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A WEAK GENERALIZATION OF MA 
TO HIGHER CARDINALS 

BY 

S. SHELAH* 

ABSTRACT 

We generalized MA e.g., to tt~-complete forcing, by strengthening the N2-C.C. 
condition which occurs in many proofs. We show some consequences of MA 
generalized, and show that we get a model of ZFC in which the modadic theory 
of r is decidable. 

w A weak Martin's axiom for uncountable cardinals 

We p rove  here  the  consis tency of a weak  fo rm of Mar t in ' s  ax iom genera l ized  

f rom ~1 to N2, namely ,  the consis tency of 2 ~~ = N1 + 2 ~1 > ~2 and the  following: 

( * )  Let  P be  a set of condi t ions  of cardinal i ty  less than  2 x' satisfying the  

following: 

(a) if p, q ~ P are compa t ib l e  then they have  a least uppe r  b o u n d  p U q E P, 

(b) if po--< pl --<'" �9 is an increasing sequence  of length to then  the least u p p e r  

b o u n d  U , < ~ p ,  is in P, 

(c) if p, E P, i <  to2 then there  is a closed u n b o u n d e d  set C_C o02 and a 

regress ive  funct ion f :  to2---~ to2 such that  for  a, /3 E C if c f (a) ,c , f ( /3)  > ~to and 

f (a )  = [(/3) then p~ and  Po are compat ib le .  

Then lett ing D, C P, i < A < 2", be  dense  subsets  of  P there  is a filter G C_ P 

which intersects  every  Di, i < A. 

REMARK. (1) The  main  condi t ion (c) is a s t rengthening  of N2-C.C. 

(2) In (c), ins tead of f :  toz---~to2 regressive we can ask f :  to2---~A, A = 

I,.J,<~,: A,, A, increasing,  and cont inuous  (at least at ordinals  of cofinality to1) and 
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f ( i )  ~ A,, [A, I<  N2. Also we can wave in (c) the demand  c f ( a )  = cf(/3) = to,, if 

we have No functions f. 

THEOREM 1.1. Suppose C.H. and 2 <* <- K, K a regular cardinal, then there is a 

set of conditions P satisfying (b), (c) of ( * ) such that in V e, cofinality is preserved, 

2"" = t~1~, 2"' = K and ( * ). Moreover, if (V i~ < K ) i~ ,o < r we can wave in ( * ) the 

demand I P[ < 2"' (but not 3, < 2"'). 

PROOF. The  proof  is model led  after  Solovay and T e n n e n b a u m  [4], i.e., we 

i terate (with extensions satisfying (a), (b), (c)) K times, at limit stages of cofinality 

to we take the inverse limit. (Notice that the set of forcing condit ions we get does 

not  satisfy (a).) 

More  specifically, we define a set of condit ions P~, a < r such that: 

(1) P, satisfy (b), (c) and is of cardinali ty _-< K. 

(2) For  every a we choose a name A~ such that in V ~, A~ is a partially 

o rde red  set satisfying (a), (b), (c) of cardinali ty less than K. 

(3) The  e lements  of P~ are the function with domain  a countable  subset of 

a ' s  such that for  ~ E Dora  f, III(~)E A[I e~ = 1. The  order  is: f ~  g iff for  any 

E D o m  g also ~ E D o m f  and f r ~ IF"~f(~) -> g(~:). 

(4) The  definition of A~ is done  in such a way that eventual ly every  possible 

set of condit ions will be t reated.  (This is possible by L e m m a  2.) 

T o  prove  the t heo rem it is enough to prove  the following two lemmas.  

LEMMA 1.2. I f  P satisfies conditions (b), (c) and Q is a partially ordered set (in 

V)  such that O ~  e " Q  satisfy (c)", then Q satisfy (c). 

PROOF. Let  {q, ]i < to2} C_ O (in V). As in V p Q satisfy (c), we have in V P a 

closed unbounded  set E _C co2 and an appropr ia te  function g. Because  P satisfies 

the N2-C.C, we can find in V a closed unbounded  subset of E, call it E. Now for  

any a < to2 we find p~ E P such that p~ ~ " g ( a ) =  ~ '(a)"  for  some ordinal  

~'(a) < a. As P satisfies condi t ion (c) we have a closed unbounded  F _C to2 and a 

regressive h appropr ia te  to {p~:a < to2}. Now there  is a closed u n b o u n d e d  

C C_ E n F and a decreasing function f such that for  a, ~ E C, f ( a )  = f(/3) iff 

~ ( a )  = ~(/3) and h ( a )  = h([3). C, f are as requi red  for {q,: i < to2}. 

LEMMA 1.3. P8 satisfy (c). 

PROOF. Let  )~ ~ Ps, i < tOE; we construct  for  each i < to2 an increasing to 

sequence  f7 E P~, n < co. fo = f,. Suppose  for  some n < to, f7 : i < to: are defined. 

Now for each ~ < & {fT(~:): i < to2} is a sequence  of to2 e lements  of A~ (more  
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exactly, ~ J ' ~  "{fT(~): i < oJ2} C_ Ar (Set fT(~:)= f~ if ~:~ DomfT.) So by (c) 

we have in V P~ a regressive function g~: ro2--*oJ~ and a closed unbounded 

C~ C o~2 (which we can assume is in V as Pr has the oJ:-C.C.). We find f7 +~ => [7 

such that for any s c E Dom fT, f~'+' I~ Ibeeg ~ (i) = a 7 (i) for some a 7 (i) < i. ([7+' is 

a limit of w steps.) 

Let a ~ ( i ) = 0  for ~ DomfT. Let f?= U~<~fT, Cr = n ,< ~ C~ .  Fix {~:~ ]a < 

ro~} an enumeration of U~<,~Dom/7 and C = A~<~C~o = {i < 

r (Va < i ) i  E C J .  We can find a closed unbounded E _C C and a regressive 

g: ~oz---* r such that if cf(i) = c/( j)  = to,, i,j E E and g(i)  = gO'), i < j  then: 

(1) D o m / 7  n{f, :  y < i}= Domf70{f , :  y <1}, 
(2) Domf7  C{~,: y <j} ,  

(3) {(3,, n, a~,(i)>: n < w, T < i} = {(y, n, a~,(j)>: n < w, 3' <J}. 

Now we will show that in this case f7 and f~' are compatible, indeed that h, 

h ( ~ ) = f T ( ~ )  UfT(~)  for ~ ~ D o m g 7  U D o m g 7  is above them. 

By induction on ~ -< 8 we show h I~: =>f7 Is r f~' [~: (and h [~: is well defined), 

for limit and for r + 1 = ~: if ( ~  Domf~' it is immediate. 

If ff ~ Domf7  f ' lDomf7 then ~" = ~ for some y < i  (by (1) and (2)) and 

a'~,(i) = a'~(j) and i,] ~ C~. By construction for each n, h I~" It-fT((), fT(~') are 

compatible, so h [~'l~-"fT(~'), f~'(~') are compatible" (a common upper bound is 

1.3. (f7 (() 1.3 f7 (~r))) hence h [(~r + 1) _-> f7 1 (~" + 1), f7 [ (~" + 1). 

CLAIM 1.4. (1) If V satisfies ON, then V P (from 1.1) satisfies ~, too. 

(2) If S E V is a stationary subset of to,, it is stationary in V e too. 

(3) Every closed unbounded subset of r in V p contains a closed unbounded 

subset from V. 

PROOF. (1), (2) This follows immediately by the l~,-completeness of P. 

(3) Easy as P satisfies the N2-chain condition. 

DEFINITION 1.1. S~ = {6 <1%: f (8 )  = I%}. 

THEOREM 1.5. Assume 2 No = ~I,, 2 N, = ~2. For 6 ~ $I let rib be an unbounded 

sequence of ordinals below 8 of order type oo,, such that for every closed unbounded 

C C w2, there is fl E $I such that for a stationary set of y < fl: 

(1) 3,~c,  
(2) [% y ' ) N  r/~ = 0 (where y '  is the successor of y in C, and [% y ' )  is the 

half-open interval). 

Then there is a set of conditions P, N,-closed and satisfying the N2-C. C. such that 

in V p the following hold: For every sequence of[unctions f~: rl~ ~ to,, 6 ~ 81 there 
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is F: to2---~ to2 such that F uniformize fs, i.e., for every 8 E S~ there is 8 ~ < 8 such 

that F I(~b - ~ ~) = f~ t ( ~ b  - 8 ~). 

REMARK. If V = L, Ss is a stationary subset of ~ for each 8, then we can find 

~/, (8 E S]) as in the theorem, such that $8 O Range rb contains a closed 

unbounded subset of 8. 

PROOF. The forcing is done by the iteration. We describe at first the basic 

step of the iteration: Let f = (f, : E 821) be a sequence of functions f~ : ~b ~ to~- Pr 

is the set of all countable functions p such that 

(1) D o m p  _C S~, 

(2) p ( ~ ) < ~  for ~ E D o m p ,  

(3) If ~ , ~ ' ~ D o m p  and a E ~7~, max{p(~) ,p(~)}<a,  then [e (a )= f , (a ) .  

It is easy to see that Pr is ~-closed and satisfy ~h-C.C. Now if G is V-generic 

over P?" then 

pEG 
~EDornp 

satisfies the claims of the theorem for 

Now we define by induction on a = to3 sets of conditions P~ and f~ names in 

P~ of sequences of functions f~.8 : rb ~ to1, 8 E S~ such that: P0 is Pf for some f 

in V, the f~ are chosen so that all possible f will appear in the f course of 

constructions. P~ is the set of all functions p such that: 

(1) Dom p _C a is countable, 

(2) for 3' E Domp, p(3,) is a countable function (in V) Dom[p(3,)] C_ S~ and 

p(3,)(~:) < ~: for ~: E Dom[p(3,)], 

(3) for 3, E Domp,  p r3, E P, and p r 3, IF "p(3,)E Pr,".  

The order in P~: p =<q iff Domp C Domq and for 3' ~ D o m p ,  p(y )Cq(3 , ) .  

LEMMA 1.6. P~ is ~l-closed. 

PROOF. Let p, EP~, n<to ,  p.<=p.+~. Define Domp,~= O.<,~Domp.  for 

3 , ~ U , < . D o m p .  from some no onward 3, E D o m p , ,  define p . ( 7 ) =  

U,o~,p,(3,). p,o is easily seen to be the supremum of the p.. 

LEMMA 1.7. For a <= to3, 3" < a and ~ E S~ the following set is dense in P~ : 

{p E P: 3' ~ Dom (p) and ~ E Domp(~)}. 

PROOF. Easy. 

LEMMA 1.8. Let [3 E S~ and qo E P~ ; then there is a closed unbounded D C_ [3, 
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D = {d, l e < to1} and an increasing sequence qo <= q,, q, E P,, e < to1 such thatfor 

e < tol the following hold: 

(1) For 3' ~ D o m q , ,  Dom[q~(3')]n[3 _Cd,. 

(2) For 3" E D o m q ,  and ~ ~ Dom[q,(3')] if 8 > [3 then 71~ n /3 c_ d,. 

(3) For 3 ' E D o m q ,  and 8 E D o m q , ( 3 ' )  if 8>[3  then for some q E  V, 

q~ t3'lV p" "f,.8 r(7/, n [3)= q "  

(4) For 3' E Dom q,, q, t 3' Ik ~" "f,.~ I d, = h "  for some h ~ V. 

PROOF, By Lemma 1.6. At limit stages we take the unions and we obtain q,§ 

and c,+1 from q, and c, through to-steps. 

The final Lemma is the essence of the proof. 

LEMMA 1.9. For a <- to3, Po satisfy the N2-C.C. 

PROOF. Let {ps: 6 < to2} be ~r conditions in P,. H(lg3) is the collection of all 

sets whose cardinality is hereditarily =<N3. We construct an increasing and 

continuous chain of models Mr, l < to2 such that: 

(1) M~ is of cardinality N1, 

(2) M,+I <L,,.., (H(N3), {p8 : 6 < to2}, P~, II- ). 

C = {M~ O to2 = q :  l < to2} is closed unbounded in to2. By the assumption of the 

theorem there is/3 E S~ n C such that So = {y </3:  y ~ C &  [y, y 1) N r/0 = ~ is 

stationary. (y 1 is the successor of y in C.) 

By Lemma 1.8 for qo, P~, P0 we have a closed unbounded D _C/3 and an 

increasing sequence qe E P~, s < to1 with the properties listed there and q~ ~ Mo. 

Hence we can find cv E So n D o C ~ as c, E D, c,  = d, for some e < to1. Look 

at q, and M,.I ,  for y E D o m ( q , ) n  M,+1. Use (1)-(4) of Lemma 1.8 to describe 

the behaviour of q, below/3 by a L .  .... sentence with parameters in M,+1. Take 

the conjunction of these descriptions and the sentence which says that some 

extensions of an element in {p8 : ~5 < to2} satisfies the conjunction. Now as M~+I is 

an elementary submodel for some/3 '  < c~.1 and q '~ => p~,, q ',, P0' E M~+1, q '~ satisfy 

that L., , , ,  sentence described above. Now we claim that q'~ and q, are 

compatible and hence that P0 and po, are compatible. Indeed, we prove by 

induction on ~: that Po t~ vp~,t~ is a condition, for limit ~: or ~: = ~" + 1 such that 

r ~ ( a - D o m p ~ , ) U ( a - D o m p 0  ) it is immediate. If ~ :=s  r + l  and 

~" ~ Domp0 n Dom p~, then ( E M~+~ and so the behaviour of q, (~') below/3 was 

described and hence q',(~') has the same behaviour below/3' .  Using also the facts 

that Dom q'~(y)C c,+1 and that [c ,  C-F+1)n "/7/3 ~ d. it follows that q. t~" v q ' I s  r II- 

"(q. (~') tO q '.(~')) is a condition". 

We can similarly prove: 
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THEOREM 1.10. Assume 2 N~ i~1, 2 N' = ~2, and for each ,~ E S~, S~ is a 

stationary subset of & 

Then there is a set of conditions P, bll-closed and satisfying the l~I2-chain 

condition such that in V p the following holds: for every sequence of functions 

f~:8--*tol ( ~ S ~ )  there is F:to2-->to~ such that for every ~ S ~ ,  $8t2 

{i < 3: F( i )  = fs(i)} contains a closed unbounded subset of & 

The proof of Theorem 1.10 gives more than the theorem stated. We give here 

an attempt for generalizing. 

DEFINITION 1.2. (1) A five-tuple B = (K, A, X, A, R)  will be called a proper 

basis if 

(a) A > X  are infinite regular cardinals, 

(b) A = ( A , : i < A ) ,  A, sets, 

(c) R is a five-place relation on t.),<~ A, t_/K U A; 

(2) B is good if whenever for each a < A, a function h~ is given, I Dom ha ] < 

X, Dom h~ C_ K, Range h~ C_ A~, then some a </3 are B-compatible,  which 

means that (V 3' < K) [3' E Dom h~ f3 Dom h~ ~ R (3', a,/3, h~ (3'), h~ (3'))]; 

(3) a partial order P is B-good,  if whenever sequence (p~ : a < A) is given, 

p, E P ,  we can find h, ( a < A )  as in (2) such that whenever a , / 3 < A  are 

B-compatible p~,p~ are compatible in P. 

THEOREM 1.11. Suppose B is a good proper basis, tz < X is regular, K >= A is 

regular, r = 2 <~. 

Then there is a set of forcing conditions P, x-closed, satisfying the A-chain 

condition, I PI = K such that V e satisfy : 

( * ) If Q is a set of forcing conditions ofcardinality < K, D, C_ Q (i < io < K) are 

dense subsets of P, then there is a filter G C_ Q which intersect each D,, provided 

that 

(a) if p, q E Q are compatible then they have a least upper bound p LJ q E Q, 

(b) if p, (i <io< K) is an increasing sequence of elements of Q, then 

{p, : i < io} has an upper bound, 

(c) Q is B-good. 

REMARK. (1) In fact P satisfies (b) and (c) of (*) .  Also the parallel of Claim 

1.4 holds. 

(2) Usually every Q of cardinality <A is B-good,  so in V P, A is the 

successor of X, and 2 ~ is K. 

(3) We can amalgamate Theorem 1.11 with Theorem 1.5. 

(4) The main case of Theorem 1.11 is A = ~ ,  X = ~ ,  /x = I%. 
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w Applications 

In this section we assume 2"' > S2 and ( * ) of Section 1 holds, or an appropriate 

strengthening. 

CLAIM 2.1. Suppose S = S~ U $2 is a family of < 2"  sets, each of cardinality 

N~, the intersection of any two is countable, and S~ 71 $2 = •, and 

(a) S is a subset of {{'q r a :  a < w~}: ,/E(~,)2} or 

(b) SC_{A~:a<2",, c/(a)=o2~}, where U { f l : f l E A o } = a  and A,, has 

order-type w~ (but here we need Theorem 1.11). 

Then for some set S 

(1) A E $1 implies A - S  is countable, 

(2) A ~ Sz implies A 71 S is countable. 

PROOF. Let P be the family of countable sets p = p, U p2, where pt is a set of 

pairs (A, B), A E S~, B C_ A, B countable, such that D,(p), D2(p) are disjoint, 

where D~(p) = U{A - B :  (A,B)Ep~}. 
P is ordered, of course, by inclusion. Condition (a) is obvious. 

The rest is left to the reader. 

CLAIM 2.2. In Claim 2.1, without (a) or (b) the conclusion may fail (see Luzin 

[1]). 

DEFINITION 2.2. A subset A C(~')2 will be called "of  the first category" if 

A = U~<,o, B~, B~ closed nowhere-dense subset of (~')2 in the topology generated 

by countable intersections of open sets in the Tychonov topology. 

CLAIM 2.3. The union of o~ <2" '  subsets of (~,)2 which are of the first 

category, is of the first category. 

PROOF. So let c~ < 2"', B = U~<,,B, B~ of the first category, so w.l.o.g, each 

B~ is closed, nowhere-dense. Notice that the union of countably many nowhere- 

dense sets is nowhere-dense. A condition p is a countable set of atomic 

conditions which are of one of the two forms: 

BjCX, (j < a, i < w,), 

A 71X~ = Q~ (A a basic clopen subset of <~~ i<w~) such that {Bj CX, 
A 71X, = Q } C p  :~ Bj71A =(~. 

THEOREM 2.4. The monadic theory of o2, (as an ordered set) is decidable 
(using Theorem 1.11). 

NOTATION. S~3 ={i  < ~ , :  c f ( i ) = ~ o } ,  and for a set S of ordinals F ( S ) =  

{a < s u p S :  S 71 a is a stationary subset of a}. 
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PROOF. By [3] it suffices to prove the following three assertions: 

( * )  If A CS02, F ( A ) = B  UC, B,C disjoint and, necessarily, B, CC_S~, then 

for some disjoint sets B1, C1, A -- B1 O C1 and F(B~) = B, F(C~) = C. 

For each 8 E F(A) choose an increasing and continuous sequence of ordinals 

T/8 of length to~ with limit 8, and let its range be As. By Claim 2.1 there is a set 

S_Cto2 such that 8 E B  : : } 1 3 8 n s i  --<No and 8 E C ,  I As -SI=<No.  Now we 

choose B ~ = A - S ,  C I = A O S .  

(* *) If A _C S~ is stationary then for some disjoint B~, C~, A = B1 O C~ and 

F(B,) = F(C1)= F(A). 

Unfortunately, we do not see how to prove this from Theorem 1.1 (*) ,  but V e 

satisfied it. Because for some a, A E V L, and we can assume A~ from w is just 

the addition of a new subset of to2, i.e., the conditions are countable functions f, 

D o m f  _C to2, R a nge f  _C {0, 1}. Remember  that as our forcings are N1-complete, 

stationary subsets of to, remain stationary. 

Similarly we can prove: 

(* * *) If A _C S~ is stationary, then for some stationary B C_ A, F(B) -- 0, and 

also A - B  is stationary. 

This time we choose for each 8 E S~ a closed unbounded set A8 C_ 8 of order  

type to1. The conditions will be countable sets whose elements have the form 

a ~ X ,  As NXC_fl (for fl <tS, 8 E S~). 

Now we give an application (where we get a similar universe, i.e., 2 '̀ 0 = N1, 

2*, > N2, O,, hold). 

CLAIM 2.5. There is arl abelian group G = U~<~2 G~, I G, I--< N1, G, is free, 

and G/G, is N2-free iff cf( i)  ~ N~, hence G is not free, but G is still a Whitehead 

group. 

PROOF. Let G 1 be the abelian group generated freely by {~'7: a < to2, 

i < to1} U {y ~ : a .< to2}. For each limit 8 < to, and a < to2, choose an increasing 

to-sequence u~ of ordinals whose limit is & We get G 1 from G by adding to G ~, 

for each & a E S~, ~5 < to1, c5 limit 

- 2 ~'~tt)- ~ 2'y 2". 

CLAIM 2.6. If $ = $1 U S2 is a family of sets, each of cardinality N~, and 

A~E$~ ~ IAIAA21<N~ then there is a set A*  such that 

S,={A ES:  IA AA*I_-<N0}. 

PROOF. Left to the reader. 
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Added in proof, March 1978. Here are some historical and mathematical 

remarks. 

(1) Baumgartner has proved the consistency of a quite similar statement (see 

comparison below) but has not published it, as Laver had previously a similar 

thing which he also did not pursue. His conditions on P are 

(a)' if p,q E P are compatible, then they have a least upper bound, 

(b)' any increasing to-chain has an upper bound, 

(c)' P = U~<~,P~, every two members of P~ are compatible. 

Notice (c)' is stronger, and (b)' is weaker; however, the last difference is not 

essential (see next remark). 

(2) If P satisfies (b)' let 

Q = {A :A  a countable directed subset of P}, 

A <- oB =ae'(Va E A)  (::lb E B) (a _-< b). 

Now P has a natural embedding to Q(a ~ {a}) preserving compatibility, if P 

satisfies (a) [(c)], then Q satisfies (a) [(c)], and Q satisfies (b). 

(3) In (*) we can omit (a) if we replace (c) by (c)", which is as (c) when we 

replace the conclusion by "then P~, Po have a least upper bound".  

The advantage of this is that all the paper does not change, but the forcing of 

Theorem 1.1 satisfies this version of (*). 

(4) If P is a partial order satisfying (c) of (*), and C.H. holds, then Q = {h : h 

a countable function from P to to~, f-~(a) a directed set for a E Dom h} ordered 

by inclusion, satisfies (a), (b), (c). Hence if (*) holds, P is the union of ~ directed 

sets. So if P is a Boolean algebra P - {0} is the union of N1 filters. This, and the 

next remark is proved in theorem 4.13 in S. Shelah, Simple unstable theories, 
preprint. 

(5) If C.H. holds, P a partial order satisfying the countable chain condition, 
then it satisfies (c) from (*). 

(6) The conclusion of Theorems 1.5 and 2.4 are consistent with G.C.H. Also 

a related theorem (essentially that we can deal with any stationary subset of to2 

with no stationary initial segment) will appear in S. Shelah, Remarks on 

A-collectionwise Hausdorf spaces, Topology Proc., accepted. 
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