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A WEAK GENERALIZATION OF MA
TO HIGHER CARDINALS

BY
S. SHELAH'

ABSTRACT

We generalized MA e.g., to R;-complete forcing, by strengthening the N,-C.C.
condition which occurs in many proofs. We show some consequences of MA
generalized, and show that we get a model of ZFC in which the modadic theory
of w, is decidable.

§1. A weak Martin’s axiom for uncountable cardinals

We prove here the consistency of a weak form of Martin’s axiom generalized
from N, to 8., namely, the consistency of 2" = N, + 2": > X, and the following:
(*) Let P be a set of conditions of cardinality less than 2™ satisfying the
following:

(a) if p,q € P are compatible then they have a least upper boundp U q € P,

(b) if po=p,=---isan increasing sequence of length w then the least upper
bound U...p, is in P,

(c) if pp € P, i <w, then there is a closed unbounded set CCw, and a
regressive function f: w,— w; such that for «, 8 € C if cf(a),cf(B) >N, and
f(a) = f(B) then p. and p, are compatible.

Then letting D; C P, i <A <2™ be dense subsets of P there is a filter G C P
which intersects every D, i <A.

ReMarRk. (1) The main condition (c) is a strengthening of N,-C.C.
(2) In (c), instead of f: w,—> w, regressive we can ask f: w,—> A, A=
U<.; Ai, A, increasing, and continuous (at least at ordinals of cofinality w,) and
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f(i) € A, |A/| <N,. Also we can wave in (c) the demand cf(a) = cf(B) = w,, if
we have N, functions f.

THeOREM 1.1. Suppose C.H. and 2™ = k, k a regular cardinal, then there is a
set of conditions P satisfying (b), (c) of (*) such that in V*, cofinality is preserved,
2% =Ry, 2" = k and (*). Moreover, if (¥ pu <) u™° <« we can wave in (*) the
demand |P|<2™ (but not A <2™).

Proor. The proof is modelled after Solovay and Tennenbaum [4], i.e., we
iterate (with extensions satisfying (a), (b), (c)) x times, at limit stages of cofinality
o we take the inverse limit. (Notice that the set of forcing conditions we get does
not satisfy (a).)

More specifically, we define a set of conditions P., & < k such that:

(1) P, satisfy (b), (c) and is of cardinality = «.

(2) For every a we choose a name A, such that in V%, A, is a partially
ordered set satisfying (a), (b), (c) of cardinality less than «.

(3) The elements of P, are the function with domain a countable subset of
a’s such that for £ € Domf, |f(¢)€ A || = 1. The order is: f = g iff for any
£€Domg also £ €Domf and f[£IFef(£)= g(£).

(4) The definition of A, is done in such a way that eventually every possible
set of conditions will be treated. (This is possible by Lemma 2.)

To prove the theorem it is enough to prove the following two lemmas.

LemMma 1.2. If P satisfies conditions (b), (c) and Q is a partially ordered set (in
V) such that B “Q satisfy (c)”, then Q satisfy (c).

Proor. Let{q:|i <w,}C Q (in V). Asin V* Q satisfy (c), we have in V* a
closed unbounded set E C w. and an appropriate function g. Because P satisfies
the N,-C.C. we can find in V a closed unbounded subset of E, call it E. Now for
any a <w, we find p, € P such that p.k “g(a)= {(«)” for some ordinal
{(a) < a. As P satisfies condition (c) we have a closed unbounded F C w, and a
regressive h appropriate to {p.: a¢ < w;}. Now there is a closed unbounded
C CENF and a decreasing function f such that for a, B € C, f(a)= f(B) iff
E(a)=€(B) and h(a)= h(B). C, f are as required for {g;: i < w,}.

LemMma 1.3.  P; satisfy (c).

PrROOF. Let f € P;, i <w,; we construct for each i <w, an increasing w
sequence f} € P, n < w. f{ = f.. Suppose for some n < w, f}: i < w, are defined.
Now for each & < §, {f7(£): i < w,} is a sequence of w, elements of A, (more
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exactly, D" “{f1(£): i <w} CTA.”). (Set f1(£)=T it ¢&Z Domf1.) So by (c)
we have in V% a regressive function g;: w,— w, and a closed unbounded
C? C w, (which we can assume isin V as P; has the ,-C.C.). We find f7*' = f7
such that for any & € Dom f7, fi*'[ € F7eg 7 (i) = a; (i) for some a; (i) <i. (fI*'is
a limit of w steps.)

Let af(i)=0 for ¢ZDomf]. Let fr=U,..ff, C.=1),..CL Fix {£&]a <
@} an  enumeration of U,.,,Domf? and C=A,.,C, ={i<
w:(Va <i)i€ C,}. We can find a closed unbounded E C C and a regressive
g: w2 w; such that if cf(i)=cf(j)=w, i,j € E and g(i) = g(j), i <j then:

(1) Domfs N{&:y <i}=DomfyN{g:y <j},

(2) Domf? Ci{&:y<jl

B) {ynaf():n<wy<il={ynai(): n<wy<jl

Now we will show that in this case f{ and f% are compatible, indeed that h,
R(EY=f7(6)Uf7(¢€) for EEDomg? UDomg? is above them.

By induction on ¢ =8 we show h[¢Z f7[¢ f91¢& (and h [ £ is well defined),
for limit and for {+ 1= ¢ if /& Domf? it is immediate.

If {€Domf? NDomf{ then {=¢, for some y <i (by (1) and (2)) and
ai(i)= ai(j) and i,j € C. By construction for each n, h | { I f}({), f7({) are
compatible, so h [ {F“f?({), f4(¢) are compatible” (a common upper bound is

U, (1 UFI(0)) hence hI(C + D)= fYI({ +1), f7T(+1).

Cramv 14, (1) If V satisfies Ox, then V* (from 1.1) satisfies O, too.

(2) If S€ V is a stationary subset of w;, it is stationary in V* too.

(3) Every closed unbounded subset of w, in V* contains a closed unbounded
subset from V.

Proor. (1), (2) This follows immediately by the N,-completeness of P.
(3) Easy as P satisfies the N,-chain condition.

DerINITION 1.1, S5 ={8 <N,: f(8) = Ng}.

THEOREM 1.5. Assume 2" =N, 2*1= N,. For § € S7 let ), be an unbounded
sequence of ordinals below & of order type w,, such that for every closed unbounded
C C w,, there is B € S such that for a stationary set of y < j8:

1) v€C

) [v,y"YNns =D (where y' is the successor of y in C, and [y,v") is the
half-open interval).

Then there is a set of conditions P, N,-closed and satisfying the R,-C.C. such that
in V¥ the following hold : For every sequence of functions f5: 15 — w,, 8 € S? there
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is F: w,— w, such that F uniformize fs, i.e., for every 8 € S7 there is §' < 8 such
that F[(ns - 81) = f5 r(T]a - 81).

Remark. If V =L, S; is a stationary subset of § for each 8, then we can find
15 (8 €S} as in the theorem, such that S, URangen, contains a closed
unbounded subset of 8.

Proor. The forcing is done by the iteration. We describe at first the basic
step of the iteration: Let f = (f,: € S?) be a sequence of functions fs: 1 — w,. Pr
is the set of all countable functions p such that

(1) Domp C Sj,

(2) p(§)<¢ for § €EDomp,

(3) 1f ¢ € Domp and a € n;, max{p(£), p({)} <a, then f;(a) = f; (a).

It is easy to see that Py is R;-closed and satisfy N.-C.C. Now if G is V-generic
over Pr then

Fr= U fl(n=p(&)

¢€Domp

satisfies the claims of the theorem for f.

Now we define by induction on a = w, sets of conditions P, and f, names in
P, of sequences of functions f,s: 75 = @, 6 € S’ such that: P, is P7 for some f
in V, the f, are chosen so that all possible f will appear in the f course of
constructions. P, is the set of all functions p such that:

(1) Domp C a is countable,

(2) for y € Domp, p(y) is a countable function (in V) Dom{p(y)] C S? and

p(yX§) < ¢ for £ € Dom[p(v)],
(3) for y EDomp, ply€P, and plfyF“p(y)E Pr".
The order in P,: p =q iff Domp CDomg and for y € Domp, p(y)C q(y).

LEmMMA 1.6. P, is Ni~-closed.

Proor. Let p, € P, n < w, p.=pns+1- Define Domp, = U.., Domp. for
vyE€U,..Domp, from some n, onward y € Domp, define p.(y)=
U,p=nPa (). p. is easily seen to be the supremum of the p,.

Lemma 1.7. For a £ ws, vy <a and £ € S} the following set is dense in P,:
{p€P:y€&€Dom(p) and ¢ € Domp(¢)}.

ProoF. Easy.

Lemma 1.8. Let B € S? and qo € P, ; then there is a closed unbounded D C B,
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D ={d.|e < w\} and an increasing sequence q,=< q., q. € P., ¢ < w, such that for
e < w, the following hold:

(1) For y € Domg., Dom[q.(y)]N B C d..

(2) For y €Domg, and é € Dom[q.(y)] if 8 > B then n; N B C d..

(3) For yeEDomgq. and 8 €Domgq.(y) if 6 > then for some q€V,

q. vy [ “frsl(ms NB)=q".
(4) For yeDomg,, q. | Y+~ “f,s1d. = h” for some h € V.

Proor. By Lemma 1.6. At limit stages we take the unions and we obtain g, .,
and c.., from q. and c. through w-steps.
The final Lemma is the essence of the proof.

Lemma 1.9. For a = w,, P, satisfy the R-C.C.

Proor. Let {ps: 8§ < w,} be N, conditions in P,. H(N;) is the collection of all
sets whose cardinality is hereditarily =N;. We construct an increasing and
continuous chain of models M, I < w, such that:

(1) M, is of cardinality N;,

(2) M. <y, . (H(N5),{ps : 8 < w3}, Po, IF).

C={M, Nw,=¢: | <w}is closed unbounded in w,. By the assumption of the
theorem thereis B € STN Csuchthat S; ={y <B: yEC& [y,y)Nns =T}is
stationary. (y' is the successor of y in C.)

By Lemma 1.8 for gq,, P., P; we have a closed unbounded D C 8 and an
increasing sequence g, € P,, £ < w, with the properties listed there and g, € M.
Hence we can find ¢, € Ss N D N C* as ¢, € D, ¢, = d. for some £ < w;. Look
at gq. and M, .,, for y € Dom(q.) N M,.,. Use (1)~(4) of Lemma 1.8 to describe
the behaviour of g. below 8 by a L, «, sentence with parameters in M,.,. Take
the conjunction of these descriptions and the sentence which says that some
extensions of an element in {p;: 8 < w,} satisfies the conjunction. Now as M, ,, is
an elementary submodel for some 8’ < c,. and q. Z pg, q., ps- € M, 14, q . satisfy
that L, ., sentence described above. Now we claim that q. and gq. are
compatible and hence that p, and ps are compatible. Indeed, we prove by
induction on ¢ that ps [ £ v pg] € is a condition, for limit & or £ = { + 1 such that
{E(a—Dompg)U(a —Domp,) it is immediate. If £=¢+1 and
{ € Dom p; N Dom p,. then { € M, ;. and so the behaviour of g, ({) below B was
described and hence ¢ /({) has the same behaviour below B'. Using also the facts
that Dom q(y) C ¢,+ and that [c,, ¢,+1) N ne C d. it follows that q.[{vq'l{F
“(q-({)U q L)) is a condition™.

We can similarly prove:
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THeOREM 1.10. Assume 2% =NR8,, 2" =N8,, and for each § €S, S; is a
stationary subset of 8.

Then there is a set of conditions P, 8-closed and satisfying the Nj,-chain
condition such that in V" the following holds: for every sequence of functions
fi: 8> w, (8ES?) there is F: w,— w, such that for every § €S3;, S;U
{i < 8: F(i)= f;(i)} contains a closed unbounded subset of 8.

The proof of Theorem 1.10 gives more than the theorem stated. We give here
an attempt for generalizing.

DeriNniTioN 1.2, (1) A five-tuple B ={«, A, x, A, R) will be called a proper
basis if

(a) A >y are infinite regular cardinals,

(b) A=(A;:i<A), A, sets,

{c) R is a five-place relation on U,., A; Uk UA;

(2) B is good if whenever for each a < A, a function h, is given, |Dom h,, | <
x, Domh, C x, Rangeh, C A,, then some a < are B-compatible, which
means that (Vy <«)[y € Domh, N Domhz — R(y, a, B, h. (v), hs (¥))];

(3) a partial order P is B-good, if whenever sequence {p.: a@ < A) is given,
P € P, we can find h, (& <A) as in (2) such that whenever a,8 <A are
B-compatible p., ps are compatible in P.

Tueorem 1.11.  Suppose B is a good proper basis, u < x is regular, xk Z A is
regular, k = 27",

Then there is a set of forcing conditions P, x-closed, satisfying the A-chain
condition, |P| = k such that V7 satisfy:
(*) If Qis a set of forcing conditions of cardinality <k, D C Q (i <i,< k) are
dense subsets of P, then there is a filter G C Q which intersect each D,, provided
that

(a) ifp, q € Q are compatible then they have a least upper boundp U q € Q,

(b) if pp (i<ip<k) is an increasing sequence of elements of Q, then
{p:: i <io} has an upper bound,

(c) Q is B-good.

Remark. (1) Infact P satisfies (b) and (c) of (*). Also the parallel of Claim
1.4 holds.

(2) Usually every Q of cardinality <A is B-good, so in V¥, A is the
successor of y, and 2* is k.

(3) We can amalgamate Theorem 1.11 with Theorem 1.5.

(4) The main case of Theorem 1.11 is A =X, x = 8, p = No.
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§2. Applications

In this section we assume 2™ > R, and (* ) of Section 1 holds, or an appropriate
strengthening.

Cramm 2.1. Suppose § = §,U S, is a family of <2" sets, each of cardinality
N, the intersection of any two is countable, and §, N S, =, and

(a) S is a subset of {nfa: a <w}: n€“’2} or

b) SC{A,:a<2", cf(a)=w}, where U{B: BE A.}=a and A, has
order-type w, (but here we need Theorem 1.11).

Then for some set S

(1) A €S, implies A — S is countable,

(2) A €S implies A NS is countable.

Proor. Let P be the family of countable sets p = p; U p., where p; is a set of
pairs (A,B), A €S, B C A, B countable, such that D(p), D,(p) are disjoint,
where Di(p)= U{A — B: (A,B)E p}.

P is ordered, of course, by inclusion. Condition (a) is obvious.

The rest is left to the reader.

Cramm 2.2, In Claim 2.1, without (a) or (b) the conclusion may fail (see Luzin

(1D

DEFINITION 2.2. A subset A C“”2 will be called “of the first category” if
A = U, B, Bi closed nowhere-dense subset of Y2 in the topology generated
by countable intersections of open sets in the Tychonov topology.

Craim 2.3. The union of a <2 subsets of 2 which are of the first
category, is of the first category.

Proor. Solet @ <2", B = U, ., B, B; of the first category, so w.l.o.g. each
B, is closed, nowhere-dense. Notice that the union of countably many nowhere-
dense sets is nowhere-dense. A condition p is a countable set of atomic
conditions which are of one of the two forms:

B CX (<ai<w),

ANX, = (A a basic clopen subset of “’2, i <w,) such that {B; C X,
ANX =UICp>BNA=(.

THEOREM 2.4. The monadic theory of w. (as an ordered set) is decidable
(using Theorem 1.11).

NotaTioN. S5 ={i <N,:cf(i)= N}, and for a set S of ordinals F(S)=
{@ <supS:SNa is a stationary subset of a}.
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Proor. By [3] it suffices to prove the following three assertions:

(*) If ACSj, F(A)=BUC, B,C disjoint and, necessarily, B, C C S?, then
for some disjoint sets B;, C;, A = B;UC, and F(B,)= B, F(C,)=C.

For each 8 € F(A) choose an increasing and continuous sequence of ordinals
715 of length w; with limit 8, and let its range be A, By Claim 2.1 there is a set
S Cw, such that 8€EB 2 |A;,NS|=NR;, and §EC, |A; — S|=N,. Now we
choose Bi=A -5, C,;=ANS.

(**) If A CS;is stationary then for some disjoint B, C;, A = B, U C, and
F(B,)=F(C))=F(A).

Unfortunately, we do not see how to prove this from Theorem 1.1 (*), but V*
satisfied it. Because for some a, A € V' and we can assume A, from §1 is just
the addition of a new subset of w,, i.e., the conditions are countable functions f,
Dom f C w,, Range f C {0, 1}. Remember that as our forcings are N;-complete,
stationary subsets of w, remain stationary.

Similarly we can prove:

(***) If A C S} is stationary, then for some stationary B C A, F(B) =0, and
also A — B is stationary.

This time we choose for each & € S? a closed unbounded set A, C 6 of order
type w,. The conditions will be countable sets whose elements have the form
a€EX, AsNXCB (for <8, 6€S)).

Now we give an application (where we get a similar universe, i.e., 2% =N,,
2> R,, Oy, hold).

CramM 2.5. There is an abelian group G = U,..,,G, |G:|=N,, G is free,
and G/G:; is N,-free iff cf(i) # Ny, hence G is not free, but G is still a Whitehead
group.

Proor. Let G' be the abelian group generated freely by {{$: @ < w,,
i <w}U{y™: a < w,}. For each limit § < w, and a < w,, choose an increasing
w-sequence v; of ordinals whose limit is 8. We get G' from G by adding to G,
for each 8, a € S, § < w,, 8 limit

({Z - ; 21;::(’) _ gn zly na(&u+l)>/2n'

Cramm 2.6. If §=8,US. is a family of sets, each of cardinality N,, and
A ES, > |AiN A,| <N, then there is a set A* such that
Si={AES: |[ANA*=N}

Proor. Left to the reader.
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Added in proof, March 1978. Here are some historical and mathematical
remarks.

(1) Baumgartner has proved the consistency of a quite similar statement (see
comparison below) but has not published it, as Laver had previously a similar
thing which he also did not pursue. His conditions on P are

(a) if p,q € P are compatible, then they have a least upper bound,

(b) any increasing w-chain has an upper bound,

(¢y P=U,., P, every two members of P are compatible.

Notice (c)' is stronger, and (b)’ is weaker; however, the last difference is not
essential (see next remark).

(2) If P satisfies (b)' let

Q ={A : A a countable directed subset of P},

A=oB=""Va€ A)(3IbEB) (a=bh).

Now P has a natural embedding to Q(a » {a}) preserving compatibility, if P
satisfies (a) [(c)], then Q satisfies (a) [(c)], and Q satisfies (b).

(3) In (*) we can omit (a) if we replace (c) by (c)’, which is as (c) when we
replace the conclusion by “‘then P., P, have a least upper bound”.

The advantage of this is that all the paper does not change, but the forcing of
Theorem 1.1 satisfies this version of (*).

(4) If P is a partial order satisfying (c) of (*), and C.H. holds, then Q ={h : h
a countable function from P to w,, f~'(a) a directed set for « € Dom h} ordered
by inclusion, satisfies (a), (b), (c). Hence if (%) holds, P is the union of N, directed
sets. So if P is a Boolean algebra P — {0} is the union of N, filters. This, and the
next remark is proved in theorem 4.13 in S. Shelah, Simple unstable theories,
preprint.

(5) If C.H. holds, P a partial order satisfying the countable chain condition,
then it satisfies (c) from ().

(6) The conclusion of Theorems 1.5 and 2.4 are consistent with G.C.H. Also
a related theorem (essentially that we can deal with any stationary subset of w,
with no stationary initial segment) will appear in S. Shelah, Remarks on
A-collectionwise Hausdorf spaces, Topology Proc., accepted.
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