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Abstract: Our main theorem is about iterated forcing for making the continuum larger than X,. We present a generalization
of [2] which deal with oracles for random, (also for other cases and generalities), by replacing 81,8, by A, At
(starting with A = A<* > &;). Well, we demand absolute c.c.c. So we get, e.g. the continuum is A but we can get
cov(meagre) = A and we give some applications. As in non-Cohen oracles [2], it is a "partial” countable support
iteration but it is c.c.c.
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0. Introduction

Starting, e.g. with V |= G.C.H. and A = A<* > X4, we construct a forcing notion IP of cardinality A*, by a partial of CS
iteration but the result is a c.c.c. forcing.

The general iteration theorems (treated in section 1) seem generally suitable for constructing universes with MA_,+2% =
AT, and taking more care, we should be able to get universes without MA_,, see Discussion 0.1 below.

Our method is to immitate [2]; concerning the differences, some are inessential: using games not using diamonds in the
framework itself, (inessential means that we could have in [2] immitate the choice here and vice versa).

An essential difference is that we deal here with large continuum - A*; we concentrate on the case we shall (in VF) have
MA_, but e.g. non(null) = A and b = A* (or b = A).

It seems to us that generally:

Thesis 0.1.

The iteration theorem here is enough to get results parallel to known results with 2% = R, replacing R, X, by A, A™.
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To test this thesis we have asked Bartoszynski to suggest test problems for this method and he suggests:
Problem 0.1.
Prove the consistency of each of the

(A) Ry < A < 2% and the A-Borel conjecture, i.e. A C “2 is of strong measure zero iff |A] < A

(B) R < non(null) < 2%, see Theorem 5.1

(C) Ry < b =A< 2% the dual A-Borel conjecture (i.e. A C “2 is strongly meagre iff |A| < A)

(D) 81 < b =A< 2%+ the dual 2%-Borel conjecture

(E) combine (A) and (C) and/or combine (A) and (D).
Parallely Steprans suggests:

Problem 0.2.

1) Is there a set A C “2 of cardinality R, of p-Hausdorff measure > 0, but for every set of size X, is null (for the
Lebesgue measure)?

2) The (basic product) | think b =0V 0 = 2% gives an answer, what about cov(meagre) = A < 2%?

We shall deal with the iteration in section 1, give an application to a problem from [3] in section 2 (and 3, 4).
Lastly, in section 5 we deal with Bartoszynski's test problem (B), in fact, we get quite general such results.
It is natural to ask

Discussion 0.1.
1) In section 1, we may wonder if we can give "reasonable” sufficient condition for b = Ry or b = k < A? The answer is
yes. It is natural to assume that we have in V a <jpa-increasing sequence f = (f, : a < k) of functions from “w with no

<jbd—upper bound and we would like to preserve this property of f, i.e. in section 1 we

(a) restrict ourselves to p € K] such that g, "f as above”.
More formally redefine K} such that

(b) replace "P is absolute c.c.c.” by "P is c.c.c, preserve f as above and if Q satisfies those two conditions then also
P x Q satisfies those two conditions.

This has similar closure properties, that is, the proofs do not really change.
2) More generally consider K, a property of forcing notions such that:

(a) PeK=Pisccc

(b) K is closed under <-increasing continuous unions

(c) K is closed under composition

(d) we replace in §1 'p € K;” by "p € K has cardinality < A”

(e) we replace in section 1, "P is absolutely c.c.c.” by  Pe KandRe K=PxR e K"

3) What about using P(n)-amalgamation of forcing notions? If we fix n this seems a natural way to get non-equality
for many n-tuples of cardinal invariants; hopefully we shall return to this sometime.
4) What about forcing by the set of approximations k? See Definition 1.5.
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Definition 0.1.

1) We say a forcing notion P is absolutely c.c.c. when for every c.c.c. forcing notion Q we have I-¢ "P is c.c.c”

2) We say P, is absolutely c.c.c. over P; when (P < P, and) P,/ is absolutely c.c.c.

3) Let Py Cic P, means that Py C P, (as quasi orders) and if p, g € Py are incompatible in Py then they are incompatible
in P, (the inverse holds too) .

The following tries to describe the iteration theorem, this may be more useful to the reader after having a first reading
of section 1.

We treat A as the vertical direction and A* as the horizontal direction, the meaning will be clarified in section 2; our
forcing is the increasing union of (P% : ¢ < A*) where k. € K, (so k. gives an iteration (Pyks] : @ < A), ie. a
<-increasing continuous sequence of c.c.c. forcing notions) and for each such k. each iterand P, is of cardinality
< A and for each € < A™ the forcing notion P*< is the union of increasing union of continuous sequence (Pp k] : @ < A).
So we can say that P¥ is the limit of an FS iteration of length A, each iterand of cardinality < A and for { € (g, A*), k¢
gives a "fatter” iteration, which for "most” 6 € S(C A), is a reasonable extension.

Question 0.1.
Can we get something interesting for the continuum > A* and/or get cov(meagre) < A? This certainly involves some
losses! We intend to try elsewhere.

Definition 0.2.

1) For a set x let otrcl(x), the transitive closure over the ordinals of x, be the minimal set y such that x € y A (Vt €
y)(t¢ Ord — t Cy).

2) For a set u of ordinals let H.,(u) be the set of x such that otrcl(x) is a subset of u of cardinality < «.

Remark 0.1.

0) We use H.,(u) (in Definition 1.1) just for bookkeeping convenience.

1) It is natural to have Ord, the class of ordinals, a class of urelements.

2) If wy C u for Hy, (u) it makes no difference, but if wy € u and B = min(w;\u) then B is a countable subset of u but
¢ Hoy, (u). Also we use Hy,(u) where w C u, so there are no problems.

1. The iteration theorem

If we use the construction for A = R4, the version we get is closer to, but not the same as [2] with the forcing being
locally Cohen.
Here there are "atomic” forcings used below coming from three sources:

(a) the forcing given by the winning strategies s;(see below), i.e. the quotient

(b) forcing notions intended to generate MA_,
[see Claim 1.6; we are given k; € Kfz, an approximation of size A, see Definition 1.5, and a Py,-name Q of a
c.c.c. forcing and sequence (Z; : i < i(x)) of < A dense subsets of Q. We would like to find k, € K; satisfying

ki gKfz k, such that |hp=k2 "there is a directed G C Q not disjoint to any Z;(i < i(*))". We do_not use composition,
only Py i) = Py, * Q for some a € Ey, N Ey,]]

(c) given k; € K7, and Q which is a P, -name of a suitable c.c.c. forcing of cardinality A can we find k; such that
ki SKfz ko and in V we have I, "there is a subset of Q generic over V[G NPy, ]".

Let us describe the roles of some of the definitions. We shall construct (in the main case) a forcing notion of cardinality
A* by approximations k € K? of size (= cardinality) A, see Definition 1.5, which are constructed by approximations
p € Ki of cardinality < A, see Definition 1.1.

Now p € Kj is essentially a forcing notion of cardinality < A, i.e. P, = (P, <), and we add the set u = u,, to help the
bookkeeping, so (in the main case) u, € [AT]<*. For the bookkeeping we let P, C Hy, (up), see Definition 0.2(2).
More specifically k (from Definition 1.5) is mainly a <-increasing continuous sequence p = (p, : a@ € Ey) = (p4lk]:
a € Ey), where E, is a club of A. Hence k represents the forcing notion P = U{(P,,, <p,) : @ < A}; the union of a
<-increasing continuous sequence of forcing notions P, = Plp.] = (Pp,, <p,), S0 we can look at P as a FS-iteration.
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But then we would like to construct say an "immediate successor” k* of k, so in particular Py < Py+, e.g. taking care of
(b) above so Q is a Px-name and even a Pyiq(g)-name of a c.c.c. forcing notion. Toward this we choose p';+ = polk*] by
induction on @ € Ey. So it makes sense to demand p, <, pa[k*], which naturally implies that u[p,] C u[pk'], Py, <Pp -
So as polk*]for a € Ey is <k,-increasing continuous, the main case is when 8 = min(Ei\(a+1), can we choose pglk*]?

Let us try to draw the picture:

L ?
) )
Popg < >— Ppafict]

So we have three forcing notions, P, . Poeikts Ppalk), where the second and third are <-extensions of the first. The main
problem is the c.c.c. As in the main case we like to have MA_,, there is no restriction on Py ji+)/Pp i, S0 it is natural
to demand "Ppiq/Pp, (i is absolutely c.c.c. for a < B from Ey” (recall po[k] is demanded to be < -increasing).

How do we amalgamate? There are two natural ways which say that "we leave Pp1q/Pp i as it is".

First way: We decide that Ppyuct] is Ppji) * (Ppqiict)/Ppaiid) X (Ppgid/Ppqiia)-
[This is the "do nothing” case, the lazy man strategy, which in glorified fashion we may say: do nothing when in doubt.
Note that Py, ic+]/Pp, g and Ppyi)/Ppq are Py, j-names of forcing notions ]

Second way: Pp,q/Pp, i is defined in some way, e.g. is a random real forcing in the universe V[P, ] and we decide
that Py ic+)/Pp,k+) is defined in the same way: the random real forcing in the universe V[P, i+]]; this is expressed by the
strategy s,.

[That is: retain the same definition of the forcing in the a-th place, so in some sense we again do nothing novel.]

Context 1.1.
Let A= cf(A) > 8y or just' A= cf(A) > 8.

Below, < is used in defining k € K? as consisting also of <, -increasing continuous sequence (p, : @ € E C A) (so
increasing vertically).

Definition 1.1.
1) Let K be the class of p such that:
(a) p=(u, P, <) = (up, Pp. <p) = (up, Py)
(b) w CuC Ord,
(c) Pisaset CHey,(u),
(d) < is a quasi-order on P,
satisfying
(e) the pair (P, <) which we denote also by P =P, is a c.c.c. forcing notion.

1A) We may write ulp], Plp], P[p].

2) <, is the following two-place relation on K : p <k, q iff u, C uq and P, < Pq and Pq N Hey, (up) = Pp; moreover,
just for transparency q <z p € P, = q € P,.

3) SR is the following two-place relation on K : p SE q iff p <k, q and P4/P, is absolutely c.c.c,, see Definition 0.1(1).
4) K} is the family of p € Kj such that u, C A* and |u,| < A.

T if A = Ry, we can change the definitions of k € K, instead (P,[k] : @ < A) is <-increasing, we carry with us large
enough family of dense subsets, e.g. coming from some countable N.

216



Sh:895

S. Shelah

5) We say p is the exact limit of (p, : @ € v),v C Ord, in symbols p = U{p, : a € v} when u, = U{u,, : @ € v} or the
union P, = U{P,, : a € v} and a € v = p, <, p; hence p € K.

6) We say p is just a limit of (p, : @ € v) when u is U{up, : a € v}, P, 2 U{P,, : @ € v} and a € v = p, <k, p.

7) We say p = (ps : a < a*) is <k, -increasing continuous [strictly <g,-increasing continuous] when it is <, -increasing
and for every limit a < a*, p, is a limit of p | «a [is the exact limit of p [ a], respectively.

Observation 1.1.

1) <k, is a partial order on K;.

2) SE C<k, is a partial order on K;.

3) Ifp = (po : @ < 0) is a <k, -increasing sequence and U{P,, : a < 0} satisfies the c.c.c. and & < A then some p € K;
is the union U{p, : a < 0} of p, i.e. Up € Kj and a < 0 = po <k, p; this determines p uniquely and p is the exact

union of p.

4) If p = (ps : @ < 0) is <, -increasing and cf(0) = R implies {a < & : p, the exact limit of p | a or just |J Pp, <Py}
B<a

is a stationary subset of 0 then Up € K; is a <k,-upper bound of p and is the exact limit of p.

5) If in part (4), p is also <{ -increasing then a < 6 = po <{, p.

Proof. Should be clear, e.qg. in part (5) recall that c.c.c. forcing preserve stationarity of subsets of 6. O

We now define the partial order <j ; it will be used in describing ki <k, ky, Le. demanding (P¥, p2) <k (p'fj_m, p';2+1)

for many a < A
Definition 1.2.
1) Let <k, be the following two-place relation on the family of pairs {(p,q) : p <k, q}. We let (p1, q1) <%, (p2, q2) iff
(a) p1 <k, P2
(b) a1 <, @2
(€) 1Fepp) "Pa, /(Gipy) N Ppy) < Po, /Gy
(d) up, Nuq, = uy,

2) Let <k, be the following two-place relation on the family {(p.q) : p <k, q} of pairs. We let (p1,q1) <k (p2 q) iff
clauses (a),(b),(d) from part (1) above and

(c) if p1 € Py, g1 € Py, and py \hpm "qy € sz/gﬂ”m " then p4 \hppz "qy € qu/gppz".

3) Assume py € Kj for £ = 0,1,2 and pg <k, p1 and po <, p2 and up, Nup, = u,,. We define the amalgamation
P = P3 = P1 Xp, P2 OF P3 = P1 X P2/po as the triple (up, Py <,) as follows:

(a) Up = up, U up,

(b) Py = Pp, UPy, U{(p1,p2) : p1 € Pp,\Ppy. P2 € Pp,\Pp, and for some p € P, we have p kg "pe € Py, /Py," for
£=1,2}

(¢) <, is defined naturally as <,, U <,, U{((p1,P2).(q1.G2)) : (P1.P2).(q1.G2) € P, and p1 <, g1 and py <,
a2} U{(p%. (p1.p2)) : Py € Py, (p1.p2) € Py and pjy <, pe for some € € {1,2}}.

Remark 1.1.

Why not use u instead Hy, (v)? Not a real difference but, e.g. there may not be enough elements in a union of two.

2 Ifin clause (b) of Definition 1.2(3) we would like to avoid "p, € P,,\P,," we may replace (p1,p2) by (p1, p2, up, U up,)
when py # p1 A po # p2 equivalently po # p1 A po # pa.
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Observation 1.2.
1) <k, ng are partial orders on their domains.

2) (p1.a1) <k, (1. ar) implies (p1, a1) <j, (P2, Q2)-
For the "successor case vertically and horizontally” we shall use

Claim 1.1.
Assume that p, g;ﬂ p2 and py <k, q1 and up, Nug, = up,, then q; € Ky and (p1, q1) <k (p2, q2) when we define
q2 = qi Xp, p2 as in Definition 1.2(3).
Proof. Straight. O
The following claim will be applied to a pair of vertically increasing continuous sequences, one laying horizontally above
the other.
Claim 1.2.
Assume €(x) < A and

(a) (p: e < &(x)) is <[ -increasing continuous for £ =1,2

(b) (pe: P2) <k, (PLi1 Piyq) for € < ().
Then

() Pl(*) <k Pi(*)

(B) for € < < e(+) we have (pL, p2) <k, (P}, P2).

Proof. Easy. O
For the "successor case horizontally, limit case vertically when the relevant game, i.e. the relevant winning strateqy is
not active” we shall use
Claim 1.3.
Assume €(x) < A is a limit ordinal and

(a) (pe : € < &(x)) is <k, -increasing, and (q. : € < £(¥)) is < -increasing

(b) pe <k, qe for € < e(*)

(c) if e < { < &(x) then (pe, qe) <k, (P¢, q¢)

(d) if { < €(%) is a limit ordinal then II-]p[P(] "Po, [ Grp) = U{qu/(gp[m nNP,):e<{}”
Then we can choose qc,) such that

(@) Pets <kq Qe

(B) (pe. 0e) <k, (et Geto) for every e < e(+)

(v) clause (d) holds also for { = &(x).

Remark 1.2.
We can replace <j, by <k in (c) and (B).

Proof. Should be clear. O
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The game defined below is the non-FS ingredient; (in the main application below, y = A), it is in the horizontal direction;
it lasts y < A steps but will be used in SK{z—lncreaslng subsequences of (k; : i < A™).

Definition 1.3.

For 0 < Aand y < A let O3, be the following game between the player INC (incomplete) and COM (complete).

A play last y moves. In the B-th move a pair (pg, qg) is chosen such that ps <i qg and B(1) < B = (pg) <k
Ps) A (Qg() <kq Q) A (Upg N Uggy = Upgy)) @nd up, NA =0 and ug, NA=ug, NA2 0+ 1.

In the B-th move first INC chooses (pg, ug) such that pg satisfies the requirements and ug satisfies the requirements on
Uqq (L. U{ug, : a < B} U up, Cup € A and ug N A = ug, N A) and say ug\uy,\ U {ug, : v < B} has cardinality
> |o| (if A is weakly inaccessible we may be interested in asking more).

Second, COM chooses qg as required such that ug C u[qg].

A player which has no legal moves loses the play, and arriving to the y-th move, COM wins.

Remark 1.3.

It is not problematic for COM to have a winning strategy. But having "interesting” winning strategies is the crux of the
matter. More specifically, any application of this section is by choosing such strategies.
Such examples are the

(a) lazy man strategy: preserve Pq, = Py, xp, Pp, recalling Claim 1.1

(b) it is never too late to become lazy, i.e. arriving to (pg(), qp() the COM player may decide that B > B(x) = Py, =

P P

a0 X Ppgy g

(c) definable forcing strategy, i.e. preserve "Pg, /P, is a definable c.c.c. forcing (in VEIpgl)”,
Definition 1.4.
We say f is A-appropriate if

(a) f€*(A+1)

(b) a<ANf(a) < A= @B)f(a) =B +1]

(€) f € < AT, (uqy : @ < A) is an increasing continuous sequence of subsets of € of cardinality < A with union € then
{0 < A: otp(us) < f(0)} is a stationary subset of A.

Convention 1.1.
Below f is A-appropriate function.

We arrive to defining the set of approximations of size A (in the main application f. is constantly A); we shall later
connect it to the oracle version (also see the introduction).

Definition 1.5.

For f, a A-appropriate function let K,Z* be the family of k such that:
() k=(E,p.559.1)
(b) E is a club of A
(c)
(d) pa € K]

=(pe:a €E)

=il

(€) pa <k, pp for a < B from E
(f) if 6 € acc(E) then p; = U{p,: a € EN &}

(g) S C Ais a stationary set of limit ordinals
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I=t={a]

(h) if 0 € SN E (hence a limit ordinal) then 0 +1 € E

(()s=(ss:0€ENS)

(j) ss is a winning strategy for the player COM in Oj 55, see Remark 1.4(1)

(K) g =(gs:6€SNE)

(l) ® g5 is an initial segment of a play of D, (5 in which the COM player uses the strategy s;
e if its length is < £,(0) then g5 has a last move
® (ps, ps+1) is the pair chosen in the last move, call it mv(gs)
e letSp={d€ SNE:g;haslength < £,(d)} and S'=SNE\Sp

(m) f @ < B are from E then p, gg pg. so in particular Pg/P, is absolutely c.c.c. that is if P <P’ and P is c.c.c.
then P’ sp, Pg is c.c.c; this strengthens clause (e)

(n) f €A
(o) if 0 € SN E then f(d) + 1 is the length of g5
(p) for every 0 € E, if £,(8) < A then f(d) < otp(up;).

Remark 1.4.

1) Concerning clause (j), recall (using the notation of Definition 1.3) that during a play the player INC chooses p. and
COM chooses q., € < f(9) and recalling clause (0) we see that (pfs), Qrs) there stands for (ps, psi1) here. You may
wonder from where does the (p., q.) for € < f(0) comes from; the answer is that you should think of k as a stage in an
increasing sequence of approximations of length f(d) and (pe, q.) comes from the d-place in the e-approximation. This
is cheating a bit - the sequence of approximations has length < A*, but as on a club of A this reflects to length < A, all
is O.K.

2) Below we define the partial order <, (or SK,z*) on the set KZ*, recall our goal is to choose an <, -increasing sequence
(ke : € < AT) and our final forcing will be U{P,, : € < AT}.

3) Why clause (d) in Definition 1.6(2) below? It is used in the proof of the limit existence Claim 1.5. This is because the
club Ex may decrease (when increasing k).

Note that we use g;‘(; "economically”. We cannot in general demand (in Definition 1.6(2) below) that for a < B from

Ex,\a(*) we have (p'f,‘,p?) <k (p'f,z,p;?) as the strategies s; may defeat this. How will it still help? Assume (k. : € <
€(x)) is increasing, () < A for simplicity and y € N{Ex, : € < €(¥)} N{Sk. : € < e(x)}\ U {a(k:, ke) 1 € < { < (%)}
and ye = Min(E, \(y + 1)) for € < g(*). We shall have (y, : € < g(x)) is increasing; there may be 0 € (ye, Ve11) where
ss was active between k. and k.1 so it contributes to ]P";iﬂ /]P";,?

4) If we omit the restriction u € [A*]<* and allow f : A — &* + 1, replace the club £ by an end segment, we can deal
with sequences of length 0* < A*.

In the direct order in Definition 1.6(3) we have a(*) = 0. Using e.g. a stationary non-reflecting S C S?" we can often
allow a(x) # 0.

5) Is the "s; a winning strategy” in addition for telling us what to do, crucial? The point is preservation of c.c.c. in limit
of cofinality K.

6) If we use f, € (A + 1) constantly A, we do not need f, so we can omit clauses (n),(0),(p) of Definition 1.5 and (c), and
part of another in Definition 1.6.

6A) Alternatively we can omit clause (o) in Definition 1.5 but demand "[] f(a)/D is At-directed”, fixing a normal filter

a<A
D on A (and demand S, € DY).
7) The "omitting type” argument here comes from using the strategies.

Definition 1.6.

1) In Definition 1.5, let £ = Ey,p = px, pa = P% = Paok], Po =P = Pp i, S = Sk, S = S for £ =0, 1, etc. and we
let P = U{P% : a € Ey} and uy = ulk] = U{u i - a € Ei}

2) We define a two-place relation <kz on K? : kg <k2 k, iff (both are from K7 and) for some a(x) < A (and a(k, ko) is
the first such a(x)) we have:



Sh:895

S. Shelah

(@) Ei,\Ek, is bounded in A, moreover C a(x)

(b) for a € Ey,)\a(x) we have pt' <k, p&

(c) if a € Ex,\a(*) then fi, (a) < fi,(a)

(d) fyo <y <va<Aw € E\a®) USy,), v1 = min(Ey,\(vo+1)) and y2 = min(E,\(vo + 1)), then (pk!, pi2) <,
(P, p!2), see Definition 1.2(2)

(e) if 0 € Sk, N Ex,\a(x) then 0 € Sy, N Ey,\a(x); but note that if f,(0) > f(d) we put J into Sy, just for notational
convenience

(f) if 0 € Si, N E,\a(*) then si = s5' and g§' is an initial segment of g}

(g) U kq # ky then u[kq] # ulks]
(h) if a < B are from Ey,\a(x) then (¥, p2) <k (p;‘,plﬁ?), see Definition 1.2(2), Le. if p € Py}, § € Pk, and
P IFBpiy) "9 € Praliol/ Gy, then p ”_PPB[M] "q € Ppgii)/ G,

"

pglki]
3) We define a two-place relation gf;lg on K? as follows: ki gf;{; ky iff
(a) ki <g2 ko
(b) Ex, € Ei,; no real harm here if we add ki # ko = Ey, C acc(Ey,)
(0) alki, ko) = Min(Ex,).

4) We write KAZ, SK}’ Sﬁ; or just K3, <, <‘,1<‘2r for Kfz, SK'z, S‘Z‘;
A f

when f is constantly A.

Remark 1.5.

1) In [2] we may increase S as well as here but we may replace clause (e) by
(€)' 0 € Sk, N Ex,\a(x) if fi,(0) < f(0) Ad € Sk, N Ex, \a(*).

If we do this, is it a great loss? No! This can still be done here by choosing s; such that as long as INC chooses ug of
certain form (e.g. ug\uP# = {0}) the player COM chooses qg = pg. We can allow in Definition 1.6(2) to extend S but a
priori start with (S, : € < A*) such that S; C A and S:\S¢ is bounded in A when € < { < A and demand S, = S..

2) We can weaken clause (e) of Definition 1.6(2) to

(e)" if 0 € Sy, N Ex,\a(*) and £, (0) < f(d) then 0 € Sy,.

But then we have to change accordingly, e.g. Definition 1.6(c),(f), Definition 1.7(c).
3) We can define k4 gK; k> demanding (Sy,, 5k,) = (Sk,. 5k,) but replace everywhere "6 € SyNEL" by "0 € Sk NEAf(0) <
()" so omit clause (e) of Definition 1.6.

Observation 1.3.

1) <z is a partial order on K?.

2) S%,EQSK/Z is a partial order on K?.

3) Ifks <g2 ko then Py, < P,

A If (ke e < AT is <gz-increasing and P = U{Py, : € < AT} then

(a) P is a c.c.c. forcing notion of cardinality < A*™
(b) P, <P for e < A,
Definition 1.7.

1) Assume k = (k. : € < g(¥)) is SK{z—increaslng with g(*) a limit ordinal < A. We say k is a limit of k when
e<el) =k <z ke K? and for some a(x)
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(a) a(x) = U{a(ke ke) 1 € < ¢ < e(¥)}
(b) Ea(x) € N{Ex\a(x) : € < ()}
(€) Sk = (U{Sk e < e} N(N{Ek : € < e(x)})\a(x)
(d) if 6 € S, then g is an initial segment of g& for every e < &(*)
(e) fi(0) = U{fi(0) : € < &(¥)} + 1 for § € Si.

2) Assume k = (k. : € < A) is <kz-increasing continuous. We say k is a limit of k when € < A = k. < k € K? and for
some @

(a) @ = (@, : € < A) is increasing continuous, A > a. € N{Ey, : { < e\ U {alky kg,) 1 G < <1+ €}
(b) Ex={a.:e<A}U{a.+1:e<Xrand e € S} and p¥_= p, pk = pit]
(c) Sk ={a. : ac € Sy, for every { < € large enough}
(d) if 6 = a. € Sy, then g = gk
(e) f a < dand { = Min{e: a < ag1} then fi(a) = f, ().
3) We say that (ke : € < (%)) is gKfz—lncreas'Lng continuous when :
(a) ke <2 k¢ for € < ¢ < g(%)
(b) ke is a limit of (kg : ¢ < cf(€)) for some increasing continuous sequence (&(¢) : { < cf(€)) of ordinals with limit
g, for every limit € < g(x), by part (1) or part (3).
Definition 1.8.
1) In part (1) of Definition 1.7, we say "a direct limit” when in addition

(a) the sequences are S‘Z‘;—lncreasing
f
(B) in clause (b) we have equality
(v) p'r‘n-m(Ek) is the exact union of (pf‘mn(EkE) te < g(x))

(0) fye E, &< eg(x),y ¢ Sﬂ(é and (ye : € € [&, (x)]) is defined by ye =y, ye = min(Ex, \(y+1)) when & < € < (%),

so {ye : € € [&, g(%)]) is an <-increasing continuous sequence of ordinals, then plf,:‘:(*)/pl,(,‘3 =U{pl./pk : e €&, e(x))}
with the obvious meaning.

2) In part (2) of Definition 1.7 we say a "direct limit" when in addition

dir

(a) the sequence is SK;

(B) a. is minimal under the restriction.
3) We say that k = (k. : € < g(*)) is g"’;g—lncreasing continuous or directly increasing continuous when :
f
(a) ke g*j(llg ke for £ < ¢ < g(%)

(b) if € < (%) is a limit ordinal then k. is a (really the) direct limit of k | €.

Claim 1.4.
If kg SK[z ko then for some ki, we have
(a) ki <9 K,

=2
K

(b) ko <2 K <z o
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(c) k2, K, are almost equal - the only differences being Ey, = Ei,\min(Ey,), S, C Sk, etc.

Claim 1.5.

The limit existence claim 1) If €(x) < A is a limit ordinal and k = (k. : € < &(*)) is a [directly] increasing continuous
then k has a [direct] limit.

2) Similarly for g(x) = A.

Proof. 1t is enough to prove the direct version.

1) We define k = k., as in the definition, we have no freedom left.

The main points concern the c.c.c. and the absolute c.c.c, §;<10,§,<1 demands. We prove the relevant demands by
induction on B € Ey

o)

Case 1: B = min(Ex,,)-

First note that (pf,c ) © € < &(¥)) is increasing continuous (in K) moreover (]P’[p';ﬁn(,:-k )] 1 € < g(x)) is increasing
continuous, see clause (y) of Definition 1.8(1). As each P[pm-m(gke)] is c.cc. if € < g(*), we know that this holds for
€ = g(x), too.

Case2: B=d+1,8 € S| NEy.

Ke(s Ke (s . . .
Since s¥ is a winning strategy in the game Ds s we have p; i SE pB”. But what if the play is over? Recall that in

Definition 1.4, f(8) = A or f(d) is successor and (f_(d) : € < g(*)) is (strictly) increasing, so this never happens; it may
happen when we try to choose k' such that k <2 k', see Claim 1.6.
We also have to show: if @ € BN E; then P[pf]/P[p] is absolutely c.c.c. First, if @ = & this holds by Definition 1.1(3)
of SR and the demand pg gg qg in Definition 1.3 (and clause (¢) of Definition 1.5). Second, if a < 0, it is enough to
show that P[pg]/P[ps] and P[pk]/P[pk] are absolutely c.c.c., but the first holds by the previous sentence, the second by
the induction hypothesis. In particular, when € < g(x) = IP/"; < PE.

Case 3: For some y,y = max(ExNB),y & S].
As y ¢ Sy there is ¢ < g(*) such that y ¢ S,lz let ye = y and for € € (&, g(*)] we define y, =: min(E, \(B + 1)). Now

as k is directly increasing continuous we have
@ (a) (ve:€ €&, g(x)]) is increasing continuous
(b) ve=vy
(€) Ve =B
(d) (pke : e €[&, &(x)]) is increasing continuous.

So by Claim 1.3 we are done, the main point is that clause (d) there holds by clause (d) of the definition of <kz in
Definition 1.6(2).

Case 4: B =sup(Ex N B).

It follows by the induction hypothesis and Observation 1.1(3) as (p'; Yy € EkNB)is SR—lncreaslng continuous with
union pl; of course we use clause (h) of Definition 1.6, so Definition 1.2(2),(5) applies.

2) Similarly. O

The following is an atomic step toward having MA_,.

Claim 1.6.

Assume
(a) ki € K?
(b) a(*) € Ey,

() Qisa IF’[p':(*)]—name of a c.c.c. forcing (hence \hph "Q is a c.c.c. forcing”)
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(d) u. C A is disjoint to u[ki] = U{up i) : @ € Ex} and of cardinality < A but > |Q|.
Then we can find k; such that

(G) k1 Sz{; k2 S Kfz

(B) Ex, = Ex;\a(*)
(v) u? =u§ Uu, fora e E, N Sy,

(9) Ppa(*i[kzl is isomorphic to Ppa'*)[k” * @ over ]P’pa(*'[k”

(6) Skz = Sk1 and Sk, = Sk, erz
(€) fiy = fiy +1

(n) if e, v "p € “2 but p & V[Gp, |" then IFp, "p € “2 but p & V[Gp, |" provided that the strategies preserve this
which they do under the criterion here.

Proof.  We choose p& by induction on a € Ey,\a(x), keeping all relevant demands (in particular up i, Nulki] = tp,k])-

Case 1: a = a(*).

As only the isomorphism type of Q is important, without loss of generality IF]P[pk1 |
~ (%)
So we can interpret the set of elements of ]P)pa(*)[kﬂ * QQ such that it is C H.y, (upa(*)[k” U uy).

Now Py ki) < Py, i) by the classical claims on composition of forcing notions.

"every member of Q belongs to u.”.

Case 2: a =0+1,0 € S, N Eg\a(*).
The case split to two subcases.

Subcase 2A: The play g? is not over, i.e. f(0) is larger than the length of the play so far.
In this case do as in case 2 in the proof of Claim 1.5, just use s;.

Subcase 2B: The play g? is over.

In this case let ]P";Z+1 = ]ID:?+1 kg Py, in fact, p';?H = p?H * ps2 (and choose Up,.1[k,) @ppropriately). Now possible and
) 1

]

(P5', P5*) <k, (P51, Pi2y) by Claim 1.1.

Case 3: For some y,y = max(Ex N B) > a(*) and y & Sk.
Act as in Subcase 2B of the proof of Claim 1.5

Case 4: B = sup(Ex N B).
As in Case 4 in the proof of Claim 1.5. O

2. p = tdoes not decide the existence of a peculiar cut

We deal here with a problem raised in [3], toward this we quote from there. Recall (Definition [3, 1.10]).

Definition 2.1.
Let k1, k2 be infinite reqular cardinals. A (k1, k2)-peculiar cut in “w is a pair ({(f; : i < k1), (f* : @ < k3)) of sequences of
functions in “w such that:

(@) (Vi< j<a)f; <pf),
(B) (Va < B < ka)(f* <y P),

(v) (Vi <wr)(Va < i) (f* <pa i),
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[
(8) if f: w — wis such that (Vi < kq)(f <po fi), then f <ppa 9 for some a < k2,
(€) U f:w— wis such that (Ya < ka)(f* <ppa f), then f; <ppa £ for some § < k.

Recall that if p < t then for some regular k < p there is a (k, p)-peculiar cut, ([3, 1.12]). Also p = R; = t = p by the
classic theorem of Rothenberg and MAy, +p =8, = t =8, by [3, 2.3].

Recall (from [3]) that

Claim 2.1.

1) If there is a (k1, k2)-peculiar then recall from there that the motivation of looking at (ki, k2)-peculiar type is under-
standing the case p > t.

1A) In particular, if p < t then there is a (k1, k2)-peculiar type for some (reqular) K1, k, satisfying k1 < k; = t, see [3],
t < p < max{ky, k2}.

2) There is a (k1, k2)-peculiar cut iff there is a (ka, k1)-peculiar cut.

Proof. 1A) See [3].
2) Trivial. O

Observation 2.1.
If (7%, ™) is a peculiar (Kyp, kan)-cut and if A C w is infinite, n € “w then:

(a) n <y na for every a < Kup iff <y ng" for every large enough B < K4y

(b) =(nd <y n) for every o < k,, iff ﬁ(ng” <y n) for every large enough B < K.

Proof. Clause (a): The implication < is trivial as B < kg A @ < Kyp = 5" <jpa 1lo’. So assume the leftside.

We define ’ € “w by: n'(n) is n(n) if n € Aand is 0 if n € w\A. Clearly 1/ < b na for every a < Ky hence by clause
(0) of Definition 2.1 we have n' < ng” for some large enough B < kqn hence n =n' [ A Sjgd r}g.'?H <o n%” for every
large enough B < Kgn-

Clause (b): Again the direction < is obvious. For the other direction define n" € “w by n'(n) is n(n) f n € A and is
o’ (n) if n € w\A. So clearly a < Ky, = =(na” <jppa 1) hence a < kyp = -(nd” <jpa 1) hence by clause (€) of Definition
2.1 for some B < kg4, we have ﬂ(nd}g” <pa 1) As n?;” < jb ny’, necessarily ﬂ(ng" <jp ') but y € [B, kan) = ng” S,E‘d n‘i”
hence y € [B, kan) = =(n%" <jpd ) = =(nd" < n), as required. O

We need the following from [3, 2.1]:

Claim 2.2.

Assume that k1 < Ky are infinite reqular cardinals, and there exists a (k1, k2)-peculiar cut in “w.

Then for some o-centered forcing notion Q of cardinality k1 and a sequence (I, : a < k3) of open dense subsets of Q,
there is no directed G C Q such that (Va < k2)(G N I # B). Hence MA,, fails.

Theorem 2.1.

Assume A = cf(A) = A4 > Ry, A > k = cf(k) > Ry and 2} = AT and (Vu < A)(p™ < A).

For some forcing P* of cardinality A* not adding new members to *V and P-name Q* of a c.cc. forcing we have
IFpegs "2% = A* and p = A and MA_, and there is a pair (f;, f') which is a peculiar (k, A)-cut”

Remark 2.1.

1) The proof of Theorem 2.1 is done in section 4 and broken into a series of Definitions and Claims, in particular we
specify some of the free choices in the general iteration theorem.

2) In Choice 4.1(1), is cf(0) > 8o necessary?

3) What if A = 8,7 The problem is Claim 3.1(2). To eliminate this we may, instead quoting Claim 3.1(2), start by forcing
i =(ne:a < wy)in Py and change some points.
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Complementary to Theorem 2.1 is

Observation 2.2.
Assume A = cf(A) >R and py = cfip) = p<* > A then for some c.c.c. forcing notion P of cardinality py we have:
IFp "2% =y, p = A and for no reqular k < A is there a peculiar (k, A)-cut so t = X"
Proof. We choose Q = (Po, Qg : o < p1, B < p) such that:
(a) Q is an FS-iteration

(b) Qg is a o-centered forcing notion of cardinality < A

(¢) if @ < p,Q is a Py-name of a g-centered forcing notion of cardinality < A then for some B € [a, y) we have

Qe =0Q
(d) Qo is adding A Cohens, (r, : € < A) will witness p < A.

Clearly in VB4 we have 2% = ), also every o-centered forcing notion of cardinality < g, is from VFe for some a < p, so
as p is reqular we have

(*) MA for o-centered forcing notions of cardinality < A or just < p dense sets

Hence by Claim 2.2 there is no peculiar (k1, k2)-cut when 81 < k1 < k3 = A (even k1 < k2 < p, Ky < A < p). O

3. Some specific forcing

Definition 3.1.
Let i =: (na : @ < a*) be a sequence of members of “w which is <jd-increasing or just <pi-directed. We define the
set F; and the forcing notion Q = Q; and a generic real v for Q = Q; as follows:

(a) Fy={ve“(w+1): if a <¥€g(n) then ng <pa v}, here 7 is not® necessarily < pe-directed
(b) Q has the set of elements consisting of all triples p = (p, @, g) = (p”, a”, g”) (and a(p) = a”) such that

(@) p € w,

(B) a < £g(n),

(v) g € F, and

(0) if n € [€g(p), w) then ne(n) < g(n);

(c) <g is defined by: p <q q iff (both are elements of Q and)

(a) p" D pf,
(B) o < a¥, fop <ppa Nas,
(v) g7 <g°,

(9) i n € [€g(p7), w) then nagp)(n) < Nag)(n).
(€) it n €[lg(p), £g(p?)) then na(y)(n) < p?(n) < g(n).
(d) For F C F; which is downward directed (by <) we define Q7 as Q; [ {p € Q;: g* € F}

(e) v=vo=vg, =U{p’:p € Gy}

3 the main case if that i is 8,-directed:; if i is Sjgd -increasing, we can in clause (c)(B) omit nq ) g,gd Na(q)
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Claim 3.1.

1) If B € Y(“w) then F; is downward directed, in fact if gy,g, € F; then g = min{gy, g2} € Fs, ie, g(n) =
min{g1(n), g2(n)} for n < w. Also "f € F;" is absolute.

[But possibly for every v € “(w + 1) we have: v € F; & (V*n)v(n) = w]

2)Ifped(®w)is <pa-increasing and cf(8) > R then Q, is c.cc.

3) Moreover any set of Xy members of Q, is included in the union of countably many directed subsets of Q.

4) Assume (P. : € < () is a <-increasing sequence of c.c.c. forcing notions, i = (nq : @ < 0) is a Po-name of a <jpa-
increasing sequence of members of “w and cf(8) > Ry. For e < { let Q. be the P.-name of the forcing notion Q; as defined
in V¥, Then e, "@g is C-increasing and <;.-increasing for € < { and itis c.c.c. and cf({) > 8o = Q¢ = U{Q: : e < (}
is ccc

5) Let i € °(“w) be as in part (2).

(a) If F C Fy is downward directed (by <) then Q5 is absolutely c.c.c.
(b) It Fy € F, C Fy are downward directed then Q; 7, <ic Qpx,-
6)
(a) lrg, "v € @ and V[G] = VIy]
(b) p lrg, "o av and n €[€g(p), ®) = nup(n) < vin) < g°(n)"
(0) kg, "p € Giff pay A(Vn)(€g(p) < n < w= na(n) < v(n) < g°(n))”
(d) kg, "v € Fy, ie. v(n) € FVl"
(e) kg, "for every f € (“w)¥ we have f € F, iff f € F iff v <jpa "
Proof. 1) Trivial.
2) Assume p. € Q; for € < wr. So {a(p.) : € < w1} is a set of < Ky ordinals < 0. But cf(d) > Ry hence there is a(x) < 0
such that € < wy = a(p.) < a(*). For each € let n, = Min{n: for every k € [n, w) we have Ny, (k) < nqw (k) < gPe(k)}.

It is well defined because nq(p,) <jpat Max) <pa gP¢ recalling a(pe) < a(*) and g’ € F;.
So clearly for some x = (p*, n*, n*, v*) the following set is uncountable

U=Uy={e<w: pP=p"and n. =n* and ngp,) | n* =n*
and gfe | n* = v*}.

Let
Q=Q ={peQ: €g(p") = lg(p*). p" | €g(p*) = p" and p* [ [€g(p"), €g(p")) C Nars)
and a(p) < a(*), and ngp) [ n* =n* and g° | n* = v*
and n € [n%, ) = Na(p) (1) < Na(n) < gP(n)}-
Clearly

®1 {pe:e€U} CQ
®; Q' C Qy is directed.

So we are done.

3) The proof of part (2) proves this.

4),5) First we can check clause (b) of part (5) by the definitions of Q; 7, Q;. Second, concerning "Q;,  is absolutely c.c.c”
(i.e. clause (a) of part (5)) note that if P is c.c.c., G C P is generic over V then Q\ﬁ/,f = Qﬁvy[fc] and Q\f,/,; <ic Qg <ic QZ[C]
by clause (b) and the last one is c.cc. (as V[G] = "cf(¢g(n)) > ®y"). Hence Q) is c.cc. even in V[G] as required.
Turning to part (4), letting F,. = (F;)YF<], clearly IFp., "Qe, = Qpr,, " for &1 < &2 < {. Now about the c.c.c, as P; is
c.c.c, it preserves "cf(d) > 84", so the proof of part (2) works.

6) Easy, too. O
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Definition 3.2.

Assume A = (A, : @ < a*) is a C*-decreasing sequence of members of [w]". We define the forcing notion @, and the
generic real w by:

() peQ,iff

(@) p=(w,n,Ay) = (Wp, np, Aaipy),
(b) w C w is finite,

(c) a<a*and n < w,

(B) p <q, q iff
(a) wp € wy C Wy U (Agip)\np)
(b) np, < ng
(€) Aaip)\np 2 Acig)\Ng

(C) w=U{w, :p € Go,}

Claim 3.2.

Let A be as in Definition 3.2.

1) Q4 is a c.c.c. and even o-centered forcing notion.

2) kg, "w € [w] is C* A, for each a < a*" and V[G] = V|[w].

3) Moreover, for every p € Q4 we have IF"p € G iff w, Cw C (Aap)\Np) Uw,".

Proof. Easy. O

Claim 3.3.

Assume 0 € °(“w) is < pa-increasing.

1) It F C Fy is downward cofinal in (Fy, <pd), ie. (Vv € Fp)(Fp € F)lp <pe v) and U C & is unbounded then
Quur={p €Q;:a” €U and g» € F} is (not only C Q; but also is) a dense subset of Q.

2) If cf(0) > Ry and R is Cohen forcing then kg QX is dense in Qv[g],,

7 .

Remark 3.1.

1) We can replace ", <ps p" by "p belongs to the F,-set B,", where B, denotes a Borel set from the ground model,
L.e. its definition.

2) Used in Definition/Claim 4.2.

Proof. 1) Check.
2) See next claim. O

Claim 3.4.

Let i = (ny : v < 0) is <pa-increasing in “w.

1) If P is a forcing notion of cardinality < cf(0) then IFp QX is dense in QVIn".
2) A sufficient condition for the conclusion of part (1) is:

o for every X € [PI0) there is Y & [P]</9)
such that (Yp € X)(3q € Y)(p < q).

2A) We can weaken the condition to: if X € [P|"® then for some q € P, cf(8) < |[{p € X : p <p q}|.
3) If (A, : a < 8*) is C*-decreasing sequence of infinite subsets of w and cf(0*) # cf(d) then Og(:) holds.

Proof. 1) By part (2).
2) Let U C 0 be unbounded of order type cf(d). Assume p € P and v satisfies p IFp "v € ]:,.\7/[9]". So for every y € U we
have p IFp ", <ppa v € “w", hence there is a pair (py, n,) such that:
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() (@) p<ppy
(b) ny<w
(¢) pelrp "(Vn)(n, < n < w = n(n) < v(n)).

We apply the assumption to the set X = {p. : y € U} and get Y &€ [P|<9¥) as there. So for every y € U there is q, such
that p, <p g, € Y. As |Y x w| = |Y|+ Ry < cf(0) = || there is a pair (q., n.) € Y X w such that Y’ C 9 is unbounded
where !’ := {y €U : g, = g. and n, = n.}. Lastly, define v, € “(w+1) by vi(n) is0if n < n, is U{ne(n)+1:a Ut}
when n > n,.

Clearly

® (@) vi€®w+1)
(b) yeU = n [[n., w) < v, [[n,, w)
(c) ify< o thenn, <jbd Vs
(d) v.eF)

(e) p<gq.
() qulkp v, < V"

So we are done.

2A) Similarly.

3) If cf(6*) < cf(d) let Y C 0* be unbounded of order type cf(0*) and Q;‘ ={p € Q;:a” €U}, itis dense in Q and
has cardinality < 8¢ + cf(6*) < cf(d), so we are done.

If cf(6*) > cf(8) and X € [P|7®), let a(x) = sup{a” :p € X} and Y = {p € Q4 : &® = a(x)}.

The rest should be clear. O

4. Proof of Theorem 2.1

Choice 4.1.
1) S C {0 < A:cf(o) > Ro} stationary.
2) i is as in Definition/Claim 4.1 below, so possibly a preliminary forcing of cardinality k we have such q.

Definition/Claim 4.1.
1) Assume k = cf(k) € [Nz, A) and 7 = (n, : @ < k) is an <pa-increasing sequence in “w and 6 € A\w; a limit ordinal
and y < A. Then the following s = s, is a winning strategy of COM in the game 05 <,: COM just preserves:

® (a) if for every { < € we have (a) + (B) then we have (%) where
(a) Pq, =Py, *Q; where @ is from Definition 3.1 and in VFPd, e is a
P, -name
(B) Pp Q< Py, xQy
(¥) Pq, =Pp, xQy so we have to interpret Pq, such that its set of
elements is C Hy, (u%) which is easy, ie. it is P, U {(p, r):

p € Py, and r is a canonical P, -name of a member of Q;
(Le. use Ry maximal antichains, etc.)}

(b) if in (a) clause (a) holds but (B) fail then

(@)  the set of elements of Py, is P,. U {(p, r): for some { < € and
(p' 1) € Pg, we have P, |="p" < p"}
(B) the order is defined naturally
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(c) ifin (a), clause (a) fail, let { be minimal such that it fails, and then

(o)  the set of elements of Pg, is P, U {(p, r): for some & < ¢ and p’
we have (p’,1) € P, and P, |="p’ < p"}

(B) the order is natural.

Remark 4.1.

In Definition/Claim 4.1 we can combine clauses (b) and (c).

Proof. By Claim 3.1 this is easy, see in particular Claim 3.1(4). O

Technically it is more convenient to use the (essentially equivalent) variant.

Definition/Claim 4.2.
1) We replace Py, = P, * Q; by Pq, = Py, * Q; 7, where

[
Fe={v: forsome e < (v e]:ﬁVJP’[ps]] but

v
forno { < eand vy € ]_-ﬁ[ﬂ"[pg]
Vi Sjgd V}.

] do we have

2) No change by Claim 3.3s(1).

Remark 4.2.

In Definition/Claim 4.1 we can use 7 = (i, : @ < k) say a P,-name, but then for the game Dj (5 we better assume

0 € Ey, and 7 is a P[p§]-name.
Definition/Claim 4.3.
1) Let k. € K and v, (a < A) be chosen as follows:
(a) Ex, = A and u[p’] = wi + @ hence uk,] = A
(b) PX is <-increasing continuous
(c) ]ID";*+1 =Pk % Qj; and y; is the generic (for this copy) of Q; where 7 is from In Definition/Claim 4.1
(d) Sk, = S (a stationary subset of A), 6 € S = cf(d) > Ry
(e) for each 0 € Sk*,s'g* =55, is from In Definition/Claim 4.1 or better Definition/Claim 4.2
(f) gb is ((pg*,p§11)), mv(g%') = 0, only one move was done.
2) If k, <k, k then IFp, "the pair ((ve : a < A),(n: 1 i < k)) is a (A, k)-peculiar cut”.
Proof. Clear (by In Definition/Claim 4.1). O
Definition 4.4.
Let P* be the following forcing notion:

(A) the members are k such that

(a) k, <g, k € K2
(b) ulk] = U{u[pX]: @ € Ex} is an ordinal < A* (but of course > A)
(c) Sk =Sk, and sk = s&* for 5 € S,

(B) the order: <kz-
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Definition 4.5.
We define the P*-name @* as

U{PX:k € G} = U{P,[p%]: @ € Ei and k € G+ }.

Claim 4.1.

1) P* has cardinality A*.

2) P* is strategically (A + 1)-complete hence add no new member to *V.

3) Ikp« "Q* is c.c.c. of cardinality < At

4) P* « Q* is a forcing notion of cardinality A* neither collapsing any cardinal nor changing cofinalities.
5) If k € P* then kIFp "By < Q" hence IFp. "By, < Q*".

Proof. 1) Trivial.

2) By Claim 1.5.

3) Gp is (< AT)-directed.

4),5) Should be clear. O

Claim 4.2.
Ifk € P* and G C Py is generic over V then

(a) (vo[GNPy]: a <A)is <pa-decreasing and i < k = n; <pa Vo[G NPy}, (this concerns Py, only)
(b) if pe (“wV and i < k = n <y p then for every a < A large enough we have v,[G] < p

(c) if pe (“w) and i < k = n; £pa p then for every a < A large enough we have vo[G] £ s p.
Proof. Should be clear. O

Claim 4.3.
1) Ifk € P* and Q is a Pc-name of a c.c.c. forcing of cardinality < A and a € Ex and Q is a P[pk]-name then for some
ki we have:

(G) k §K1 k1 e P
(b) Ik, “there is a subset of Q generic over V[Gp, N Plpk])".

2) In (1) if Ibpy).q "there is p € “2 not in V[Gr,|" then Iy, “there is p € “2 not in V[Gr,]".

Proof. 1) By Claim 1.6.
2) By part (1) and clause (n) of Claim 1.6. O

Proof of Theorem 2.1. We force by P* x Q* where P* is defined in Definition 4.4 and the P*-name Q* is defined
in Definition 4.5. By Claim 4.1(4) we know that no cardinal is collapsed and no cofinality is changed. We know that
IFprage 2% < A*” because |P*| = A* and IFp "Q* has cardinality < A*”, so P* * Q* has cardinality A*, see Claim
41(3),(4). i i

Also IFprg "2% > A" as by Claim 4.1(2) it suffices to prove: for every k; € P* there is k, € IP* such that k; <k, kz and
forcing bg~ Py, /Py, adds a real, which holds by Claim 4.3(2).

Lastly, we have to prove that ((n; : i < k), (ve : @ < A)) is a peculiar cut. In Definition 2.1 clauses (a), (B), (v) holds by
the choice of k.. As for clauses (0), (€) to check this it suffices to prove that for every f € “w they hold, so it is suffice to
check it in any sub-universe to which (p, v), f belong. Hence by claim 4.1(1) it suffices to check it in VP for any k € P*.

But this holds by Definition/Claim 4.3(2). O
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5. Quite general applications

Theorem 5.1.
Assume A = cf(A) = A<* > R, and 24 = AT and (Vu < A)(u™ < A). Then for some forcing P* of cardinality A* not adding
new members to *V and P*-name @* of a c.c.c. forcing it is forced, i.e. |Fps.q+ that M0 = )t and

(a) p = A and MA_,
(b) for every regular k € (Rq, A) there is a (k, A)-peculiar cut ((nf : i < k), (vE:a < A)) hencep =t=A

(c) if Q is a (definition of a) Suslin c.c.c. forcing notion defined by ¢ possibly with a real parameter from V, then we
can find a sequence (vg, : @ < A) which is positive for (Q, n), see [1] e.g. non(null) = A

(d) in particular b =0 = A.
Remark 5.1.
0) In clause (c) we can let Q be a c.c.c nep forcing (see [1]), with B, € of cardinality < A and n is a Q-name of a real
(i.e. member of “2). )
1) Concerning Theorem 5.1 as remarked earlier in Remark 1.5(1), if we like to deal with Suslin forcing defined with a
real parameter from VP2 and similarly for 98, € we in a sense have to change/create new strategies. We could start
with (S, @ a < AT) such that Sy C A, a < B = |S,\Sp| < A and S,41\S, is a stationary subset of A. But we can code

this in the strategies, do nothing till you know the definition of the forcing.
2) We may like to strengthen Theorem 5.1 by demanding

(c) for some Q as in clause (c) of Theorem 5.1, MA(% holds or even for a dense set of ki € P*, see below, there is
ko, € P* such that k4 SKZ k, and sz /Ph is QV[P"1 .

For this we have to restrict the family of Q’s in clause (c) such that those two families are orthogonal, i.e. commute.
Note, however, that for Suslin c.c.c forcing this is rare, see [1].

3) This solves the second Bartoszynski test problem, i.e. (B) of Problem 0.1.

4) So (¢, Q, v, n) in clause (c) of Theorem 5.1 satisfies

(a) ve©2
(b) @ = (90, 1, ¢2), 1 formulas with the real parameter v
(c) Q is the forcing notion defined by:

e set of elements {p € “2: @[p]}

e quasi order <g= {(p1,p2) : p1, P2 € “2, 1(p1, p2)}
e incompatibility in Q is defined by ¢

(d) nis a Q-name of a real, ie. {p,x : kK < w) a (absolute) maximal antichain of Q,ty = (t,x : k < w), t;, a truth
value.

Proof. The proof is like the proof of Theorem 2.1 so essentially broken to a series of definitions and Claims. O

Claim/Choice 5.1.

Without loss of generality there is a sequence (S, : a < A%) such that:
(@) Ss C SQO is stationary
(b) if a < B then S,\Sg is bounded (in })

() Os,in\s, and Osgo\u{sa:aqﬂ-

Proof. E.g. by a preliminary forcing. O
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Definition 5.1.
Let P* be the following forcing notion:

(A) The members are k such that
(a) k € K?
(b) u[k] = U{u[pX]: @ € E,} is an ordinal < A* (but of course > A)
(€) Sk € {Sa:a< At}

(B) The order: <kz:

Definition 5.2.
We define the P*-name Q* as

U{PX: k € Gp} = U{P[p¥]: @ € Ey and k € Gp-}.

Claim 5.2.

As in Claim 4.1:

1) P* has cardinality A*.

2) P* is strategically (A + 1)-complete hence add no new member to *V.
3) Ikp« "Q* is c.c.c. of cardinality < At

4) P* « Q* is a forcing notion of cardinality A* neither collapsing any cardinal nor changing cofinalities.

5) Ifk € P then kIkp- "Pi < Q" hence I-p- Py, < Q"".

Proof. 1) Trivial.

2) By Claim 1.5.

3) Gp is (< AT)-directed.
4),5) Should be clear.

Claim 5.3.
Assume
(A) (@) kePr
(b) Sk =S4 a< At
(¢) v is a P<-name of a member of “2, & < k

(d) Qs a Py -name of a c.c.c. Suslin forcing and n a Q-name both

definable from v.
Then there is k, such that
(B) (a) ki <k
(b) Sk, = Saw
(¢) if € € Se41\Sq then ]P"gH =Pk« Q and Ne is the copy ofg

(d) if € € Se41\Se then the strategy st. is as in In Definition/Claim 4.1, using Q instead of
Q.

Proof. Straight.
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Claim 5.4.

Like Claim 4.3:

1) Ifk € P* and Q is a Px-name of a c.c.c. forcing of cardinality < A and a € Ex and Q is a P[pk]-name then for some
ki we have:

(a) k <x, ki € P*
(b) Ikp,, "there is a subset of Q generic over V[Gp, N P[pX])

2) In (1) if IFpaq “there is p € “2 not in V[Gp,|" then I, "there is p € “2 not in V[Gp,]".

Proof. 1) By Claim 1.6.
2) By part (1) and clause (n) of Claim 1.6. O

Proof of Theorem 5.1. We force by P* * Q* where P* is defined in Definition 5.1 and the P*-name Q is defined
in Definition 5.2. By Claim 5.2(4) we know that no cardinal is collapsed and no cofinality is changed. We know that
IFpesgr "2% < A" because |P*| = AT and IFps "Q* has cardinality < A*", so P* x Q" has cardinality A*, see Claim
5.2(3),(4). )

Also IFpe.g "2% > A*" as by Claim 4.1(2) it suffices to prove: for every k; € P* there is ko € P* such that ki <k, k2
and forcing by Py, /Py, add a real, which holds by Claim 5.4(2). Similarly IFp.,g+ "MAL," even for < A dense subsets by
Claim 5.4(1) we have proved clause (a) of Theorem 5.1. ’

Clause (b) of Theorem 5.1 is proved as in the proof of Theorem 2.1, k, is above ko.

As for clause (c) we are given ko and Q vin such that v is a (P* * Q*)-name of a real and Q is a Suslin c.c.c. forcing
definable (say by @) from the real v and N a (P*xQ")-name of Q-name for Q of a real defined by &y maximal antichain
of Q, absolutely of course.

As \hp* Q* satisfies the c.c.c”, for some ki € P* above ko and Py, -name v’ of a member of 422 and n is a P,-name in
Qv we have ki lFps "v =V A= r]

As Py, satisfies the c.c.c. for some € < )\ (ki, &, v, Qy, n) satisfies the assumptions on (k, ¢, v/, eta’) is as in Claim 5.3
so there is ky, and (1, : @ € Sg41\S4) as there. So ko < ki < k; and

() if ko < k3 then for a club of { < A,V is a IP"?—name and n¢ is (Qg,o, n)-generic over VEdlksl,

This is clearly enough, so clause (c) of Theorem 5.1 holds. For clause (d) of Theorem 5.1, first Random real forcing is a
Suslin c.c.c. forcing so non(null) < A follows from clause (c) and non(nul) > A follows from clause (a).

Lastly, b > A by MA_, and we know 0 > b. As dominating real forcing = Hechler forcing is a c.c.c. Suslin forcing so
by clause (c) we have d < A, together ® = b = A, i.e. clause (d) holds. O
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