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THE JOURNAL OF SYMBOLIC LOGIC 

Volume 63, Number 4. Dec. 1998 

COMPACTNESS OF LOEB SPACES 

RENLING JIN AND SAHARON SHELAH 

Abstract. In this paper we show that the compactness of a Loeb space depends on its cardinality, the 
nonstandard universe it belongs to and the underlying model of set theory we live in. In § 1 we prove that 
Loeb spaces are compact under various assumptions, and in §2 we prove that Loeb spaces are not compact 
under various other assumptions. The results in § 1 and §2 give a quite complete answer to a question of 
D.Ross in [9], [11] and [12]. 

§0. Introduction. In [9] and [11] D. Ross asked: Are (bounded) Loeb measure 
spaces compact"? J. Aldaz then, in [2], constructed a counterexample. But Aldaz's 
example is atomic, while most of Loeb measure spaces people are interested are 
atomless. So Ross re-asked his question in [12]: Are atomless Loeb measure spaces 
compact! In this paper we answer the question. Let's assume that all measure spaces 
mentioned throughout this paper are atomless probability spaces. 

Given a probability space (fi, E, P). A subfamily S* C E is called compact if for 
any Ql C %, Ql has f.i.p., i.e., finite intersection property, implies f]Q ^ 0. We call 
a compact family f inner-regular on Q if for any A el, 

P(A) = sup{ P{C) :C CAAC £&}. 

A probability space (Q, E, P) is called compact if I contains an inner-regular 
compact subfamily. Clearly, the definition of compactness is a generalization of 
Radon spaces with no topology involved. In fact, Ross proved in [11] that a 
compact probability space is essentially Radon, i.e., one can topologize the space 
so that every measurable set A contains a compact subset of measure at least half 
of the measure of A. 

Loeb measure spaces are important tools in nonstandard analysis (see, for ex
ample, [1] and [16]). Ross proved in [11] that every compact probability space is 
the image, under a measure preserving transformation, of a Loeb measure space. 
This shows, by a word of Ross, some evidence that Loeb spaces themselves may be 
compact. 

Received July 5, 1996; revised January 9, 1997. 
1991 Mathematics Subject Classification. Primary 28E05, 03H05, 03E35. 
The research of the first author was supported by NSF postdoctoral fellowship #DMS-9508887. 

This research was started when the first author spent a wonderful year as a visiting assistant professor 
in University of Illinois-Urbana Champaign during 94-95. He is grateful to the logicians there. 

The research of the second author was supported by The Israel Science Foundation administered 
by The Israel Academy of Sciences and Humanities. This paper is number 613 on the second author's 
publication list. 

© 1998. Association for Symbolic Logic 
0022-4812/98/6304-0009/S3.20 

1371 

Sh:613



1372 RENLING JIN AND SAHARON SHELAH 

In this paper we show that the compactness of a Loeb space depends on its 
cardinality, the nonstandard universe it belongs to, and even the underlying world 
of set theory we live in (suppose we live in a transitive model of ZFC). 

Throughout this paper we always denote J( for our underlying transitive model 
of set theory ZFC. We sometimes use JV for another transitive model of ZFC. If we 
make a statement without mentioning a particular model, this statement is always 
assumed to be relative to Jt'. Let N be the set of all standard natural numbers. 
Using N as a set of urelements, we construct the standard universe (V, e) by letting 

V0 = N, Vn+i = Vn\J&(Vn) and V = ( J V„. 

A nonstandard universe (* V,*€) is the truncation, at *s-rank a>, of an elementary 
extension of the standard universe such that *N x N ^ 0. We always assume the 
nonstandard universe *V we work within is at least a>\-saturated. In fact, co\-
saturation is needed in Loeb measure construction. For any set S we use \S\ for its 
set theoretic cardinality. If S is an internal set (in * V), then *\S\ means the internal 
cardinality of S. For any object S in the standard universe we always denote *S 
for its nonstandard version in * V. For example, if Q is an internal set, then *&(££) 
denote the set of all internal subsets of Q. Let So C *<P(Cl) be an internal algebra 
and let P: So *-* *[0,1] be an internal finitely additive probability measure. We 
call (Q, So, P) an internal probability space. Let st: *[0,1] i-> [0,1] be the standard 
part map. Then (Q, So, st oP) is a standard finitely additive probability space. Then 
one can use So to generate uniquely an st oP-complete ff-algebra S and extend 
stoP uniquely to a standard complete countably additive probability measure Lp. 
The space (Q, S, Lp) is called a Loeb space generated by (Q, So, P). Let H be a 
hyperfinite integer, i.e., H € *N\N. LetQ = { 1 , 2 , . . . , H}, letS0 = *&>{&) and let 
P(A) = *\A\/H for each A e So. We call (CI, So,.P) a hyperfinite internal space. The 
space (Q, S, Lp) generated by (Q, So, P) as above is called a hyperfinite Loeb space. 
Hyperfinite Loeb spaces are most useful among other Loeb spaces in nonstandard 
analysis. For notational simplicity we prove the results only for hyperfinite Loeb 
spaces in this paper. From now on we denote the symbol (fi, S, Lp) or just £2 
without confusion, exclusively for a hyperfinite Loeb space. Most of the results for 
hyperfinite Loeb spaces in this paper can be easily generalized to Loeb spaces in the 
general sense (see Fact 3 at the beginning of §1 and the comments after that). 

In §1 we show when a hyperfinite Loeb space is compact. We prove the following 
results. 

COROLLARY 3. Suppose CH (Continuum Hypothesis) holds. Suppose |*N| = a>\. 
Then every hyperfinite Loeb space in * V is compact. 

COROLLARY 4. Suppose MA (Martin's Axiom) holds. Suppose * V is 2a'-saturated 
and |*N| = 2ra. Then every hyperfinite Loeb space in * V is compact. 

COROLLARY 5. Suppose Jl is obtained by adding K Cohen reals to a ZFC model JV 
for some K > (2ro)-/r with nm = K in JV. Suppose |*N| = 2m (in Jl now). Then every 
hyperfinite Loeb space in * V is compact. 

COROLLARY 7. Suppose JC is same as in Corollary 5. In J! suppose X is a strong 
limit cardinal with cf (X) < «. Suppose |*N| = X and * V satisfies the Ho-special model 
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COMPACTNESS OF LOEB SPACES 1373 

axiom {see [10] or [5] for the definition). Then every hyperfinite Loeb space in * V is 
compact. 

THEOREM 8. Suppose K is a strong limit cardinal with cf («) = co andX = K + = 2K. 
Suppose * V is X-saturated and has cardinality X. Then every hyperfinite Loeb space 
in * V is compact. 

In §2 we show when a hyperfinite Loeb space is not compact. We prove the 
following results. 

THEOREM 9. Suppose X is a regular cardinal such that KW < X for any K < X. 
Suppose |ft| = X. Then ft is not compact. 

THEOREM 10. Suppose X is a strong limit cardinal, n = cf (X) and fim < nfor any 
fi < K. Suppose |ft| = X. Then ft is not compact. 

THEOREM 11. Suppose Jl is obtained by adding K random reals to a ZFC model JV 
for some regular K > (2m)jr with Km = K. Suppose |ft| = 2m {note 2m = K in Jl). 
Then ft is not compact. 

THEOREM 12. Suppose JC is obtained by adding K random reals to a ZFC model 
Jr" for some regular K > co. Suppose X is a strong limit cardinal such that cf (A) ^ K. 
Suppose |ft| = X (hence cf(A) > co). Then ft is not compact. 

THEOREM 13. Let X > \V\ and Xm = X. Then there exists a*V such that |Q| = X 
and ft is not compact for every Q.in*V. 

In this paper we write X,K,/U,... for cardinals, a, /?, y,... for ordinals and k, m, 
n, ... for natural numbers. We write XK (X<K) for cardinal exponents and KX (<KX) 
for sets of functions. For any set S we write [S]x for the set of all subsets of S with 
cardinality X. For any set S we write (s2, Z(s2), vs) for the complete probability 
space generated by all Baire sets of s2 such that for any finite So C S and any 
re s°2, VS([T]) = 2-IS»I, where M = { / G s 2 : f\S = r}. 

The reader is assumed to know basics of nonstandard analysis and be familiar 
with nonstandard universes and Loeb space construction. We suggest the reader 
consult [8] and [16] for information on those subjects. The reader is also assumed 
to have basic knowledge on set theory and forcing. The reader is recommended to 
consult [6] for that. 

§ 1. Towards compactness. We would like to list three facts about hyperfinite Loeb 
spaces (ft, Z, Lp), which will be used frequently throughout this paper. 

FACT 1. For any S e 2 and any e > 0 there exists anAe *&>(£l) such that ACS 
andLp(S \ A) < e. 

FACT 2. For any internal sets A„ C ft there exists an internal set B C f]nem A„ 
such that LP(C\nea An) = LP{B). 

A A-sequence ( A a : a e X) of measurable subsets of ft is called independent if 
for any finite IQ Q X 

LP(f)A„) = ]\Lp(Aa). 
\*6/o ' a€I0 

FACT 3. Suppose |ft| = X. Then there exists an independent X-sequence of internal 
sets of measure 1/2 on ft. 
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1374 RENLING JIN AND SAHARON SHELAH 

Fact 1 and Fact 2 are direct consequences of co\ -saturation and Loeb measure 
construction. Fact 3 can be proved by finite combinatorics and the overspill principle 
in nonstandard analysis. Call a sequence (Ai : i < m) of subsets of a finite 
probability space of size n with normalized counting measure /i a (k, c) -independent 
sequence for some k e N and c e (0,1) if and only if for any i\ < h < • • • < i^ 
with k' < k and any h e k'l one has 

7=1 

Note that given any k £ N and any c € (0,1), there is a (k, c)-independent sequence 
of length n in an n-elements probability space for large enough n e N. Let H be 
an infinite integer. Applying overspill principle one can find an infinite integer K 
and a nonstandard real C with st(C) = 1 such that there is a (K, C)-independent 
sequence of internal sets of length H in ft = {1 ,2 , . . . , H}. It is easy to check 
that the sequence obtained is, in standard sense, an independent sequence of the 
hyperfinite Loeb probability space ft. 

For a Loeb space in the general sense Fact 1 and Fact 2 are also true. But Fact 3 
may not hold. So whether or not a result about hyperfinite Loeb space can be 
generalized to a general Loeb space may depend on the truth of Fact 3. 

A set t C <m2 is called a tree if for any s, s' e <cu2, s C s' and s' e t imply 
s e t. We use capital letter T C <w2 exclusively for a tree with no maximal node. 
So every branch of T is infinite. For a tree T we write [T] for the set of all its 
branches. In fact, every closed subset of m2 could be written as [T] for some tree T. 

DEFINITION 1. A sequence of trees ( Tat„ : a e A An € co) is called a (K, A)-witness 
if 

(1) vro([rQ,„]) > n/(n + 1), 
(2) (V/ e ra2) (\{a G A : 3n (f e [ 7 ^ ] ) }| < «). 

THEOREM 2. Suppose there exists a (K, X)-witness { Ta<n : a e A A n e co )/or 5owe 
uncountable cardinals K and A. Suppose *V is K-saturated and |*^(Q) | = A. 77ien 
Q « compact. 

PROOF. Choose (vl„ : n e co), an independent co-sequence of internal subsets 
with measure 1/2 on ft. We write A\ = A„ and A\ = ft \ A„. Then for any finite 
s C co and any h e J2 we have 

For any tree T define 

necoqe "2nT 1=0 

It is easy to see that LP(AT) = vro([r]). Note that ^ r is a countable intersection 
of internal sets. We now want to construct an inner-regular compact family ^ of 
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COMPACTNESS OF LOEB SPACES 1375 

internal subsets on Q. Let *5B(Q) = { aa : a e A }. For each a £ l and « e co let 
â,« C a 0 n v47-a„ be internal such that 

LP{ba,n) = LP(aa nATaJ-

Then let 

& = {Al„:necoAl = 0,1}U{Z>a,„ : a e l A n € o } . 

CLAIM 2 . 1 . ^ is an inner-regular compact family on Q. 

PROOF OF CLAIM 2.1. The inner-regularity is clear. We need to prove the com
pactness. Let 91 C g7 be such that ® has f.i.p. We want to show that f) 9> ^ 0. 
Without loss of generality we assume that 95 is maximal. So for each n e co either 
,4" € Sf or ^ i e 9S but not both. Let he m2 be such that for each n e co we have 
^ ( n ) € Sf. Given any c>a.„ e 3f, we want to show that h e [Ta„]. Let k e co. Then 

, * - i 

, - n / W=0 

So we have 
,k-\ s / m-\ 

(rK°Wn u n4(i1)^-
v / = 0 ' xme<o r)£ w2C\TaJ, i=0 

This implies that there exists an w € rQi„ n ^2 such that 
,k-\ s, ,k-\ 

(n^(/))n(n^(,))^0-
Hence we have h\k = n\k e Ta,„. This is true for any k e co. So h £ [Tan\. But 
we assumed that 

\{a:3n(he[Ta,n])}\<K. 

So \9l\ < K. Now using K-saturation, we get f] 91 ^ 0. H 

REMARK. From the definition of the compactness we do not have to choose f as 
a family of internal sets. We do that because internal sets are more interesting. In 
this paper if we construct a compact family we always construct a family of internal 
sets. 

COROLLARY 3. Suppose CH holds and |*N| = co\. Then every hyper finite Loeb 
space in * V is compact. 

PROOF. It suffices to construct an (a>i,coi)-witness. Let m2 = {/„ : a e co\ }. 
For each n e co and a £ co\, choose Ta<n such that 

U [ 7 - ] ) > ^ 1 

and 

[ U n { / ^ : / l G a } = «. 

It is clear that (Ta,„ : a e co\ A n s co) is an {co\, co\ )-witness. H 
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1376 RENLING JIN AND SAHARON SHELAH 

REMARKS. 

(1) The condition |*N| = co\ implies C H by a>\-saturation of * V. 
(2) If * V is an co-ultrapower of the standard universe, then |*N| = co\, provided 

CH holds. 

COROLLARY 4. Suppose for any S C w2, \S\ < 2W implies vm(S) = 0. Suppose* V 
is 2°-saturatedand |*N| = 2m. Then every hyperfinite Loeb space in * V is compact. 

PROOF. By the same construction as in Corollary 3 with length 2m we can find a 
(2"\ 2m)-witness. Now the corollary follows from 2m-saturation of * V and Theo
rem 2. ~\ 

REMARK. Obviously, Corollary 3 is a special case of Corollary 4. In the case 
of - .CH, one has that M A implies vm{S) = 0 for any set S C <°2 with \S\ < 2<° 
and M A implies also 2K = 2m for any K < 2m, which guarantees the existence of 
2m -saturated nonstandard universes. 

COROLLARY 5. Suppose M is obtained by adding X Cohen reals to a ZFC model JV 
for some X > (2(°)jr with X0} = XinJV. Suppose |*N| = X {2m = XinJH). Then 
every hyperfinite Loeb space in * V is compact. 

PROOF. It suffices to construct an (co\, A)-witness. Work in JV. For each n e co 
let 

K = {t C <(a2 : (3T C <»2) (va([T]) > ^ ~ A3m(t = T\m)) } 

be a forcing notion ordered by the reverse of end-extension of trees (we assume 
smaller conditions are stronger). It is clear that 3~„ is countable and separative. So 
forcing with 3~n is same as adding a Cohen real. Let T" = ^ „ , let P a = Yl„eu} F" 
with finite supports for each a € X and let P = Ylae^ PQ with finite supports. 
Without loss of generality we assume that M = JV[G], where G C P is an JV-
generic filter. For each a s X and n e co let 

Ta,„ = \J(Gnsrn
a). 

We want to show that the sequence ( Ta-n : a € / l A « € a > ) i s a n {co\, A)-witness. 
Given any / e w2 in JC, there exists a countable set S C X in JV such that 

/ e JV[GS], where Gs — G n (]JaeS P a ) . For any a e X ^ S and any n e co, 
G n J „ a C 5 7 is a -/F[Gs]-generic filter. Define 

D / = { / e J „ t ' : 3 m (f has height mAf\m£t)}. 

CLAIM 5.1. 3 y iv dense in T". 

PROOF OF CLAIM 5.1. Let t e 5 ^ . We want to find a f' e 5 ^ n Df such that ?' 
is an end-extension of t. Let m' be the height of t. Without loss of generality we 
assume that f\m' e t. Let 

T = {n£ <m2:n£t\/ri\m' e / }. 

It is clear that 
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COMPACTNESS OF LOEB SPACES 1377 

Let 

e = v„([r])_^±i 

and let n' > m' be large enough so that 2""' < e. Let 

f = { ^ r : H ^ ' v , f ( « ' + i ) ^ / [ ( « ' + i )} . 

Now 

Va1{[T'])>vm{[T])-e=n-±±-. 
n + 1 

Let m = «' + 1. Then we have 

t' = T'\m ey-n
anDf 

and that t' is an end-extension of t. H 

Since £>/ is dense in 3~?, then G n 5"„a H £>/ ^ 0. This implies / £ [ra,„]. So 

{ a e i : 3 « ( / e [ U ) } c x 
This shows that ( Tajl : a 6 l A « g o ) i s a n (co\, A)-witness. -\ 

REMARKS. 

(1) We don't have requirements for * V because * V is always a>\ -saturated. 
(2) Above three corollaries can be easily generalized to general Loeb spaces as 

long as their cardinalities are 2W. For example, above three corollaries are also true 
if we replace a hyperfinite Loeb space by a Loeb space generated by a nonstandard 
version of Lebesgue measure on unit interval. From now on we will not make 
similar remarks like this. The reader should be able to do so by himself. 

Next we will mention a property of nonstandard universes called the No-special 
model axiom (see [10] or [5] for details). The special model axiom is in fact an 
axiomatization of special nonstandard universes as models (see [3] for the definition 
of a special model). In the proof we need only some simple consequences of the 
property. Let's list all the consequences we need. If * V satisfies the No-special model 
axiom, then 

(1) all infinite internal sets have same cardinality, say X, 
(2) for every hyperfinite internal space (CI, *3B(C1),P) there exists a sequence 

((Cla, 2Q) : a e cf(A)), called a specializing sequence, such that 
(a) 0 = UaecfU)Qo, 
(b) *<?(Cl) = \JaecmZa, 
(c) if {A„ : n e co} C Za, then there exists a B e ZQ+i such that B C 

nB€a, An and LP(B) = LP(f]„eo> A„), 
(d) if 91 C IQ and 31 has f.i.p., then (f| 9>) n Cla+i ^ 0. 

THEOREM 6. Suppose there exists an increasing sequence (Za C ffl2 : a G K )ybr 
some regular cardinal K > a> such that vm(Za) = 0 for every a e Kandm2 = \Ja£K Za 

(son 4; 2m). Suppose X is a strong limit cardinal with ci(X) = K. Suppose * V satisfies 
the ^-special model axiom and |*N| = X. Then every hyperfinite Loeb space in * V is 
compact. 
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1378 RENLING JIN AND SAHARON SHELAH 

PROOF. Given a hyperfinite Loeb space Q, let ({Qp, I.p) • P G K ) be a specializing 
sequence of Q. For each ft € « let T ^ C <<u2 be such that 

v<» ([!>.,,]) > ^ - j - and [7>,„] n Zp = 0. 

Without loss of generality we can pick an independent sequence (A„ : n e co) of 
internal sets with measure 1/2 in So. Let *&{Q) = {aa : a e X}. For each a e X 
let 

g{a) = min{0 e K : aa e!p}. 

We now construct an inner-regular compact family W on Q.. For each a e X and 
each n e co let t>a,„ £ £g(a)+i be such that 

ba,n Q aa nATg{aU 

and 

LP{ba,„) = LP{aa n ATgMJ 

(check Theorem 2 for the definition of AT). Define now 

f = {iQ,„ : a e l A n £ i a } U { ^ : n £ ( a A / = 0 , l } 

(recall ^° = ^ and A1 = Q \ ^ ) . 

CLAIM 6.1.9' JS an inner-regular compact family on Q. 

PROOF OF CLAIM 6.1. Again the inner-regularity is clear. Let 9 C ^ be such that 
2? has f.i.p. We want to show P| 9 ^ 0. Again we assume 9 is maximal. Let 

8 = \J{g(«) : 3« (&„.„ € » ) }. 

CASE 1. cS < K. 

Then 9 C I«y+1. By the special model axiom we have f| ® ^ 0. 

CASE 2. d = K. 

Let « G ra2 be such that Ah„{n) e 9. Same as the proof of Claim 2.1 we have 
that h £ [Tg(a)n] if £>„,„ G 9. But there is a /?o G K such that h e Z#,. So we have 
h fi [Tg(a)n] for any g{a) > /fo. This contradicts 5 = K. -\ 

REMARKS. 

(1) The nonstandard universes satisfying the Ko-special model axiom and having 
cardinality X exist. In fact, those universes are frequently used by Ross (see [13] and 
[10]). 

(2) This theorem guarantees the existence of arbitrarily large compact hyperfinite 
Loeb spaces. 

(3) The set theoretical assumption besides ZFC for Jl in this theorem is rather 
weak. The model Jl satisfies the assumption if Jl is a model of, e.g., CH or MA, 
or is obtained by adding enough Cohen reals. 
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COMPACTNESS OF LOEB SPACES 1379 

COROLLARY 7. Suppose Jl is same as in Corollary 5. In Jl suppose Xis a strong 
limit cardinal with cf (k) ^ K. Suppose |*N| = k and * V satisfies the ^-special model 
axiom. Then every hyperfinite Loeb space in * V is compact. 

PROOF. First we arrange the Cohen forcing such that Jl is a forcing extension of 
some model of ZFC by adding cf (1) Cohen reals. Then by [7, Theorem 3.20] we 
know that m2 is a union of an increasing cf(A)-sequence of measure zero sets. H 

REMARK. There is another proof by a method similar to the proof of Corollary 5. 

THEOREM 8. Suppose K is a strong limit cardinal with cf (K) = co and suppose 
k = K+ = 2K. Suppose * V is k-saturated and |*N| = k. Then every hyperfinite Loeb 
space in * V is compact. 

PROOF. Given a hyperfinite Loeb space Q in * V, we want to show that Q is 
compact. Let K = \J„eco K„ be such that Ko > co and «„+i > 2K" for each n G co. 
Choose an independent /c-sequence 

(Aa G * ^ ( Q ) :a£K) 

of internal sets with measure 1/2. For any n, m let 

38n =&{{Aa :a G K„+1 }) 

be the Boolean algebra generated by Aas for all a G K„+I and let 

f m i 
Pos„,m = \ X e 3Sn : LP{X) > — — . 

I m + 1 J 

Note that every X e Pos„,m is internal with measure > m/{m + 1) because it is a 
finite Boolean combination of internal sets. For each n, m G co let 

h,m = { E C Pos„,m : E has f.i.p. }. 

For each m G co let 

Pos<co,m = {X:3n(X = (X0,Xu..., X„-i) A (Vi < n) {Xt e Pos„,m)) }, 

and let 

9~m = { F : F is a function from Pos<£um to U«e<o ̂ »,m s u c n that 

(VZ = (JTo,.. • , JT«_i> e Pos<C),m) (F(jf) e /„,m) }• 

It is clear that \&m\ < KK = A. Let ^"m = { FQ,m : a G A } be a fixed enumeration. 
For each a e k let's fix an increasing sequence ( B a n C a : n G co) such that 
|-ff<»,n| ^ «n for each « e co and a = \J„em Ban. We define a function / a m from co 
to Uneco P°sn,m for each a G A by induction on w such that for each n £ co 

(1) /„,„(») G Pos 
(2) /o,m(« + l ) C / a , m ( n ) , 
(3) /„,m(») £ IK^M/amM : A € 5a,„ }. 
Suppose we have defined faM \n. 

CLAIM 8.1. There is an X = fa,m(n) such that (1), (2) and (3) hold. 
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1380 RENLING JIN AND SAHARON SHELAH 

PROOF OF CLAIM 8.1. For each p e Ba „ let 31 p be an ultrafilter on 3Sn such that 

% 2 Fp,m(fa,m \n) 

(note that F^m(ftti„, \n) has f.i.p.). Let fajn{n - 1) = C at stage « > 0 (replace C 
by Q at stage n = 0). For each 7 6 [««, «„+i) let 

J,, = {)Se£Q,„ : C n ^ , € % } . 

Since |5a,„| < «„ and 2K" < K„+I = |[K„, «„+I)|, then there exists an E C [K„, K„+I) 

with |£ | = K„+I such that for any two different y, y' € E we have /,, = Jr>. Let 
yo < y'o < Y\ <y{< ••• be in E and let 

c„ = {Ayn n c ) A ( ^ n c ) = {Ay, AAy,)n c, 

where A means symmetric difference. It is easy to see that for any n € co and any 
/? € Ban we have C„ ^ £^?. It is also clear that 

LP{Cn) = LP{C)LP{Ayii AAfo) = l-LP{C). 

Since Lp{C) > m/{m + 1), there exists a big enough N e co such that 

(* - G)><c» ^ 
Nowlet/a,m(«) = U(lo' c<- Itiseasy to see that (2) and (3) hold. For (1) we have 

LP{fa,m{n)) = LP(c n ( ( J (AriAAr.)\\ 

=('-G)><c>>^ 
We now define an inner-regular compact family 'g on Q. Let *&>{&) = { aa : 

a e A } be an enumeration. For each a e J and w e co, let 

ua.m (f]fam{n)) 

be internal such that 

LP{ba.m) =Lp(aaD ( f) fa,m{n))\. 

Now let 

^ = { ba<m : a e A. Am Geo}. 

CLAIM 8.2. 9* is an inner-regular compact family on CI. 
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PROOF OF CLAIM 8.2. The inner-regularity o f f is obvious. Let 9> C f be such 
that 9> has f.i.p. If \9t \ < X, then f] 9f ^ 0 by A-saturation. So let's assume \Q> \ = X. 
Hence there exists an mo € co such that 

Z = {a: ba,mo e 91} 

has cardinality X. Let's prove the next claim first. 

CLAIM 8.3. There exists an X = (Xo, X\,... , Xn-\) far some n e co such that 

{ /a,m0(") : a € Z A / a ,m o \n = X } <£ 7„,mo. 

PROOF OF CLAIM 8.3. Suppose not. Then we can define a function 

b : Fos<a,imo *—¥ |^j yMimo 

n£ca 

such that for each X — (Xo,... , X„-\) 

F(X) = {fa,mo(n) :oteZA fa,mo\n = X}. 

It is clear that F e &~mo. So there is an fi € X such that F = F^m. Since \Z\ = X 
there is an a e Z such that a > /?. Now choose large enough n e co such that 
P € Ban. Then 

/ a , m 0 ( " ) £ Fp,m0{fa,m0 f«) 

by the construction of / Q m o . But this contradicts the definition of F = FpMo. -\ 

We continue the proof of Claim 8.2. By Claim 8.3 there exists an 
X = (Xo,... , X„^i) such that 

{ fa,m0{n) : a G Z A /Q,m„ \n = X } 

does not have f.i.p. Hence {ba<mo : a e Z } does not have f.i.p. because bamo C 
fa,m0{n). This contradicts that 91 has f.i.p. H 

REMARKS. 

(1) A-saturated nonstandard universes of cardinality X exist because X<x = X. 
(2) Under certain assumptions for Jt', e.g., Singular Cardinal Hypothesis, this 

theorem guarantees the existence of arbitrarily large compact hyperfinite Loeb 
spaces with regular cardinality. 

(3) The proof of this theorem is implicitly included in [14]. 
(4) D. Fremlin recently found an easier proof of the theorem based on a general

ization of the proof of Corollary 3, and the fact that any subset S of K2 with \S\ < « 
has vK(S) = 0. Now we have an independent sequence ( A a : a < K ) of length « 
instead of length co. For any closed subset [T] C K2 one has a correspondent set 
AT with Lp(AT) ~ vK([T]). Let K2 = { fa : a < X } and let Q = { aa : a < X }. 
Choose [Ta,„] so that [Ta<n\ n { / > : /? < a } = 0 and vK([rQ,„]) ^ «/(« + 1). It is 
not hard to see that the set 

'S = {aa n ATa„ :a<X, n € co}l){AJ
a : a < K, j = 0,1 } 

is an inner-regular compact family. 
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§2. Towards non-compactness. Remember that our nonstandard universes are at 
least a>\-saturated. For a measure space (X, Z, P) we write 38{X) for the measure 
algebra of X, i.e., the Boolean algebra of measurable sets modulo the ideal of 
measure zero sets. I f® C E, we write 3S{3) for the complete subalgebra of 3§{X) 
generated b y ® . 

THEOREM 9. Suppose X is a regular cardinal such that nm < X for every K < X. 
Suppose |Q| = X. Then Q is not compact. 

PROOF. Suppose not. Let ^ be an inner-regular compact family on Q. Let 
( A a : a £ X) be an independent 1-sequence of internal subsets of Q of Loeb 
measure 1/2. Pick Xl

an £ % for every a £ X, n £ co and / = 0, 1 such that 
Xl„ C A'a and 

Note that 4° = ^ a and Al
a = Sl\Aa, but generally A^„ will not be Q \ *£„. 

CLAIM 9.1. There exists anE £ [A]1 and ?Aere exista an «(a, /)_/or eacn a £ E and 
I = 0, 1 SMC« that for any m £ co, any distinct { a0,... , a m - i } C E and any h £ m2 
we nave 

/ m _ 1 \ 

^(n<(:)(Q,M0))>°-
V ;=0 ' 

The theorem follows from the claim. Since |Q| = X < 2X, we can find / £ E2 
such that 

n * ' w , , „ = 0. 
I I Q,n{Q,/(a)) 

But {JST7^ ,, , , : a s £ } C ? h a s f.i.p. 

PROOF OF CLAIM 9.1. For each measurable set A c Q let .4 denote the element in 
the measure algebra, represented by A. For each a e /I let 

^ a = J-({ ^ : p < a } U { X\n : P < a A n e co A / = 0,1 }). 

Recall that 3S{X) for some family X of measurable sets is a complete subalgebra 
of measure algebra on Q, generated by X. By c.c.c. of measure algebra it is easy 
to see that \Jga\ < |a|m. Notice that the sequence {38a : a £ X) is increasing and 
38a = U«<a ^fi when cf(a) > co. Let 38 be a complete Boolean algebra. Given 
a £ 38 and a subalgebra 38' C.38, define a function 

g ( a , ^ ' ) = in f{b£38 ' :b>a}. 

g(a, £8') exists since ^ is complete. Let 

D = {a£X :cf{a) >co}. 

Then D is stationary in X. For each a e D let 

</(a) = min{/? : g(J°a,3la) £ &p Ag(Al
a, 38a) £ 3Bf }. 
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Then d(a) < a for every a e D. By Pressing-Down Lemma we can find a 
stationary subset E C D and an c*o € X such that d(a) = ao for every a e E. Since 

l^aoK |aor<A, 

we can assume that there are bo, b\ e £8ao such that for all a e E we have 

fU"^,^a)=fco and g{Al,3Sa) = bx. 

By thinning £ further we can assume that Aa £ &ao for each a e E. Hence 
Aa & 98a for each a £ E. It is easy to see that bo A b\ / 0 because otherwise we 
have, for any a € E, 

^ O o < -bx < -A\ = A°a 

and this implies AQ
a = bo £ ^a0-

CLAIM 9.2. For any a £ E there exist n(a, 0) andn(a, 1) swc/z that 

PROOF OF CLAIM 9.2. Suppose not. Then for any n, m g o w e have 

So then 

^ = V *£» ^ V 8(X2.n.&°) < A HK*L.>£«)) 

This implies 

a contradiction. H 

We continue to prove Claim 9.1. By thinning E even further we can assume that 
there exist d0, d\ e ^Qo such that for every a e E, 

S(*£»(a,0)>-*a) = 4> a i l d *(*l,Ca,l).^a)=</l. 

It follows from Claim 9.2 that d = do A d\ ± 0. 
We now prove, by induction on m, that for any w e co, for any distinct 

{cto,... , am-\} C £• and for any /i e m2, 
,m-\ v 

X (=0 7 

Suppose the above is true for m, but not true for m + 1. Pick some distinct 
{ ao,.. . , am } C J? and h e m+12 such that a, < am for each i < m and 
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Without loss of generality let h(m) = 0. Then 

(^(A,<(,: )
( a , ,MO)))A^.^.o)=o-

Then 

So 

This implies 

This contradicts the inductive hypothesis. H 

REMARKS. 

(1) Not like other results so far, Theorem 9 is a consequence of ZFC. 
(2) When X = (ne)+ for some infinite cardinals n and 6, we have KW < k for any 

K < X. So ZFC implies the existence of arbitrarily large non-compact hypernnite 
Loeb spaces in some nonstandard universes. 

(3) The proof of this theorem is implicitly included in [15]. 
(4) The proof works also for general Loeb spaces if they have an independent 

A-sequence of measure 1/2. 
(5) The reader could find a shorter proof by using Maharam theorem and a 

similar idea in the proof of Theorem 11. 

THEOREM 10. Suppose X is a strong limit cardinal, K — cf(A) and fim < nfor any 
/u < K. Suppose |Q| = X. Then Q is not compact. 

PROOF. Suppose Q, is compact and let f be an inner-regular compact family on 
Q. Let (Xa : a € K ) be an increasing sequence such that 2Xa < Xa+\ for each 
a € K and X = \JaeKXa. Let Q = {ap : ft e X} be an enumeration and let 
&a = {op : fi < Xa } for each a £ K. Choose an independent 2-sequence of 
internal sets of measure 1/2, say (Ap : /? e X), on Q. 

CLAIM 10.1. There exist two different ordinals ya,y'a £ [Xa,Xa+\) such that Aya A 
Ay'a n Q a = 0/or each a £ K. 

PROOF OF CLAIM 10.1. Since 2la < Xa+\, then there exist two different ya and y'a 

in yXQ, /ia+i ) such that 

Aya n Q Q = Ayia n Q a . 

Hence we have AJa A Ay^ n Qa = 0. H 
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For any a e n let Ba = Aya A Ay>a. It is easy to see that (B a : a € « ) is an 
independent sequence of measure \. By inner-regularity of ^ we can find Xa,n € f 
for each a and each n s co such that Xa,„ C i?a and 

By a similar method as in the proof of Claim 9.1 we can find an E e [K]K and an 
n (a) e co for each a £ E such that for any m e co and any distinct { ao , . . . , ami } C 
E we have 

m - l 

f l XmAm) * »• 
/=o 

So { ^o,n(a) : " e E } C f has f.i.p., but 

D X°.nW C f l *« = 0. H 

REMARK. Theorem 10 is also a consequence of ZFC. So ZFC implies the existence 
of non-compact hyperfinite Loeb spaces of arbitrarily large singular cardinalities. 

We need Maharam Theorem for next two theorems. Given a complete Boolean 
algebra SB. For any I C J recall that 3S{X) is the complete subalgebra generated 
by X. Let 

x{9§) = min{ \X\ : X C 3S A 38 = 98(X) }. 

For any a e 98 \ {0} let ^ fa be the Boolean algebra {bAa:be£8} with a being 
the largest element 1 in 98 \a. A complete Boolean algebra 98 is called homogeneous 
if t{98) = x{98 \a) for every a € 98 \ { 0 }. The following is a version of Maharam 
Theorem (see [4, p. 911, Theorem 3.5]). 

MAHARAM THEOREM. Let 98 be a homogeneous measure algebra of a probability 
space with T{98) = X. Then there is a measure preserving isomorphism <bfrom 98 to 
98{k2). 

Let n be a cardinal. For next two theorems we always denote, for each a s /i, 

Ba = {f€ * 2 : / ( a ) = 0 } . 

For any set X C ^2 let supt(Z) denote the support of X, i.e., the smallest w C ju 
such that for any f,f'e M2 we have / \w — f \w implies / e X if and only if 
/ ' € A'. Clearly s u p t ^ ) is at most countable HX is a Baire set. For any measurable 
set X in a measure space we denote again X for the element in the measure algebra, 
represented by X. 

THEOREM 11. Suppose Jl is obtained by adding X random reals to a ZFC model JV 
for some regular X > (2W)^ with Xm = X. Suppose |Q| = X (X = 2<° in J?). Then Q 
is not compact. 

PROOF. Let Q be a hyperfinite Loeb space in * V with |Q| = X. Without loss 
of generality we assume that 98{Q) is homogeneous and z(9S(Sl)) = n for some 
fi ^ X. The reason for that is the following. It is easy to see that for any internal 
subset a of Q with positive Loeb measure there exists an |a|-independent sequence 
of measure Lp{a)/2 on 9B(Q,)\a. Since \a\ = X, then t{£%(Q)\a) ^ X. Suppose 
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^•(Q) is not homogeneous. Then we can choose an internal subset a C Q such 
that LP(a) > 0 and ju = T(£B(£1) \a) is the smallest. Hence /i ^ X and 0{Q.) \a is 
homogeneous. Then we could replace Q by a. 

By Maharam Theorem let 0 : £%{Q) = 38 (^ 2) be the measure preserving isomor
phism. For each a € X C n let Aa C Q be measurable such that 

3>U"a) = 5 a . 

Suppose Q is compact and let f be the inner-regular compact family on Q. Again 
let ,4° = Aa, A\ = Q \ Aa, B°a = Ba and Bx

a = n \ 5 a . Then there exist 
-STi,„ e ? such that A^„ C Al

a and 

^(U*.)-5-
where A^ „ may not be Q \ X£„. For each a G X, n e at and / = 0, 1 let Yl

an C 5^ 
be a Baire set such that 

<I>(X' ) = f . 

We want to find an E e [/l]A and an «(a, /) for each a € E and / = 0, 1 such that 
for any m e co, any distinct { ao,. . . , am_i } C E and any h e m2 

m - l 

/ \ a,-,n(a,-,/>(i)) ' 
(=0 

This is enough to prove the theorem because by Maharam's isomorphism we have 
a family 

9-f = { Xn°!] ,, ,,:aeE\ 
J l a,n(a,f(a)) > 

with f.i.p. for every / e £2 . But |Q| = X. So there must be a family ^ / for some 
f e E2 with empty intersection, which contradicts that ^ is a compact family. 

Let P = 3Si^2) be the forcing in JV for adding X random reals. Since P has c.c.c, 
then for each a e X there exists a countable set va C A in JV such that 

{ y i , „ : « e « A / = 0 , l } c y r ^ Q 2 ) . 

Work in JV. Let wa be a P-name for 

U s u p t ( 0 
rt£a> 
/=0.1 

Again since P has c.c.c. there exists a countable wa C ju such that 

lhP ua Cwa. 

Note that a e u>Q for every a £ l C / i . Since A > 2W ^ co), we can find a » C / j 
with |v| < A and an E e [A]A such that for any two different a, /? e E 

wa n wp c u. 

So in j f for any two different a, /? € £ we have 

supt(7i„)nsupt(^;m)Ci3. 
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Without loss of generality we assume that v < X is an ordinal, v n E = 0 and 

K y va 
a€E 

X. 

For any X C ^2 and 77 € e2 let 

*(>/) = {£€ ^ 2 : , ' ^ I } . 

Now we work in J?. For each a € E,n e co and / = 0, 1 let 

< „ = {^e 5 2 : v ^ ( r i > 7 ) ) > 0 } . 

CLAIM 11.1. Vv(\Jn€co C
l
an) = Iforeacha € is awrf/ = 0, 1. 

PROOF OF CLAIM 11.1. For any n e "2 we have 

v̂ »(u t w ) = w((U c)(*)) < 5 
N«€<U v«Gto 

because (|J„6cu l ^X*) C tf£0/) and vM^(Bl
a(r,)) = 1/2. So by Fubini Theorem 

we have 

1 
2=V» I I Yl 

n£co 

^ 2 v„6 ( U / 

4,({7:vM(y^(,))>o}). 
sn£co 

This implies 

But 

v«({>7:v^0-(Uy^(^>o}) = l. 

Uc^ = {*:v^(Uy«»)>0}-

We now divide the proof of the theorem into two cases. 

CASE 1. v = kfor a finite k € co. 

Fix an n0 € "2. For any a e £ and / = 0, 1 the fact v€(\Jn€w C'an) = 1 
implies that there exists an n(a, I) such that 770 e C^ , ^. So for any m e co, any 
distinct {ao,... ,am-\} C £ and any /i € m2 we have, by Fubini Theorem and 
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independence, 

,m — 1 \ « /tn~ 1 

\ .=n ' •/"2 v ,=o ' 

/

, m—\ 

Uv^Y^Lm^dv^ 
2 1=0 

><2^)(nw^Ww»)>°-
i = 0 

CASE 2. u ^ co. 

Let 

s £ ^ ((l j Ouf i) 

be such that \S\ = v. We can factor the forcing P to Pi * P2 such that 

^ P = s < / f r P . . P i j 

where Pi = a-(^52) and P2 = (.»( S2))^P' (see [7, Theorem 3.13]). Let r e 52 
be a random function over •/fPl. Since |S| = |5| we can assume that r is a random 
function from v to 2. Since C^„ 6 JVYx for any a € E, n e co and / = 0, 1, and 
V»(UB€CB ^O,B)

 = * > t n e n there exists an n(a, I) for any a e £ and / = 0,1 such that 

r e Ca,n{a,l)-

Now for any m e co, any distinct {ao» • • • . <*OT_i} Q £ and any h € m2 we have 
r € C, where 

m - l 

c = n cm, h(,Y 
i=0 

This implies vs(C) > 0. Hence 

Vi=0 7 , / C V i = 0 7 

j c ^1=0 y 

REMARK. Theorem 11 is complementary to Theorem 2 and its corollaries. Com
bining those results we conclude that the compactness of a hypernnite Loeb space 
of size 2" is undecidable under ZFC. 

THEOREM 12. Suppose J( is obtained by adding K random reals to a ZFC model 
JV for some regular K> co. Suppose k is a strong limit cardinal such that cf (A) ^ K. 
Suppose \Q\ = k. Then fl is not compact. 

Sh:613



COMPACTNESS OF LOEB SPACES 1389 

PROOF. Let (Xa : a e cf (A)) be an increasing sequence such that X = UaetfU) ^a 

and2Aa < Xa+\ for each a e cf(A). By similar arguments in the proof of Theorem 11 
we can assume that &(Q) is homogeneous and T(£&(&)) = X. Note that the 
cardinality of any positive measure internal subset of Q is X. 

By Maharam Theorem there is a measure preserving isomorphism (S> from 3B{QL) 

to 3§{x2). Using the same notation as in Theorem 11 let Ay C Q be measurable 
such that <b{Ay) = Bv for each y € X. By the same argument as in Claim 10.1 we 
can find a cf (A)-independent sequence 

( Ca C fi : a e cf (A)) 

of measure 1/2 such that for any Z e [cf(A)]cf^ we have flaez ^ = $> where 
CQ = Aya A ^ for some different ya, y'a € [Xa, Xa+\). Suppose Q is compact and 
assume f is an inner-regular compact family on Q. Let XaiB C Ca be such that 

and let yQ,„ C ^2 be Baire sets such that <b(Xa,n) = Ya,tt. It suffices now to find an 
E e [cf(A)]cf^ and an n(a) for each a € E such that for any m € co and for any 
distinct {ao,... , otm-\} Q E we have 

m - l 

(=0 

This is enough to prove the theorem because we have a family 

{ Xa,„W : " e £ } 

with f.i.p. but 

f]{XaMa):aeE}C f | C Q = 0 . 
aEE 

For any a 6 cf (A) there exists a countable set va C K in JV such that 

{ r a , „ : « e c « } C ^ ^ 2 ) . 

Choose a D 6 [cf(A)]cf(A> such that 

IK = K. 

Let 5 C K x Uag£> va De such that |S| — cf(A). Again we factor the forcing 
P = 3§{K2) to Pi * P2 such that Pi = 3§{K^S2) and P2 = {3S{S2)Y^. Note that 
Ya,„ € JVVl for any a € D and « 6 co. Let 

^?= |J suPt(ra,„). 
aeD 
neco 

Then / J C l and \R\ = cf(A). It is clear that R is unbounded in A. Recall that 

By = {fe x2:f{7)=0} 
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for each y e X and 

n€o> 

for each a e D. Notice also that ya, y'a e -R for all a € £>. Let G C P2 be a 
j ^ p i generic filter. Without loss of generality we assume that P2 = 9§{R2) since 
\S\ = |i?|. Now we define a dense subset Da C P2 in JVVX for each a e D. For any 
Z C ^2let 

and for any Z C l2 let 

Z~ = { / € * 2 : / = g r # f o r s o m e g € Z } . 

Define 

Da = { Z : v*(Z) > 0 A (3yS G [a,cf(A)) n Z>) (Z+ < 5 , , A 5,,) }. 

CLAIM 12.1. /« -/fPl, f/ie sef DQ is dense in P2. 

PROOF OF CLAIM 12.1. Given any X e P2 for some Baire set A" C *2 with 
VR(A") > 0. Since supt(Z) is at most countable, there exists a /? € [a,cf(A)) n Z> 
such that yp,y'fieR\ supt(JST). Let Y = X+nByfA By. Then 

VR(Y-) = vR(X)vR((ByfABff)-) > 0 

and Y < Byf A 5,,/. H 

Let 

£ = { a € D : B - A ^ e G }. 

By Claim 12.1 we have \E\ = cf(l). For each a 6 £ since 

V Y-„ = B-AB;L, 
n£co 

then there exists an n(a) e co such that Y~ , , e G. We are done because G is a 

filter and supt( YaAa)) C R. H 

REMARKS. 

(1) Theorem 12 is complementary to Theorem 6 and Corollary 7. 
(2) In this theorem we didn't require K > 2a in JV. 

THEOREM 13. Suppose X > \V\, where V is the standard universe, and Xm = X. 
Then there exists a*V,in which every hyperfinite Loeb space Q has cardinality X and 
is not compact. 

PROOF. Note that | V\ = Z& > 2co. Construct a continuous elementary chain of 
nonstandard universes 

(*Va:a^(2™)+) 

such that for every a € (2(°)+, 

(1) every hyperfinite Loeb space in * Va has cardinality X, 
(2) * Va is co\-saturated when a is a successor ordinal. 
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(3) for any hyperfinite Loeb space Q in * K(2»)+ if O e *Va, then Q n *Va has 
Loeb measure zero in * Va+\. 

The elementary chain of nonstandard universes satisfying (1), (2) and (3) exists 
because at each step one need only to realize ^ X03 types. We want to show that 
nonstandard universe * V = * V^y is the one we want. 

Obviously, * V^)+ is a>\-saturated. Suppose there is a compact hyperfinite Loeb 
spaceQinT. Let ̂  be an inner-regular compact family on Q. Foreverya € (2ro)+ 

such that Q € * Va there is an internal set Za e * Va+\ such that 

LP(Za) > -

and 

z n f f i n *va) = 0. 
Now we can find Xa>n e 1> such that Xa,n C Za and 

LP(\JXa,„)=Lp(Za). 

Again using the same method as in the proof of Claim 9.1 we can find an E C (2ra)+ 

with \E\ — {2m)+ and an n(a) e co for each a e E such that { Xa„(a) :a £ E} has 
f.i.p. But 

We would like to end this section by making a conjecture. 
CONJECTURE. It is consistent with ZFC that there are no compact hyperfinite Loeb 

spaces in any nonstandard universes. 
The reader might notice that all results in § 1 are not proved by ZFC. But The

orem 8 assumes only ZFC plus a consequence of Singular Cardinal Hypothesis. 
So the non-existence of any compact hyperfinite Loeb spaces would have to violate 
Singular Cardinal Hypothesis, which implies the existence of pretty large cardinals. 
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