∈ Jnki , then r ∈ q−∞
nki R and rF

q
nki ∈ q−∞

nki (RF
q
nki). But by the above inclusion q−∞

nki (RF
q
nki) =

0 is obvious, hence r ∈ kerFq
nki .

For kerFq
nki ⊆ 〈R(xαη − xαν) | α ∈ Un, η ∈ Tα〉∗ we consider any 0 �= r ∈ kerFq

nki . As an
element from R there is an integer a �= 0 such that ar ∈ Z[X] can be expressed as a finite sum,
where we isolate the variables xαη ∈ X that meet the restriction of the lemma. Thus we represent

ar =
s∑

j=1

mj(xαη) · fj + g,

where the monomials mj ∈ Z[X] contain only the xαη with cα(η) = i, lgη = k + 1, ν = η �k

while the polynomials fj , g ∈ Z[X] do not have contributions from this set. We can express
xαη = (xαη − xαν) + xαν and rewrite the sum as

ar =
∑
η

(xαη − xαν) · f ′
η + g′

with suitable polynomials f ′
η ∈ Z[X] and g′ = ∑s

j=1 mj(xαν) · fj + g a polynomial without

contributions from xαη. We now apply F
q
nki and get

0 = (ar)F
q
nki =

∑
η

[
(xαη − xαν) · f ′

η

]
F

q
nki + g′Fq

nki

=
∑

(xαη − xαν)F
q
nki · f ′

ηF
q
nki + g′Fq

nki = g′.

η
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Thus g′ = 0 and ar = ∑
η(xαη − xαν) · f ′

η ∈ 〈R(xαη − xαν) | α ∈ Un,η ∈ Tα〉. It follows that r

belongs to the corresponding purification as claimed. Thus the three displayed sets of the lemma
coincide. �

Similarly we can characterize the ideals Inki . The proof follows the arguments of the previous
lemma.

Lemma 4.4. For p = pnki ∈ Π the following holds.

Inki = kerFp
nki = 〈

Rxαη

∣∣ α ∈ Un, η ∈ Tα, cα(η) = i, lgη = k + 1
〉
∗ ⊆ R.

We now come to the proof of Theorem 4.1. Let ϕ ∈ EndZ R and 0 �= r ∈ R be as in the
theorem. We fix some n ∈ ω and α ∈ Un with r = rαn = xα⊥ and consider the family Xα =
{xαη | η ∈ Tα} of generators from R and let Yα = {yαη := xαηϕ | η ∈ Tα}. From the definition of
the variables xαη, the ideals Inki, Jnki and the observation that these ideals are fully invariant we
get

• xα⊥ = r and yα⊥ = rϕ.
• If lgη > 0, then xαη ∈ X.
• If cα(η) = i, lgη = k + 1, ν = η �k, then xαη ∈ Inki and xαη − xαν ∈ Jnki .
• If cα(η) = i, lgη = k + 1, ν = η �k, then yαη ∈ Inki and yαη − yαν ∈ Jnki .

The next definition helps to investigate Yα .

Definition 4.5. If η ∈ Tα , then let Λα(η) be the set of all monomials from 〈X〉 which appear in
the canonical representation of yαη in Q[X]. If m ∈ 〈X〉, then let activeαη(m) be the list of all
variables xβν from m with cα(η) = cβ(ν).

The definition of activeαη(m) will mainly be used for m ∈ Λα(η). Note that a list is not a set:
a variable xβν will appear with its multiplicity (for m) which in general may be > 1. We do not
care about the ordering of this list.

Corollary 4.6. For η ∈ Tα , cα(η) = i, lgη = k + 1 and m ∈ Λα(η) the following holds.

(i) activeαη(m) �= ∅.
(ii) If k > 0 and ν = η �k, then m′ := mF

q
nki ∈ 〈X〉 and for the lists we have (activeαη(m))F

q
nki ⊆

activeαν(m
′).

From Corollary 4.6(ii) follows immediately | activeαη(m)| � | activeαν(m
′)| for the sizes of

the lists.

Proof. (i) From xαη ∈ Inki follows yαη ∈ Inki and by Lemma 4.4 we have yαηF
p
nki = 0,

hence also mF
p
nki = 0. Note that the members of activeαη(m) have color cα(η) = i and thus

activeαη(m) �= ∅ as the map F
p
nki replaces xα′η′ ∈ activeαη(m) ⊆ X with 0.

(ii) If xα′η′ ∈ activeαη(m), then lgη′ = lgη = k + 1 by Theorem 2.6(iii)(a) and the map F
q
nki

replaces xα′η′ by xα′ν′ ∈ X (as k > 0) with ν′ = η′ � k. Thus mF
q ∈ 〈X〉.
nki
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Furthermore, from xα′η′ ∈ activeαη(m) follows cα′(η′) = cα(η) and cα′(ν′) = cα(ν) by
Theorem 2.6(iii)(b). Thus xα′ν′ = xα′η′Fq

nki ∈ activeαν(m
′) and for the lists we have

(activeαη(m))F
q
nki ⊆ activeαν(m

′). �
Recall the trees Tα, T ′

α from Section 2.

Corollary 4.7. Let ν = ν′ • τ ∈ Tα with lgν′ = k and ν′ � η′′ ∈ T ′
α with lgη′′ = k + 1. Then there

is some branch σαν with the following properties.

(i) τ � σαν ∈ ω>ω with lgσαν = k + 1.
(ii) If xβξ ∈ X appears in the canonical representation of yαν with ξ = ξ ′ • υ , then σαν �= υ .

(iii) If η := η′ • σαν ∈ Tα for some ν′ � η′ ∈ T ′
α with lgη′ = k + 1, then cα(η) �= cβ(ξ) for all

xβξ ∈ X which appear in the canonical representation of yαν .

Proof. On the one hand there are only finitely many xβξ which may appear in yαν , on the other
hand there are infinitely many choices for σαν ∈ ω>ω with (i). So it is easy to choose σαν with
(ii). Property (iii) is an immediate consequence of (i) and (ii):

The branch η ∈ Tα is well defined by (i) and the definition of Tα , while from cα(η) = cβ(ξ)

follows σαν = υ by Theorem 2.6(iii)(c), contradicting (ii). �
Definition 4.8. If ν = ν′ • τ ∈ Tα with lgν′ = k, then set

suc∗
α(ν) = {

η = η′ • σαν

∣∣ ν′ � η′ ∈ T ′
α, lgη′ = k + 1

}

as a set of special successors of ν and

T ∗
α = {

η ∈ Tα

∣∣ η �(
 + 1) ∈ suc∗
α(η � 
) for all 
 < lgη

}

as the subtree of Tα induced by these successors.

The next corollary shows that for any η ∈ T ∗
α the set (T ∗

α )�η satisfies the closure condition
from Definition 2.7 and thus qualifies for Theorem 2.8.

Corollary 4.9. If η = η′ •σ ∈ T ∗
α , then (T ∗

α )�η satisfies the closure condition from Definition 2.7
for η. In particular T ∗

α ⊆ ω>λ is a subtree with the closure condition for η = ⊥ • ⊥ ∈ T ∗
α .

Proof. It is clear that T ∗
α and (T ∗

α )�η are closed under initial segments, thus subtrees of ω>λ.
The closure condition is also immediate from Corollary 4.7. Note that ν = ν′ ∗ τ ∈ Tα with
lgν′ = k and ν′ �η′ ∈ T ′

α with lgη′ = k + 1 implies that ν′ has successors in T ′
α , hence some σαν

exists and also suc∗
α(ν) �= ∅. �

Corollary 4.10. If η ∈ T ∗
α , cα(η) = i, lgη = k + 1 and ν = η �k, then the following holds.

(a) If m ∈ Λα(ν), then mF
q
nki = m.

(b) yαηF
q
nki = yαν .

(c) If k > 0, m ∈ Λα(ν), then there is m′ ∈ Λα(η) with m′Fq
nki = m.



250 R. Göbel et al. / Advances in Mathematics 226 (2011) 235–253

Sh:948
Proof. (a) Suppose that some xβξ ∈ X appears in m which is not a fix-point of F
q
nki . Then

necessarily cα(η) = i = cβ(ξ) which contradicts Corollary 4.7(iii).
(b) By the choice of xαη − xαν ∈ Jnki we also have yαη − yαν ∈ Jnki and thus (yαη −

yαν)F
q
nki = 0 by Lemma 4.3. It follows 0 = yαηF

q
nki − yανF

q
nki = yαηF

q
nki − yαν which is (b).

(c) We write yαν = ∑
mi∈Λα(ν) aimi and yαη = ∑

m′
j ∈Λα(η) a

′
jm

′
j ; by (b) follows

∑
m′

j ∈Λα(η)

a′
jm

′
jF

q
nki = yαηF

q
nki = yαν =

∑
mi∈Λα(ν)

aimi.

The summands on the left-hand side are monomials in 〈X〉 by Corollary 4.6(ii) and k > 0. Com-
paring the two sides, for any mi ∈ Λα(ν) there must be an m′

j ∈ Λα(η) with m′
jF

q
nki = mi . So

mi = m demonstrates (c). �
Definition 4.11. If η ∈ T ∗

α , cα(η) = i, lgη = k + 1, ν = η �k and k > 0. Then let

gαν : Λα(ν) −→ Λα(η) with mgανF
q
nki = m for all m ∈ Λα(ν).

The map gαν is well defined by Corollary 4.10(c) and the following holds by Corollary 4.6(ii).

Proposition 4.12. If gαν is defined as in Definition 4.11, then

F
q
nki � activeαη(mgαν) : activeαη(mgαν) −→ activeαν(m)

is an injective map of the lists.

The following innocent looking lemma collects most of the earlier results and is the platform
for the final stage of the proof of Theorem 4.1.

Lemma 4.13. If η ∈ T ∗
α , lgη = k + 1 and m ∈ Λα(η), then there is ξ ∈ Tα such that xαξ ∈

activeαη(m).

Proof. If η is as in the lemma, then we want to define inductively a family {mη′ | η′ ∈ (T ∗
α )�η}

with

(i) mη′ ∈ Λα(η′),
(ii) mη := m,

(iii) mη′ := mν′gαν′ for η � η′ ∈ T ∗
α with cα(η′) = i′, lgη < lgη′ = k′ + 1 and ν′ = η′ � k′.

If mη′ is from this list, then mη′Fq

nk′i′ = mν′ . First we consider the family

{∣∣ activeαη′(mη′)
∣∣ ∣∣ η′ ∈ (

T ∗
α

)
�η

}
.

If η � η1 � η2, then | activeαη2(mη2)| � | activeαη1(mη1)| by Corollary 4.6(ii). Choose μ ∈
(T ∗

α )�η with | activeαμ(mμ)| minimal. Then | activeαη′(mη′)| is constant for all η′ ∈ (T ∗
α )�μ. If

now μ � η′ ∈ T ∗
α with cα(η′) = i′, lgμ < lgη′ = k′ + 1, ν′ = η′ �k′, then

F
q

′ ′ : activeαη′(mη′) −→ activeαν′(mν′) is a bijection of lists. (4.1)

nk i
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By Corollary 4.6(i) we also have that activeαμ(mμ) �= ∅. So we can choose

xβμ′ ∈ activeαμ(mμ) (4.2)

and we define inductively a color preserving partial tree homomorphism

Ψ : (T ∗
α

)
�μ

−→ Tβ such that xβΨ (η′) ∈ activeαη′(mη′).

First we choose Ψ (μ) = μ′ ∈ Tβ . Since xβμ′ ∈ activeαμ(mμ) we get cβ(μ′) = cα(μ) and Ψ pre-
serves the color at this stage. Moreover, since the colors code the branches from ω>ω and the
lengths of branches, also lgμ′ = lgμ and Ψ preserves the length at this stage. In the inductive
step we consider μ�η′ ∈ T ∗

α with cα(η′) = i′, lgμ < lgη′ = k′ + 1, ν′ = η′ � k′ and Ψ (ν′) = ξ ∈
Tβ such that xβξ ∈ activeαν′(mν′). By (4.1) there is xβ ′ξ ′ ∈ activeαη′(mη′) with xβ ′ξ ′Fq

nk′i′ = xβξ .
We put Ψ (η′) = ξ ′. By definition of F

q

nk′i′ follows β = β ′, and ξ ′ ∈ Tβ with ξ ′ �(lg ξ ′ − 1) = ξ .
Thus Ψ (η′) ∈ Tβ preserves lengths and initial segments; moreover xβΨ (η′) ∈ activeαη′(mη′). Fi-
nally xβΨ (η′) ∈ activeαη′(mη′) implies that cβ(Ψ (η′)) = cα(η′), so Ψ also preserves the color
and thus is as required above. We are ready to apply Theorem 2.8 (together with Corollary 4.9)
and derive that α = β . By (4.2) there is μ′ ∈ Tα such that xαμ′ ∈ activeαμ(mμ). Applying Corol-
lary 4.6(ii) and η�μ we also find some xαξ ∈ activeαη(mη) = activeαη(m) and the crucial lemma
is shown. �
The final stage of the proof of Theorem 4.1. We now chose any η ∈ Tα with lgη = 1,
cα(η) = i. By Lemma 4.13 we can write

yαη =
∑

mi∈Λα(η)

aimi =
∑

mi∈Λα(η)

aixαηi
m′

i ,

where mi = xαηi
m′

i with xαηi
∈ activeαη(mi). It follows that cα(ηi) = cα(η) and thus lgηi =

lgη = 1. By the earlier choice of xα⊥ = r , the definition of yα⊥ and Corollary 4.10(b) we get
from the above that

rϕ = xα⊥ϕ = yα⊥ = yαηF
q

n0i =
∑

mi∈Λα(η)

ai

(
xαηi

F
q

n0i

)(
m′

iF
q

n0i

) = r
∑

mi∈Λα(η)

ai

(
m′

iF
q

n0i

)

is an element from (Rr)∗. �
5. The Main Theorem and consequences

5.1. Proof of Main Theorem 3.1

Lemma 5.1. Let ϕ ∈ EndZ Q[X]+ with

f ϕ ∈ Q[X] · f for all f ∈ Q[X],

then ϕ is multiplication by an element of Q[X].
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Proof. By hypothesis on ϕ we find for each f ∈ Q[X] an element gf ∈ Q[X] such that f ϕ =
f · gf . If m ∈ 〈X〉 is a monomial and x ∈ X, then mϕ = m · gm = m(x) · gm(x) and (xm)ϕ =
xm · gxm = x · m(x) · gxm(x) seen as functions g(x) depending on x. Now we fix r ∈ Q and use
EndZ Q[X]+ = EndQ Q[X]+ to compute (rm − xm)ϕ = r · mϕ − (xm)ϕ = r · m(x) · gm(x) −
x · m(x) · gxm(x), while by hypothesis also (rm − xm)ϕ = (rm − xm) · grm−xm(x) holds. Thus

(rm − xm) · grm−xm(x) = r · m(x) · gm(x) − x · m(x) · gxm(x).

We now substitute x := r into this polynomial equation and get

0 = r · m(r) · gm(r) − r · m(r) · gxm(r) (5.1)

which holds for all r ∈ Q. If r �= 0 also rm(r) is a non-zero element of the integral domain Q[X],
so (5.1) gives

h(r) = 0 for h(x) = gm(x) − gxm(x) and for all 0 �= r ∈ Q.

Thus x − r is a factor of h(x) for infinitely many r ∈ Q, which is only possible if h is the zero-
polynomial and gm = gxm. We apply this recursively for all monomials m ∈ 〈X〉 to get gm = g1
for all m ∈ 〈X〉, and it is now clear (by linearity) that also gf = g1 for all 0 �= f ∈ Q[X]. We
conclude ϕ = g1 · id, where id denotes the identity map on Q[X]. �
Proof of Main Theorem 3.1. Let ϕ ∈ EndZ R for the ring R constructed in Section 3. Since
the additive group of Q[X] is divisible, ϕ can be lifted to a group endomorphism of Q[X]+ and
satisfies by Theorem 4.1 the hypothesis of Lemma 5.1. Thus ϕ = g · id for some polynomial
g ∈ Q[X]. However 1ϕ = g ∈ R which completes the proof. �
5.2. Large families of E-rings

The Main Theorem 3.1 can easily be extended to a family of rigid E-rings. For this decompose
the family of trees given by Theorem 2.1 into 2λ families of trees {(Tα, cα) | α ∈ λi} of size 2λ

(i < 2λ) and apply the earlier arguments for the corresponding families of trees. We get E-rings
Ri (i < 2λ) and the following holds.

Corollary 5.2. If λ is any infinite cardinal < κ(ω) (the first ω-Erdős cardinal), there is a family
Ri (i < 2λ) of absolute E-rings of cardinality λ. If HomZ(R+

i ,R+
j ) �= 0 in some generic exten-

sion of the universe for some i, j < 2λ, then i = j ; thus {Ri | i < 2λ} is absolutely rigid, and also
Z[X] ⊆ Ri ⊆ Q[X] for all i < 2λ for a set X of λ commuting free variables.
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