Tomek Bartoszyński · Saharon Shelah

Strongly meager and strong measure zero sets

Received: 6 January 1999 / Revised version: 20 July 1999 Published online: 25 February 2002 – © Springer-Verlag 2002

Abstract. In this paper we present two consistency results concerning the existence of large strong measure zero and strongly meager sets.

1. Introduction

Let \mathscr{M} denote the collection of all meager subsets of 2^{ω} and let \mathscr{N} be the collection of all subsets of 2^{ω} that have measure zero with respect to the standard product measure on 2^{ω} .

Definition 1.1. Suppose that $X \subseteq 2^{\omega}$ and let + denote the componentwise addition modulo 2. We say that X is strongly meager if for every $H \in \mathcal{N}$, $X + H = \{x + h : x \in X, h \in H\} \neq 2^{\omega}$.

We say that X is a strong measure zero set if for every $F \in \mathcal{M}$, $X + F \neq 2^{\omega}$. Let *SM* denote the collection of strongly meager sets and let *SN* denote the collection of strong measure zero sets.

For a family of sets $\mathscr{J} \subseteq P(\mathbb{R})$ let $\operatorname{cov}(\mathscr{J}) = \min \{ |\mathscr{A}| : \mathscr{A} \subseteq \mathscr{J} \text{ and } \bigcup \mathscr{A} = 2^{\omega} \}.$ $\operatorname{non}(\mathscr{J}) = \min \{ |X| : X \notin \mathscr{J} \}.$

Strong measure zero sets are usually defined as those subsets X of 2^{ω} such that for every sequence of positive reals $\{\varepsilon_n : n \in \omega\}$ there exists a sequence of basic open sets $\{I_n : n \in \omega\}$ with diameter of I_n smaller than ε_n and $X \subseteq \bigcup_n I_n$. The Galvin-Mycielski-Solovay theorem ([4]) guarantees that both definitions are yield the same families of sets.

T. Bartoszyński: Department of Mathematics and Computer Science, Boise State University, Boise, Idaho 83725, USA.

e-mail:tomek@math.idbsu.edu, http://math.idbsu.edu/~tomek

S. Shelah: Department of Mathematics, Hebrew University, Jerusalem, Israel; and Department of Mathematics, Rutgers University, New Brunswick, NJ 08854, USA. e-mail: shelah@sunrise.huji.ac.il http://math.rutgers.edu/~shelah/

The first author was supported by Alexander von Humboldt Foundation and NSF grant DMS 95-05375. The second author was partially supported by Basic Research Fund, Israel Academy of Sciences, publication 658

Mathematics Subject Classification (2000): 03E35

Recall the following well-known facts. Any of the following sentences is consistent with ZFC,

- 1. $\mathcal{SN} = [2^{\omega}]^{\leq \aleph_0}$, (Laver [7])
- 2. $\mathcal{SN} = [2^{\omega}]^{\leq \aleph_1}$, (Corazza [3], Goldstern-Judah-Shelah [5])
- 3. $\mathscr{GM} = [2^{\omega}]^{\leq \aleph_0}$. (Carlson, [2])
- non(𝒱) = 𝔅 = 2^{ℵ₀} > ℵ₁, cov() = ℵ₁ and there exists a strong measure zero set of size 2^{ℵ₀}. (Goldstern-Judah-Shelah [5])

The proofs of the above results as well as all other results quoted in this paper can be also found in [1].

In this paper we will show that the following statements are consistent with ZFC:

- for any regular $\kappa > \aleph_0$, $\mathscr{GM} = [2^{\omega}]^{<\kappa}$,
- \mathcal{SM} is an ideal and $\operatorname{add}(\mathcal{SM}) \geq \operatorname{add}(\mathcal{M})$,
- $\operatorname{non}(\mathscr{GN}) = 2^{\aleph_0} > \aleph_1, \mathfrak{d} = \aleph_1$ and there is a strong measure zero set of size 2^{\aleph_0} .

2. *SM* may have large additivity

In this section we will show that *SM* can be an ideal with large additivity. Let

$$\mathfrak{m} = \min\{\gamma : \mathbf{MA}_{\gamma} \text{ fails}\}.$$

We will show that $\mathscr{GM} = [2^{\omega}]^{<\mathfrak{m}}$ is consistent with ZFC, provided \mathfrak{m} is regular. In particular, the model that we construct will satisfy $\operatorname{add}(\mathscr{GM}) = \operatorname{add}(\mathscr{M})$.

Note that if $\mathscr{GM} = [2^{\omega}]^{<\mathfrak{m}}$ then $2^{\aleph_0} > \mathfrak{m}$, since Martin's Axiom implies the existence of a strongly meager set of size 2^{\aleph_0} . Our construction is a generalization of the construction from [2].

To witness that a set is not strongly meager we need a measure zero set. The following theorem is crucial.

Theorem 2.1 (Lorentz). There exists a function $K \in \omega^{\mathbb{R}}$ such that for every $\varepsilon > 0$, if $A \in [2^{\omega}]^{\geq K(\varepsilon)}$ then for all except finitely many $k \in \omega$ there exists $C \subseteq 2^k$ such that

1. $|C| \cdot 2^{-k} \le \varepsilon$, 2. $(A \upharpoonright k) + C = 2^k$.

Proof. Proof of this lemma can be found in [8] or [1].

Definition 2.2. For each $n \in \omega$ let $\{C_m^n : n, m \in \omega\}$ be an enumeration of all clopen sets in 2^{ω} of measure $\leq 2^{-n}$. For a real $r \in \omega^{\omega}$ and $n \in \omega$ define an open set

$$H_n^r = \bigcup_{m>n} C_{r(m)}^m.$$

It is clear that H_n^r is an open set of measure not exceeding 2^{-n} . In particular, $H^r = \bigcap_{n \in \omega} H_n^r$ is a Borel measure zero set of type G_{δ} .

Sh:658

Strongly meager and strong measure zero sets

Theorem 2.3. Let $\kappa > \aleph_0$ be a regular cardinal. It is consistent with ZFC that $\mathbf{MA}_{<\kappa} + \mathscr{GM} = [2^{\omega}]^{<\kappa}$ holds. In particular, it is consistent that \mathscr{GM} is an ideal and $\operatorname{add}(\mathscr{GM}) = \operatorname{add}(\mathscr{M}) > \aleph_1$.

Proof. Fix κ such that $cf(\kappa) = \kappa > \aleph_0$. Let $\lambda > \kappa$ be a regular cardinal such that $\lambda^{<\lambda} = \lambda$. Start with a model $\mathbf{V} \models \mathsf{ZFC} + 2^{\aleph_0} = \lambda$.

Suppose that \mathscr{P} is a forcing notion of size $< \kappa$. We can assume that there is $\gamma < \kappa$ such that $\mathscr{P} = \gamma$ and $\leq, \perp \subseteq \gamma \times \gamma$.

Let $\{\mathscr{P}_{\alpha}, \mathscr{Q}_{\alpha} : \alpha < \lambda\}$ be a finite support iteration such that for each $\alpha < \lambda$,

1. $\Vdash_{\alpha} \dot{\mathscr{Q}}_{\alpha} \simeq \mathbf{C}$, if α is limit,

2. there is $\gamma = \gamma_{\alpha}$ such that $\Vdash_{\alpha} \dot{\mathcal{Q}}_{\alpha} \simeq (\gamma, \leq, \perp)$ is a ccc forcing notion.

By passing to a dense subset we can assume that if $p \in \mathscr{P}_{\lambda}$ then $p : \mathsf{dom}(p) \longrightarrow \kappa$, where $\mathsf{dom}(p)$ is a finite subset of λ .

By bookkeeping we can guarantee that $\mathbf{V}^{\mathscr{P}_{\lambda}} \models \mathbf{MA}_{<\kappa}$. In particular, $\mathbf{V}^{\mathscr{P}_{\lambda}} \models [2^{\omega}]^{<\kappa} \subseteq \mathscr{GM}$.

It remains to show that no set of size κ is strongly meager.

Suppose that $X \subseteq \mathbf{V}^{\mathscr{P}_{\lambda}} \cap 2^{\omega}$ is a set of size κ . Find limit ordinal $\alpha < \lambda$ such that $X \subseteq 2^{\omega} \cap \mathbf{V}^{\mathscr{P}_{\alpha}}$. As usual we can assume that $\alpha = 0$. Let *c* be the Cohen real added at the step $\alpha = 0$. We will show that $\mathbf{V}^{\mathscr{P}_{\lambda}} \models X + H^c = 2^{\omega}$, which will end the proof.

Suppose that the above assertion is false. Let $p \in \mathscr{P}_{\lambda}$ and let \dot{z} be a \mathscr{P}_{λ} -name for a real such that

$$p \Vdash_{\lambda} \dot{z} \notin X + H^c$$

Let $X = \{x_{\xi} : \xi < \kappa\}$ and for each ξ find $p_{\xi} \ge p$ and $n_{\xi} \in \omega$ such that

$$p_{\xi} \Vdash_{\lambda} \dot{z} \notin x_{\xi} + H_{n_{\xi}}^{\dot{c}}.$$

Let $Y \subseteq \kappa$ be a set of size κ such that

- 1. $n_{\xi} = \widetilde{n}$ for $\xi \in Y$,
- 2. {dom (p_{ξ}) : $\xi \in Y$ } form a Δ -system with root $\widetilde{\Delta}$,
- 3. $p_{\xi} \upharpoonright \Delta = \widetilde{p}$, for $\xi \in Y$,
- 4. $p_{\xi}(0) = \widetilde{s}$, with $|\widetilde{s}| = \ell > \widetilde{n}$, for $\xi \in Y$.

Fix a subset $X' = \{x_{\xi_j} : j < K(2^{-\ell})\} \subseteq Y$ and let $\widetilde{m} \in \omega$ be such that $C_{\widetilde{m}}^{\ell} + X' = 2^{\omega}$.

Define condition p^{\star} as

$$p^{\star}(\beta) = \begin{cases} p_{\xi_j} \text{ if } \alpha \neq \beta \& \beta \in \mathsf{dom}(p_{\xi_j}), & j < K(2^{-\ell}) \\ \widetilde{s} \widehat{\ } \widetilde{m} \text{ if } \alpha = \beta & \text{for } \beta < \lambda. \end{cases}$$

On one hand $p^{\star} \Vdash_{\lambda} C_{\tilde{m}}^{\ell} \subseteq H_{\tilde{n}}^{\dot{c}}$, so $p^{\star} \Vdash_{\lambda} X' + H_{\tilde{n}}^{\dot{c}} = 2^{\omega}$. On the other hand, $p^{\star} \geq p_{\xi_j}, j \leq K(2^{-\ell})$, so $p^{\star} \Vdash_{\lambda} \dot{z} \notin X' + H_{\tilde{n}}^{\dot{c}}$. Contradiction.

To finish the proof we show that $\mathbf{V}^{\mathscr{P}_{\lambda}} \models \mathsf{add}(\mathscr{M}) = \kappa$. First note that $\mathbf{MA}_{<\kappa}$ implies that $\mathsf{add}(\mathscr{M}) \ge \kappa$ in $\mathbf{V}^{\mathscr{P}_{\lambda}}$. The other inequality is a consequence of the general theory. Recall that (see [1])

1. $\operatorname{add}(\mathcal{M}) = \min\{\operatorname{cov}(\mathcal{M}), \mathfrak{b}\}\$

Suppose that $F \subset \omega^{\omega}$ is an unbounded family of size $\geq \kappa$.

- 2. if \mathscr{P} is a forcing notion of cardinality $< \kappa$ then F remains unbounded in $\mathbf{V}^{\mathscr{P}}$.
- 3. if $\{\mathscr{P}_{\alpha}, \mathscr{Q}_{\alpha} : \alpha < \lambda\}$ is a finite support iteration such that $\Vdash_{\alpha} |\mathscr{Q}_{\alpha}| < \kappa$ then $\mathbf{V}^{\mathscr{P}_{\lambda}} \models F$ is unbounded..

¿From the results quoted above follows that $\operatorname{add}(\mathscr{M}) \leq \mathfrak{b} \leq \kappa$ in $V^{\mathscr{P}_{\lambda}}$, which ends the proof.

3. Strong measure zero sets

In this section we will discuss models with strong measure zero sets of size 2^{\aleph_0} . We start with the definition of forcing that will be used in our construction.

Definition 3.1. The infinitely equal forcing notion **EE** is defined as follows: $p \in EE$ if the following conditions are satisfied:

- 1. $p: \operatorname{dom}(p) \longrightarrow 2^{<\omega}$,
- 2. dom $(p) \subseteq \omega$, $|\omega \setminus \text{dom}(p)| = \aleph_0$,
- 3. $p(n) \in 2^n$ for all $n \in \text{dom}(p)$.

For $p, q \in \mathbf{EE}$ *and* $n \in \omega$ *we define:*

- 1. $p \ge q \iff p \supseteq q$, and
- 2. $p \ge_n q \iff p \ge q$ and the first *n* elements of $\omega \setminus \operatorname{dom}(p)$ and $\omega \setminus \operatorname{dom}(q)$ are the same.

It is easy to see (see [1]) that **EE** is proper (satisfies axiom A), and strongly ω^{ω} bounding, that is if $p \Vdash \tau \in \omega$ and $n \in \omega$ then there is $q \ge_n p$ and a finite set $F \subseteq \omega$ such that $q \Vdash \tau \in F$.

In [5] it is shown that a countable support iteration of **EE** and rational perfect set forcing produces a model where there is a strong measure zero set of size 2^{\aleph_0} . In particular, one can construct (consistently) a strong measure zero of size 2^{\aleph_0} without Cohen reals. The remaining question is whether such a construction can be carried out without unbounded reals.

Theorem 3.2. ([5]) Suppose that $\{\mathscr{P}_{\alpha}, \mathscr{Q}_{\alpha} : \alpha < \omega_2\}$ is a countable support iteration of proper, strongly ω^{ω} -bounding forcing notions. Then

$$\mathbf{V}^{\mathscr{P}_{\omega_2}} \models \mathscr{GN} \subseteq [\mathbb{R}]^{\leq \aleph_1}.$$

The theorem above shows that using countable support iteration we cannot build a model with a strong measure zero set of size $> \partial$. Since countable support iteration seems to be the universal method for constructing models with $2^{\aleph_0} = \aleph_2$ the above result seems to indicate that a strong measure zero set of size $> \partial$ cannot be constructed at all. Strangely it is not the case.

Theorem 3.3. It is consistent that $\operatorname{non}(\mathscr{GN}) = 2^{\aleph_0} > \mathfrak{d} = \aleph_1$ and there are strong measure zero sets of size 2^{\aleph_0} .

Sh:658

Strongly meager and strong measure zero sets

Proof. Suppose that $\mathbf{V} \models \mathsf{CH}$ and $\kappa = \kappa^{\aleph_0} > \aleph_1$. Let \mathscr{P} be a countable support product of κ copies of **EE**. The following facts are well-known (see [6])

- 1. \mathcal{P} is proper,
- 2. *P* satisfies ℵ₂-cc,
- 3. \mathcal{P} is ω^{ω} -bounding,
- 4. for $f \in \mathbf{V}[G] \cap \omega^{\omega}$ there exists a countable set $A \subseteq \kappa$, $A \in \mathbf{V}$ such that $f \in \mathbf{V}[G \upharpoonright A]$.

It follows from (3) that $\mathbf{V}^{\mathscr{P}} \models \mathfrak{d} = \mathfrak{K}_1$. Moreover, (1) and (2) imply that $2^{\mathfrak{K}_0} = \kappa$ in $\mathbf{V}^{\mathscr{P}}$.

For a set $X \subseteq 2^{\omega} \cap \mathbf{V}^{\mathscr{P}}$ let $\operatorname{supp}(X) \subseteq \kappa$ be a set such that $X \in \mathbf{V}[G | \operatorname{supp}(X)]$. Note that $\operatorname{supp}(X)$ is not determined uniquely, but we can always choose it so that $|\operatorname{supp}(X)| = |X| + \aleph_0$.

Lemma 3.4. Suppose that $X \subseteq 2^{\omega} \cap \mathbf{V}^{\mathscr{P}}$ and $\operatorname{supp}(X) \neq \kappa$. Then $\mathbf{V}^{\mathscr{P}} \models X \in \mathscr{SN}$

Note that this lemma finishes the proof. Clearly the assumptions of the lemma are met for all sets of size $< \kappa$ and also for many sets of size κ .

Proof. We will use the following characterization (see [1]):

Lemma 3.5. The following conditions are equivalent.

- 1. $X \subseteq 2^{\omega}$ has strong measure zero.
- 2. For every $f \in \omega^{\omega}$ there exists $g \in (2^{<\omega})^{\omega}$ such that $g(n) \in 2^{f(n)}$ for all n and

$$\forall x \in X \ \exists n \ x \upharpoonright f(n) = g(n).$$

Suppose that $X \subseteq \mathbf{V}^{\mathscr{P}} \cap 2^{\omega}$ is given and $\operatorname{supp}(X) \neq \kappa$. Let $\alpha^* \in \kappa \setminus \operatorname{supp}(X)$. We will check condition (2) of the previous lemma.

Fix $f \in \mathbf{V}^{\mathscr{P}} \cap \omega^{\omega}$. Since \mathscr{P} is ω^{ω} -bounding we can assume that $f \in \mathbf{V}$. Consider a condition $p \in \mathscr{P}$. Fix $\{k_n : n \in \omega\}$ such that $k_n \ge f(n)$ and $k_n \notin \operatorname{dom}(p(\alpha^*))$ for $n \in \omega$. Let $p_f \ge p$ be any condition such that $\omega \setminus \{k_n : n \in \omega\} \subseteq \operatorname{dom}(p_f(\alpha^*))$. We will check that

$$p_f \Vdash_{\mathscr{P}} \forall x \in X \exists n \ x \upharpoonright f(n) = G(\alpha^{\star})(k_n) \upharpoonright f(n),$$

where G is the canonical name for the generic object. Take $x \in X$ and $r \ge p_f$. Find *n* such that $k_n \notin \operatorname{dom}(r(\alpha^*))$. Let $r' \ge r$ and *s* be such that

1. $\operatorname{supp}(r') \subseteq \operatorname{supp}(X)$ 2. $r' \ge r \upharpoonright \operatorname{supp}(X)$, 3. $r' \Vdash_{\mathscr{P}} x \upharpoonright k_n = s$.

Let

$$r''(\beta) = \begin{cases} r'(\beta) & \text{if } \beta \neq \alpha^{\star} \\ r'(\alpha^{\star}) \cup \{(k_n, s)\} & \text{if } \beta = \alpha^{\star} \end{cases}$$

It is easy to see that $r'' \Vdash x \upharpoonright f(n) = \dot{G}(\alpha^*)(k_n) \upharpoonright f(n)$. Since f and x were arbitrary we are done.

References

- 1. Bartoszyński, T., Judah, H.: Set Theory: On the Structure of the Real Line, A.K. Peters, (1995)
- 2. Timothy, J., Carlson.: Strong measure zero and strongly meager sets, Proceedings of the American Mathematical Society., **118**(2), 577–586 (1993)
- 3. Corazza, P.: The generalized Borel conjecture and strongly proper orders, Transactions of the American Mathematical Society., **316**(1), 115–140 (1989)
- 4. Galvin, F., Mycielski, J., Solovay, R.: Strong measure zero sets, Notices of American Mathematical Society., (1973)
- Goldstern, M., Judah, H., Shelah, S.: Strong measure zero sets without Cohen reals, The Journal of Symbolic Logic., 58(4), 1323–1341 (1993)
- 6. Goldstern, M., Shelah, S.: Many simple cardinal invariants, Archive for Mathematical Logic., **32**, 203–221 (1993)
- 7. Laver, R.: On the consistency of Borel's conjecture, Acta Math., 137(3-4), 151–169 (1976)
- Lorentz, G.: On a problem of additive number theory, Proceedings of the American Mathematical Society., 5, 838–841 (1954)

250