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Abstract: Our main theorem is about iterated forcing for making the continuum larger than ℵ2. We present a generalization
of [2] which deal with oracles for random, (also for other cases and generalities), by replacing ℵ1,ℵ2 by λ, λ+
(starting with λ = λ<λ > ℵ1). Well, we demand absolute c.c.c. So we get, e.g. the continuum is λ+ but we can get
cov(meagre) = λ and we give some applications. As in non-Cohen oracles [2], it is a ”partial” countable support
iteration but it is c.c.c.
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0. Introduction
Starting, e.g. with V |= G.C.H. and λ = λ<λ > ℵ1, we construct a forcing notion P of cardinality λ+, by a partial of CSiteration but the result is a c.c.c. forcing.The general iteration theorems (treated in section 1) seem generally suitable for constructing universes with MA<λ+2ℵ0 =
λ+, and taking more care, we should be able to get universes without MA<λ, see Discussion 0.1 below.Our method is to immitate [2]; concerning the differences, some are inessential: using games not using diamonds in theframework itself, (inessential means that we could have in [2] immitate the choice here and vice versa).An essential difference is that we deal here with large continuum - λ+; we concentrate on the case we shall (in VP) haveMA<λ but e.g. non(null) = λ and b = λ+ (or b = λ).It seems to us that generally:
Thesis 0.1.
The iteration theorem here is enough to get results parallel to known results with 2ℵ0 = ℵ2 replacing ℵ1,ℵ2 by λ, λ+.
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To test this thesis we have asked Bartoszyński to suggest test problems for this method and he suggests:
Problem 0.1.Prove the consistency of each of the

(A) ℵ1 < λ < 2ℵ0 and the λ-Borel conjecture, i.e. A ⊆ ω2 is of strong measure zero iff |A| < λ

(B) ℵ1 < non(null) < 2ℵ0 , see Theorem 5.1
(C ) ℵ1 < b = λ < 2ℵ0 the dual λ-Borel conjecture (i.e. A ⊆ ω2 is strongly meagre iff |A| < λ)
(D) ℵ1 < b = λ < 2ℵ0+ the dual 2ℵ0-Borel conjecture
(E) combine (A) and (C) and/or combine (A) and (D).

Parallely Steprans suggests:
Problem 0.2.1) Is there a set A ⊆ ω2 of cardinality ℵ2 of p-Hausdorff measure > 0, but for every set of size ℵ2 is null (for theLebesgue measure)?2) The (basic product) I think b = d ∨ d = 2ℵ0 gives an answer, what about cov(meagre) = λ < 2ℵ0?
We shall deal with the iteration in section 1, give an application to a problem from [3] in section 2 (and 3, 4).Lastly, in section 5 we deal with Bartoszyński’s test problem (B), in fact, we get quite general such results.It is natural to ask
Discussion 0.1.
1) In section 1, we may wonder if we can give ”reasonable” sufficient condition for b = ℵ1 or b = κ < λ? The answer is
yes. It is natural to assume that we have in V a <Jbdω -increasing sequence f̄ = 〈fα : α < κ〉 of functions from ωω with no
<∗Jbdω

-upper bound and we would like to preserve this property of f̄ , i.e. in section 1 we

(a) restrict ourselves to p ∈ K 1
λ such that Pp ”f̄ as above”.

More formally redefine K 1
λ such that

(b) replace ”P is absolute c.c.c.” by ”P is c.c.c., preserve f̄ as above and if Q satisfies those two conditions then also
P×Q satisfies those two conditions.

This has similar closure properties, that is, the proofs do not really change.
2) More generally consider K , a property of forcing notions such that:

(a) P ∈ K ⇒ P is c.c.c.

(b) K is closed under l-increasing continuous unions

(c) K is closed under composition

(d) we replace in §1 ”p ∈ K 1
λ ” by ”p ∈ K has cardinality < λ”

(e) we replace in section 1, ”P is absolutely c.c.c.” by ”P ∈ K and R ∈ K ⇒ P× R ∈ K ”.

3) What about using P(n)-amalgamation of forcing notions? If we fix n this seems a natural way to get non-equality
for many n-tuples of cardinal invariants; hopefully we shall return to this sometime.
4) What about forcing by the set of approximations k? See Definition 1.5.
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Definition 0.1.1) We say a forcing notion P is absolutely c.c.c. when for every c.c.c. forcing notion Q we have Q ”P is c.c.c.”2) We say P2 is absolutely c.c.c. over P1 when (P1 l P2 and) P2/P1 is absolutely c.c.c.3) Let P1 ⊆ic P2 means that P1 ⊆ P2 (as quasi orders) and if p, q ∈ P1 are incompatible in P1 then they are incompatiblein P2 (the inverse holds too) .The following tries to describe the iteration theorem, this may be more useful to the reader after having a first readingof section 1.We treat λ as the vertical direction and λ+ as the horizontal direction, the meaning will be clarified in section 2; ourforcing is the increasing union of 〈Pkε : ε < λ+〉 where kε ∈ K2 (so kε gives an iteration 〈Pα [kε ] : α < λ〉, i.e. a
l-increasing continuous sequence of c.c.c. forcing notions) and for each such kε each iterand Ppα [kε ] is of cardinality
< λ and for each ε < λ+ the forcing notion Pkε is the union of increasing union of continuous sequence 〈Ppα [kε ] : α < λ〉.So we can say that Pkε is the limit of an FS iteration of length λ, each iterand of cardinality < λ and for ζ ∈ (ε, λ+), kζgives a ”fatter” iteration, which for ”most” δ ∈ S(⊆ λ), is a reasonable extension.
Question 0.1.
Can we get something interesting for the continuum > λ+ and/or get cov(meagre) < λ? This certainly involves some
losses! We intend to try elsewhere.

Definition 0.2.1) For a set x let otrcl(x), the transitive closure over the ordinals of x, be the minimal set y such that x ∈ y ∧ (∀t ∈
y)(t /∈ Ord → t ⊆ y).2) For a set u of ordinals let H<κ(u) be the set of x such that otrcl(x) is a subset of u of cardinality < κ.
Remark 0.1.0) We use H<κ(u) (in Definition 1.1) just for bookkeeping convenience.1) It is natural to have Ord, the class of ordinals, a class of urelements.2) If ω1 ⊆ u for H<ℵ1 (u) it makes no difference, but if ω1 * u and β = min(ω1\u) then β is a countable subset of u but
/∈ H<ℵ1 (u). Also we use H<ℵ0 (u) where ω ⊆ u, so there are no problems.
1. The iteration theorem
If we use the construction for λ = ℵ1, the version we get is closer to, but not the same as [2] with the forcing beinglocally Cohen.Here there are ”atomic” forcings used below coming from three sources:

(a) the forcing given by the winning strategies sδ (see below), i.e. the quotient
(b) forcing notions intended to generate MA<λ[see Claim 1.6; we are given k1 ∈ K 2

f , an approximation of size λ, see Definition 1.5, and a Pk1-name Q˜ of ac.c.c. forcing and sequence 〈I˜ i : i < i(∗)〉 of < λ dense subsets of Q. We would like to find k2 ∈ K2 satisfying
k1 ≤K2

f
k2 such that Pk2 ”there is a directed G ⊆ Q˜ not disjoint to any I˜ i(i < i(∗))”. We do not use composition,only Ppα [k2 ] = Ppα [k1 ] ∗Q˜ for some α ∈ Ek1 ∩ Ek2 ]](c) given k1 ∈ K 2

f , and Q˜ which is a Pk1-name of a suitable c.c.c. forcing of cardinality λ can we find k2 such that
k1 ≤K2

f
k2 and in V we have P[k2 ] ”there is a subset of Q˜ generic over V[G˜ ∩ Pk1 ]”.Let us describe the roles of some of the definitions. We shall construct (in the main case) a forcing notion of cardinality

λ+ by approximations k ∈ K 2
f of size (= cardinality) λ, see Definition 1.5, which are constructed by approximations

p ∈ K1 of cardinality < λ, see Definition 1.1.Now p ∈ K1 is essentially a forcing notion of cardinality < λ, i.e. Pp = (Pp,≤p), and we add the set u = up to help thebookkeeping, so (in the main case) up ∈ [λ+]<λ. For the bookkeeping we let Pp ⊆ H<ℵ1 (up), see Definition 0.2(2).More specifically k (from Definition 1.5) is mainly a l-increasing continuous sequence p̄ = 〈pα : α ∈ Ek〉 = 〈pα [k] :
α ∈ Ek〉, where Ek is a club of λ. Hence k represents the forcing notion Pk = ∪{(Ppα ,≤pα ) : α < λ}; the union of a
l-increasing continuous sequence of forcing notions Ppα = P[pα ] = (Ppα ,≤pα ), so we can look at Pk as a FS-iteration.
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But then we would like to construct say an ”immediate successor” k+ of k, so in particular Pk lPk+ , e.g. taking care of(b) above so Q˜ is a Pk-name and even a Pmin(Ek )-name of a c.c.c. forcing notion. Toward this we choose pk+
α = pα [k+] byinduction on α ∈ Ek . So it makes sense to demand pα ≤K1 pα [k+], which naturally implies that u[pα ] ⊆ u[pk+
α ],PpαlPpα [k+ ].So as pα [k+] for α ∈ Ek is ≤K1-increasing continuous, the main case is when β = min(Ek\(α+1), can we choose pβ [k+]?

Let us try to draw the picture:
Ppβ [k] 99K ?
↑ ↑

Ppα [k] l→−→ Ppα [k+ ]
So we have three forcing notions, Ppα [k],Ppβ [k],Ppα [k+ ], where the second and third are l-extensions of the first. The mainproblem is the c.c.c. As in the main case we like to have MA<λ, there is no restriction on Ppα [k+ ]/Ppα [k], so it is naturalto demand ”Ppβ [k]/Ppα [k] is absolutely c.c.c. for α < β from Ek” (recall pα [k] is demanded to be <+

K1-increasing).How do we amalgamate? There are two natural ways which say that ”we leave Ppβ [k]/Ppα [k] as it is”.First way: We decide that Ppβ [k+ ] is Ppα [k] ∗ ((Ppα [k+ ]/Ppα [k])× (Ppβ [k]/Ppα [k])).[This is the ”do nothing” case, the lazy man strategy, which in glorified fashion we may say: do nothing when in doubt.Note that Ppα [k+ ]/Ppα [k] and Ppβ [k]/Ppα [k] are Ppα [k]-names of forcing notions.]Second way: Ppβ [k]/Ppα [k] is defined in some way, e.g. is a random real forcing in the universe V[Ppα [k]] and we decidethat Ppβ [k+ ]/Ppα [k+ ] is defined in the same way: the random real forcing in the universe V[Ppα [k+ ]]; this is expressed by thestrategy sα .[That is: retain the same definition of the forcing in the α-th place, so in some sense we again do nothing novel.]
Context 1.1.
Let λ = cf(λ) > ℵ1 or just1 λ = cf(λ) ≥ ℵ1.
Below, ≤+

K1 is used in defining k ∈ K 2
f as consisting also of ≤+

K1-increasing continuous sequence 〈pα : α ∈ E ⊆ λ〉 (soincreasing vertically).
Definition 1.1.1) Let K1 be the class of p such that:

(a) p = (u,P,≤) = (up, Pp,≤p) = (up,Pp)(b) ω ⊆ u ⊆ Ord,
(c) P is a set ⊆ H<ℵ1 (u),
(d) ≤ is a quasi-order on P,

satisfying
(e) the pair (P,≤) which we denote also by P = Pp is a c.c.c. forcing notion.

1A) We may write u[p], P[p],P[p].2) ≤K1 is the following two-place relation on K1 : p ≤K1 q iff up ⊆ uq and Pp l Pq and Pq ∩ H<ℵ1 (up) = Pp; moreover,just for transparency q ≤P[q] p ∈ Pp ⇒ q ∈ Pp.3) ≤+
K1 is the following two-place relation on K1 : p ≤+

K1 q iff p ≤K1 q and Pq/Pp is absolutely c.c.c., see Definition 0.1(1).4) K 1
λ is the family of p ∈ K1 such that up ⊆ λ+ and |up| < λ.

1 if λ = ℵ1, we can change the definitions of k ∈ K2, instead 〈Pα [k] : α < λ〉 is l-increasing, we carry with us large
enough family of dense subsets, e.g. coming from some countable N.

216

Sh:895



S. Shelah

5) We say p is the exact limit of 〈pα : α ∈ v〉, v ⊆ Ord, in symbols p = ∪{pα : α ∈ v} when up = ∪{upα : α ∈ v} or theunion Pp = ∪{Ppα : α ∈ v} and α ∈ v ⇒ pα ≤K1 p; hence p ∈ K1.6) We say p is just a limit of 〈pα : α ∈ v〉 when up is ∪{upα : α ∈ v},Pp ⊇ ∪{Ppα : α ∈ v} and α ∈ v ⇒ pα ≤K1 p.7) We say p̄ = 〈pα : α < α∗〉 is ≤K1-increasing continuous [strictly ≤K1-increasing continuous] when it is ≤K1-increasingand for every limit α < α∗, pα is a limit of p̄ � α [is the exact limit of p̄ � α ], respectively.
Observation 1.1.
1) ≤K1 is a partial order on K1.
2) ≤+

K1⊆≤K1 is a partial order on K1.
3) If p̄ = 〈pα : α < δ〉 is a ≤K1-increasing sequence and ∪{Ppα : α < δ} satisfies the c.c.c. and δ < λ then some p ∈ K1
is the union ∪{pα : α < δ} of p̄, i.e. ∪p̄ ∈ K1 and α < δ ⇒ pα ≤K1 p; this determines p uniquely and p is the exact
union of p̄.
4) If p̄ = 〈pα : α < δ〉 is ≤K1-increasing and cf(δ) = ℵ1 implies {α < δ : pα the exact limit of p̄ � α or just

⋃
β<α
Ppβ lPpα }

is a stationary subset of δ then ∪p̄ ∈ K1 is a ≤K1-upper bound of p̄ and is the exact limit of p̄.
5) If in part (4), p̄ is also ≤+

K1-increasing then α < δ ⇒ pα ≤+
K1 p.

Proof. Should be clear, e.g. in part (5) recall that c.c.c. forcing preserve stationarity of subsets of δ.
We now define the partial order ≤∗K1 ; it will be used in describing k1 <K2 k2, i.e. demanding (pk1α , pk2α ) ≤∗K1 (pk1

α+1, pk2
α+1)for many α < λ.

Definition 1.2.1) Let ≤∗K1 be the following two-place relation on the family of pairs {(p, q) : p ≤K1 q}. We let (p1, q1) ≤∗K1 (p2, q2) iff
(a) p1 ≤+

K1 p2(b) q1 ≤+
K1 q2(c) P[p2 ] ”Pq1 /(G˜ P[p2 ] ∩ Pp1 )l Pq2 /G˜ P[p2 ]”(d) up2 ∩ uq1 = up12) Let ≤′K1 be the following two-place relation on the family {(p, q) : p ≤K1 q} of pairs. We let (p1, q1) ≤′K1 (p2, q2) iffclauses (a),(b),(d) from part (1) above and

(c)′ if p1 ∈ Pp1 , q1 ∈ Pq1 and p1 Pp1 ”q1 ∈ Pp2 /G˜ Pp1 ” then p1 Pp2 ”q1 ∈ Pq2 /G˜ Pp2 ”.3) Assume p` ∈ K1 for ` = 0, 1, 2 and p0 ≤K1 p1 and p0 ≤K1 p2 and up1 ∩ up2 = up0 . We define the amalgamation
p = p3 = p1 ×p0 p2 or p3 = p1 × p2/p0 as the triple (up, Pp ≤p) as follows2:

(a) up = up1 ∪ up2(b) Pp = Pp1 ∪Pp2 ∪ {(p1, p2) : p1 ∈ Pp1\Pp0 , p2 ∈ Pp2\Pp0 and for some p ∈ Pp0 we have p P[p0 ] ”p` ∈ Pp` /Pp0” for
` = 1, 2}

(c) ≤p is defined naturally as ≤p1 ∪ ≤p2 ∪{((p1, p2), (q1, q2)) : (p1, p2), (q1, q2) ∈ Pp and p1 ≤p1 q1 and p2 ≤p2
q2} ∪ {(p′` , (p1, p2)) : p′` ∈ Pp` , (p1, p2) ∈ Pp and p′` ≤p1 p` for some ` ∈ {1, 2}}.

Remark 1.1.Why not use u instead H<ℵ1 (u)? Not a real difference but, e.g. there may not be enough elements in a union of two.
2 If in clause (b) of Definition 1.2(3) we would like to avoid ”p` ∈ Pp` \Pp0” we may replace (p1, p2) by (p1, p2, up1 ∪up2 )
when p1 6= p1 ∧ p0 6= p2 equivalently p0 6= p1 ∧ p0 6= p2.
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Observation 1.2.
1) ≤∗K1 ,≤′K1 are partial orders on their domains.
2) (p1, q1) ≤∗K1 (p1, q1) implies (p1, q1) ≤′K1 (p2, q2).
For the ”successor case vertically and horizontally” we shall use
Claim 1.1.
Assume that p1 ≤+

K1 p2 and p1 ≤K1 q1 and up2 ∩ uq1 = up1 then q2 ∈ K1 and (p1, q1) ≤∗K1 (p2, q2) when we define
q2 = q1 ×p1 p2 as in Definition 1.2(3).

Proof. Straight.
The following claim will be applied to a pair of vertically increasing continuous sequences, one laying horizontally abovethe other.
Claim 1.2.
Assume ε(∗) < λ and

(a) 〈p`ε : ε ≤ ε(∗)〉 is ≤+
K1-increasing continuous for ` = 1, 2

(b) (p1
ε, p2

ε) ≤′K1 (p1
ε+1, p2

ε+1) for ε < ε(∗).
Then

(α) p1
ε(∗) ≤K1 p2

ε(∗)(β) for ε < ζ ≤ ε(∗) we have (p1
ε, p2

ε) ≤′K1 (p1
ζ , p2

ζ ).
Proof. Easy.
For the ”successor case horizontally, limit case vertically when the relevant game, i.e. the relevant winning strategy isnot active” we shall use
Claim 1.3.
Assume ε(∗) < λ is a limit ordinal and

(a) 〈pε : ε ≤ ε(∗)〉 is ≤+
K1-increasing, and 〈qε : ε < ε(∗)〉 is ≤+

K1-increasing

(b) pε ≤K1 qε for ε < ε(∗)
(c) if ε < ζ < ε(∗) then (pε, qε) ≤′K1 (pζ , qζ )(d) if ζ < ε(∗) is a limit ordinal then P[pζ ] ”Pqζ /G˜ P[pζ ] = ∪{Pqε /(G˜ P[pζ ] ∩ Ppε ) : ε < ζ}”.

Then we can choose qε(∗) such that

(α) pε(∗) ≤K1 qε(∗)(β) (pε, qε) ≤′K1 (pε(∗), qε(∗)) for every ε < ε(∗)
(γ) clause (d) holds also for ζ = ε(∗).

Remark 1.2.We can replace ≤′K1 by ≤∗K1 in (c) and (β).
Proof. Should be clear.
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The game defined below is the non-FS ingredient; (in the main application below, γ = λ), it is in the horizontal direction;it lasts γ ≤ λ steps but will be used in ≤K2
f
-increasing subsequences of 〈ki : i < λ+〉.

Definition 1.3.For δ < λ and γ ≤ λ let aδ,γ be the following game between the player INC (incomplete) and COM (complete).A play last γ moves. In the β-th move a pair (pβ , qβ) is chosen such that pβ ≤+
K1 qβ and β(1) < β ⇒ (pβ(1) ≤K1

pβ) ∧ (qβ(1) ≤K1 qβ) ∧ (upβ ∩ uqβ(1) = upβ(1) ) and upβ ∩ λ = δ and uqβ ∩ λ = uq0 ∩ λ ⊇ δ + 1.In the β-th move first INC chooses (pβ , uβ) such that pβ satisfies the requirements and uβ satisfies the requirements on
uqβ (i.e. ∪{uqα : α < β} ∪ upβ ⊆ uβ ∈ [λ+]<λ and uβ ∩ λ = uq0 ∩ λ) and say uβ\upβ\ ∪ {uqγ : γ < β} has cardinality
≥ |δ| (if λ is weakly inaccessible we may be interested in asking more).Second, COM chooses qβ as required such that uβ ⊆ u[qβ ].A player which has no legal moves loses the play, and arriving to the γ-th move, COM wins.
Remark 1.3.It is not problematic for COM to have a winning strategy. But having ”interesting” winning strategies is the crux of thematter. More specifically, any application of this section is by choosing such strategies.Such examples are the

(a) lazy man strategy: preserve Pqβ = Pq0 ×Pp0 Ppβ recalling Claim 1.1
(b) it is never too late to become lazy, i.e. arriving to (pβ(∗), qβ(∗)) the COM player may decide that β ≥ β(∗)⇒ Pqβ =

Pqβ(∗) ×Ppβ(∗) Ppβ

(c) definable forcing strategy, i.e. preserve ”Pqβ /Ppβ is a definable c.c.c. forcing (in VP[pβ ])”.
Definition 1.4.We say f is λ-appropriate if

(a) f ∈ λ(λ+ 1)
(b) α < λ ∧ f(α) < λ⇒ (∃β)[f(α) = β + 1]
(c) if ε < λ+, 〈uα : α < λ〉 is an increasing continuous sequence of subsets of ε of cardinality < λ with union ε then
{δ < λ: otp(uδ ) < f(δ)} is a stationary subset of λ.

Convention 1.1.
Below f is λ-appropriate function.

We arrive to defining the set of approximations of size λ (in the main application f∗ is constantly λ); we shall laterconnect it to the oracle version (also see the introduction).
Definition 1.5.For f∗ a λ-appropriate function let K 2

f∗ be the family of k such that:
(a) k = 〈E, p̄, S, s̄, ḡ, f〉
(b) E is a club of λ
(c) p̄ = 〈pα : α ∈ E〉
(d) pα ∈ K 1

λ(e) pα ≤K1 pβ for α < β from E

(f) if δ ∈ acc(E) then pδ = ∪{pα : α ∈ E ∩ δ}
(g) S ⊆ λ is a stationary set of limit ordinals
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(h) if δ ∈ S ∩ E (hence a limit ordinal) then δ + 1 ∈ E
(i) s̄ = 〈sδ : δ ∈ E ∩ S〉
(j) sδ is a winning strategy for the player COM in aδ,f(δ), see Remark 1.4(1)
(k) ḡ = 〈gδ : δ ∈ S ∩ E〉
(l) • gδ is an initial segment of a play of aδ,f∗(δ) in which the COM player uses the strategy sδ

• if its length is < f∗(δ) then gδ has a last move
• (pδ , pδ+1) is the pair chosen in the last move, call it mv(gδ )
• let S0 = {δ ∈ S ∩ E : gδ has length < f∗(δ)} and S1 = S ∩ E\S0(m) if α < β are from E then pα ≤+

K1 pβ , so in particular Pβ/Pα is absolutely c.c.c. that is if P l P′ and P′ is c.c.c.then P′ ∗Pα Pβ is c.c.c.; this strengthens clause (e)
(n) f ∈ λλ

(o) if δ ∈ S ∩ E then f(δ) + 1 is the length of gδ(p) for every δ ∈ E , if f∗(δ) < λ then f(δ) ≤ otp(upδ ).
Remark 1.4.1) Concerning clause (j), recall (using the notation of Definition 1.3) that during a play the player INC chooses pε andCOM chooses qε, ε ≤ f(δ) and recalling clause (o) we see that (pf(δ), qf(δ)) there stands for (pδ , pδ+1) here. You maywonder from where does the (pε, qε) for ε < f(δ) comes from; the answer is that you should think of k as a stage in anincreasing sequence of approximations of length f(δ) and (pε, qε) comes from the δ-place in the ε-approximation. Thisis cheating a bit - the sequence of approximations has length < λ+, but as on a club of λ this reflects to length < λ, allis O.K.2) Below we define the partial order ≤K2 (or ≤K2

f∗
) on the set K 2

f∗ , recall our goal is to choose an ≤K2-increasing sequence
〈kε : ε < λ+〉 and our final forcing will be ∪{Pkε : ε < λ+}.3) Why clause (d) in Definition 1.6(2) below? It is used in the proof of the limit existence Claim 1.5. This is because theclub Ek may decrease (when increasing k).Note that we use ≤∗K1

f
”economically”. We cannot in general demand (in Definition 1.6(2) below) that for α < β from

Ek2\α(∗) we have (pk1α , pk1
β ) ≤∗K1 (pk2α , pk2

β ) as the strategies sδ may defeat this. How will it still help? Assume 〈kε : ε <
ε(∗)〉 is increasing, ε(∗) < λ for simplicity and γ ∈ ∩{Ekε : ε < ε(∗)} ∩⋂

{Skε : ε < ε(∗)}\ ∪ {α(kε, kζ ) : ε < ζ < ε(∗)}and γε = Min(Ekε\(γ + 1)) for ε < ε(∗). We shall have 〈γε : ε < ε(∗)〉 is increasing; there may be δ ∈ (γε, γε+1) where
sδ was active between kε and kε+1 so it contributes to Pkε+1

γε+1 /Pkε
γε .4) If we omit the restriction u ∈ [λ+]<λ and allow f : λ → δ∗ + 1, replace the club E by an end segment, we can dealwith sequences of length δ∗ < λ+.In the direct order in Definition 1.6(3) we have α(∗) = 0. Using e.g. a stationary non-reflecting S ⊆ Sδ∗λ we can oftenallow α(∗) 6= 0.5) Is the ”sδ a winning strategy” in addition for telling us what to do, crucial? The point is preservation of c.c.c. in limitof cofinality ℵ1.6) If we use f∗ ∈ λ(λ+ 1) constantly λ, we do not need fk so we can omit clauses (n),(o),(p) of Definition 1.5 and (c), andpart of another in Definition 1.6.6A) Alternatively we can omit clause (o) in Definition 1.5 but demand ” ∏

α<λ
f(α)/D is λ+-directed”, fixing a normal filter

D on λ (and demand Sk ∈ D +).7) The ”omitting type” argument here comes from using the strategies.
Definition 1.6.1) In Definition 1.5, let E = Ek, p̄ = p̄k, pα = pk

α = pα [k],Pα = Pk
α = Ppα [k], S = Sk, S[` ] = Sk,` for ` = 0, 1, etc. and welet Pk = ∪{Pk

α : α ∈ Ek} and uk = u[k] = ∪{upkα : α ∈ Ek}.2) We define a two-place relation ≤K2
f

on K 2
f : k1 ≤K2

f
k2 iff (both are from K 2

f and) for some α(∗) < λ (and α(k1, k2) isthe first such α(∗)) we have:
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(a) Ek2\Ek1 is bounded in λ, moreover ⊆ α(∗)
(b) for α ∈ Ek2\α(∗) we have pk1α ≤K1 pk2α(c) if α ∈ Ek2\α(∗) then fk1 (α) ≤ fk2 (α)
(d) if γ0 < γ1 ≤ γ2 < λ, γ0 ∈ Ek2\(α(∗)∪Sk1 ), γ1 = min(Ek1\(γ0 + 1)) and γ2 = min(Ek2\(γ0 + 1)), then (pk1γ0 , pk2γ0 ) ≤K1(pk1γ1 , pk2γ2 ), see Definition 1.2(2)
(e) if δ ∈ Sk1 ∩ Ek2\α(∗) then δ ∈ Sk2 ∩ Ek2\α(∗); but note that if fk1 (δ) ≥ f(δ) we put δ into Sk2 just for notationalconvenience
(f) if δ ∈ Sk1 ∩ Ek2\α(∗) then sk2

δ = sk1
δ and gk1

δ is an initial segment of gk2
δ(g) if k1 6= k2 then u[k1] 6= u[k2]

(h) if α < β are from Ek2\α(∗) then (pk1α , pk2α ) ≤′K1 (pk1
β , p

k2
β ), see Definition 1.2(2), i.e. if p ∈ Ppα [k1 ], q ∈ Ppα [k2 ] and

p Ppα [k1] ”q ∈ Ppα [k2 ]/G˜ Ppα [k1]” then p Ppβ [k1] ”q ∈ Ppβ [k2 ]/G˜ Ppβ [k1]”.
3) We define a two-place relation ≤dir

K2
f

on K 2
f as follows: k1 ≤dir

K2
f

k2 iff
(a) k1 ≤K2

f
k2

(b) Ek2 ⊆ Ek1 ; no real harm here if we add k1 6= k2 ⇒ Ek2 ⊆ acc(Ek1 )(c) α(k1, k2) = Min(Ek2 ).4) We write K 2
λ ,≤K2

λ
,≤dir

K2
λ

or just K2,≤K2 , <dir
K2 for K 2

f ,≤K2
f
,≤dir

K2
f

when f is constantly λ.
Remark 1.5.1) In [2] we may increase S as well as here but we may replace clause (e) by

(e)′ δ ∈ Sk1 ∩ Ek2\α(∗) iff fk2 (δ) < f(δ) ∧ δ ∈ Sk2 ∩ Ek2\α(∗).
If we do this, is it a great loss? No! This can still be done here by choosing sδ such that as long as INC chooses uβ ofcertain form (e.g. uβ\upβ = {δ}) the player COM chooses qβ = pβ . We can allow in Definition 1.6(2) to extend S but apriori start with 〈Sε : ε < λ+〉 such that Sε ⊆ λ and Sε\Sζ is bounded in λ when ε < ζ < λ and demand Skε = Sε .2) We can weaken clause (e) of Definition 1.6(2) to

(e)′′ if δ ∈ Sk1 ∩ Ek2\α(∗) and fk2 (δ) < f(δ) then δ ∈ Sk2 .But then we have to change accordingly, e.g. Definition 1.6(c),(f ), Definition 1.7(c).3) We can define k1 ≤K2
f

k2 demanding (Sk1 , s̄k1 ) = (Sk2 , s̄k2 ) but replace everywhere ”δ ∈ Sk∩Ek” by ”δ ∈ Sk∩Ek∧fk(δ) ≤
f(δ)” so omit clause (e) of Definition 1.6.
Observation 1.3.
1) ≤K2

f
is a partial order on K 2

f .
2) ≤dir

K2
f
⊆≤K2

f
is a partial order on K 2

f .
3) If k1 ≤K2

f
k2 then Pk1 l Pk2 .

4) If (kε : ε < λ+〉 is <K2
f
-increasing and P = ∪{Pkε : ε < λ+} then

(a) P is a c.c.c. forcing notion of cardinality ≤ λ+
(b) Pkε l P for ε < λ+.

Definition 1.7.1) Assume k̄ = 〈kε : ε < ε(∗)〉 is ≤K2
f
-increasing with ε(∗) a limit ordinal < λ. We say k is a limit of k̄ when

ε < ε(∗)⇒ kε ≤K2
f

k ∈ K 2
f and for some α(∗)
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(a) α(∗) = ∪{α(kε, kζ ) : ε < ζ < ε(∗)}
(b) Ek\α(∗) ⊆ ∩{Ekε\α(∗) : ε < ε(∗)}
(c) Sk = (∪{Skε : ε < ε(∗)}) ∩ (∩{Ekε : ε < ε(∗)})\α(∗)
(d) if δ ∈ Sk then gkε

δ is an initial segment of gk
δ for every ε < ε(∗)

(e) fk(δ) = ∪{fkε (δ) : ε < ε(∗)}+ 1 for δ ∈ Sk .2) Assume k̄ = 〈kε : ε < λ〉 is ≤K2
f
-increasing continuous. We say k is a limit of k̄ when ε < λ⇒ kε ≤ k ∈ K 2

f and forsome ᾱ
(a) ᾱ = 〈αε : ε < λ〉 is increasing continuous, λ > αε ∈ ∩{Ekζ : ζ < ε}\ ∪ {α(kζ1 , kζ2 ) : ζ1 < ζ2 < 1 + ε}

(b) Ek = {αε : ε < λ} ∪ {αε + 1 : ε < λ and ε ∈ S} and pk
αε = pkε

αε , pk
αε = pkε+1

αε+1(c) Sk = {αε : αε ∈ Skζ for every ζ < ε large enough}
(d) if δ = αε ∈ Skε then gk

δ = gkε
δ(e) if α < δ and ζ = Min{ε : α ≤ αε+1} then fk(α) = fkζ (α).

3) We say that 〈kε : ε < ε(∗)〉 is ≤K2
f
-increasing continuous when :

(a) kε ≤K2
f

kζ for ε < ζ < ε(∗)
(b) kε is a limit of 〈kξ(ζ) : ζ < cf(ε)〉 for some increasing continuous sequence 〈ξ(ζ) : ζ < cf(ε)〉 of ordinals with limit

ε, for every limit ε < ε(∗), by part (1) or part (3).
Definition 1.8.1) In part (1) of Definition 1.7, we say ”a direct limit” when in addition

(α) the sequences are ≤dir
K2
f
-increasing

(β) in clause (b) we have equality
(γ) pkmin(Ek ) is the exact union of 〈pkmin(Ekε ) : ε < ε(∗)〉
(δ) if γ ∈ Ek, ξ < ε(∗), γ /∈ S1

kξ and 〈γε : ε ∈ [ξ, ε(∗)]〉 is defined by γξ = γ, γε = min(Ekε\(γ+1)) when ξ < ε ≤ ε(∗),so 〈γε : ε ∈ [ξ, ε(∗)]〉 is an≤-increasing continuous sequence of ordinals, then pkξ
γε(∗) /pkξ

γ = ∪{pk
γε /p

k
γ : ε ∈ [ξ, ε(∗))}with the obvious meaning.

2) In part (2) of Definition 1.7 we say a ”direct limit” when in addition
(α) the sequence is ≤dir

K2
f(β) αε is minimal under the restriction.

3) We say that k̄ = 〈kε : ε < ε(∗)〉 is ≤dir
K2
f
-increasing continuous or directly increasing continuous when :

(a) kε ≤dir
K2
f

kζ for ε ≤ ζ < ε(∗)
(b) if ε < ε(∗) is a limit ordinal then kε is a (really the) direct limit of k̄ � ε.

Claim 1.4.
If k1 ≤K2

f
k2 then for some k′2 we have

(a) k1 ≤dir
K2
f

k′2
(b) k2 ≤K2

f
k′2 ≤K2

f
k2
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(c) k2, k′2 are almost equal - the only differences being Ek′2 = Ek2\min(Ek′2 ), Sk′2 ⊆ Sk2 , etc.

Claim 1.5.
The limit existence claim 1) If ε(∗) < λ is a limit ordinal and k̄ = 〈kε : ε < ε(∗)〉 is a [directly] increasing continuous
then k̄ has a [direct] limit.
2) Similarly for ε(∗) = λ.

Proof. It is enough to prove the direct version.1) We define k = kε(∗) as in the definition, we have no freedom left.The main points concern the c.c.c. and the absolute c.c.c., ≤′K01 ,≤K1 demands. We prove the relevant demands byinduction on β ∈ Ekε(∗) .Case 1: β = min(Ekε(∗) ).First note that 〈pεmin(Ekε ) : ε ≤ ε(∗)〉 is increasing continuous (in K 1
λ ) moreover 〈P[pkεmin(Ekε )] : ε ≤ ε(∗)〉 is increasingcontinuous, see clause (γ) of Definition 1.8(1). As each P[pmin(Ekε ) ] is c.c.c. if ε < ε(∗), we know that this holds for

ε = ε(∗), too.Case 2: β = δ + 1, δ ∈ S1
k ∩ Ek .Since sk

δ is a winning strategy in the game aδ,f(δ) we have pkε(∗)
δ ≤+

K1 pkε(∗)
β . But what if the play is over? Recall that inDefinition 1.4, f(δ) = λ or f(δ) is successor and 〈fkε (δ) : ε < ε(∗)〉 is (strictly) increasing, so this never happens; it mayhappen when we try to choose k′ such that k <K2

f
k′, see Claim 1.6.We also have to show: if α ∈ β ∩ Ek then P[pk

β ]/P[pk
α ] is absolutely c.c.c. First, if α = δ this holds by Definition 1.1(3)of ≤+

K1 and the demand pβ ≤+
K1 qβ in Definition 1.3 (and clause (`) of Definition 1.5). Second, if α < δ, it is enough toshow that P[pk

β ]/P[pk
δ ] and P[pk

δ ]/P[pk
α ] are absolutely c.c.c., but the first holds by the previous sentence, the second bythe induction hypothesis. In particular, when ε < ε(∗)⇒ Pkε

β l Pk
β .Case 3: For some γ, γ = max(Ek ∩ β), γ /∈ S1

k .As γ /∈ Sk there is ξ < ε(∗) such that γ /∈ S1
kξ let γξ = γ and for ε ∈ (ξ, ε(∗)] we define γε =: min(Ekε\(β + 1)). Nowas k̄ is directly increasing continuous we have

~ (a) 〈γε : ε ∈ [ξ, ε(∗)]〉 is increasing continuous
(b) γξ = γ

(c) γε(∗) = β

(d) 〈pkε
γε : ε ∈ [ξ, ε(∗)]〉 is increasing continuous.

So by Claim 1.3 we are done, the main point is that clause (d) there holds by clause (d) of the definition of ≤K2
f

inDefinition 1.6(2).Case 4: β = sup(Ek ∩ β).It follows by the induction hypothesis and Observation 1.1(3) as 〈pk
γ : γ ∈ Ek ∩ β〉 is ≤+

K1-increasing continuous withunion pk
β ; of course we use clause (h) of Definition 1.6, so Definition 1.2(2),(5) applies.2) Similarly.

The following is an atomic step toward having MA<λ.
Claim 1.6.
Assume

(a) k1 ∈ K 2
f(b) α(∗) ∈ Ek1(c) Q˜ is a P[pk1

α(∗)]-name of a c.c.c. forcing (hence Pk1 ”Q˜ is a c.c.c. forcing”)
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(d) u∗ ⊆ λ+ is disjoint to u[k1] = ∪{upα [k1 ] : α ∈ Ek} and of cardinality < λ but ≥ |Q˜ |.
Then we can find k2 such that

(α) k1 ≤dir
K2
f

k2 ∈ K 2
f

(β) Ek2 = Ek1\α(∗)
(γ) uk2α = uk1α ∪ u∗ for α ∈ Ek2 ∩ S1

k1(δ) Ppα(∗) [k2 ] is isomorphic to Ppα(∗) [k1 ] ∗Q˜ over Ppα(∗) [k1 ](ε) Sk2 = Sk1 and s̄k2 = s̄k1�Gk2(ζ) fk2 = fk1 + 1
(η) if Pk1 ∗Q˜ ”ρ˜ ∈ ω2 but ρ˜ /∈ V[G˜ Pk1 ]” then Pk2 ”ρ˜ ∈ ω2 but ρ˜ /∈ V[G˜ Pk1 ]” provided that the strategies preserve this

which they do under the criterion here.

Proof. We choose pk2α by induction on α ∈ Ek1\α(∗), keeping all relevant demands (in particular upα [k2 ]∩u[k1] = upα [k1 ]).
Case 1: α = α(∗).As only the isomorphism type of Q˜ is important, without loss of generality P[pk1

α(∗) ] ”every member of Q˜ belongs to u∗”.So we can interpret the set of elements of Ppα(∗) [k1 ] ∗Q˜ such that it is ⊆ H<ℵ1 (upα(∗) [k1 ] ∪ u∗).Now Ppα(∗) [k1 ] l Ppα(∗) [k2 ] by the classical claims on composition of forcing notions.
Case 2: α = δ + 1, δ ∈ Sk1 ∩ Ek1\α(∗).The case split to two subcases.
Subcase 2A: The play gk1

δ is not over, i.e. f(δ) is larger than the length of the play so far.In this case do as in case 2 in the proof of Claim 1.5, just use sδ .
Subcase 2B: The play gk1

δ is over.In this case let Pk2
δ+1 = Pk1

δ+1 ∗Pk1
δ
Pk2
δ , in fact, pk2

δ+1 = pk1
δ+1 ∗pk1

δ
pk2
δ (and choose upδ+1 [k2 ] appropriately). Now possible and(pk1

δ , p
k2
δ ) <′K1 (pk1

δ+1, pk2
δ+1) by Claim 1.1.

Case 3: For some γ, γ = max(Ek ∩ β) ≥ α(∗) and γ /∈ Sk .Act as in Subcase 2B of the proof of Claim 1.5
Case 4: β = sup(Ek ∩ β).As in Case 4 in the proof of Claim 1.5.
2. p = t does not decide the existence of a peculiar cut
We deal here with a problem raised in [3], toward this we quote from there. Recall (Definition [3, 1.10]).
Definition 2.1.Let κ1, κ2 be infinite regular cardinals. A (κ1, κ2)-peculiar cut in ωω is a pair (〈fi : i < κ1〉, 〈fα : α < κ2〉) of sequences offunctions in ωω such that:

(α) (∀i < j < κ1)(fj <Jbdω fi),(β) (∀α < β < κ2)(fα <Jbdω fβ),
(γ) (∀i < κ1)(∀α < κ2)(fα <Jbdω fi),
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(δ) if f : ω→ ω is such that (∀i < κ1)(f ≤Jbdω fi), then f ≤Jbdω fα for some α < κ2,(ε) if f : ω→ ω is such that (∀α < κ2)(fα ≤Jbdω f), then fi ≤Jbdω f for some i < κ1.Recall that if p < t then for some regular κ < p there is a (κ, p)-peculiar cut, ([3, 1.12]). Also p = ℵ1 ⇒ t = p by theclassic theorem of Rothenberg and MAℵ1 + p = ℵ2 ⇒ t = ℵ2 by [3, 2.3].
Recall (from [3]) that
Claim 2.1.
1) If there is a (κ1, κ2)-peculiar then recall from there that the motivation of looking at (κ1, κ2)-peculiar type is under-
standing the case p > t.
1A) In particular, if p < t then there is a (κ1, κ2)-peculiar type for some (regular) κ1, κ2 satisfying κ1 < κ2 = t, see [3],
t ≤ p ≤ max{κ1, κ2}.
2) There is a (κ1, κ2)-peculiar cut iff there is a (κ2, κ1)-peculiar cut.

Proof. 1A) See [3].2) Trivial.
Observation 2.1.
If (η̄up, η̄dn) is a peculiar (κup, κdn)-cut and if A ⊆ ω is infinite, η ∈ ωω then :

(a) η <Jbd
A
ηup
α for every α < κup iff η <Jbd

A
ηdn
β for every large enough β < κdn

(b) ¬(ηup
α <Jbd

A
η) for every α < κup iff ¬(ηdn

β <Jbd
A
η) for every large enough β < κdn.

Proof. Clause (a): The implication ⇐ is trivial as β < κdn ∧ α < κup ⇒ ηdn
β <Jbdω ηup

α . So assume the leftside.We define η′ ∈ ωω by: η′(n) is η(n) if n ∈ A and is 0 if n ∈ ω\A. Clearly η′ <Jbdω ηup
α for every α < κup hence by clause(δ) of Definition 2.1 we have η′ ≤Jbdω ηdn

β for some large enough β < κdn hence η = η′ � A ≤Jbd
A
ηdn
β+1 <Jbd

A
ηdn
β for everylarge enough β < κdn.Clause (b): Again the direction ⇐ is obvious. For the other direction define η′ ∈ ωω by η′(n) is η(n) if n ∈ A and is

ηup0 (n) if n ∈ ω\A. So clearly α < κup ⇒ ¬(ηup
α <Jbdω η′) hence α < κup ⇒ ¬(ηup

α ≤Jbdω η) hence by clause (ε) of Definition2.1 for some β < κdn we have ¬(ηdn
β <Jbdω η′). As ηdn

β <Jbdω ηup0 , necessarily ¬(ηdn
β <Jbd

A
η′) but γ ∈ [β, κdn) ⇒ ηdn

β ≤Jbd
A
ηdn
γhence γ ∈ [β, κdn)⇒ ¬(ηdn

γ <Jbd
A
η′)⇒ ¬(ηdn

γ <Jbd
A
η), as required.

We need the following from [3, 2.1]:
Claim 2.2.
Assume that κ1 ≤ κ2 are infinite regular cardinals, and there exists a (κ1, κ2)-peculiar cut in ωω.
Then for some σ-centered forcing notion Q of cardinality κ1 and a sequence (Iα : α < κ2) of open dense subsets of Q,
there is no directed G ⊆ Q such that (∀α < κ2)(G ∩ Iα 6= ∅). Hence MAκ2 fails.

Theorem 2.1.
Assume λ = cf(λ) = λ<λ > ℵ2, λ > κ = cf(κ) ≥ ℵ1 and 2λ = λ+ and (∀µ < λ)(µℵ0 < λ).
For some forcing P∗ of cardinality λ+ not adding new members to λV and P-name Q˜ ∗ of a c.c.c. forcing we have
P∗∗Q˜ ∗ ”2ℵ0 = λ+ and p = λ and MA<λ and there is a pair (f̄1, f̄1) which is a peculiar (κ, λ)-cut”.

Remark 2.1.1) The proof of Theorem 2.1 is done in section 4 and broken into a series of Definitions and Claims, in particular wespecify some of the free choices in the general iteration theorem.2) In Choice 4.1(1), is cf(δ) > ℵ0 necessary?3) What if λ = ℵ2? The problem is Claim 3.1(2). To eliminate this we may, instead quoting Claim 3.1(2), start by forcing
η̄ = 〈ηα : α < ω1〉 in Pk0 and change some points.

225

Sh:895



Large continuum, oracles

Complementary to Theorem 2.1 is
Observation 2.2.
Assume λ = cf(λ) > ℵ1 and µ = cf(µ) = µ<λ > λ then for some c.c.c. forcing notion P of cardinality µ we have:
P ”2ℵ0 = µ, p = λ and for no regular κ < λ is there a peculiar (κ, λ)-cut so t = λ”.
Proof. We choose Q̄ = 〈Pα ,Q˜ β : α ≤ µ, β < µ〉 such that:

(a) Q̄ is an FS-iteration
(b) Q˜ β is a σ-centered forcing notion of cardinality < λ

(c) if α < µ,Q˜ is a Pα-name of a σ-centered forcing notion of cardinality < λ then for some β ∈ [α, µ) we have
Q˜ β = Q˜(d) Q0 is adding λ Cohens, 〈r˜ε : ε < λ〉 will witness p ≤ λ.

Clearly in VPλ we have 2ℵ0 = λ, also every σ-centered forcing notion of cardinality < µ, is from VPα for some α < µ, soas µ is regular we have
(∗) MA for σ-centered forcing notions of cardinality ≤ λ or just < µ dense sets

Hence by Claim 2.2 there is no peculiar (κ1, κ2)-cut when ℵ1 ≤ κ1 < κ2 = λ (even κ1 < κ2 < µ, κ1 < λ < µ).
3. Some specific forcing
Definition 3.1.Let η̄ =: 〈ηα : α < α∗〉 be a sequence of members of ωω which is <Jbdω -increasing or just ≤Jbdω -directed. We define theset Fη̄ and the forcing notion Q = Qη̄ and a generic real ν˜ for Q = Qη̄ as follows:

(a) Fη̄ = {ν ∈ ω(ω+ 1): if α < `g(η̄) then ηα <Jbdω ν}, here η̄ is not3 necessarily <Jbdω -directed
(b) Q has the set of elements consisting of all triples p = (ρ, α, g) = (ρp, αp, gp) (and α(p) = αp) such that

(α) ρ ∈ ω>ω,(β) α < `g(η̄),(γ) g ∈ Fη̄, and(δ) if n ∈ [`g(ρ), ω) then ηα (n) ≤ g(n);
(c) ≤Q is defined by: p ≤Q q iff (both are elements of Q and)

(α) ρp E ρq,(β) αp ≤ αq, ηαp ≤Jbdω ηαq ,(γ) gq ≤ gp,(δ) if n ∈ [`g(ρq), ω) then ηα(p)(n) ≤ ηα(q)(n),(ε) if n ∈ [`g(ρp), `g(ρq)) then ηα(p)(n) ≤ ρq(n) ≤ gp(n).
(d) For F ⊆ Fη̄ which is downward directed (by <Jbdω ) we define Qη̄,F as Qη̄ � {p ∈ Qη̄ : gp ∈ F}
(e) ν˜ = ν˜Q = ν˜Qη̄ = ∪{ρp : p ∈ G˜ Qη̄}.

3 the main case if that η̄ is ℵ2-directed; if η̄ is ≤Jbdω -increasing, we can in clause (c)(β) omit ηα(p) ≤Jbdω ηα(q)
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Claim 3.1.
1) If η̄ ∈ γ(ωω) then Fη̄ is downward directed, in fact if g1, g2 ∈ Fη̄ then g = min{g1, g2} ∈ Fη̄, i.e., g(n) =min{g1(n), g2(n)} for n < ω. Also ”f ∈ Fη̄” is absolute.
[But possibly for every ν ∈ ω(ω+ 1) we have: ν ∈ Fη̄ ⇔ (∀∗n)ν(n) = ω].
2) If η̄ ∈ δ (ωω) is <Jbdω -increasing and cf(δ) > ℵ1 then Qη̄ is c.c.c.
3) Moreover any set of ℵ1 members of Qη̄ is included in the union of countably many directed subsets of Qη̄.
4) Assume 〈Pε : ε ≤ ζ〉 is a l-increasing sequence of c.c.c. forcing notions, η̄˜ = 〈η˜α : α < δ〉 is a P0-name of a <Jbdω -
increasing sequence of members of ωω and cf(δ) > ℵ1. For ε ≤ ζ letQ˜ ε be the Pε-name of the forcing notionQη̄˜ as defined
in VPε . Then Pζ ”Q˜ ε is ⊆-increasing and ≤ic-increasing for ε ≤ ζ and it is c.c.c. and cf(ζ) > ℵ0 ⇒ Q˜ ζ = ∪{Q˜ ε : ε < ζ}
is c.c.c.”
5) Let η̄ ∈ δ (ωω) be as in part (2).

(a) If F ⊆ Fη̄ is downward directed (by ≤Jbdω ) then Qη̄,F is absolutely c.c.c.

(b) If F1 ⊆ F2 ⊆ Fη̄ are downward directed then Qη̄,F1 ≤ic Qη̄,F2 .
6)

(a) Qη̄ ”ν˜ ∈ ωω and V[G˜ ] = V[ν˜ ]”
(b) p Qη̄ ”ρp / ν˜ and n ∈ [`g(ρ), ω)⇒ ηα(p)(n) ≤ ν˜(n) ≤ gp(n)”
(c) Qη̄ ”p ∈ G iff ρ / ν˜ ∧ (∀n)(`g(ρ) ≤ n < ω⇒ ηα (n) ≤ ν˜(n) ≤ gp(n))”
(d) Qη̄ ”ν˜ ∈ Fη̄, i.e. ν˜(n) ∈ FV[Qη̄ ]”
(e) Qη̄ ”for every f ∈ (ωω)V we have f ∈ Fη̄ iff f ∈ FV

η̄ iff ν˜ ≤Jbdω f”.
Proof. 1) Trivial.2) Assume pε ∈ Qη̄ for ε < ω1. So {α(pε) : ε < ω1} is a set of ≤ ℵ1 ordinals < δ. But cf(δ) > ℵ1 hence there is α(∗) < δsuch that ε < ω1 ⇒ α(pε) < α(∗). For each ε let nε = Min{n: for every k ∈ [n,ω) we have ηα(pε )(k) ≤ ηα(∗)(k) ≤ gpε (k)}.It is well defined because ηα(pε ) <Jbdω ηα(∗) <Jbdω gpε recalling α(pε) < α(∗) and gpε ∈ Fη̄.So clearly for some x = (ρ∗, n∗, η∗, ν∗) the following set is uncountable

U = Ux = {ε < ω1 : ρpε = ρ∗ and nε = n∗ and ηα(pε ) � n∗ = η∗and gpε � n∗ = ν∗}.

Let
Q′ = Q′x =: {p ∈ Qη̄ : `g(ρp) ≥ `g(ρ∗), ρp � `g(ρ∗) = ρ∗ and ρp � [`g(ρ∗), `g(ρp)) ⊆ ηα(∗)and α(p) < α(∗), and ηα(p) � n∗ = η∗ and gp � n∗ = ν∗and n ∈ [n∗, ω)⇒ ηα(p)(n) ≤ ηα(∗)(n) ≤ gp(n)}.

Clearly
~1 {pε : ε ∈ U} ⊆ Q′
~2 Q′ ⊆ Qη̄ is directed.

So we are done.3) The proof of part (2) proves this.4),5) First we can check clause (b) of part (5) by the definitions of Qη̄,F ,Qη̄. Second, concerning ”Qη̄,F is absolutely c.c.c.”(i.e. clause (a) of part (5)) note that if P is c.c.c., G ⊆ P is generic over V then QV
η̄,F = QV[G]

η̄,F and QV
η̄,F ≤ic QV

η̄ ≤ic QV[G]
η̄by clause (b) and the last one is c.c.c. (as V[G] |= ”cf(`g(η̄)) > ℵ1”). Hence QV

η̄,F is c.c.c. even in V[G] as required.Turning to part (4), letting Fε = (Fη̄)V[Pε ], clearly Pε2 ”Q˜ ε1 = Q˜ η̄,Fε1 ” for ε1 < ε2 < ζ. Now about the c.c.c., as Pε isc.c.c., it preserves ”cf(δ) > ℵ1”, so the proof of part (2) works.6) Easy, too.
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Definition 3.2.Assume Ā = 〈Aα : α < α∗〉 is a ⊆∗-decreasing sequence of members of [ω]ℵ0 . We define the forcing notion QĀ and thegeneric real w˜ by:
(A) p ∈ QĀ iff

(a) p = (w, n, Aα ) = (wp, np, Aα(p)),(b) w ⊆ ω is finite,(c) α < α∗ and n < ω,
(B) p ≤QĀ

q iff
(a) wp ⊆ wq ⊆ wp ∪ (Aα(p)\np)(b) np ≤ nq(c) Aα(p)\np ⊇ Aα(q)\nq(C ) w˜ = ∪{wp : p ∈ G˜ QĀ

}.
Claim 3.2.
Let Ā be as in Definition 3.2.
1) QĀ is a c.c.c. and even σ-centered forcing notion.
2) QĀ

”w˜ ∈ [ω]ℵ0 is ⊆∗ Aα for each α < α∗” and V[G˜ ] = V[w˜ ].
3) Moreover, for every p ∈ QĀ we have  ”p ∈ G˜ iff wp ⊆ w˜ ⊆ (Aα(p)\np) ∪ wp”.
Proof. Easy.
Claim 3.3.
Assume η̄ ∈ δ (ωω) is ≤Jbdω -increasing.
1) If F ⊆ Fη̄ is downward cofinal in (Fη̄, <Jbdω ), i.e. (∀ν ∈ Fη̄)(∃ρ ∈ F )(ρ <Jbdω ν) and U ⊆ δ is unbounded then
Qη̄�U,F = {p ∈ Qη̄ : αp ∈ U and gp ∈ F} is (not only ⊆ Qη̄ but also is) a dense subset of Qη̄.
2) If cf(δ) > ℵ0 and R is Cohen forcing then R ”QV

η̄ is dense in QV[G˜ ]
η̄ ”.

Remark 3.1.1) We can replace ”ηα ≤Jbdω ρ” by ”ρ belongs to the Fσ -set Bα”, where Bα denotes a Borel set from the ground model,i.e. its definition.2) Used in Definition/Claim 4.2.
Proof. 1) Check.2) See next claim.
Claim 3.4.
Let η̄ = 〈ηγ : γ < δ〉 is ≤Jbdω -increasing in ωω.
1) If P is a forcing notion of cardinality < cf(δ) then P ”QV

η̄ is dense in QV[G˜ η̄ ]”.
2) A sufficient condition for the conclusion of part (1) is:

�cf(δ)
P for every X ∈ [P]cf(δ) there is Y ∈ [P]<cf(δ)

such that (∀p ∈ X )(∃q ∈ Y )(p ≤ q).
2A) We can weaken the condition to: if X ∈ [P]cf(δ) then for some q ∈ P, cf(δ) ≤ |{p ∈ X : p ≤P q}|.
3) If 〈Aα : α < δ∗〉 is ⊆∗-decreasing sequence of infinite subsets of ω and cf(δ∗) 6= cf(δ) then �cf(δ)

QĀ
holds.

Proof. 1) By part (2).2) Let U ⊆ δ be unbounded of order type cf(δ). Assume p ∈ P and ν˜ satisfies p P ”ν˜ ∈ FV[G˜ ]
η̄ ”. So for every γ ∈ U wehave p P ”ηγ <Jbdω ν˜ ∈ ωω”, hence there is a pair (pγ , nγ) such that:
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(∗) (a) p ≤P pγ

(b) nγ < ω

(c) pε P ”(∀n)(nγ ≤ n < ω⇒ ηε(n) < ν˜(n)).
We apply the assumption to the set X = {pε : γ ∈ U} and get Y ∈ [P]<cf(δ) as there. So for every γ ∈ U there is qγ suchthat pγ ≤P qγ ∈ Y . As |Y ×ω| = |Y |+ℵ0 < cf(δ) = |U| there is a pair (q∗, n∗) ∈ Y ×ω such that U′ ⊆ δ is unboundedwhere U′ := {γ ∈ U : qγ = q∗ and nγ = n∗}. Lastly, define ν∗ ∈ ω(ω+1) by ν∗(n) is 0 if n < n∗ is ∪{ηα (n)+1 : α ∈ U′}when n ≥ n∗.Clearly
~ (a) ν∗ ∈ ω(ω+ 1)

(b) γ ∈ U′ ⇒ ηα � [n∗, ω) < ν∗ � [n∗, ω)
(c) if γ < δ then ηα <Jbdω ν∗

(d) ν∗ ∈ FV
η̄(e) p ≤ q∗

(f) q∗ P ”ν∗ ≤ ν˜”.
So we are done.2A) Similarly.3) If cf(δ∗) < cf(δ) let U ⊆ δ∗ be unbounded of order type cf(δ∗) and Q′Ā = {p ∈ QĀ : αp ∈ U}, it is dense in QĀ andhas cardinality ≤ ℵ0 + cf(δ∗) < cf(δ), so we are done.If cf(δ∗) > cf(δ) and X ∈ [P]cf(δ), let α(∗) = sup{αp : p ∈ X} and Y = {p ∈ QĀ : αp = α(∗)}.The rest should be clear.
4. Proof of Theorem 2.1
Choice 4.1.
1) S ⊆ {δ < λ : cf(δ) > ℵ0} stationary.
2) η̄ is as in Definition/Claim 4.1 below, so possibly a preliminary forcing of cardinality κ we have such η̄.

Definition/Claim 4.1.1) Assume κ = cf(κ) ∈ [ℵ2, λ) and η̄ = 〈ηα : α < κ〉 is an <Jbdω -increasing sequence in ωω and δ ∈ λ\ω1 a limit ordinaland γ ≤ λ. Then the following s = sδ,γ is a winning strategy of COM in the game aδ,<γ : COM just preserves:
⊗ (a) if for every ζ < ε we have (α) + (β) then we have (∗) where

(α) Pqζ = Ppζ ∗Q˜ η̄ where Q˜ η̄ is from Definition 3.1 and in VP[pζ ], i.e. is a
Ppζ -name(β) Ppζ ∗Q˜ η̄ l Ppε ∗Q˜ η̄(∗) Pqε = Ppε ∗Q˜ η̄, so we have to interpret Pqε such that its set ofelements is ⊆ H<ℵ1 (uqε ) which is easy, i.e. it is Ppε ∪ {(p, r˜):
p ∈ Ppε and r˜ is a canonical Ppε-name of a member of Q˜ η̄(i.e. use ℵ0 maximal antichains, etc.)}

(b) if in (a) clause (α) holds but (β) fail then
(α) the set of elements of Pqε is Ppε ∪ {(p, r˜): for some ζ < ε and(p′, r˜) ∈ Pqζ we have Ppε |= ”p′ ≤ p”}(β) the order is defined naturally
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(c) if in (a), clause (α) fail, let ζ be minimal such that it fails, and then
(α) the set of elements of Pqε is Ppε ∪ {(p, r˜): for some ξ < ζ and p′we have (p′, r˜) ∈ Pqζ and Ppε |= ”p′ ≤ p”}(β) the order is natural.

Remark 4.1.In Definition/Claim 4.1 we can combine clauses (b) and (c).
Proof. By Claim 3.1 this is easy, see in particular Claim 3.1(4).
Technically it is more convenient to use the (essentially equivalent) variant.
Definition/Claim 4.2.1) We replace Pqζ = Ppζ ∗Qη̄ by Pqζ = Ppζ ∗Qη̄,Fζ where

Fζ = {ν : for some ε ≤ ζ, ν ∈ FV[P[pε ]]
η̄ butfor no ξ < ε and ν1 ∈ FV[P[pξ ]]

η̄ do we have
ν1 ≤Jbdω ν}.

2) No change by Claim 3.3s(1).
Remark 4.2.In Definition/Claim 4.1 we can use η̄˜ = 〈η˜α : α < κ〉 say a Pk0-name, but then for the game aδ,f(δ) we better assume
δ ∈ Ek0 and η̄˜ is a P[pk

δ ]-name.
Definition/Claim 4.3.1) Let k∗ ∈ K 2

λ and ν˜ α (α < λ) be chosen as follows:
(a) Ek∗ = λ and u[pk∗

α ] = ω1 + α hence u[k∗] = λ

(b) Pk∗
α is l-increasing continuous

(c) Pk∗
α+1 = Pk∗

α ∗Q˜ η̄ and ν˜ δ is the generic (for this copy) of Q˜ η̄ where η̄ is from In Definition/Claim 4.1
(d) Sk∗ = S (a stationary subset of λ), δ ∈ S ⇒ cf(δ) > ℵ0(e) for each δ ∈ Sk∗ , s

k∗
δ = sδ,λ is from In Definition/Claim 4.1 or better Definition/Claim 4.2

(f) gk∗
δ is 〈(pk∗

δ , p
k∗
δ+1)〉, mv(gk∗

δ ) = 0, only one move was done.
2) If k∗ ≤K2 k then Pk ”the pair (〈ν˜ α : α < λ〉, 〈ηi : i < κ〉) is a (λ, κ)-peculiar cut”.
Proof. Clear (by In Definition/Claim 4.1).
Definition 4.4.Let P∗ be the following forcing notion:

(A) the members are k such that
(a) k∗ ≤K2 k ∈ K 2

λ(b) u[k] = ∪{u[pk
α ] : α ∈ Ek} is an ordinal < λ+ (but of course ≥ λ)(c) Sk = Sk∗ and sk

δ = sk∗
δ for δ ∈ Sk(B) the order: ≤K2

λ
.
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Definition 4.5.We define the P∗-name Q˜ ∗ as
∪{Pk

λ : k ∈ G˜ P∗} = ∪{Pp[pk
α ] : α ∈ Ek and k ∈ G˜ P∗}.

Claim 4.1.
1) P∗ has cardinality λ+.
2) P∗ is strategically (λ+ 1)-complete hence add no new member to λV.
3) P∗ ”Q˜ ∗ is c.c.c. of cardinality ≤ λ+”.
4) P∗ ∗Q˜ ∗ is a forcing notion of cardinality λ+ neither collapsing any cardinal nor changing cofinalities.
5) If k ∈ P∗ then k P∗ ”Pk lQ˜ ∗” hence P∗ ”Pk∗ lQ˜ ∗”.
Proof. 1) Trivial.2) By Claim 1.5.3) G˜ P∗ is (< λ+)-directed.4),5) Should be clear.
Claim 4.2.
If k ∈ P∗ and G ⊆ Pk is generic over V then

(a) 〈ν˜ α [G ∩ Pk∗ ] : α < λ〉 is <Jbdω -decreasing and i < κ ⇒ ηi <Jbdω ν˜ α [G ∩ Pk∗ ], (this concerns Pk∗ only)

(b) if ρ ∈ (ωω)V[G] and i < κ ⇒ ηi <Jbdω ρ then for every α < λ large enough we have ν˜ α [G] <Jbdω ρ

(c) if ρ ∈ (ωω)V[G] and i < κ ⇒ ηi �Jbdω ρ then for every α < λ large enough we have ν˜ α [G] �Jbdω ρ.

Proof. Should be clear.
Claim 4.3.
1) If k ∈ P∗ and Q˜ is a Pk-name of a c.c.c. forcing of cardinality < λ and α ∈ Ek and Q˜ is a P[pk

α ]-name then for some
k1 we have:

(a) k ≤K1 k1 ∈ P∗(b) Pk1 ”there is a subset of Q˜ generic over V[GPk1 ∩ P[pk
α ]]”.

2) In (1) if P[pkα ]∗Q˜ ”there is ρ ∈ ω2 not in V[G˜ Pk ]” then Pk1 ”there is ρ ∈ ω2 not in V[G˜ Pk ]”.
Proof. 1) By Claim 1.6.2) By part (1) and clause (η) of Claim 1.6.
Proof of Theorem 2.1. We force by P∗ ∗Q˜ ∗ where P∗ is defined in Definition 4.4 and the P∗-name Q˜ ∗ is definedin Definition 4.5. By Claim 4.1(4) we know that no cardinal is collapsed and no cofinality is changed. We know that
P∗∗Q˜ ∗ ”2ℵ0 ≤ λ+” because |P∗| = λ+ and P∗ ”Q˜ ∗ has cardinality ≤ λ+”, so P∗ ∗ Q˜ ∗ has cardinality λ+, see Claim4.1(3),(4).Also P∗∗Q˜ ”2ℵ0 ≥ λ+” as by Claim 4.1(2) it suffices to prove: for every k1 ∈ P∗ there is k2 ∈ P∗ such that k1 ≤K2 k2 andforcing by Pk2 /Pk1 adds a real, which holds by Claim 4.3(2).Lastly, we have to prove that (〈ηi : i < κ〉, 〈ν˜ α : α < λ〉) is a peculiar cut. In Definition 2.1 clauses (α), (β), (γ) holds bythe choice of k∗. As for clauses (δ), (ε) to check this it suffices to prove that for every f ∈ ωω they hold, so it is suffice tocheck it in any sub-universe to which (η̄, ν̄), f belong. Hence by claim 4.1(1) it suffices to check it in VPk for any k ∈ P∗.But this holds by Definition/Claim 4.3(2).
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5. Quite general applications
Theorem 5.1.
Assume λ = cf(λ) = λ<λ > ℵ2 and 2λ = λ+ and (∀µ < λ)(µℵ0 < λ). Then for some forcing P∗ of cardinality λ+ not adding
new members to λV and P∗-name Q˜ ∗ of a c.c.c. forcing it is forced, i.e. P∗∗Q˜ ∗ that 2ℵ0 = λ+ and

(a) p = λ and MA<λ(b) for every regular κ ∈ (ℵ1, λ) there is a (κ, λ)-peculiar cut (〈ηκi : i < κ〉, 〈νκα : α < λ〉) hence p = t = λ

(c) if Q is a (definition of a) Suslin c.c.c. forcing notion defined by φ̄ possibly with a real parameter from V, then we
can find a sequence 〈νQ,η˜ ,α : α < λ〉 which is positive for (Q, η˜), see [1], e.g. non(null) = λ

(d) in particular b = d = λ.

Remark 5.1.0) In clause (c) we can let Q be a c.c.c nep forcing (see [1]), with B,C of cardinality ≤ λ and η˜ is a Q-name of a real(i.e. member of ω2).1) Concerning Theorem 5.1 as remarked earlier in Remark 1.5(1), if we like to deal with Suslin forcing defined with areal parameter from VP∗∗Q˜ + and similarly for B,C we in a sense have to change/create new strategies. We could startwith 〈Sα : α < λ+〉 such that Sα ⊆ λ, α < β ⇒ |Sα\Sβ | < λ and Sα+1\Sα is a stationary subset of λ. But we can codethis in the strategies, do nothing till you know the definition of the forcing.2) We may like to strengthen Theorem 5.1 by demanding
(c) for some Q as in clause (c) of Theorem 5.1, MAQ holds or even for a dense set of k1 ∈ P∗, see below, there is

k2 ∈ P∗ such that k1 ≤K2 k2 and Pk2 /Pk1 is QV[Pk1 ].
For this we have to restrict the family of Q’s in clause (c) such that those two families are orthogonal, i.e. commute.Note, however, that for Suslin c.c.c forcing this is rare, see [1].3) This solves the second Bartoszynski test problem, i.e. (B) of Problem 0.1.4) So (φ̄,Q, ν, η˜) in clause (c) of Theorem 5.1 satisfies

(a) ν ∈ ω2
(b) φ̄ = (φ0, φ1, φ2),Σ1 formulas with the real parameter ν
(c) Q is the forcing notion defined by:

• set of elements {ρ ∈ ω2 : φ0[ρ]}
• quasi order ≤Q= {(ρ1, ρ2) : ρ1, ρ2 ∈ ω2, φ1(ρ1, ρ2)}
• incompatibility in Q is defined by φ3(d) η˜ is a Q-name of a real, i.e. 〈pn,k : k ≤ ω〉 a (absolute) maximal antichain of Q, tk = 〈tn,k : k < ω〉, tk,n a truthvalue.

Proof. The proof is like the proof of Theorem 2.1 so essentially broken to a series of definitions and Claims.
Claim/Choice 5.1.
Without loss of generality there is a sequence 〈Sα : α < λ+〉 such that:

(a) Sα ⊆ Sλℵ0 is stationary

(b) if α < β then Sα\Sβ is bounded (in λ)

(c) ♦Sα+1\Sα and ♦Sλℵ0 \∪{Sα :α<λ+}.

Proof. E.g. by a preliminary forcing.
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Definition 5.1.Let P∗ be the following forcing notion:
(A) The members are k such that

(a) k ∈ K 2
λ(b) u[k] = ∪{u[pk

α ] : α ∈ Ek} is an ordinal < λ+ (but of course ≥ λ)(c) Sk ∈ {Sα : α < λ+}.
(B) The order: ≤K2

λ
.

Definition 5.2.We define the P∗-name Q˜ ∗ as
∪{Pk

λ : k ∈ G˜ P∗} = ∪{P[pk
α ] : α ∈ Ek and k ∈ G˜ P∗}.

Claim 5.2.
As in Claim 4.1:
1) P∗ has cardinality λ+.
2) P∗ is strategically (λ+ 1)-complete hence add no new member to λV.
3) P∗ ”Q˜ ∗ is c.c.c. of cardinality ≤ λ+”.
4) P∗ ∗Q˜ ∗ is a forcing notion of cardinality λ+ neither collapsing any cardinal nor changing cofinalities.
5) If k ∈ P∗ then k P∗ ”Pk lQ˜ ∗” hence P∗ ”Pk∗ lQ˜ ∗”.
Proof. 1) Trivial.2) By Claim 1.5.3) G˜ P∗ is (< λ+)-directed.4),5) Should be clear.
Claim 5.3.
Assume

(A) (a) k ∈ P∗

(b) Sk = Sα , α < λ+
(c) ν˜ is a Pk

ε-name of a member of ω2, ε < κ

(d) Q˜ is a Pk1-name of a c.c.c. Suslin forcing and η˜ a Q˜ -name both
definable from ν˜ .

Then there is k2 such that

(B) (a) k1 ≤ k2(b) Sk2 = Sα+1
(c) if ε ∈ Sα+1\Sα then Pk2

ε+1 = Pk2ε ∗Q˜ and η˜ε is the copy of η˜(d) if ε ∈ Sα+1\Sε then the strategy stε is as in In Definition/Claim 4.1, using Q˜ instead of
Q˜ η̄.

Proof. Straight.

233

Sh:895



Large continuum, oracles

Claim 5.4.
Like Claim 4.3:
1) If k ∈ P∗ and Q˜ is a Pk-name of a c.c.c. forcing of cardinality < λ and α ∈ Ek and Q˜ is a P[pk

α ]-name then for some
k1 we have:

(a) k ≤K2 k1 ∈ P∗(b) Pk1 ”there is a subset of Q˜ generic over V[GPk1 ∩ P[pk
α ]].

2) In (1) if Pk∗Q˜ ”there is ρ ∈ ω2 not in V[G˜ Pk ]” then Pk1 ”there is ρ ∈ ω2 not in V[G˜ Pk ]”.
Proof. 1) By Claim 1.6.2) By part (1) and clause (η) of Claim 1.6.
Proof of Theorem 5.1. We force by P∗ ∗ Q˜ ∗ where P∗ is defined in Definition 5.1 and the P∗-name Q˜ is definedin Definition 5.2. By Claim 5.2(4) we know that no cardinal is collapsed and no cofinality is changed. We know that
P∗∗Q˜ ∗ ”2ℵ0 ≤ λ+” because |P∗| = λ+ and P∗ ”Q˜ ∗ has cardinality ≤ λ+”, so P∗ ∗ Q˜ ∗ has cardinality λ+, see Claim5.2(3),(4).Also P∗∗Q˜ ”2ℵ0 ≥ λ+” as by Claim 4.1(2) it suffices to prove: for every k1 ∈ P∗ there is k2 ∈ P∗ such that k1 ≤K2 k2and forcing by Pk2 /Pk1 add a real, which holds by Claim 5.4(2). Similarly P∗Q˜ ∗ ”MA<λ” even for < λ dense subsets byClaim 5.4(1) we have proved clause (a) of Theorem 5.1.Clause (b) of Theorem 5.1 is proved as in the proof of Theorem 2.1, k∗ is above k0̃.As for clause (c) we are given k0 and Q˜ , ν˜ , η˜ such that ν˜ is a (P∗ ∗ Q∗)-name of a real and Q˜ is a Suslin c.c.c. forcingdefinable (say by φ̄0) from the real ν˜ and η˜ a (P∗ ∗Q˜ ∗)-name of Q˜ -name for Q˜ of a real defined by ℵ0 maximal antichainof Q˜ , absolutely of course.As P∗ ”Q˜ ∗ satisfies the c.c.c.”, for some k1 ∈ P∗ above k0 and Pk1-name ν˜ ′ of a member of λ≥2 and η˜ ′ is a Pk1-name in
Q˜ φ̄,ν′ we have k1 P∗ ”ν˜ = ν˜ ′ ∧ η˜ = η˜ ′”.As Pk1 satisfies the c.c.c. for some ε < λ, (k1, ε, ν˜ ′,Q˜ ν˜ ′ , η˜ ′) satisfies the assumptions on (k, ε, ν˜ ′, e˜ta′) is as in Claim 5.3so there is k2 and 〈η˜α : α ∈ Sα+1\Sα〉 as there. So k0 ≤ k1 ≤ k2 and

(∗) if k2 ≤ k3 then for a club of ζ < λ, ν˜ ′ is a Pk3
ζ -name and η˜ζ is (Q˜ φ̄,ν̄′ , η˜)-generic over VPζ [k3 ].

This is clearly enough, so clause (c) of Theorem 5.1 holds. For clause (d) of Theorem 5.1, first Random real forcing is aSuslin c.c.c. forcing so non(null) ≤ λ follows from clause (c) and non(nul) ≥ λ follows from clause (a).Lastly, b ≥ λ by MA<λ and we know d ≥ b. As dominating real forcing = Hechler forcing is a c.c.c. Suslin forcing soby clause (c) we have d ≤ λ, together d = b = λ, i.e. clause (d) holds.
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