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ABSTRACT 

We deal with two natural  examples of almost-elementary classes: the 

class of all Banach spaces (over ]~ or C) and the class of all groups. We 

show that  both  of these classes do not have the strict order property, and 

find the exact place of each one of them in Shelah's SOP,~ (strong order 

property of order n) hierarchy. Remembering the connection between 

this hierarchy and the existence of universal models, we conclude, for 

example, tha t  there are "few" universal Banach spaces (under isometry) 
of regular density characters. 

1. Introduction and preliminaries 

In this paper we investigate two natural classes--the class of all Banach spaces 

(real or complex) and the class of all groups, from the point of view of model 

theory, more precisely, of Shelah's classification theory for classes of logical struc- 

tures. Classification theory is an attempt to classify theories/classes of mod- 

els according to their model-theoretical complexity--number of nonisomorphic 

models, number of nonisomorphic relatively "nice" models, existence of "nice" 

(saturated, universal) models, etc. In order to analyze structure of classes, cer- 

tain syntactical properties were defined, some well-known, like the order prop- 

erty (equivalent to non-stability, see [Sh:c], chapter I) and the tree property 

(equivalent to non-simplicity, see [Sh93], [KimPil]), some less known, e.g., the 
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strict/strong order properties (SOP), see Definition 1.1 below. In this article 

we test the classes in question with respect to these properties, as well as a 

semantic property of existence of universal models, which is closely connected 

to SOP. 

It follows from results proven here that Banach spaces and groups are not 

stable and even not simple, but on the other hand, neither of these classes has 

the strict order property. We do more: we find the exact position of each one 

of these classes in the SOPn complexity hierarchy defined in [Sh500], namely 

we show that Banach spaces have SOPn for all n, and even FSOP (finitary 

strong order property), but do not have the strict order property. This is done 

in sections 2 and 3. In section 4 we show that groups have SOP3, but not SOP4. 
In section 2 we also derive a conclusion considering nonexistence of universal 

Banach spaces in many cardinalities. 

Apart from giving particular information about Banach spaces or groups, this 

work also gives a certain intuition on the SOPn hierarchy by exhibiting natural, 

"mathematically concrete" examples of classes that occupy nontrivial positions 

in it. For instance, no "interesting" example of a theory/class with FSOP but 

without the strict order property was known before. 

Note that in this paper we are not investigating the first order theory of a 

particular Banach space or group. Rather than that, we are interested in the 

class of all groups and the class of all Banach spaces, with the natural notion of 

submodeh subgroup in the case of groups, linear subspace with induced norm 

in the case of normed spaces. So types in these classes are determined by the 

natural embeddings/isomorphisms: isomorphisms of groups in the first case, 

linear isometries in the second one. In other words, the appropriate notion of 

type for us is the quantifier free type. So when we say "formula", we mean 

quantifier free formula, the same with types (unless specified otherwise). 

In short, we are treating both classes as classes of models of universal the- 

ories, or (as both have amalgamation) as so-called Robinson theories. Groups 

is an example of a classical Robinson theory, see [Sh54] (called "classes of kind 

II" there), [Hr]. Banach spaces form a positive Robinson theory, see [Ben02]. 

Robinson theories are characterized (see [Hr], [Ben02]) by existence of universal 
domains, i.e. universal (for the class) homogeneous models, compact for quan- 

tifier free types (in the positive case--positive q.f. types, see a more detailed 

explanation below). We will fix such "monster" models for each class in ques- 

tion in "big enough" cardinalities, and all our discussions will take place inside 

these universal domains. 
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We recall now the definitions of strong/strict order properties ([Sh500]): 

Definition 1. i: 
(1) We say that a formula ~(~, ~) (or a type p(~, ~)) exemplifies the strict 

order property (strictOP) in a model M if it defines a partial order on M 

with infinite indiscernible chains. 

(2) We say that a formula ~(~, ~) (or a type p(~, ~)) exemplifies the strong 
order property of order n (SOPn) (for n >_ 3) in M if it defines on M a 

graph with infinite indiscernible chains and no cycles of size n. 

(3) We say that a formula ~(~, ~) (or a type p(~, ~)) exemplifies the strong 
order property of order <_ n (SOP<_n) (for n _> 3) in M if it defines on 

M a graph with infinite indiscernible chains and no cycles of size smaller 

than or equal to n. 

(4) We say that a type p(~, ~) (~, ~ can be of infinite length) exemplifies the 

strong order property (SOP) in M if it defines on M a graph with infinite 

indiscernible chains and no cycles at all. 

(5) We say that a type p(~, ~) exemplifies the finitary strong order property 
(FSOP) in M if it exemplifies the SOP in M and ~, y are of finite length. 

(6) We say that a formula/type exemplifies SOPn/SOP<n/SOP/FSOP/ 
strict OP in a (positive) Robinson theory T if it exemplifies it in the 

universal domain of T. We say that T has one of the above properties if 

some (positive) quantifier free formula/type exemplifies it. 

Remark 1.2: 
(1) Obviously, s t r i c t O P ~ F S O P ~ S O P ~ S O P ~  for all 

implications are known to be proper (see [Sh500]). 

n. All these 

(2) SOPn+I=vSOPn for all n (this is less obvious, but still easy--see [Sh500]). 

This implication is also proper. 

(3) A first order theory T has SOPn.~-~ it has SOP<_n - -  once again, see 

[Sh500]. The right-to-left direction is, of course, obvious; in order to go 

from left to right, one might have to change the formula that  exemplifies 

the property. 

(4) Once we enlarge our logic so that it is possible to define transitive closure 

of a (type-)definable relation (for example, going to L~ 1 ,w), the strict order 

property loses its meaning and becomes equivalent to the SOP. But in 

the first order logic, and even in other logics which are still compact, 

these two properties might differ. We shall see that  the class of Banach 

spaces equipped with any logic satisfying Lo~ theorem (in particular, with 

Henson's logic, see below) exemplifies this. 
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The SOPn hierarchy is connected in the following way to the well-known 

classes of stable and simple theories: 

FACT 1.3 ([Sh500]): Any theory/class with SOP3 is not simple (and therefore 

not stable). This implication is proper, i.e. there exists a non-simple NSOP3 
theory. 

So SOPn hierarchy is "above" simple theories from the point of view of classi- 

fication theory (i.e., more complicated), but yet below theories with strict order 

property. So by [Sh:c], theorem 4.7, all theories in the SOPn hierarchy (prop- 

erly, i.e. unstable and without the strict order property) have the independence 

property ([Sh:c], definition 4.3). In particular, this holds for Banach spaces and 

groups. 

As most people are unfamiliar with positive model theory, we will discuss now 

the class of Banach spaces in more detail. In order to turn Banach spaces into a 

positive Robinson theory, one has to equip it with the positive strongly bounded 

logic. One way to do this is introducing (in addition to the language of a vector 

space over a fixed field) predicates P[ql,q2] (x) for every 0 _< ql < q2 rationals 

(interpreted in the models as "ql ~ II x ]1 _(q2") and allowing only positive 

formulae (i.e. the only admissible connectives are disjunction and conjunction). 

These formulae are in particular positive bounded in the sense of Henson, 

therefore results proven in [HenIov] hold for them. For instance, this logic is 

preserved under taking ultraproducts; see the ultraproduct theorem (1.4) below. 

In fact, this theorem is one way of showing compactness in the universal domain 

of the class of Banach spaces. 

See [HenIov] for the basics of positive model theory and [Ben02] on positive 

Robinson theories. One can enrich the language, but this basic one will do for 

our purposes. 

In section 2 we show that there exist normed spaces with SOPn exemplified 

by quantifier free basic positive strongly bounded formulae, and in fact there 

exists a normed space with "uniform" definition of those properties, i.e. FSOP. 
This is a strong nonstructure result for the class of all normed spaces, and the 

logic exemplifying it is the most simple and basic one. No special property of 

Banach spaces as a Robinson theory (i.e. compactness) is used in that proof 

except the fact that we don't have to care about indiscernibility of sequences 

exemplifying the order properties; see 1.12. We could have avoided this usage, 

but see no need of doing that, as all the formulae appearing in the proof are 

positive strongly bounded, therefore there is no harm in working in a universal 

domain (which is compact for these formulae). 
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In section 3 we show that the strict order property cannot be exemplified 

in the universal domain of the class of Banach spaces by a positive bounded 

formula. This is done using compactness of the monster model. More precisely, 

we use the following Henson's version of Lo~ theorem for positive formulae with 

bounded parameters. We state only one direction of the theorem, because no 

new notions have to be defined in order to formulate it, and this is the only 

direction we're using here. See [HenIov] for more versions of compactness in 

positive bounded logics, precise definitions of the ultraproduct and proofs. 

THEOREM 1.4: Let V = (Vi : i E I) be a sequence of normed spaces, I infinite. 

Let t1 be a non-principal countably incomplete ultrafilter on I, and let V be the 

ultraproduct of  V modulo tl, or, more precisely, the Banach space which is (a 

completion of) the normed space we get by "throwing away" all the elements 

with infinite norm from the ultraproduct and dividing by the infinitesimals. Let 

~i E Vi, Vi = (Vi,y : j < j*) (j* does not depend on i). Suppose there exists a 

uniform bound for ([[ vi,j [[:i E I , j  < j*). Denote ~ = (vi : i E I ) / t l .  Then for 

every positive bounded formula ~(Yc), len(~) = j*, {i : Vi ~ ~(~i)} E l l ~ V  

Proof: This follows from a combination of theorems and propositions proved in 

[HenIov]. The proofs (as well as formulations) of those theorems use the notion 

of "approximate satisfaction" which we do not define here. Those who would 

like to see the whole proof will have to follow the following lead: first, recall that 

if a formula holds, then certainly so do all its approximations. Now combine 

[HenIov] (9.2) with the fact that the ultraproduct is Rl-saturated by [HenIov] 

(9.18) and [HenIov] (9.20). I 

Remark 1.5: Readers who are worried about the notion of approximate satis- 

faction that was ignored, should note that we will use the theorem for quantifier 

free positive bounded formulae, for which notions of approximate satisfaction 

and regular satisfaction coincide. 

Another "test" line for classification of classes of models we consider here is 

whether or not a class can admit a universal model in certain cardinals. The 

questions discussed are the following (note that (2) seems more natural for our 

context than (1)): 

QUESTION 1.6: 

(1) In which regular A can the class of  normed spaces have universal models, 

i.e. in which regular cardinalities can there exist a normed space that 
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embeds (isometrically) any normed space of the same cardinality (and 

less)7 
(2) For which regular powers A can there exist a Banach space B of density 

A, which is universal (under isometries) for spaces of density <_ A (that is, 

every Banach space of density <_ A is isometrically embeddable to B)? 

These questions are certainly interesting for logicians investigating model the- 

ory of Banach spaces, but they can also be of some interest to functional ana- 

lysts. Unlike saturated, big, compact models, etc., the concept and the impor- 

tance of universal objects are well understood outside logic as well. Universal 

Banach spaces, for example, were studied by Banach himself in [Ban], and Szlenk 

in [Sz] showed there is no universal reflexive separable Banach space. Logicians 

and analysts do not always agree, though, on the question what a universal 

Banach space is. In the theory of Banach spaces more kinds of embeddings 

than just isometries (which are the natural functions between normed spaces as 

logical structures) are allowed. Therefore, the results here may not be of highest 

interest to non-logicians. In any case, we will present almost a full answer to 

1.6. 

Although questions concerning the universality spectrum seem no less natu- 

ral (or maybe even more so, especially to non-logicians) than the spectrum of 

saturation, calculating it is much harder. Every theory T has a saturated model 

in a regular A = A <x > IT[. Considering other A _> ITI, T has a saturated model 

in such A if and only if T is stable in A. There is no similar result for universal 

models. Moreover, the universal spectrum is not absolute, so we have to deal 

with consistency results, as will be explained below. 

Every saturated model is universal, therefore there exists a universal model 

(of every theory T) in every regular A = A <~. In fact, existence of a universal 

model can be shown by a straightforward construction for every first order 

theory and many non-elementary classes, in particular those discussed in this 

paper, in every regular A -- 2 <~. But what about other regular cardinals? It 

is not hard to see that  it is consistent for every T not to have a universal in a 

regular A < 2 <~ (see the appendix of [KjSh409]). Therefore, the only question 

one can ask for a given theory T is: for which regular A < 2 <~ is it consistent 

that  T has a universal model in A? 

A group including the first author as well as Grossberg, Kojman, D~amonja 

and others has been interested in this question for particular theories and classes 

of theories. In [GrSh174], [Sh175], [Sh457], [DzSh614], [Dz] some positive (con- 

sistency) results can be found. 
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In [KjSh409], Kojman and Shelah showed a negative result very important 

for our discussion here: 

THEOREM 1.7 ([KjSh409]): Suppose A is a regular cardinal such that for some 

cardinal a, ~+ < A < 2 ~. Then there is no universal linear order of cardinality 

)~. Moreover, no theory with the strict order property (see Definition 1.1) has a 

universal model in A. 

Remark 1.8: We will call a regular A which satisfies the assumption of 1.7, a 

cardinal which is far from the GCH. 

Remark 1.9: See [KjSh409] for results on singular cardinalities. 

In [Sh500] the first author generalized 1.7 to theories which have a weaker 

property than the strict order property--SOP4 (see 1.1). This is the most 

general known negative result, and the conjecture is that it cannot be generalized 

to bigger classes. We will use this result in the paper, so it should be formalized 

explicitly in a way that will come handy later: 

THEOREM 1.10 ([Sh500]): No theory/class with SOP4 has a universal model 

in a cardinal which is far from the GCH. Moreover, suppose A is far from the 

GCH, M is a model, ~(~, ~) exemplifies SOP4 in M. Then there exists a linear 

order J of cardinality A such that there is no sequence of length(~)-tuples of 

order type J in M ordered by ~(~, ~). 

So the result that the class of Banach spaces has SOP4 gives a partial answer 

to Question 1.6. Together with the fact that there exists a universal Banach 

space in every regular A = 2 <~, we get a pretty good idea about the universality 

spectrum of Banach spaces. 

Lastly, we point out that the requirement of indiscernibility of the infinite 

chains in the definition of the strong/strict order properties can be omitted. 

This will make our life easier when we prove those properties (in sections 2 and 
4). 

Suppose there exists in a "monster" model M an infinite sequence (ai : i < w) 

satisfying i < j ~ M  ~ ~(~i,~j). Then by compactness, there is such a se- 

quence of any length in M. Therefore, using the Erd6s-Rado theorem, without 

loss of generality the original w-sequence (ai : i < w) is also indiscernible. Now, 

again by compactness, there is an indiscernible chain as required of any length 

and order type (just a chain of the same type as (~i : i < w)). 

To be more precise, we are using the following: 
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FACT 1.11: Suppose there exists an infinite sequence (ai : i E I) ( / - - some 

infinite ordered set) in the universal domain M of some (positive) Robinson 

theory T, and let A be a finite set of formulae in the logic of T (note that  

the logic of T is compact). Then for any infinite ordered set J ,  there exists an 

indiscernible sequence (b~ : i E J)  such that for all n there exist il < .-. < in in I 

satisfying tpz ~ (b0, . . . ,  bn-1) _~ tp~ (ai~, . . . ,  5i,,). In particular, if A = {~(x, y))  

and ~(di ,~j)  holds for all i < j E I, the same thing holds for (bi : i E J).  

Proof: Use Erd6s-Rado and compactness, exactly like the case of M a big 

model of a first order theory. For more details, see [Ben03]. I 

We will use the following immediate corollary: 

COROLLARY 1 .12 :  

(1) If  M is the universal domain of a (positive) Robinson theory and we are in- 

terested in strict/strong order properties exemplified in it, indiscernibility 

can be omitted from all the items of Definition 1.1. 

(2) I f  T is a (positive) Robinson theory with the universal domain M 

(or M is just a homogeneous model compact in the logic ~), T has 

SOP/FSOP/SOP~/SOP<_~/str ictOP in ~¢=~ it is exemplified in M 

by some formula in f~ with indiscernible infinite chains of any order type 

it is exemplified in M by some formula in £~ with an infinite (not 

necessarily indiscernible) chain. 

2. B a n a c h  spaces  have  F S O P  

Let F be either • or C. 

Notation 2.1: We denote the "monster" Banach space (the universal domain 

of the positive Robinson theory of all Banach spaces) over F by 13. We identify 

the class (the Robinson theory) of Banach spaces with B. So saying "B has or 

does not have property X" implies that  the class has or does not have it. 

THEOREM 2.2:13 has SOPn for all n >__ 3. Moreover, there is a positive strongly 

bounded quantifier free formula ~n(~2, ~) exemplifying SO P<n in 13 with len~ = 

len ~ = 2, such that ~+2 (~, ~) F- ~n (:~, Y)- 

Proof: Choose n > 2. 

First we define a seminormed space Bo. As a vector space over F, its basis is 

{ a s :  a<w}U{b~  : a<w}.  The seminorm is defined by s(v) = sup.r< • {If.r(v)[}, 

Sh:789



Vol. 152,  2006  B A N A C H  S P A C E S  A N D  G R O U P S  253  

where ]~ is a functional defined on the basis as follows: 

f ~ ( a s ) = l  i f a < 7 ,  f ~ ( a s ) = 0  i f a _ > 7 ,  

f . r ( b s )=O i f a < %  f ~ ( b s ) = l  i f a _ > %  

and extended to every v E B0 in the only possible way. Note that  in fact 

s(v) = max~<~ {[fir(V)[} (i.e. the seminorm is finite). It is not a norm: it's 

easy to see that,  for example, s(ao - a x  - bl q- bo) = O. So we define B1 as the 

normed space B o / { v :  s(v) = 0}. Note that  {as : a  < w} U {bs : a  < w} is no 

longer a basis for B1, though it certainly still is a set that  generates the vector 

space. The following easy fact will be important  for us: 

® 2.2.1 {as : a < w} U {bs : a < w} is a sequence of distinct non-zero elements 

in B1. 

Now denote the completion of B1 by B (of which we can think as of a subspace 

of the "monster" B). 

Now we define a term in the language of Banach spaces (a positive bounded 

term) 7~,e(x,y) by 

r n , e ( x , y ) = ( n  - 2e )x+  (n - 2 e +  1)y. 

Now define cn,e,s = Tn,e(as, bs), i.e. 

Cn,e,s = (n - 2f)as + (n - 2f + 1)bs. 

It is clear from the definitions that  

If.y(cn,e,a)l = n - 2e, if a < "7 

and 

[ f ~ ( c n , e , s ) l = n - 2 e + l ,  if a_> 7. 

Therefore (check the calculation), 

® 2.2.2 
A A Ilcn,e+l,, - cn ,e ,s l l  = 2. 

In this case the maximum is achieved when either ~/<_ (~ < /3  or c~ < ~ < % 

For example, if a < ~ < 7, then f.y(cn,e,s) = n - 2•, while f.y(Cn,e+l,Z) = 

n -  2(~+ 1) = n -  2 e -  2. 

Also, 

® 2.2.3 

A A Ilcn,m,s -cn,o,~[I = 2m + 1. 
s < ~ < w  m<n 
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In this case the maximum is achieved when c~ < 7 _< fl, then f.r(Cn,m,c,) = 

n - 2m, while ].r(c~,o,~) = n + 1. 

Now we define ~,~ = ~ ( x l y l , x 2 y 2 ) :  

~n = A (ll~,e+l(x2,y2) - ~-,~,e(xl,yl)ll < 2) 
e<n 

/~ (ll~,.m(Xl,y~) - ~n,o(~2,v~)ll > 2 m +  a) 
m<n 

A (ilTn,m(Xl'Yl) -- Tn,O(X2'Y2)i[ ~ 2m --[- 2). 
m<n 

Remark 2.2.4: The last demand is not needed; as the reader will see in the 

proof, its only purpose is to make the formula strongly bounded. Readers who 

are interested only in Henson and Iovino's logic can just omit it. 

Now we shall show that ~n exemplifies SOP<n in/3. First, by 2.2.2, 2.2.3, and 

of course 2.2.1, the sequence (a~b~ : a < w} verifies the first part of the definition 

(in B, of which we think as of a subspace of B), i.e. it is an infinite chain of the 

graph defined by ~n on B (by 1.12, we don't need to prove indiscernibility). 

The only thing that is left to verify is that  there are no cycles of length _< n 

in this graph, and this is an immediate consequence of the triangle inequality 

(well hidden under the cover of long formulae): 

Suppose 2 < m < n, and suppose there are (ci, d i :  i < m} in B such that 

13 ~ ~n(cidi,Ci+ldi+l) for i < m and/3  ~ ~fln(cmdm,codo). Then in particular, 

from 13 ~ ~ (cidi, Ci+l di+l) for i < m follows (taking only the "first component" 
of ~,~) 

2.2.5 

/k (ll~,~+~(C~+l, d~+l) - ~-n#(c~,d,)}l <_ 2). 
i<rn 

On the other hand, 13 ~ ~n(cmdm,codo) implies (taking only the "second 

component" of ~n) 

® 2.2.6 

IJr~,m(Cm, d~)  - r~,0(Co, d0)ll _> 2m + 1. 

But from 2.2.5 it follows that 

II~-n,.-,(C.-,, din) - ~-,~,o(Co, do)ll <_ll~'n,~(c.-,, d. , )  - ~ 'n ,~ - l (C~- l ,  dm-1) l l  

+ . "  + IIr~,~(c~, dl) - r~,o(Co, do)ll 

<_2m, 

which contradicts 2.2.6. 
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Remark 2.2.7: Careful readers have probably noted that  we actually showed 

that  ~n exemplifies SOP<(n+I) in B, but it doesn't matter  for our discussion. 

We know now that  ~n exemplifies SOP<n. In order to complete the proof 

of the theorem, we need to show that  ~ + 2  ? ~n for all n _> 3. For this, just 

note that  Tn,t(x,y) = rn+2,e+l(X,y), and the rest follows immediately from the 

definition of ~n. m 

As corollaries, we derive several nonstructure results. The first one appears 

also in [Ben03]: 

COROLLARY 2.3: The class of Banach spaces is not simple, i.e. there exists a 
Banach space, which is not simple, therefore not stable. 

Proo£" See 1.3. n 

The following corollary can be summarized as "universal normed spaces in 

regular cardinals exist only if they have to", i.e. there are "few" universal normed 

spaces (under isometry). 

COROLLARY 2.4: Suppose A is a regular cardinal far from the GCH (see 1.8). 

Then there is no universal normed space of cardinality A (under isometries). 

Proof: SOP4 is enough for this result--see 1.10 ([Sh500], Theorem 2.13). l 

Remark 2.5: This almost answers 1.6(1). 

In fact, if we look closer at 1.10, we'll find out that  a more interesting (for 

our context) result can be formalized: 

COROLLARY 2.6: Suppose A is a regular cardinal far from the GCH (see 1.8). 

Then there is no universal model for the class of Banach spaces of density A 

(under isometries). 

Proof: Let M be a candidate. By universality, it certainly embeds B from the 

proof of 2.2, and on the other hand is itself embedded in the "monster". So there 

is ~(~, Y) exemplifying SOP4 in it. Let J be as in 1.10. Now the Banach space 

B j,  built in a similar way as B with basis of order type J (so its density is at 

most A), cannot be embedded into M, which is a contradiction to universality. 

m 

Remark 2.7". This almost answers 1.6(2). 
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COROLLARY 2.8: There exists a positive strongly bounded quantifier free type 
p(~, ~/) with len(~) = len(~) = 2, exemplifying F S O P  in B. 

Proof: Choose 

p(2, ~) = A ~2n+3(~, ~); 
n e w  

p is consistent by compactness, as ~n+2(2, ~) implies ~n(2, ~). Now, as qon(2, ~) 

exemplifies SOP<_n in B, and (aaba : a < w) from the proof of 2.2 is an infinite 

sequence ordered by ~n for every n, the result is clear. | 

3. B a n a c h  spaces  do not have the strict order property 

A natural question after we have shown 2.8 is: does /3 have the strict order 

property? Or, a more general question: does having a (type-definable) graph as 

in 2.8 imply the strict order property (maybe also type-definable)? Suppose we 

gave up compactness and allowed ourselves L~ 1 ,~ formulae, i.e. infinite disjunc- 

tions as well as infinite conjunctions. Then the answer to the second question 

is certainly positive, as one can define the transitive closure of a relation using 

an infinite disjunction, and the transitive closure of p(5:, ~) is easily seen to be 

a partial order on B. But in our case the implication is not clear, and in fact 

turns out to be false--we will give a negative answer to the first question (and 

therefore to the second one). So the positive Robinson theory of Banach spaces 

turns out to be an example of a class having a "uniform" definition of SOPn, 
but yet without the strict OP. 

THEOREM 3.1: B does not have the strict order property exemplified by a 

positive bounded type (in particular, B doesn't have the strict OP exemplified 
by a p.b. formula). 

Proof: Suppose towards a contradiction that  q(5;, ~) is a positive bounded 

type which exemplifies strict OP in B. So for every linear order I,  there is an 

indiscernible sequence (fii : i E I / w h i c h  is linearly ordered by q(~, ~). We will 

choose I = Z with the usual order. 

Denote len(~) = len(~/) in q(~, ~) by n and assume wlog that  there exists 

n* < n such that  At<~. (ai,~ = a~) for all i E I and (~i,~ : n* _< ~ < n,i  E I) is 

a linearly independent sequence over (a~ : ~ < n*). In other words, we assume 

Assumption 3.1.1: ( a ~ : e < n * ) [ J ( ~ i , t : n * < ~ < n , i • I )  is a basis for 

(5i : i • I)B. 
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Define for k < w, B~ = (~k, 5k+l)B. Denote, for any k2 > kl + 1, B~kl fl B ~k2 

by V-  (generated by (a~ : ~ < n*/). 
Pick m < w and define Vm as a vector subspace (over F) generated by 

(a0, a l , . - . , a m )  in /3. Note that by 3.1.1, Vm (as a vector space) is just a 

free amalgamation of B~, . . . , B m _  1 over (51) , . . . , (5k-1)  and V- .  We shall 

define three different norms on Vm. In order not to get confused between 

the original indiscernible sequence and the new normed space that  we are go- 

ing to define, we'll write (bi : i _< m) instead of (5i : i _< m). Let hi: Vm ~ 13 
and h - l :  Vm -+/3 be natural (linear) embeddings such that for 0 _< k _< m, 

h l (bk)  = ak and h-l(bk) = a - k -  L e t  g~,k: (b~) ~ ([~k) be the natural isomor- 

phism mapping bt onto bk and gk = go,k. Let h~: (bk) --+ (~e)B be the natural 
isomorphism mapping bk onto fit, i.e. h e = hi I (be) o gk,t. 

Now we define three different norms on B~ (for k < m). ]1" II1 is a norm 

induced by hi (which is in fact the identity), I]" I1-1 is induced by h - l ,  lastly 

t]" ]]0 is defined by max{I ] • Ill, H" I]-1}. Now we expand these definitions to 

Vm: define for t E Vm, 

i E {0,1,-1}, lI  t Iii = inf { ~ II tk Ili: tk e BIk, E tk = t}. 
k<m k<m 

In other words, Vm as a normed space (with three different norms) is defined 

by induction on m: for m = 1 it is just B~, Vm+l is the amalgamation (in the 

regular sense of normed spaces) of Vm and B~m over (bin). In particular, Vm and 

B~. agree on the definitions of the norms, and so do Vml and Vm2 for ml  < m2. 
Therefore, when we use norms I1" Ili, we will not specify in which Vra they are 

calculated. 

In fact, eventually we'll be interested only in II " II1. Our goal is to show that 
taking free amalgamations of (50, ~I)B. . .  (am-l ,  5m)B leads (in the limit, when 
m tends to infinity - -  and here is where the compactness of our logic will be 

used) to a symmetric type. The two other norms are useful for showing the 

limit is symmetric, and their role will become clear in 3.1.4. 

Note an easy but important observation: 

Remark 3.1.2: For all r E Vm, i E {1,-1},  I] r ]Ii _> II hi(r) liB. 

Proof: By the definition of II" Ili, given e > 0, there are tp E B~ for p < m 

such that  r = ~p<m tp and I] r ]]i + ~ >>_ ~p<m I] tp ]]~ = ~-~p<m I] hi(tp) lIB. 
The last equality is true by the definition of H" I]i on B~. As hi is linear, we 

conclude I] hi(r) lIB = ]l hi(~p<m tp) lIB ~_ Ep<m ]l hi(tp) lIB < ]I r I]i + ~. As 
was arbitrary, we are done. | 

Sh:789



258 S. SHELAH AND A. USVYATSOV Isr. J. Math. 

Let r' ,r" E (be). Define for 0 < k <_ m, rk = r' + gk(r"). We will be 

interested in [[ rk [[i for i E {0, 1, --1}. Note that by the definition of the norm 
! 

I[ "Ili, for each e > 0, there are tp E Bp for p < k such that rk = ~p<k tP and 

][ rk [[i + ¢ >__ ~-~p<k ][ tp [li _> [[ rk ][i. In the following claim we will see what tp 

as above look like. 

Denote (for k < m) V + = (bk,e : n* < ~ < n)Ym. Denote (for e < n*) b~ = bk,e 
for some/all k < w, so b~ = a~. We will still write V -  for (b~ : g < n*)vm = 
(a~ : g < n*)B. 

CLAIM 3.1.3: Let tp E B'p such that rk = ~-~p<k tp. Then there exist r'p E (bp) 
= t r l  and sp e V -  for O <_ p < k such that tp - r v  + p+l + sv and for O < p < 

' = - r '  and ' = gk(r"), therefore ' ~ V +. Moreover, w e  m a y  a s s u m e  r o r k k, rp 

E p < k  Sp = O. 

Proof" As tp E Bp, we can write for e v e r y p  < k, tp = ~p+l - ~ p  + Sp 

for rp+l E Vp~_l,~ p e V + and Sp e V - .  So we get rk = r ' + g k ( r " )  = 

--~o + ~0<p<k(~V -- ~p) + rk + ~p<k Sp. By 3.1.1 and the definition of Vm, 
(b~ : g < n*) U (bi,e : n* _ e < n, i < m) is a basis of Vm. As ~p and ~p are both 

elements of V + ,  remembering the fact that  rk = r' +gk(r"), where r' E (be) and 

r" E (bk), we get that  necessarily ~p = ~p. For 0 < p < k, this is going to be 

r~. As the claim does not demand r~, r~ ~ V - ,  and we know that r ~ + ~o E V - ,  

as well as gk(r')  -- ÷k, by changing so and Sk-1, we may assume ~0 = - r '  and 

rk = gk(r"). As rk =--rto + r~ + ~p<k 8p, w e  get Ep<k 8p = O. 

Now we shall show 

CLAIM 3.1.4: 

(1) For each i E {0, 1, -1} ,  H rk Hi is an increasing (with k) uniformly bounded 
sequence (the bound does not depend on m). 

(2) For each j > 1, m = j2, for each i E {0, 1 , -1} ,  II rm lie > [1 rm II~ ___ 

(1 + 2/j)  -1 .  II rj  Iio. 

Proo~ 

(1) First we show the boundedness: II r' + gk(r") Ili <_ II r' Ili+ II gk(r") I1~ = 

[I hl(r') lib + II hl(gk(r")) lib = II hl(r') lib + II hl(r") liB. So as we see, 
the bound does not depend on m. 

Now suppose k < e. We aim to show that II rk ll~ <-- II re ll~. First we'll 

prove this for i = 1. 

Choose s > 0. By the definition, there exist tp E Bp such that re = 

Ep<e tp and II re < E <e It t,, II1 < II re Ih + 
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Let rp' E (bp) and Sp E V -  for 0 _< p _< e be as in 3.1.3. 

Then 
! 

rk = r' + gk(r") = --% + gk(r ' )  

' + r~ ' + r~2 ' + + rlk_l ' + gk(r") + E Sp = - r  o - r I - r: . . . .  I'k_ 1 
p<~ 

(remember: ~ p < t  Sp = 0). 

Therefore, 

(~ 3.1.5: 

]] rk ]]1 <--I] --r~o + rl + So HI + H - r l  -~- rl2 + 81 ]]1 + " "  

+ II--rk-1 gk(r ) + E 8p 111" 
k-l<p<~ 

Remembering that 

10--r~k-1 + gk(r") + S II1 = I] hl(--rtk-1 + gk(r") + S)l ib 

for s E V -  (as - r ~ _  1 + gk(r") + s E B'k_l) and using the fact that  hi is 

linear, we get 

--rtk_l + g k ( r " ) +  E Sp 1 : 
k-l~_p<~ 

Now by the indiseernibility of gi in B (note that  k - 1 < k, k - 1 < e), 

hl ( - r lk -1) - l -h l (gk(r" ) ) -Fhl (  E SP) B 
k-l<_p<e 

But by 3.1.2, 

k-l<p<£ 

= Ihl(-r -i + Z s,) 
k--l(_p<~ 

k-l~_p<~ B 

~_ --rlk_l + ge(r") + E 8p 
k-l~_p<g 1 
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(2) 

Combining all the above, 

~)  3.1.6: 

--r'k_l + "r"'gk( ) + E Sp <-- I -r'k-1 +ge(r")+ E spt 
k - l<_p(~  1 k - l < p < ~  1" 

Now we will go back to 3.1.5 and use 3.1.6: 

! ! t II rk 10, <-il -ro +rl  + so 011 + I] - r ,  + r~ + sl ]lz + " "  

+ - 4 - 1  +gk(r") + Z sp 
k-l<_p<~ 

! ! ! 
<]1 - to  + rl + s0 II1 + II - ~  + r~ + s, ill +""  

I -  4-1 + g~(~") + E + Sp 
I k - l < p < ~  1 

=ll - ~  + f i  + 8o i1~ + II - d  + r~ + 8, 111 +""  

r l  ' t rH  ~ + 1 
+ - 4 - 1 + 4 - 4 + " + r ~ - 1 -  ~-l*g~ J ~ sp 

k - l < p < ~  

As ~ was arbitrary, we finish for the case i = 1. The same argument  is 

used for i = - 1 ,  and the case i = 0 follows. 

Define (just for the proof) Bi,j = (5i, 5j}B. Just  as in case of (bi, bj), we 

can define three norms on Bi,j: one is induced from the original norm on 

B (an analog of li" 111), the second one is induced from the norm on By,i, 

using the isomorphism from Bj,i onto Bi,j taking 5i onto 5j and vice versa 

(an analog of H " 10-1). The third norm on Bi,j (the one we will be actually 

interested in) will be denoted by el • HB;[,;~, and it is natural ly  an analog 

of I] " H0, i.e. the maximum of the first two norms. 

So we star t  the proof with the following 

MAIN CLAIM 3.1.7: Supposem > k + l ,  Ck E (bk)ym, cm E (bm)ym. De- 
noter = cm--ck E (bk,bm)ym. Then II r II1 > (1+ 2---L--) -1 "11 hi( r )  I I B ~  

- -  m - k  

Proof of the Main Cl~dm: First of all, wlog k = 0. Pick c > 0. By the 

definition of [1" I[1, there are tp E Bp for p < m such tha t  r = Etp and 

l l r l l ,  + c  _> E l l t p l t l  >_ I I r l l l .  By the same argument  as in 3.1.3, we 

can find cp E (bp) for p < m such tha t  for all p, tp = Cp+l - Cp. Denote 
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II tp II1 = II hl(tp) II~ by Qp. So 

II r II1 1!-C ~ ~p<mLOp ~ 11 r II1 

and we aim to show 

IIhI(r)  I1~0,,:~ _~ l + m  "l l r l l l"  

Instead, we will show 

II hi(r) HBo-:~ < 1 + m " EOp. 

This will certainly suffice, as this will imply 

H hi(r)IIS,o:~:<_ (1 + 2 ) .  l i t  HI + (1 + 2 ) . e  

and e was arbitrary, while m here is fixed. 

By 3.1.2, II hi(r) lib <_ II r Ill <_ Egp <_ (1 + ~ ) - E g p .  Therefore it's left 
to show that  

Denote for p < m and a E I,  cp = h~(cp). By the indiscernibility of as,  
for all a </~ E I,  

Also, denote for some/all  a < 

Note that  Q* = H h- l ( r )  NB, so our goal is 

O* _< (1 + 2 )  -EOB. 

For every a < ~ E I there is a functional ]a,Z: B --+ F such that  

II f~,~ II : 1, f~ , z (~  - c~n) : Q*. 

Choose ~ such that  Qe is minimal. In particular, 
@ 3.1.8: 

m 
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Choose ao < al  < a2 < oz3 <: a4 in I. 

g* =llc~ 3 - c7~ 111 = I/~1,~3(c~ 3 - c7~1)1 

g-1  

+ ~ f ~ , ~ ( c ;  4+~-1 - ~ + , ) +  fo~,~3(c7~+~-1-c7~1 ~+~+1) 
p ~ l  

m - 2  
[ ~ a o - m + p  ~ o - m + p + l ~  + ~  ( c a O - m + ( m  - 1  ) + E fa~,c~3~p - - ~ p + l  ] Jal,O~3k m--1 --  C~n 1 )1 

p~g-F1 

_ it" (~o~4+£--1 ~ao- -m+~+l  ~ I 
( g O +  " ' "  "~g~--I -[- gal,Ot3kL:~ --  t ' t + l  )l "~- g£+l '~- " ' "  "~-gm-1- 

The last inequality is true as [[ f~,~3 [[ = 1. 

D e n o t e 3 2 = a 4 + g - 1 , / ~ l = a o - m + g + 1 .  F i n d 3 o < 3 1  < 3 2 < ~ 3  

in I. Now note that 

Therefore, II ~ - ~ L  II -< 3ge. So (as II f ~ , ~  II -- 1) 

f ( ~ a 4 - F [ -  1 _ ~ao--m-~-g+l ~ I 1 al,a3~,u£ (~g+l }1 --~ [I C~g 2 - -  C~g-~l I[ <~-- 3Or. 

Putting all the inequalities together (including 3.1.8), we conclude 

g* <__ g o ' ~  " " " "~-gl-1  -~- I f a l , a 3 ( C ~  4 + g - 1  --  C°~°-m+t+l)g+l -[- g~+l '~- " ' "  "~-gm-1  

p,~ m 

which finishes the proof of the Main Claim. | 

Now assume m = j2 > 1. We aim to show I] rj []o _< ]1 rrn ][1" (1 + 2). As 

usual, we pick 6 > 0 arbitrary and assume [I rm I[1 + ¢ >_ Ep<m[[ tp I[1 for some 
I ! tp E Bp satisfying rm = Ep<mtp, where tp = - r p  + rp+l + Sp as in 3.1.3. Denote 

for g <_ j ,  ~l = ge.j,e(r~.j), i.e. ~t is a copy of r~.j in (be). 

So by the definition of rj = r' + g j ( r ' ) ,  we have 

II rj  1[o = II r' + rl  - r~ + r2 - r2 + " "  + +j-1 - r j -~ + g j ( r ' )  IIo. 

' (by 3.1.3), therefore gj (r" )  = Now note that gj (r" )  = ~j: gin(r") = rm 
r ~ j2 gm,y(gm(r"))  = gin,y( m)" Remembering that m = and the definition of 
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~j, we get the desired result. 

Also remember that r' = - r~  and Ep<mSp = 0 (see 3.1.3). We get 

II rj  I10 =l -- r ;  -t- r l  -- r l  - I - . . .  n t- r j - 1  -- r j - i  ~-r j  -t- E 8p o 
p<m 

=- - - r o - t - r l  - - r l  + ' " - I - r j - 1  - - i j - 1  + r j  + E 8p o 
p<m 

I r 
p<j j<p<2j 

-t- "'" -~- -- r j -1  -[- rj  -t- E 8p 0 
j(j--1)<_p<m 

, j<p<2j 1,2 

+ +h1( , ,1+, ,+ z 
j ( j-1)<p<ra 13 ..... 3--1,9 

: h I ( - - r ; - } - r } - ~ - E  8p)  131o,,~ -1- h 1 (-rlj-}-rt22-t  - E 8 , )  may 
p<j , " j <_p<2 j 133,2j 

( '  ' z m + . . .  + hi  - r ( j _ l )  j + r m + Sp . 
j(j--1)<p<m m a x  

The last equality is true just by definition of We and indiscernibility of ai in 

B. 
Now (remembering that j > 1) we can apply the Main Claim (3.1.7) and get 

for each 0 < ~ < j the following inequality: 

-- r)j + r(e+l)j + 8p 
ej<p<(ew1)j . . . .  

~ )  i l 8p <_ 1 + -- rej + r(~+l)j -]- E 
ej<p<(e+l)j 1 

Therefore, 

,, r, ,o _~(1, ~)( -r; 

l ' +r" + . . . +  - r ( j _ D j  + 

' E ' ' E 1 
+ r j  + sp + - r j  + r2j + 8p 

p<j 1 j<_p<2j 

E ~,) 
j(j--1)<p<m 
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Rewriting the last inequality in a different way, we get 

1 +  HrJH° - r l o + r j + E  sp + - r j + r 2 j  + E Sp 
p ( j  1 j~_p<2j 1 

I L + " '"  -~- --  r ( j _ l )  j -t- r m -~- E 8p 
j ( j - 1 ) ~ p < : m  1 

' ' ' + r ~ + s l  ][1 -<11 - r o  + rl + So + II --rl 

+ " "  + II - r '  + r~m + sin-1 II~ m--1 

-<ll rm II1 + c 

which finishes the proof of 3.1.4 (2) for the case i -- 1. A similar argument is 

used for i = -1 ,  and we are done. | 

By 3.1.4 (1), each one of the three sequences (11 rm Ili: m < w) converges. By 

3.1.4 (2), all of them converge to the same limit. Let us denote this limit by 

p(r', r ' )  E ~. 
Let V be an ultraproduct of all the Vm modulo some non-principal ultrafilter 

tl  on w (where Vm is a normed space with the norm II • II1): 

" =  1-[ 

(see 1.4 for a precise meaning of an ultraproduct of Banach spaces). 

Remark 3.1.9: 

(1) Certainly, this is where the compactness becomes important. We will use 

several times the analog of Log theorem for positive bounded formulae (see 

1.4), claiming Y ~ ~((~i : i < w)) if V~ ~ ~o(~i) for "almost all" i. 

(2) Instead of looking at Vm and V, we should have looked at their com- 

pletions, which are Banach spaces, and not just normed spaces, but it 

doesn't matter  (see [HenIov] (6.7), or recall that  we deal with quantifier 

free formulae). 

(3) We will think of V as embedded into our "monster" B. 

(4) Note that  there is a natural embedding im of Vm into V: 

im(r) = (O , . . . ,O , r , . . . , r , . . . ) ,  

i.e. i,~(r) = g: w --+ LJ Vm s.t. g(k) = 0 for k < m and g(k) = r for k >_ m. 

Moreover, for k < m we get im [ Vk = ik. 
So we will not distinguish between elements of Vm for some m (in fact, 

for all k >__ m) and the appropriate elements of V. 
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The following discussion will be conducted inside V (and therefore inside B). 

Let bw • V be the "limit" of the sequence (bm : m • w), i.e. b~ = (bin : m • w) / l l .  

Let g~ be the "limit" of (gm : m • w) taking b0 onto b~. 

Remember that given r ' , r "  • (bo), we defined r m = r '  gm[ ) for l < r a < w .  

We expand our definitions: let rm = r ~ + gin(r"),  r - m  = r" + gm(r ' ) ,  for 
1 < m _< w. Also remember that for r ~, r" as above, we denoted the limit of the 

sequences (of real numbers) <11 rm II~:m < w) (for i • {1 , -1 ,0})  by p(r ' , r " ) .  

We are going to show now that  in the limit model (V), one can exchange the 

roles of r '  and r".  

CLAIM 3.1.10: Let r ' , r "  • (1)o), rm = r' + gm(r"), r - m  = r" + gm(r ' ) ,  for 

1 < m <_ w. Let  p = p ( r ' , r " ) .  Then: 

(1) For every m, II r - m  II1 = II r m  I I -1 ;  

(2) II r~ Ily = I[ r_~ IIv = P- 

Proof ."  

(1) First, we show II rm I1-1 -> II r -m  II1. Pick ¢ > 0 and let (as usual) rm = 

~ p < m  tp such that  II rm II-1 + c > ~ p < m  tl tp II-1, where tp -- - r ~  + 

rp+ 1 '  + Sp, rp' E (bp), r' = -r'o, gm(r")  = r m' (see 3.1.3). So 

! ! 
II rm I1-1 + E >_ E II - r p  + rp+ 1 + Sp I1-1 

p < m  

- E ,I h_ , ( - r ;  r, -- + p+l  "~ 8p) liB" 
p<m 

By indiscernibility, for all p < m, 

! l lh-l(-,'~ + r~+l + s~)lIB 
! r t = II h - l ( g p , m - ( p + l ) ( - r p )  + g~+l,m--p(p+l) + Sp) liB. 

So 

II rm I1-1 + z > ~ II h_l(g~,~_(p+~)(-r'~)+ gp+~,m-~(~'~+i)+ ~)lib 
p ,~ rn 

! r p = ~'~ II hl(gp,m-p(-r~)+gp+l,m-(~+l)(p+l) +Sp)I1~ 
p < m  

= ~ II g~,m-p(--r'p) + gp+i,m-(~+~)(r'p+l) + S~ II1. 
p < m  

The equality between the second and third terms is true because of the 

definition of hi, h-1 on Vm and indiscernibility. Now we conclude the 
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following: 

[I rm II-1 + E >__ Z H gp,m-p(-rp)  + gp-Fl,m-(p-F1)(l'p_{_l) "~- 8p Ill 
p ( m  

>_ ii go ,~ ( - r~ )  + g ~ , 0 ( r ' )  ill 

= li ~ ( r ' )  + r" lil = li r - ~  iil. 

As ¢ was arbitrary, we finish. The inequality in the other direction is 

proven in the exact same way. 

(2) Remember that by 3.1.4, both ]1 rm I[1 and ]6 rm I1--1 are increasing 

sequences converging to p. So on the one hand, It rm 0[1 <_ P and I] r - m  I[1 
<__ p for all m < w (remember that  by part (1), II r - m  ]61 = II rm l]-l)- 

Therefore, 

3.1.11: 

il r~ Ib < p, II r_~ ilv < p. 

On the other hand, for every real ~ > O, for almost all m, 

I{ rm ill ~ P - -~ ' ,  [I r--m Ill ---- It rm II-1 ~-- P - - C .  

Therefore, for all real e > 0, 

3.1.12: 

II r~ I Iv  > p - ~, II r _ ~  I Iv  > p - ~. 

Combining 3.1.11 with 3.1.12, we get the desired equalities, i 

The following claim can be viewed as the heart of the proof we've been working 

hard for: 

CLAIM 3.1.13: tp(b0,bw) is symmetric,  i.e. tp(b0,bw) = tp(b~,b0). 

Proof: Define the obvious mapping ¢ from (bo,bw) onto itself, extending 

g~ U g~l ("exchanging" bo and bw and respecting the linear structure). It is 

obviously an isomorphism of vector spaces, so we just have to show it is also 

an isometry. Take r E (bo,bw/; then for some r ' , r"  E (bo), r = r ' +  gw(r"). 

Therefore ¢(r)  = r" + g~(r'). Now, by 3.1.10, I[ r IIv = II 4~(r) IIv = p(r ' ,r") .  
H 

Now we have obviously reached a contradiction. Why? First of all, note that  

as tp(bi,bi+l) = tp(Si,Si+l) for all i • w, we get q(bi,bi+l) for all i (remember: 

q(~, ~) defines a partial order on B, (5i : i < w) is ordered by q). As q(~, ~) is a 

partial order, it is in particular transitive, so q(bo, b,~) holds for all m > 0, and 
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therefore 13 ~ q(bo, b~) (Lob theorem (1.4)+the fact that  q is a positive bounded 

type). But  by 3.1.13, 13 ~ q(bw, b0), a contradiction to q being a partial order! 
| 

4. Groups 

Let G be the "monster" group (the universal domain). As in the previous 

sections, we identify the class (of all groups) with its monster. Our first theorem 

in this section is a non-structure result. 

PROPOSITION 4.1: ~ has SOP3 

Proof: Consider the formula ~(x, y) defined by " (xyx  -1 = y2) A (x ~ y)". 

* First, we have to show that there is a sequence (ai : i < w) such that 

i < j = ~ ( a i ,  aj).  But this is trivial by using HNN extensions (see [Rot], 

p. 407) and compactness. 

* Secondly, we have to make sure there is no "triangle", but this is actu- 

ally a well-known example in geometric group theory (see [Grp], p. 493) 
of a triangle X = (a,b : aba - 1 - - b 2 ) ,  Y = (b,c : bcb -1 =c2) ,  Z = 

(a, c : cac -1 = a 2) that generates a trivial group when put together. 

Therefore, 

~ (Vx ,  y ,z ) (xyx - l = y 2 A y z y  - l = z  2 A z x z  - 1 - = x  2 > x = - y = z = e )  

(where e is the group identity). Therefore 

G  (3x, ^ ^ 

as required. | 

The proof uses the fact that there cannot be a triangle of a certain kind. 

A natural question now is - -  what about  quadrangles? In particular, is the 
group H = (a ,b ,c ,d  : aba -1 = b2,bcb -1 = c2,cdc -1 = d2,dad -1 = a2) also triv- 

ial? Once again, it's a well-known fact that  it is actually infinite, and the 

proof is even more interesting than the fact itself, as it seems very general - -  

it doesn't  speak at all about  the relations between the generators. In fact, the 

proof suggests a generalization that roughly speaking says that it is impossible 

to "collapse" a group with four generators by forcing relations between only 

adjacent pairs. Model theoretically, this leads to the following structure result. 
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THEOREM 4.2: ~ does not have SOP4, not even type-detinable. 

Isr. J. Math.  

Proof: Suppose towards a contradiction that a type p(~, ~) exemplifies SOP4 
in G. In particular, there exists an indiscernible sequence (Si : i  < w) such 

that i < j=~p(ai, aj). Define for all i E w, Hi = <5i)g. We denote len(~) = 

len(~) in p(~, ~) by ~ (not necessarily finite) and assume wlog (by indiscerni- 

bility) that there exists c~* < c~ such that Ae<a.(ai,l = a~) for all i < w 

and (ai,t : (~* _< g < ~, i < w) is a sequence of distinct elements. Define H -  = 

(a~ : ~ < ~*). As (~ may be infinite, we also assume that 5i in fact lists Hi, and 

therefore H -  = Hi M Hj for all i < j < w. 

By the indiscernibility, there exists for i ¢ j E w, an isomorphism f i , j:  
Hi -+ Hj mapping 5i onto aj. Define for all i < j E w, Hi,j = (cti, 5j>g. For 

j < i E w we define Hi,j by "relabelling", changing the roles of 5i and 5j, i.e. as 

a set Hi,j equals Hi#, and the group action is defined on it such that there exists 

f~:J: Hj,i ~ Hi,j an isomorphism extending ]i,j U fj,i. So for j < i, Hi,j does 

not have to be a subgroup of ~ (but we can embed it into G, as ~ is universal, 

although not necessarily over Hi U Hi). 

Given two groups G1 and G2 and a subgroup of both, Go, we shall denote 
the free amalgamation (amalgam) of the two over Go (see [Rot], p. 401) by 

G~ *~o G~. Now let us concentrate on Ho,/-/1,//2,/-/3. Define Ko = Ho *H- H:, 

K~ = Ho,~ *H~ H1,2, K2 =/-/2,3 *H~ Hu,o. Once again, those groups do not have 
to be subgroups of G. It is obvious, though, that Ko is a subgroup of both K~ 

and K2 (by chasing diagrams, see [Rot], p. 401). So we define K = K~ *go/(2. 

is universal, so we can embed K into ~. Denote the image of ai under this 

embedding by bi E ~. Now we note 

CLAIM 4.2.1: tp(bobl, ~) =tp(blb2, G) =tp(b2b3, G) = tp(b3bo, ~) = tp(5051, ~). 

Proo~ tp(bobl, ~) --tp(5o51, K) =tp(ao51, K 1 )  - -  tp(foal, Hoj) = tp(aoal, ~). 
The first equality is true because types are preserved under group isomorphisms 

("embeddings"), and the rest - -  just the definitions of the groups. Using the 

same arguments for tp(blb2, G), we get tp(blb2, G) = tp(ala2, G), but the lat- 

ter equals tp(fo51,G) by indiscernibility. The same argument (replacing K1 

by K2) shows tp(b2b3,6) = tp(5o51,6). Now tp(b3bo, G) = tp(a3ao, K) = 
3,0 - 3 0 - tp(a3ao, K2) = tp(a3ao, U3,0), but the latter equals tp(fg,3 (a3)fg(~ ( a i ) ,  ~ )  ---- 

tp(5053, ~) by the .definition of H3,0 and ~3,0 and by indiscernibility we're J0,3 ' 

done. | 
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Now we obviously get a contradiction, as by (4.2.1), 

6 ~ p(bo, 51) A p(bl, 52) A P(b2, b3) A p(b3, bo), 

which contradicts the fact that  p(~, Y) exemplifies SOP4 in ~. | 

We derive structure and nonstructure corollaries, using model-theoretical 

properties that  people are more familiar with than the SOP,, hierarchy: 

COROLLARY 4.3: The class of groups does not have the strict order property. 

In other words, no group has the strict order property (in the pure quantifier 

free language of groups). 

Proof: Obvious, as 4.2 states that  the class of groups does not have SOP4, 

which follows from the strict order property. | 

COROLLARY 4.4: The class of groups is not simple, i.e. there exists a group 

with the tree property. 

Proof'. We constructed a group with SOP3, which implies the tree property; 

see 1.3. I 

[Ban] 

[Ben02] 

[Ben03] 

[Dz] 

[DzSh614] 

[Grp] 

[GrSh174] 

R e f e r e n c e s  

S. Banach, Thdorie de operations lindaries, Monografje Matematyczne, 
Warsaw, 1932. 

I. Ben-Yaacov, Positive model theory and compact abstract theories, 
Journal of Mathematical Logic 3 (2003), 85-118. 

I. Ben-Yaacov, Simplicity in compact abstract theor/es, Journal of 
Mathematical Logic 3 (2003), t63-191. 

M. D~amonja, On universal Eberlein compacta and c-algebras, Topology 
Proceeedings 23 (1998), 143-150. 

M. D~.amonja and S. Shelah, On the existence of universals and an 
application to Banach spaces, Archive for Mathematical Logic 43 (2004), 
901-936. 

J. R. Stallings, Non-positively curved triangles of groups, in Group Theory 
from a Geometrical Point of View (E. Ghys, A. Haefliger and A. Verjovsky, 
eds.), World Scientific Publishing, Singapore, 1991, pp. 491-503. 

R. Grossberg and S. Shelah, On Universal locally finite groups, Israel 
Journal of Mathematics 44 (1983), 289-302. 

Sh:789



270 S. SHELAH AND A. USVYATSOV Isr. J. Math. 

[Hr] 

[Henlov] 

[KimPil] 

[KjSh409] 

[Rot] 

[Sh54] 

[Sh93] 

[Sh175] 

[Sh457] 

[Sh500] 

[Sh:c] 

[sz] 

E. Hrushovski, Simplicity and the Lascar group, preprint. 

C. W. Henson and J. Iovino, Ultraproducts in Analysis, Part I of the three- 
part book Analysis and Logic (C. W. Henson, J. Iovino, A. S. Kechris and 
E. W. Odell, eds.), London Mathematical Society Lecture Note Series, 
Cambridge University Press, No. 262, 2003. 

B. Kim and A. Pillay, Simple theories, Annals of Pure and Applied Logic 
88 (1997), 149-164. 

M. Kojman and S. Shelah, Nonexistence of universal orders in many 

cardinals, Journal of Symbolic Logic 57 (1992), 875-891. 

J. J. Rotman, Introduction to the Theory of Groups, Graduate Texts in 
Mathematics, Vol. 148, 4th edition, Springer-Verlag, Berlin, 1995. 

S. Shelah, The lazy model-theoritician's guide to stability, Logique et Anal- 
yse 18 (1975), 241-308. 

S. Shelah, Simple unstable theories, Annals of Mathematical Logic 19 
(1980), 177-203. 

S. Shelah, On universal graphs without instances of CH, Annals of Pure 
and Applied Logic 26 (1984), 75-87. 

S. Shelah, The Universality Spectrum: Consistency for more classes, in 
Combinatorics, Paul Erd6s is Eighty, Vol. 1, Bolyai Society Mathematical 
Studies, 1993, Proceedings of the Meeting in honor of P. ErdSs, Keszthely, 
Hungary, 7. 1993, pp. 403-420; an improved version available at 
http://www.math.rutgers.edu/,,~shelaharch. 

S. Shelah, Towards classifying unstable theories, Annals of Pure and 
Applied Logic 80 (1996), 229-255. 

S. Shelah, Classification Theory and the Number of Nonisomorphic 
Models, 2nd ed., North-Holland Publishing Co., Amsterdam, 1990. 

W. Szlenk, The non-existence of separable reflexive Banach space universal 
for all separable reflexive Banach spaces, Studia Mathematica 30 (1968), 
53-61. 

Sh:789


