THERE ARE JUST FOUR SECOND-ORDER QUANTIFIERS

BY
SAHARON SHELAH

Abstract

Among the second-order quantifiers ranging over relations satisfying a firstorder sentence, there are four for which any other one is bi-interpretable with one of them: the trivial, monadic, permutational, and full second order.

Introduction

The problem of elementary theories of permutation groups was discussed in Vazhenin and Rasin [12], McKenzie [5], Pinus [7], and essentially solved in Shelah [11]. It became clear that this is equivalent to the problem of the expressive power of the quantifier Q_{P}, ranging over permutations. (Of course in rich enough languages it is equivalent to the second-order quantifier, so the interesting case is of languages with no nonlogical symbols.) After examining [11], J. Stavi doubted the naturality of this quantifier, whereas I was convinced that there are no new quantifiers of this kind. At last he suggested, as explication of "this kind", the family of quantifiers Q_{ψ}, where $\psi=\psi(r)$ is a first-order sentence with the single predicate r, and $\left(Q_{\psi} r\right) \phi$ means: "There is a relation r satisfying ψ such that $\phi^{\prime \prime} \cdots$. Here we prove that up to bi-interpretability there are really only four such quantifiers. It seems that this justifies the preoccupation with Q_{P}. We define interpretability in a way even weaker than in [11]: Q_{ψ} is interpretable in $Q_{\psi_{2}}$ if there is a first-order formula $\theta\left(\bar{x}, y_{1} \cdots, r_{1}, \cdots\right)$ such that for any infinite set A, and relation R over it, $A \vDash \psi_{1}[R]$, there are elements $a_{1}, \cdots \in A$ and relations S_{1}, \cdots over $A, A \vDash \psi_{2}\left[S_{i}\right]$, such that $A \vDash(\forall \bar{x})\left[R(\bar{x}) \equiv \theta\left(\bar{x}, a_{1}, \cdots, S_{1}, \cdots\right)\right]$.

Our proofs give somewhat more than what is required. If Q_{X} is one of those four quantifiers (see Theorem 2 for details) and Q_{ψ}, Q_{X} are bi-interpretable, then

Received October 11, 1972 and in revised form March 5, 1973.
there is a $\theta\left(\bar{x}, \bar{y}, r_{1}, \cdots, r_{n}\right)$ interpreting Q_{X} by Q_{ψ} with bounded n (that is the bound on n is absolute). No attempt has been made to determine a minimal bound, but notice that if Q_{ψ}, Q_{M} are bi-interpretable (Q_{M}-the monadic quantifier) then by Claim 5 H , some $\theta(x, y, r)$ interprets Q_{M} by Q_{ψ}.

There are several ways in which we can try to generalize our results and most directions were not investigated.

We can quantify over a pair of relations, e.g. two operations defining a field; but this can be reduced to the previous case.

We can permit finite models, but then we can find a quantifier very strong for models with an even number of elements, and trivial for models with an odd number of elements.

We can have quantifiers ranging over pseudo-elementary classes. That is, $\left(Q_{\psi\left(r, s r^{\prime}\right)}\right) \cdots$, means "there is an r such that for some $s, \psi(r, s)$ holds, and r satisfies \ldots ''. In this case, our proofs give similar classification, but the equivalence classes of Q_{M}, Q_{P} are divided into infinitely many equivalence classes. It is not so difficult to give a complete picture. If we want to find which cardinals can be characterized by a sentence with such quantifiers but with no nonlogical symbol, we are stuck by the independence of, e.g., the function $2^{\kappa_{\alpha}}$.

Another direction is multi-sorted models. Here the classification depends on n-cardinal theorems (see e.g. [1]) but modulo these, it seems possible to give a classification.

Still another direction is to replace first-order logic by the infinitary logic $L_{\omega_{1}, \omega}\left(\right.$ or $L_{\lambda, \omega}$). Here it is reasonable to ignore models of cardinality $<\beth_{\omega_{1}}$. In this case we have a quantifier $Q_{I I}^{\lambda}$ ranging over all two-place relations of cardinality $<\lambda$, where there is $\psi \in L_{\omega_{1}, \omega}$ which has a model of cardinality μ iff $\mu<\lambda$. We also have the quantifiers ranging over equivalence relations with $<\lambda$ equivalence classes or with equivalence classes of power $\leqq \mu<\lambda$ for some μ, where λ satisfies the condition mentioned for $Q_{I I}^{\lambda}$. It is easy to define when a quantifier Q_{ψ} is interpretable by a set of quantifiers and hence when a quantifier and set of quantifiers, or two such sets, are bi-interpretable.

Conjecture. Any Q_{ψ} is bi-interpretable with a finite set consisting of quantifiers mentioned above.

The following conjecture seems to imply all others. Let A be a fixed infinite set. For each m-place relation R over A define " $\left(Q_{R} r\right) \cdots$ " to mean "there is a relation r over $A,(A, R) \cong(A, r)$ such that $\ldots,{ }^{\prime}$

COnjecture. Any quantifier $\left(Q_{R} r\right)$ is bi-interpretable with a finite set of quantifiers $\left\{\left(Q_{E}, r\right): i<n\right\}$ where E_{i} is an equivalence relation over A.

Notation. Let r, s, t denote predicates (= variables over relations); R, S, T (the corresponding) relations; x, y, z individual variables; and a, b, c, d elements. A bar on any one of them means that it is a finite sequence of this sort. Let ϕ, ψ, θ, χ denote formulae, first-order if not stated otherwise. $\phi=\phi\left(x_{1}, \cdots, r_{1}, \cdots\right)$ means that x_{1}, \cdots include all the free variables of ϕ, and r_{1}, \cdots include all the predicates in ϕ. L denotes first-order language (always with equality). Let $\psi=\psi(r)$ always, r have $n(\psi)$ places, and $L_{\psi}=L\left(Q_{\psi}\right)$ be language L with the added second-order quantifier $\left(Q_{\psi} r\right) \cdots$ which means "there is an r which satisfies ψ such that \ldots ". Let $R_{\psi}(A)=\{R: R$ an $n(\psi)$-ary relation over $A, A \vDash \psi[R]\}$ (F denotes satisfaction). Let ($Q_{\psi} \bar{r}$) mean $\left(Q_{\psi} r_{1}\right) \cdots\left(Q_{\psi} r_{n}\right)$, where $\bar{r}=\left\langle r_{1}, \cdots, r_{n}\right\rangle$. We shall write $\bar{a} \in A$ instead of $\bar{a}=\left\langle a_{1}, \cdots, a_{n}\right\rangle, a_{i} \in A$. For any $\bar{a}, l(\bar{a})$ is its length, and \vec{a}_{i} or a_{i} its i 'th element, so $\bar{a}=\left\langle a_{1}, \cdots, a_{l(\bar{l})}\right\rangle$.
Let i, j, k, l, m, n range over natural numbers, $i, j, \alpha, \beta, \gamma, \delta$ over ordinals, and λ, μ, κ over cardinals.
A sequence \bar{a} is without repetitions if $i \neq j$ implies $\bar{a}_{i} \neq \bar{a}_{j}$, and \bar{a}, \bar{b} are disjoint if $\bar{a}_{i} \neq \bar{b}_{J}$, for any i, j. Let $\mathrm{Eq}_{2}(A)\left[\mathrm{Eq}_{\lambda}^{*}(A)\right]$ be the set of equivalence relations over A, with each equivalence class having $<\lambda[\lambda]$ elements. Let e denote an equivalence relation.

Defintion 1. $Q_{\psi_{1}}$ is interpretable in $Q_{\psi_{2}}$ if there is a formula $\phi(\bar{x}, \bar{y}, \bar{r}), l(\bar{x})$ $=n\left(\psi_{1}\right)$ such that for any infinite A and $R_{1} \in R_{\psi_{1}}(A)$ there are $\bar{a} \in A, \bar{R} \in R_{\psi_{2}}(A)$ such that

$$
A \vDash(\forall \bar{x})\left[R_{1}(\bar{x}) \equiv \phi(\bar{x}, \bar{a}, \bar{R})\right] .
$$

Defintion 2. $Q_{\psi_{1}}$ and $Q_{\psi_{2}}$ are equivalent if each is interpretable in the other.
Lemma 1. If $Q_{\psi_{1}}$ is interpretable in $Q_{\psi_{2}}$, then there is a recursive function F from the formulae of any language $L_{\psi_{1}}$ into those of $L_{\psi_{2}}$ such that for any infinite model M and sentence $\theta \in L_{\psi_{1}}$ (not necessarily first-order)

$$
M \vDash \theta \text { iff } M \vDash F(\theta) .
$$

Proof. We define $F(\theta)$ for formulae θ, by induction on θ. The only nontrivial case is $\theta=\left(Q_{\psi_{1}} r\right) \chi$. Without loss of generality no variable occurs both in θ and in the interpreting formula ϕ (otherwise change names). Replace in $F(\chi)$ and in
ψ_{1} every occurrence of $r(\bar{z})$ by $\phi(\bar{z}, \tilde{y}, \bar{r})$, call the results χ^{*}, ψ_{1}^{*} and let $F(\theta)=$ $(\exists \bar{y})\left(Q_{\psi,} \bar{r}\right)\left(\chi^{*} \wedge \psi_{i}^{*}\right)$.

Our main result is
Theorem 2. Each Q_{ψ} is equivalent to exactly one of the following quantifiers:
A) Q_{I}-the trivial quantifier, i.e., $Q_{\psi_{I}}, \psi_{I}=r, n\left(\psi_{1}\right)=0$, so $L_{\psi_{I}}$ is just firstorder logic
B) $Q_{M}-$ the monadic second-order quantifier, i.e., $Q_{\psi_{M}}, \psi_{M}=(\forall x)[r(x) \equiv r(x)]$, $n\left(\psi_{M}\right)=1$,
C) $Q_{P}-$ the permutational second-order quantifier, ranging over permutations of the universe of order two, i.e. $Q_{\psi_{P}}$,

$$
\psi_{P}=(\forall x)[f(f(x))=x]
$$

(of course we can quantify over functions instead of relations; equivalently we can quantify over $\mathrm{Eq}_{3}(A)$)
D) $Q_{I I}$-the (full) second-order quantifier i.e., $Q_{\psi_{I I}}, \psi_{I I}=(\forall x y)[r(x, y)$ $\equiv r(x, y)], n\left(\psi_{I I}\right)=2$.

The proof is broken into a series of lemmas and claims.
Lemma 3. Q_{I} can be interpreted in Q_{M}, Q_{M} can be interpreted in Q_{P}, and Q_{P} can be interpreted in $Q_{I I}$. However, none of the converses holds. (In fact, in the negative parts, also the conclusion of Lemma 1 fails.)

Proof. The positive statements are immediate. As for the negative statements, let L be a language with no predicates or function symbols (except equality, of course), and $L_{\text {ord }}$ be the language of models of order.

We know that in $L_{\text {ord }}\left(Q_{I}\right)$ there is no formula (with parameters) defining the class of well-ordering but that there is one in $L_{\text {ord }}\left(Q_{M}\right)$. Hence Q_{M} cannot be interpreted by Q_{I}.

We know that for every sentence $\phi \in L\left(Q_{M}\right)$, either every infinite model satisfies it or no infinite model satisfies it. As in McKenzie [5] (or Pinus [7], Shelah [11]) this is not true for $L\left(Q_{P}\right) ; Q_{P}$ cannot be interpreted by Q_{M}.

By Shelah [11], if a sentence $\phi \in L\left(Q_{P}\right)$ has a model of cardinality $\geqq \aleph_{\Omega^{\omega}}$ $\left(\Omega=\left(2^{\aleph_{r}}\right)^{+}\right)$then ϕ has models of arbitrarily high power. Of course $L\left(Q_{I I}\right)$ does not satisfy this, hence $Q_{I I}$ is not interpretable by Q_{P}.

Lemma 4. If Q_{ψ} is not interpretable by Q_{I} then Q_{M} is interpretable by Q_{ψ}.
Claim 4A. Q_{M} is interpretable by Q_{ψ} if there is a formula $\phi=\phi(x, \bar{y}, \bar{r})$,
and a set $A, \tilde{a} \in A, \bar{R} \in R_{\psi}(A)$ such that $\phi(y, \bar{a}, \bar{R})$ divides A into two infinite sets, that is $|\phi(A, \bar{a}, \bar{R})| \geqq \aleph_{0}, \quad|\neg \phi(A, \bar{a}, \bar{R})| \geqq \aleph_{0}$, where $\phi(A, \bar{a}, \bar{R})=\{b \in A$: $A \vDash \phi[b, \bar{a}, \bar{R}]\}$.

Proof of Claim 4A. Assuming the existence of such ϕ, by the compactness and Lowenheim-Skolem theorems, for every infinite B there are $\bar{a} \in B, \bar{R} \in R_{\psi}(B)$ such that $|B|=|\phi(B, \bar{a}, \bar{R})|=|\neg \phi(B, \bar{a}, \bar{R})|$. By applying a permutation of B for every $B_{1} \subseteq B,\left|B_{1}\right|=\left|B-B_{1}\right|=|B|$, there are $\bar{a} \in A, \bar{R} \in R_{\psi}(B)$ such that $\phi(B, \bar{a}, \bar{R})=B_{1}$. Now for every $C \subseteq B$ there are $B_{i} \subseteq B i=1, \cdots, 4$ such that $\left|B_{i}\right|=\left|B-B_{i}\right|=|B|$ and $C=\left(B_{1} \cap B_{2}\right) \cup\left(B_{3} \cap B_{4}\right)$. Let
$\theta=\theta\left(x, \bar{y}^{*}, \bar{r}^{*}\right)=\left[\phi\left(x, \bar{y}^{1}, \bar{r}^{1}\right) \wedge \phi\left(x, \bar{y}^{2}, \bar{r}^{2}\right)\right] \vee\left[\phi\left(x, \bar{y}^{3}, \bar{r}^{3}\right] \wedge \phi\left(x, \bar{y}^{4}, \bar{r}^{4}\right)\right]$.
Then as the \tilde{a}_{i}^{*} range over B, and the \bar{R}_{i}^{*} range over $R_{\psi}(B), \theta\left(B, \tilde{a}^{*}, \bar{R}^{*}\right)$ ranges over the subsets of B.

Definition 3.
A) The sequences \bar{a}^{1}, \vec{a}^{2} are similar over B if $\bar{a}^{i}=\left\langle\cdots, \bar{a}_{j}^{i}, \cdots\right\rangle_{j<k}$ and (i) $a_{j}^{1}=a_{l}^{1}$ iff $a_{j}^{2}=a_{l}^{2}$; (ii) for $b \in B, a_{j}^{1}=b$ iff $a_{j}^{2}=b$.
B) The sequences \bar{a}^{1}, \bar{a}^{2} are similar over \bar{b} iff they are similar over $\left\{\cdots, \bar{b}_{i}, \cdots\right\}$.

Claim 4B. If Q_{M} is not interpretable by Q_{ψ} then for every formula $\phi(\bar{x}, \bar{y}, \bar{r})$ there is a formula $\theta(z, \bar{y}, \bar{r})$ and $n<\omega$ such that for any $A, \bar{b} \in A, \bar{R} \in R_{\psi}(A)$
(i) $A \neq\left(\exists \exists^{\leqq n} z\right) \theta(z, \bar{b}, \bar{R})$ that is $|\theta(A, \bar{b}, \bar{R})| \leqq n$
(ii) if \hat{a}^{1}, \hat{a}^{2} are similar over

$$
\left\{\cdots, \bar{b}_{i}, \cdots\right\} \cup \theta(A, \bar{b} \bar{R}) \text { then } A \vDash \phi\left(a^{-1}, \bar{b}, \bar{R}\right) \equiv \phi\left(\bar{a}^{2}, \bar{b}, \bar{R}\right) .
$$

Remark. In the induction step, only the validity of our claim for the previous case is needed.

Proof of Claim 4B. We shall prove it by induction on $l(\bar{x})$.
For $l(\bar{x})=1$ by Claim 4A (and compactness) for some m,

$$
\theta_{m}=\left[\left(\exists \exists^{\leqq m} x\right) \phi(x, \bar{y}, \vec{r}) \rightarrow \phi(z, \bar{y}, \vec{r})\right] \wedge[(\exists \leqq m x) \neg \phi(x, \bar{y}, \vec{r}) \rightarrow \neg \phi(z, \bar{y}, \vec{r})]
$$

satisfies our demands.
Suppose we have proved it for $l(\bar{x}) \leqq l$, and we shall prove it for the case $l(\bar{x})=l+1$. Choose any $A, \bar{b} \in A, \quad \bar{R} \in R_{\psi}(A)$ and $\bar{x}=\left\langle x_{1}, \cdots, x_{l+1}\right\rangle, \bar{x}^{1}$ $=\left\langle x_{1}, \cdots, x_{l}\right\rangle, \bar{y}^{1}=\left\langle x_{l+1}, \bar{y}_{1}, \cdots\right\rangle$. For $\phi\left(\bar{x}^{1}, \bar{y}^{1}, \tilde{r}\right)$ we have proved the claim, and let $\theta\left(z, \bar{y}^{1}, \tilde{r}\right), n$ be as mentioned there. Now for any $a \in A$ let $E x(a$ $=\theta(A, a, \bar{b}, \bar{R})-\left\{a, \cdots, \bar{b}_{i}, \cdots\right\}$. Thus $|E x(a)| \leqq n$ always.

Let us show that $\cup_{a \in A} E x(a)$ is finite. If not, define by induction on $i<\omega$, $a_{i} \in A-\left\{a_{j}: j<i\right\}, c_{i}$ such that $\operatorname{Ex}\left(a_{i}\right) \nsubseteq \cup_{j<i} \operatorname{Ex}\left(a_{j}\right)$, and $c_{i} \in \operatorname{Ex}\left(a_{i}\right)-\cup_{j<i}$ $\operatorname{Ex}\left(a_{j}\right)$. By Ramsey's theorem we can assume (by replacing the sequence of a_{i} 's and c_{i} 's by a subsequence) that the truth value of $c_{i} \in \operatorname{Ex}\left(a_{j}\right)$ depends only on whether $i=j, i<j$ or $i>j$. Clearly $c_{i} \in \operatorname{Ex}\left(a_{i}\right)$, and for $j>i, j<\omega, c_{j} \notin \operatorname{Ex}\left(a_{i}\right)$. Since $\left|E x\left(a_{j}\right)\right| \leqq n$, clearly there is an $i<n+2$ such that $c_{i} \notin E x\left(a_{n+2}\right)$. Hence $c_{i} \in \operatorname{Ex}\left(a_{j}\right)$ iff $i=j$. Similarly $c_{i}=c_{j}$ iff $i=j$; and $a_{i} \neq c_{j}$. As the a_{i} 's and c_{i}^{\prime} s are distinct, we can assume that none of them appear in \bar{b}. Let f be a permutation of A which interchanges $c_{3 i+1}$ with $c_{3 i+2}$, and takes the other elements of A to themselves. Let \bar{R}^{*} be the image of \bar{R} by f (so f is an isomorphism from (A, \bar{R}) onto $\left.\left(A, \bar{R}^{*}\right)\right)$. Clearly $A \vDash(\forall x)\left[\theta\left(x, a_{i}, \bar{b}, \bar{R}\right) \equiv\left(x, a_{i}, \bar{b}, \bar{R}^{*}\right)\right]$ iff f takes the set $\theta\left(A, a_{i}\right.$, $\bar{b}, \bar{R})$ onto itself iff i is divisible by three; thus

$$
\chi\left(y, \bar{b}, \bar{R}, \bar{R}^{*}\right)=(\forall x)\left[\theta(x, y, \bar{b}, \bar{R}) \equiv \theta\left(x, y, \bar{b}, \bar{R}^{*}\right)\right]
$$

satisfies the conditions mentioned in Claim 4A, a contradiction. Hence $C=\cup_{a \in A}$ $\operatorname{Ex}(a)$ is finite. Let $C=\left\{c_{1}, \cdots, c_{j}\right\}, \bar{c}=\left\langle c_{1}, \cdots, c_{j}\right\rangle$.

Definition 4. Let us call $\chi(\bar{z})$ complete if it is a conjunction such that for every $i, j, z_{i}=z_{j}$ or $z_{i} \neq z_{j}$ is a conjunct (and all the conjuncts are of this form).

Let $\chi_{i}\left(\bar{x}^{1}, x, \bar{y}, \bar{z}\right) i=1, \cdots, k$ be a list of all complete formulae in the displayed variables. By definition of $E x$ for every i, and $a \in A$

$$
\text { (i) } A \vDash\left(\forall \bar{x}^{1}\right)\left[\chi_{i}\left(\bar{x}^{1}, a, \bar{b}, \bar{c}\right) \rightarrow \phi\left(\bar{x}^{1}, a, \bar{b}, \bar{R}\right)\right]
$$

or
(ii) $A \vDash\left(\forall \bar{x}^{1}\right)\left[\chi_{1}\left(\bar{x}^{1}, a, \bar{b}, \bar{c}\right) \rightarrow \neg \phi\left(\bar{x}^{1}, a, \bar{b}, \bar{R}\right)\right]$.

For each a let $I(a)$ be the set of i 's for which (i) holds.
By Claim 4A, except for finitely many a 's, all $I(a)$ are equal (to I). Let C^{1} be the set of exceptional a 's. It is easy to check that:
$\left(^{*}\right)$ if \bar{a}^{1}, \bar{a}^{2} are similar over $C^{2}=\left\{\cdots, \bar{b}_{i}, \cdots\right\} \cup C \cup C^{1}$, then $A \vDash \phi\left[\bar{a}^{1}, \bar{b}, \bar{R}\right]$ $\equiv \phi\left[\bar{a}^{2}, \bar{b}, \bar{R}\right] ; C^{2}$ is finite.
Without loss of generality we cannot replace C^{2} by a set of smallest cardinality satisfying $\left({ }^{*}\right)$. Let $n_{1}=\left|C^{2}\right|$, and let $\theta_{1}=\theta_{1}(z, \bar{y}, \bar{r})$ say that there are $z_{2}, \cdots, z_{n_{1}}$, such that if \bar{x}^{1}, \bar{x}^{2} are similar over $\left\{z, z_{2}, \cdots, z_{n_{1}}, \cdots, \bar{y}_{i}, \cdots\right\}$, then $\phi\left(\bar{x}^{1}, \bar{y}, \bar{r}\right)$ $\equiv \phi\left(\bar{x}^{2}, \bar{y}, \bar{r}\right)$.

Subclaim 4C. $\quad \theta_{1}(A, \bar{b}, \bar{R})$ is finite.
Proof of Subclaim 4C. If not, there are distinct $C_{i}^{2}, i<\omega$ satisfying (*), $\left|C_{i}^{2}\right|=n_{1}$.

Now w.l.o.g. there is a $C^{*},\left|C^{*}\right|<n_{1}$, such that for any $i<j<\omega, C_{i}^{2} \cap C_{j}^{2}=C^{*}$; this follows by Erdös and Rado [2], but we can also prove it directly. Let $C_{i}^{2}=\left\{c_{i, 1}^{2}, \cdots, c_{i, n_{1}}^{2}\right\}$, and by Ramsey's theorem [9] there is an infinite $I \subseteq \omega$, such that for $1 \leqq l, k \leqq n_{1}, i<j \in I$, the truth value of $c_{i, l}^{2}=c_{j, k}^{2}$ does not depend on the particular i, j. Without loss of generality $I=\omega$. Let

$$
C^{*}=\left\{c_{0, k}^{2}: c_{0, k}^{2}=c_{1, k}^{2}, \quad 1 \leqq k \leqq n_{1}\right\} .
$$

By definition of $I, C^{*} \subseteq C_{i}^{2}$ for every i. As $C_{0}^{2} \neq C_{1}^{2},\left|C^{*}\right|<n_{1}$. Let $i<j<\omega$. Then clearly $C^{*} \subseteq C_{i}^{2} \cap C_{j}^{2}$; if equality does not hold let $c \in C_{i}^{2} \cap C_{i}^{2}-C^{*}$. Thus $c=c_{i, k}^{2}=c_{j, l}^{2}$; since $i<j$, this implies $c_{0, k}^{2}=c_{2, l}^{2}, c_{1, k}^{2}=c_{2, l}^{2}, c_{0, k}^{2}=c_{j, l}^{2}$. Hence $c_{0, k}^{2}=c_{1, k}^{2}=c_{j, l}^{2}=c, c_{0, k}^{2} \in C^{*}$, and $c \in C^{*}$, a contradiction. So it is proved that w.l.o.g. there is such a C^{*}, but if \bar{a}^{1}, \bar{a}^{2} are similar over C^{*} then they are similar over all C_{i}^{2} except finitely many, and this contradicts the definition of n_{1}. Thus Subclaim 4C is proved.

Continuation of the Proof of Claim 4B. Let $\left|\theta_{1}(A, \bar{b}, \bar{R})\right|=n_{2}$.
So $\theta_{1}(z, \bar{y}, \tilde{r}), n_{2}$ satisfy the demands in Claim 4B except that they depend on A, \bar{b}, \bar{R}. By the compactness theorem there are $\theta^{i}(z, \bar{y}, \bar{r}), n^{i} i=1, \cdots, k(<\omega)$ such that for any $A, \bar{b} \in A, \bar{R} \in R_{\psi}(A)$ there is an i such that θ^{i}, n^{i} satisfy the demands of the claim. Let $\theta^{*}=\theta^{*}(z, \bar{y}, \tilde{r})=\mathrm{v}_{i}\left[\left(\exists \exists^{\leq n^{i}} u\right) \theta^{i}(u, \bar{y}, \bar{r}) \wedge \theta^{i}(z, \bar{y}, \tilde{r})\right]$. Clearly this is the right one, so Claim 4B is proved.

Proof of Lemma 4. Assume Q_{M} is not interpretable by Q_{ψ}. Use Claim 4B for $\phi(\bar{x}, r)=r(\bar{x})$, and let θ, n be the θ, n whose existence is proved there. Let $\chi_{i}(\bar{x}, \bar{z})(l(\bar{z})=n) i=1, \cdots, k$ be the complete formulae mentioned in the proof of Claim 4B. Let $I_{1}, \cdots, I_{2^{k}}$ be the subsets of $\{1, \cdots, k\}$.

Let

$$
\phi^{*}(\bar{x}, \bar{y}, \bar{z})=\bigwedge_{j} \quad\left[y_{2 j}=y_{2 j+1} \rightarrow \bigvee_{i \in I j} \chi_{i}(\bar{x}, \bar{z})\right] .
$$

For an infinite A, for every $\bar{R} \in R_{\psi}(A)$ let $\left\{c_{1}, \cdots, c_{n}\right) \supseteq \theta(A, \bar{R})$.
Let $I=\left\{i:(\exists \bar{x})\left[\chi_{\mathrm{i}}(\bar{x}, \bar{c}) \wedge r(\bar{x})\right]\right\}, j$ be such that $I=I_{j}$. Define \bar{b} such that $\bar{b}_{2 p}=\bar{b}_{2 p+1}$ iff $p=j$. Then

$$
A \neq \phi^{*}(\bar{x}, \bar{b}, \bar{c}) \equiv r(\bar{x}),
$$

a contradiction. Thus Lemma 4 is proved.
Lemma 5. If Q_{ψ} is not interpretable by Q_{M} then Q_{P} is interpretable by Q_{ψ}.

Proof. Clearly Q_{ψ} is a fortiori not interpretable by Q_{I}, hence by Lemma 4, Q_{M} is interpretable by Q_{ψ}.
Claim 5A. Q_{P} is interpretable by Q_{ψ} if there is a formula $\phi(x, y, \bar{z}, \bar{r})$, a set $A, \bar{c} \in A, \bar{R} \in R_{\psi}(A), B \subseteq A$ such that $\phi(x, y, \bar{c}, \bar{R})$ defines on B an equivalence relation with inf.nitely many equivalence classes with $\geqq 2$ elements.

Proof of Claim 5A. The proof is similar to that of Claim 4A. By replacing B by a subset, we may assume that each equivalence class has exactly two elements and that $A-B$ is infinite. Now for every infinite A, by the compactness and the Lowenheim-Skolem theorems, there are $B \subseteq A, \vec{a} \in A, \bar{R} \in R_{\psi}(A)$, such that $|B|=|A-B|=|A|$, and $\phi(x, y, \bar{a}, \bar{R})$ defines on B a relation $\in \mathrm{Eq}_{2}^{*}(B)$. We can easily find $\bar{b} \in A, \bar{S} \in R_{\psi}(A)$ such that $\phi(x, y, \bar{b}, \bar{S})$ defines on $A-B$ an equivalence relation from $\mathrm{Eq}_{2}^{*}(A-B)$. Also there is a formula $\phi^{*}(x, \bar{c}, \bar{T}) \bar{c} \in A, \bar{T} \in R_{\psi}(A)$, which defines B. So

$$
\begin{aligned}
& \theta(x, y, \bar{a}, \bar{b}, \bar{c}, \bar{R}, \bar{S}, \bar{T})=\left[\phi^{*}(x, \bar{c}, \bar{T}) \equiv \phi^{*}(y, \bar{c}, \bar{T})\right] \\
& \quad \wedge\left[\phi^{*}(x, \bar{c}, \bar{T}) \rightarrow \phi(x, y, \bar{a}, \bar{R})\right] \wedge\left[\neg \phi^{*}(x, \bar{c}, \bar{T}) \rightarrow \phi(x, y, \bar{b}, \bar{S})\right]
\end{aligned}
$$

defines a relation from $\mathrm{Eq}_{2}^{*}(A)$.
Clearly for every $e \in \mathrm{Eq}_{2}^{*}(A)$ there are $\bar{a}^{\prime}, \bar{b}^{\prime}, \bar{c}^{\prime} \in A, \bar{R}^{\prime}, \bar{S}^{\prime}, \bar{T}^{\prime} \in R_{\psi}(A)$, such that

$$
A \vDash(\forall x y)[\theta(x, y, \bar{a}, \cdots) \equiv x e y]
$$

Since we can interpret Q_{M} in Q_{ψ}, by a small change in θ we can have the same for $e \in \mathrm{Eq}_{3}(A)$. This proves the claim.

Definition 5. We call $\phi=\phi\left(x_{1}, \cdots, x_{n}, r\right)$ atomic if $\phi=\left[x_{i}=x_{j}\right]$ or ϕ $=r\left(x_{i_{1}}, \cdots x_{i_{n(\psi)}}\right)$.

Definition 6. For every $A, B \subseteq A, R \in R_{\psi}(A)$, define the equivalence relation $e=e(R, B, A)$ over B by bec iff $b, c \in B$, and for every atomic $\phi\left(x_{1}, \cdots, x_{n}\right)$ and $a_{2}, \cdots, a_{n} \in A-B, A \vDash \phi\left[b, a_{2}, \cdots, R\right] \equiv \phi\left[c, a_{2}, \cdots, R\right]$.

Claim 5B. e(R, B, A) is defined by a formula in A (with R and B as parameters).
Proof. Immediate.
Claim 5C. If Q_{F} is not interpretable by Q_{ψ}, then for every $A, B \subseteq A, R \in R_{\psi}(A)$, $e(R, B, A)$ has finitely many equivalence classes.

Proof. Suppose $e(R, B, A)$ has infinitely many equivalence classes. By Claim 5A, only finitely many of them have $\geqq 2$ elements. But if we replace B by a smaller set, $e(R, B, A)$ becomes finer (i.e., the equivalence classes become smaller). Hence
w.l.o.g. each equivalence class of $e(R, B, A)$ has one element, and of course B is infinite.

Let f be a permutation of order two of A, such that $f(a)=a \leftrightarrow a \notin B$. Define

$$
R_{1}=\left\{\left\langle a_{1}, \cdots\right\rangle: a_{1}, \cdots \in A,\left\langle f\left(a_{1}\right), \cdots\right\rangle \in R\right\} .
$$

Let

$$
\begin{aligned}
& e_{1}=\{\langle c, b\rangle: b, c \in B, \text { for every atomic } \phi(x, \bar{y}, r) \text { and } \\
& \text { every } \bar{a} \in(A-B) ; A \vDash \phi[c, \bar{a}, R] \equiv \phi\left[b, \bar{a}, R_{1}\right] \\
& A\left.\vDash \phi[b, \bar{a}, R] \equiv \phi\left[c, \bar{a}, R_{1}\right]\right\} .
\end{aligned}
$$

It is easy to see that $c=f(b), c, b \in B$ implies $\langle c, b\rangle \in e_{1}$. It is easy to check that $\langle c, b\rangle \in e_{1}$ implies $\langle c, f(b)\rangle \in e\left(R_{1}, B, A\right)$ but this implies $c=f(b)$.

Hence $\left[\langle x, y\rangle \in e_{1}\right] \vee x=y$ defines an equivalence relation of $\mathrm{Eq}_{2}^{*}(B)$, and clearly it is definable by a formula. By Claim 5A this leads to a contradiction, hence 5 C is proved.

Claim 5D. If Q_{P} is not interpretable by Q_{ψ}, then there is a formula $\phi(x, y, r)$ such that for every $A, R \in R_{\psi}(A)$.
(i) $\phi(x, y, R)$ defines an equivalence relation with finitely many equivalence classes.
(ii) $A \vDash \phi[a, b, R]$ implies that there is a finite B such that $\langle a, b\rangle \in e(R, B, A)$.

Proof. Define for $A, R \in R_{\psi}(A) n<\omega$ the relation

$$
e_{n}(R, A)=\{\langle c, b\rangle: c, b \in A, \text { there is } B \subseteq A,|B| \leqq n
$$

such that $\langle c, b\rangle \in e(R, B, A)\}$.
Define $\phi_{n}(x, y, r)$ such that $A \vDash \phi_{n}[c, b, R]$ iff $\langle c, b\rangle \in e_{n}(R, A), R \in R_{\psi}(A)$. Note that $\phi_{n+1}(x, y, r) \rightarrow \phi_{n}(x, y, r)$ always.
Clearly $e^{*}(R, A)=\cup_{n<\omega} e_{n}(R, A)$ is an equivalence relation over A. Moreover it has only finitely many equivalence classes. Otherwise choose nonequivalent a_{i} $1 \leqq i<\omega$. By Claim 5C and the compactness theorem, there is $n_{0}<\omega$ such that $e\left(R^{1}, B, A\right)$ always has $\leqq n_{0}$ equivalence classes, for $B \subseteq A, R^{1} \in R_{\psi}(A)$. Let $B=\left\{a_{i}: 1 \leqq i \leqq n_{0}+1\right\}$. Then $e(R, B, A)$ has $n_{0}+1$ equivalence classes (by the choice of the a_{i} 's and the definition of $\left.e^{*}\right)$. We prove in fact that $e^{*}(R, A)$ has $\leqq n_{0}$ equivalence classes for any $R \in R_{\psi}(A)$. Hence in

$$
\Gamma=\{\psi(r)\} \cup\left\{\neg \phi_{n}\left(x_{i}, x_{j}, r\right): n<\omega, 1 \leqq i<j \leqq n_{0}+1\right\}
$$

there is a contradiction.

Thus for some $n_{1}<\omega$ there is a contradiction in

$$
\{\psi(r)\} \cup\left\{\neg \phi_{n}\left(x_{i}, x_{j}, r\right): n<n_{1}, 1 \leqq i<j \leqq n_{0}+1\right\} .
$$

The closure of $\phi_{n_{1}}(x, y, r)$ to an equivalence relation is

$$
\phi(x, y, r)={ }^{\mathrm{df}}\left(\exists z_{1}, \cdots, z_{m}\right)\left[\bigwedge_{\cdot=1}^{m} \phi_{n_{1}}\left(z_{i}, z_{i+1}, r\right) \wedge z_{0}=x \wedge z_{m}=y\right]
$$

where $m=3 n_{0}$ is sufficient. This is because for every $A, R \in R_{\psi}(A)$ there is a maximal set $\left\{a_{i}: 1 \leqq i<i_{0}\right\}$ such that $i<j<i_{0}$ implies $A \vDash \neg \phi_{n_{1}}\left(a_{t}, a_{j}, R\right)$; hence $i_{0} \leqq n_{0}$ by the definition of n_{1}. By the maximality of the set, for every $a \in A$ for at least one i $A \vDash \phi_{n_{1}}\left(a, a_{i}, R\right)$. Now if b, c are equivalent in the closure of $e_{n_{1}}(R, A)$ then there are $d_{1}, \cdots, d_{m}, d_{1}=b, d_{m}=c$ and $\left\langle d_{i}, d_{i+1}\right\rangle \in e_{n_{1}}(R, A)$. Choose such d_{i} 's with minimal m; we should show $m \leqq 3 n_{0}$. For this it suffices to prove there are no four d_{i} from one $\phi_{n_{1}}\left(A, a_{i}, R\right)$. Let $1 \leqq i_{1}<i_{2}<i_{3}<i_{4} \leqq m$, $d_{i_{1}}, \cdots, d_{i 4} \in \phi_{n_{1}}\left(A, a_{j}, R\right)$. Then $\left\langle d_{i_{1}}, a_{j}\right\rangle,\left\langle a_{j}, d_{i_{4}}\right\rangle \in e_{n_{1}}(R, A)$, hence also $d_{1}, \cdots, d_{i_{1}}$, $\bar{a}_{j}, d_{i_{4}} \cdots, d_{m}$ is a suitable sequence, and it has smaller length, a contradiction. \cdot

Since $e^{*}(R, A)$ is an equivalence relation, it refines the closure of $e_{n_{1}}(R, A)$. Hence $R \in R_{\psi}(A), A \vDash \phi[b, c, R]$ implies that there is a finite $B \subseteq A$ such that $\langle b, c\rangle \in e(R, B, A)$.

Claim 5E. In Claim 5D we conclude also that there are $\theta(z, x, y, r), n_{2}<\omega$ such that for any $A, R \in R_{\psi}(A), b, c \in A$,
(i) $A \vDash(\forall x y)\left(\exists \leqq n_{2} z\right) \theta(z, x, y, R)$
(ii) $A \vDash(\forall x y z)[\theta(z, x, y, R) \rightarrow z \neq x \wedge z \neq y]$
(iii) $A \vDash \phi[b, c, R]$ implies $\langle b, c\rangle \in e(R, B, A)$ where $B=\theta(A, b, c, R) \cup\{b, c\}$
(iv) $A \vDash \neg \phi(b, c, R]$ implies $A \vDash(\forall z) \neg \theta(z, b, c, R)$.

Proof. By the compactness theorem and Claim 5D, there is an $n_{3}<\omega$ such that $R \in R_{\psi}(A), A \vDash \phi[b, c, R]$ implies $\langle b, c\rangle \in e_{n_{3}}(R, A)$.

Let $\theta(z, x, y, r)$ say " $\phi(x, y, r), z \neq x, z \neq y$ and for some $n \leqq n_{3}$ there are no z_{1}, \cdots, z_{n-1} such that $\langle x, y\rangle \in e\left(r,\left\{x, y, z_{1}, \cdots, z_{n-1}\right\}\right)$, but there are z_{1}, \cdots, z_{n} such that $\langle x, y\rangle \in e\left(r,\left\{x, y, z_{1}, \cdots, z_{n}\right\}\right.$, and $z=z_{1}$ '". As in the proof of Claim 4C for all $R \in R_{\psi}(A), b, c \in A, \theta(A, b, c, R)$ is finite, and so clearly the claim holds.

Claim 5F. In the conclusion of Claim 5E we can add
(v) there is $n_{4}<\omega$ such that for $R \in R_{\psi}(A)$

$$
A \vDash\left(\exists \exists^{n_{4}} z\right)(\exists x y) \theta(z, x, y, R) .
$$

For this it suffices to prove Claim 5G (by applying Claim 5G twice we get Claim 5F).

Claim 5G. If Q_{P} is not interpretable by Q_{ψ}, and for any $R \in R_{\psi}(A), A \vDash(\forall \bar{x})$ $(\forall y)\left(\exists^{\leqq m_{1}} z\right) \theta(z, y, \bar{x}, R)$ and $\theta(z, y, \bar{x}, r) \rightarrow z \neq y$, then for some $m_{2}<\omega$, for every $R \in R_{\psi}(A)$

$$
A \vDash(\forall \bar{x})\left(\exists \leq m_{2} z\right)(\exists y) \theta(z, y, \bar{x}, R)
$$

Proof. If not, by the compactness theorem, there are $A, R \in R_{\psi}(A), \bar{a} \in A$ such that

$$
\begin{equation*}
A \vDash(\forall y)(\exists \leqq m ' z) \theta(z, y, \bar{a}, R) \tag{1}
\end{equation*}
$$

(2) for every finite $B \subseteq A$ there are $b \in A, c \in A-B, A \vDash \theta(c, b, \tilde{a}, R)$.

Define by induction on $n, b_{n} \in A, c_{n} \in A-\left\{c_{i}: i<n\right\}$ such that $A \vDash \theta\left[c_{n}, b_{n}, \vec{a}, R\right]$.
By Ramsey's theorem [9] we can assume that the truth value of $A \vDash \theta\left[c_{m}\right.$, $\left.b_{n}, \tilde{a}, R\right], b_{n}=c_{m}$ depends only on whether $m=n, m<n$ or $m>n$. Since, $A \vDash\left(\exists \leqq m_{1} z\right) \theta\left(z, b_{n}, \bar{a}, \bar{R}\right)$ clearly $A \vDash \theta\left[c_{m}, b_{n}, \bar{a}, R\right]$ if. $m=n$ (reccal that the c_{n} 's are distinct); therefore, b_{n} 's are distinct. Also $b_{n} \neq c_{m}$ because (1) if $n=m$, this holds by the assumption on θ, (2) if $n<m$, then $c_{1}=b_{0}=c_{2}$, a contradiction, and (3) if $n>m, c_{1}=b_{3}=c_{2}$, a contradiction.

Also w.l.o.g. $b_{n} \neq \bar{a}_{i}, c_{n} \neq \bar{a}_{i}, \quad \vDash \neg \theta\left[c_{n}, c_{m}, \bar{a}, R\right] \wedge \neg \theta\left(b_{n}, b_{m}, \bar{a}, R\right]$ for $n \neq m$ (otherwise omit finitely many $\left\langle c_{i}, b_{i}\right\rangle ' s$). Let

$$
B=\left\{b_{n}: n<\omega\right\} \cup\left\{c_{n}: n<\omega\right\} .
$$

Now the formula $y=z \vee \theta(z, y, \bar{a}, R) \vee \theta(y, z, \bar{a}, R]$ defines on B a relation of $\mathrm{Eq}_{2}^{*}(B)$, a contradiction. Thus Claim 5G, and hence Claim 5F are proved.

Claim 5H. If Q_{P} is not interpretable by Q_{ψ}, then for every $A, R \in R_{\psi}(A)$, $e^{+}(R, A)=\{\langle a, b\rangle: a, b \in A$, the permutation $f(f(a)=b, f(b)=a, f(c)=c$ for $c \neq a, b)$ is an automorphism of $(A, R)\}$ is an equivalence relation with finitely many equivalence classes.

Proof. Define by induction on $n, 1 \leqq n<\omega$, formulae

$$
\phi_{n}(x, y, r), \theta_{n}(z, r) \text { such that }
$$

1) for any $R \in R_{\psi}(A), \phi_{n}(x, y, R)$ is an equivalence relation with $<k_{1}(n)<\omega$ equivalence classes
2) for any $R \in R_{\psi}(A),\left|\theta_{n}(A, R)\right| \leqq k_{2}(n)<\omega$
3) for any $R \in R_{\psi}(A), a, b \in A, A \vDash \phi_{n}[a, b, R]$ implies $\langle a, b\rangle \in e\left(R,\left(B_{n}-B_{n-1}\right)\right.$ $\cup\{a, b\}, A)$
4) for any $1 \leqq n \leqq m<\omega, \theta_{n}(A, R) \subseteq \theta_{m}(A, R)$ where $B_{0}=\varnothing, B_{n}=\theta_{n}(A, R)$.

For $n=1$ the existence of ϕ_{1}, θ_{1} follows from Claims $5 \mathrm{D}, 5 \mathrm{E}$, and 5 F and the compactness theorem. (Take $\phi_{1}=\phi, \theta_{1}=(\exists x y) \theta(z, x, y, r)$.)

Suppose $\phi_{n} \theta_{n}$ are defined. Let $c_{1}, \cdots, c_{k}\left[k=\sum_{l=1}^{n} k_{2}(l)\right]$ be individual constants, and replace $\psi(r)$ by

$$
\psi(r) \wedge(\forall z)\left[\bigvee_{\iota=1}^{n} \quad \theta_{l}(z, r) \equiv \bigvee_{i=1}^{k} z=c_{i}\right]
$$

Now repeat the proof of Claims 5D, E and F (the change from r to r and c 's is technical; just add more atomic formulae). Hence we get $\phi_{n+1} \theta_{n+1}$ as we got $\phi_{1} \theta_{1}$. Clearly (1), (2) and (3) hold.

Now for any $R \in R_{\psi}(A)$ define

$$
e^{\prime}=\left\{\langle a, b\rangle:(\forall n<\omega) A \vDash \phi_{n}[a, b, R]\right\} .
$$

Clearly e^{\prime} is an equivalence relation with $\leqq 2^{\aleph_{0}}$ equivalence classes.
It is also clear that $e^{+}(R, A)$ is an equivalence relation. We shall now show that if $a e^{\prime} b, a, b \notin \cup_{n} B_{n}$ and their e^{\prime}-equivalence class is infinite, then $a e^{+}(R, A) b$.

This implies that $e^{+}(R, A)$ has $\leqq 2^{N_{0}}$ equivalence classes, hence by the compactness theorem this is sufficient. For proving that the permutation interchanging a, b is an automorphism, it suffices to prove that if $\phi\left(x, y, z_{1}, \cdots, z_{m} ; r\right)$ is atomic, $c_{1}, \cdots, c_{m} \in A-\{a, b\}$, $\vDash \phi\left(a, b, c_{1}, \cdots, c_{m}, r\right) \equiv \phi\left(b, a, c_{1}, \cdots, c_{m}\right)$. We can choose n such that $\left(B_{n+1}-B_{n}\right) \cap\left\{c_{1}, \cdots, c_{m}, a, b\right\}=\varnothing$ and a_{1} such that $a_{1} e^{\prime} a, a_{1} \notin B_{n+1}$ $\cup\left\{c_{1}, \cdots, c_{m}, a, b\right\}$. By (3)
$\vDash \phi\left[a, b, c_{1}, \cdots, c_{m}, r\right] \equiv \phi\left[a_{1}, b, c_{1}, \cdots, c_{m}, r\right]$,
$\vDash \phi\left[a_{1}, b, c_{1}, \cdots, c_{m}, r\right] \equiv \phi\left[a_{1}, a, c_{1}, \cdots, c_{m}, r\right]$ and also
$\vDash \phi\left[a_{1}, a, c_{1}, \cdots, c_{m}, r\right] \equiv \phi\left[b, a, c_{1}, \cdots, c_{m}, r\right]$. Combining we get the result.
Proof of Lemma 5. From Claim 5H and the compactness theorew, it follows that if Q_{p} is not interpretable by Q_{ψ} then there is some $n_{5}<\omega$ such that for any $A, R \in R_{\psi}(A), e^{+}(R, A)$ has $\leqq n_{5}$ equivalence classes. Let us show that this implies that Q_{ψ} is interpretable by Q_{M}. This implies that for every $A, R \in R_{\psi}(A)$, there are sets $B_{1}, \cdots, B_{n_{5}}$ (the $e^{+}(R, A)$ equivalence classes) such that the truth value of $R\left[a_{1}, \cdots, a_{n \psi}\right]\left(a_{i} \in A\right)$ depends only on the truth values of $a_{i}=a_{j}, a_{i} \in B_{k}$; hence there is a (quantifier free) formula ϕ such that

$$
A \vDash(\forall \bar{x})\left[R(\bar{x}) \equiv \phi\left(\bar{x}, B_{1}, \cdots, B_{n}\right)\right] .
$$

From the construction, the number of possible ϕ 's is finite, and let them be $\phi_{1}, \cdots, \phi_{n_{6}}$. Let

$$
\phi^{*}=\bigwedge_{i=1}^{\dot{1}}\left[y_{0}=y_{i} \rightarrow \phi_{i}\left(\bar{x}_{1}, X_{1}, \cdots, X_{n_{5}}\right)\right]
$$

(X_{i}-variables over sets).
Hence for every infinite A, and $R \in R_{\psi}(A)$ there are $c_{0}, \cdots, c_{n_{6}}, B_{1}, \cdots, B_{n_{5}}$ such that

$$
A \vDash(\forall \bar{x})\left[R(\bar{x})=\phi^{*}\left(\bar{x}, \bar{c}, B_{1}, \cdots\right)\right] .
$$

Thus the proof of Lemma 5 is complete.
Lemma 6. If Q_{ψ} is not interpretable by Q_{P} then $Q_{I I}$ is interpretable by Q_{ψ}.
Proof. As Q_{ψ} is not interpretable by Q_{P}, it is obviously not interpretable by Q_{M}; hence by Lemma $5, Q_{P}$ is interpretable by Q_{ψ}.

Definition 7.

1) A family of sequences of length n is pseudofinite if there is a finite set such that in every sequence of the family appears an element from the finite set.
2) A family F of sequences of length n from a model (A, \bar{R}) is $\phi(\bar{x}, \bar{y}, \bar{r})$-minimal in $(A, \bar{R})(l(\bar{x})=n)$ if it is not pseudo-finite, but for any $\bar{a} \in A,\{\bar{b} \in F: A \vDash$ $\phi[\bar{b}, \bar{a}, \bar{R}]\}$ is pseudo-finite or $\{\bar{b} \in F: A \vDash \neg \phi(\bar{b}, \bar{a}, \bar{R})\}$ is pseudo finite.
3) $\phi(x, \bar{a}, \bar{R})$ is algebraic (in (A, \bar{R})) if $|\phi(A, \bar{a}, \bar{R})|<\aleph_{0}$.
4) $\phi(\bar{x}, \bar{a}, \bar{R})$ is pseudo-algebraic (in (A, \bar{R})) if $\{\bar{b} \in A: A \vDash \phi[\bar{b}, \bar{a}, \bar{R}]\}$ is pseudofinite.
5) $a(\bar{a})$ is (pseudo-) algebraic over B in (A, \bar{R}) if for some (pseudo-)algebraic $\phi(x, \bar{b}, \bar{R})(\phi(\bar{x}, \bar{b}, \bar{R})), A \vDash \phi[a, \bar{b}, \bar{R}](A \vDash \phi[\bar{a}, \bar{b}, \bar{R}])$ and $\bar{b} \in B$.
6) The type of \bar{b} over B in (A, \bar{R}) is $\{\phi(\bar{x}, \bar{c}, \bar{R}): \bar{c} \in B, A \vDash \phi[\bar{b}, \bar{c}, \bar{R}]\}$.

CLAIM 6A. $\quad Q_{I I}$ is interpretable by Q_{ψ} if there are $\phi(\bar{x}, \bar{y}, \bar{z}, \bar{r})[l(\bar{x})=l(\bar{y})=n]$, $A, \bar{R} \in R_{\psi}(A), \bar{c} \in A, B \subseteq A$ such that $\phi(\bar{x}, \bar{y}, \bar{c}, \bar{R})$ defines over ${ }^{n} B=\{\bar{b}: \bar{b} \in B$, $l(\bar{b})=n\}$ an equivalence relation, with infinitely many non-pseudo-finite equivalence classes.

Proof. For $n=1$, we can show as in Claim 4A, Claim 5A that we can interpret the quantifier over equivalence relations. By Rabin [8], it then follows that we can interpret $Q_{I I}$.

Now we shall reduce the case $n>1$ to $n=1$, using the interpretability of Q_{P} by Q_{ψ}.

Choose by induction on $\max \{i, j\}$ sequences $\bar{a}^{i j} i_{i, j}<\omega$ such that

1) $a^{i, j} \in B$
2) $A \vDash \phi\left[\bar{a}^{i, j}, \bar{a}^{l, k}, \bar{c}, \bar{R}\right]$ iff $i=l$
3) for $\langle i, j\rangle \neq\langle l, k\rangle, \bar{a}^{i, j}, \bar{a}^{l, k}$ are disjoint, and $\bar{a}^{i, j}, \bar{c}$ are disjoint.

For $m=1, n$, define f_{m} as the permutation of A (of order two) interchanging $\bar{a}_{1}^{i, j}$ with $\bar{a}_{m}^{i, j}$ for $i, j<\omega$, and taking any other $b \in A$ to itself.

Let $B^{*}=\left\{\bar{a}_{1}^{i j}: i, j<\omega\right\}$.
Now the formula

$$
\phi^{*}\left(x, y, \bar{z}, \bar{R}, f_{1}, \cdots, f_{n}\right)=\phi\left(f_{1}(x), f_{2}(x), \cdots, f_{n}(x), f_{1}(y), f_{2}(y), \cdots, f_{n}(y), \bar{c}, \bar{R}\right)
$$

defines on B^{*} an equivalence relation with infinitely many infinite equivalence classes. This proves Claim 6A.

Claim 6B. $\quad Q_{I I}$ is interpretable by Q_{ψ} if there are $\phi(\bar{x}, \bar{y}, r), A, R \in R_{\psi}(A)$ and $\bar{a}^{n} \in A(n<\omega)$, such that for every $n<\omega, \theta_{n}=\wedge_{m<n} \phi\left(\bar{x}, \bar{a}^{m}, R\right) \wedge \neg \phi\left(\bar{x}, \tilde{a}^{n}, R\right)$ is not pseudo-algebraic.

Proof. By the compactness theorem we can assume that each formula θ_{n} is satisfied by $>2^{N_{0}}$ pairwise disjoint sequences. Let

$$
\begin{aligned}
B & =\left\{\bar{a}_{i}^{m}: m<\omega, 1 \leqq i \leqq l\left(\bar{a}^{m}\right)\right\}, e=\{\langle\bar{b}, \bar{c}\rangle: \bar{b}, \bar{c} \in A, l(\bar{b})=l(\bar{c}) \\
& =l(\bar{x}),(\forall \tilde{a} \in B) A \vDash \phi[\bar{b}, \bar{a}, R] \equiv \phi[\bar{c}, \bar{a}, R]\} .
\end{aligned}
$$

Then e is an equivalence relation over ${ }^{l\left(\bar{a}^{m}\right)} A$. The set of sequences which satisfies θ_{n} is splitinto at most $2^{\aleph_{0}}$ equivalence classes (as $|B|=\aleph_{0}$), so at least one of them contains $>2^{s_{0}}$ pairwise disjoint sequences, hence is not pseudo-finite. Clearly for $n \neq m$, a sequence satisfying θ_{n} and a sequence satisfying θ_{m} are not equivalent. Thus we get our result by Claim 6A.

Claim 6C. If $Q_{I I}$ is not interpretable by Q_{ψ} then for every $\phi(\bar{x}, \bar{y}, r)$ there are $m(\phi)<\omega$, and $\chi_{\phi, i}(\bar{x}, \bar{z}, r) i=1, \cdots, m(\phi)$ such that
for any $A, R \in R_{\psi}(A)$ there is $\bar{c} \in A$ which satisfies

1) $A \vDash(\forall \bar{x}) \bigvee_{i=1}^{m(\phi)} \chi_{\phi, i}(\bar{x}, \bar{c}, R)$
2) $A \vDash \neg(\exists \bar{x})\left[\chi_{\phi, i}(\bar{x}, \bar{c}, R) \wedge \chi_{\phi, j}(\bar{x}, \bar{c}, R)\right]$ for $i \neq j$
3) the sets $S_{i}=\left\{\tilde{a}: A \vDash \chi_{\phi, i}[\bar{a}, \bar{c}, R]\right\}$ are $\phi(\bar{x}, \bar{y}, r)$-minimal; moreover for some fixed $m_{1}(\phi)<\omega$, for no S_{i} and no $\bar{b} \in A$, do both $\left\{\bar{a} \in S_{i}: A \vDash \phi[\bar{a}, \bar{b}, R]\right\}$ and
$\left\{\bar{a} \in S_{i}: A \vDash \neg \phi[\bar{a}, \bar{b}, R]\right\}$ contain $m_{1}(\phi)$ pairwise disjoint sequences (we call this property " $\left(\phi, m_{1}(\phi)\right)$-minimality" $)$.

Proof. By Claim 6B and the compactness theorem, there is an $m_{1}(\phi)<\omega$ such that we cannot find $A, R \in R_{\psi}(A)$, sequences $\bar{a}^{n} \in A$ for $n<m_{1}(\phi)$, and a formula $\phi^{*} \in\{\phi(\bar{x}, \bar{y}, r), \neg \phi(\bar{x}, \bar{y}, r)\}$ such that for each $n<m_{1}(\phi), \wedge_{m<n}\left[\phi^{*}\left(\bar{x}, \bar{a}^{m}, R\right)\right.$ $\left.\wedge \neg \phi^{*}\left(\bar{x}, \tilde{a}^{n}, R\right)\right]$ is satisfied by $\geqq m_{1}(\phi)$ pairwise disjoint sequences.

Now let η denote a sequence of ones and zeros. Define by induction on l, sequences $\bar{a}_{\eta} l(\eta) \leqq l$ and formulae $\chi_{\eta}=\chi_{\eta}\left(\bar{x}, \bar{b}_{\eta}, R\right)$.

For $l=0, \eta$ the empty sequence, $\chi_{\eta}=(\forall x)(x=x)$.
Suppose we have made the definitions for l; let us do so for $l+1$. Let $l(\eta)=l$. If there is an $\bar{a}_{\eta} \in A$ such that both $\chi_{\eta}\left(\bar{x}, \bar{b}_{\eta} R\right) \wedge \phi\left(\bar{x}, \bar{a}_{\eta}, R\right), \chi_{\eta}\left(\bar{x}, \bar{b}_{\eta}, R\right) \wedge \neg \phi\left(\bar{x}, \tilde{a}_{\eta}, R\right)$ are satisfied by $\geqq m_{1}(\phi)$ pairwise disjoint sequences, then choose such \bar{a}_{η}; otherwise choose \bar{a}_{η} arbitrarily.

Then if $l(\eta)=l+1$, define $\chi_{\eta}\left(\bar{x}, \bar{b}_{\eta}, R\right)$ as follows: $\eta=\langle i(1), \cdots, i(l+1)\rangle$; then if $i(l+1)=0$,

$$
\chi_{\eta}\left(\bar{x}, \bar{b}_{\eta}, R\right)=\chi_{\langle i(1), \ldots, i(l)\rangle}\left(\bar{x}, \bar{b}_{\langle i(1), \ldots, i(l)\rangle}, R\right) \wedge \phi\left(\bar{x}, \bar{a}_{\langle i(1), \ldots, i(l)\rangle}, R\right)
$$

and if $i(l+1)=1$, it is the same with $\neg \phi$ instead of ϕ.
By the definition of $m_{1}(\phi)$, if, e.g., $l(\eta)=2 m_{1}(\phi)+2$, then $\chi_{\eta}\left(\bar{x}, \bar{b}_{\eta}, R\right)$ is $\left(\phi, m_{1}(\phi)\right)$-minimal. Clearly the $\chi_{\eta}\left(\bar{x}, \bar{b}_{\eta}, R\right), l(\eta)=2 m_{1}(\phi)+2$ form a partition; and the choice of $\chi_{\eta}(\bar{x}, z, r)$ does not depend on the particular model. Thus Claim 6 C is proved.

Claim 6D. Suppose $Q_{I I}$ is not interpretable by Q_{ψ}. If A is an infinite $R \in R_{\psi}(A), B \subseteq A, \bar{a}, \vec{b} \in A$, and \bar{a} is pseudo-algebraic over $B \cup\left\{\cdots,,_{i}, \cdots\right\}$ but not over B, then \bar{b} is pseudo-algebraic over $B \cup\left\{\cdots, \bar{a}_{i}, \cdots\right\}$.

Proof. Suppose the conclusion fails. There are $\bar{c} \in B$, and $\phi(\bar{x}, \bar{y}, \bar{z}, r)$ such that $A \vDash \phi[\bar{a}, \bar{b}, \bar{c}, R]$, and $\phi(\bar{x}, \bar{b}, \bar{c}, R)$ is pseudo-algebraic. Say there do not exist m pairwise disjoint sequences in $\phi[A, \bar{b}, \bar{c}, R]$. Let $\theta(\bar{x}, \bar{y}, \bar{z}, R)$ say that $\phi(\bar{x}, \bar{y}, \bar{z}, R)$ and there do not exist m pairwise disjoint sequences in $\phi(A, \bar{y}, \bar{z}, R)$. Since A $F \theta[\bar{a}, \bar{b}, \bar{c}, R], \theta[\bar{a}, \bar{y}, \bar{c}, R]$ is not pseudo-algebraic. For each $n<\omega$, let $\chi_{n}(\bar{x}, \bar{z}, R)$ say that there are n disjoint sequences \bar{d} such that $\theta(\bar{x}, \bar{d}, \bar{z}, R)$ is satisfied. Thus $A \vDash \chi_{n}[\bar{a}, \bar{c}, R]$ for all n, and hence $\chi_{n}(\bar{x}, \bar{c}, R)$ is not pseudo-algebraic.

Now, by the compactness theorem, we can assume that there are $\bar{a}^{i}, \bar{b}^{i, j} \in A$ for $i, j<\omega$ such that

$$
A \vDash \theta\left[\bar{a}^{i}, \tilde{b}^{i, j}, \bar{c}, R\right] \text { for all } i, j
$$

and $\tilde{a}^{k}, \bar{a}^{l}$ (likewise $\bar{b}^{i, k}, \bar{b}^{i, l}$) are disjoint for $k \neq l$. By rejecting some $\bar{b}^{i, j}$, we can assume that $\bar{b}^{i, j}, \bar{b}^{k, l}$ are disjoint unless $\langle i, j\rangle=\langle k, l\rangle$, and also that

$$
A \vDash \theta\left[\bar{a}^{i}, \bar{b}^{j \cdot k}, \bar{c}, R\right] \equiv \theta\left[\bar{a}^{i}, \bar{b}^{j, l}, \bar{c}, R\right]
$$

when $i \leqq j$. Further, by Ramsey's theorem, we arrange that the truth value of $\theta\left[\bar{a}^{i}, \bar{b}^{j \cdot k}, \bar{c}, R\right]$ for $i<j$ is independent of i, j.

Now since there are no m pairwise disjoint sequences in $\theta\left[A, \bar{b}^{m, 0}, \bar{c}, R\right]$, it follows that for all i, j, k, with $i \leqq j, A \vDash \theta\left[\bar{a}^{i}, \bar{b}^{j, k}, \bar{c}, R\right]$ if and only if $i=j$. Thus we get a contradiction as in Claim 6B.

Claim 6E. If $\bar{a}=\left\langle\bar{a}_{1}, \cdots, \bar{a}_{n}\right\rangle$ is pseudo-algebraic over $B \subseteq A$ in (A, R), then some a_{i} is algebraic over B in (A, R).

Proof. Since \bar{a} is pseudo-algebraic over B, there is a pseudo-algebraic $\phi(\bar{x}, \bar{b}, R)$ $(\bar{b} \in B), A \vDash \phi[\bar{a}, \bar{b}, R]$. Hence there is a finite set $C=\left\{c_{1}, \cdots, c_{n}\right\}$ such that for any $\tilde{a}^{1} \in A, A \vDash \phi\left[\tilde{a}^{1}, \bar{b}, R\right]$ implies $\left\{\bar{a}_{1}^{1}, \cdots\right\}$ and C are not disjoint. Without loss of generality n is minimal. Let

$$
\begin{aligned}
& \theta^{1}\left(z_{1}, \cdots, z_{n}, \bar{y}, r\right)=(\forall \bar{x})\left[\phi(\bar{x}, \bar{y}, r) \rightarrow \bigvee_{i, j} \bar{x}_{i}=z_{j}\right] \\
& \theta^{2}(z, \bar{y}, r)=\left(\exists z_{2}, \cdots, z_{n}\right) \theta^{1}\left(z, z_{2}, \cdots, z_{n}, r\right)
\end{aligned}
$$

Clearly for some $i, A \neq \theta^{2}\left[\bar{a}_{i}, \bar{b}, R\right]$. As in Claim 4C we can show that $\theta^{2}(z, \bar{b}, R)$ is algebraic.

Claim 6F. Assume $Q_{I I}$ is not interpretable by Q_{ψ}. Let $R \in R_{\psi}(A)$, and for every formula ϕ, let $\chi_{\phi, i} i=1, \cdots, m(\phi), \bar{c}^{\phi}$ be as in Claim 6C. Let $C=\left\{\bar{c}_{i}^{\phi}: \phi, i\right\} \cup$ \{elements algebraic over some \bar{c}^{-b} \}.
If $\bar{a}, \bar{b} \in A, l(\bar{a})=l(\bar{b})=n$ and if the following conditions are met:

1) if $\bar{a}_{i_{2}}, \cdots, \bar{a}_{i_{1}}$ are algebraic over $C \cup\left\{\bar{a}_{i_{1}}\right\}$, then $\left\langle\bar{a}_{i_{1}}, \cdots, \bar{a}_{i_{1}}\right\rangle,\left\langle\bar{b}_{i_{1}}, \cdots, \bar{b}_{i_{1}}\right\rangle$ realize the same type over C in (A, R),
2) as in (1), interchanging \bar{a}, \vec{b},
then \vec{a}, \vec{b} realize the same type over C.
Proof. We prove by induction on n.
For $n=1$, (1) for $l=1$ is the conclusion.
Suppose we have proved the claim for n; we shall prove it for $n+1$. Let $\phi=\phi(x, \bar{y}, \bar{z}, r)$ be a formula, $\bar{c} \in C$.

If each \tilde{a}_{i} is algebraic over \tilde{a}_{1} we are finished. By renaming the \vec{a}_{i} 's we can
assume that $\bar{a}_{2}, \cdots, \bar{a}_{l}$ are algebraic over $C \cup\left\{a_{1}\right\}$, but $a_{l+1}, \cdots, \bar{a}_{n+1}$ are not; $l \leqq n$. Let

$$
\begin{aligned}
& \bar{a}^{1}=\left\langle\bar{a}_{1}, \cdots, \bar{a}_{l}\right\rangle, \tilde{a}^{2}=\left\langle\bar{a}_{l+1}, \cdots, \bar{a}_{n+1}\right\rangle, \\
& \bar{b}^{1}=\left\langle\bar{b}_{1}, \cdots, \bar{b}_{l}\right\rangle, \bar{b}^{2}=\left\langle\bar{b}_{l+1}, \cdots, \bar{b}_{n+1}\right\rangle
\end{aligned}
$$

By (1) and (2), $\bar{b}_{2}, \cdots, \bar{b}_{i}$ are algebraic over \bar{b}_{1}, but $b_{i+1}, \cdots, \bar{b}_{n+1}$ are not. By Claim 6E, \bar{a}^{2}, \bar{b}^{2} are not pseudo-algebraic over, respectively, $\bar{a}^{1} \cup C, \bar{b}^{1} \cup C$.

We must prove that for any $\bar{c} \in C, \phi(\bar{x}, \bar{y}, \bar{z}, r), A \vDash \phi\left[\bar{a}^{1}, \tilde{a}^{2}, \bar{c}, R\right] \equiv \phi\left[\bar{b}^{1}\right.$, $\left.\bar{b}^{2}, \bar{c}, R\right]$. By the induction hypothesis, \bar{a}^{i}, \bar{b}^{i} realize the same type over C. Now we apply the definition of \bar{c}^{ψ} for $\psi(\bar{y}, \bar{x}, \bar{z}, R)=\phi(\bar{x}, \bar{y}, \bar{z}, R)$ (see Claim 6C).

By Claim 6C (1) there is an i such that $A \vDash \chi_{\psi, i}\left[\bar{a}^{2}, \bar{c}^{\psi}, R\right]$.
By Claim 6C (2) one of

$$
\begin{aligned}
& \chi_{\psi, i}\left(\bar{y}, \bar{c}^{\psi}, R\right) \wedge \phi\left(\bar{a}^{1}, \bar{y}, \bar{c}, R\right) \\
& \chi_{\psi, i}\left(\bar{y}, \bar{c}^{\psi}, R\right) \wedge \neg \phi\left(\bar{a}^{1}, \bar{y}, \bar{c}, R\right)
\end{aligned}
$$

(w.l.o.g. the second), is not satisfied by $\geqq m_{1}(\psi)$ pairwise disjoint sequences. As \bar{a}^{2} is not pseudo-algebraic over $\bar{a}^{1} \cup C$, clearly

$$
A \vDash \phi\left[\bar{a}^{1}, \bar{a}^{2}, \bar{c}, R\right]
$$

Since \bar{a}^{2} and \vec{b}^{2} have the same type over $C, A \vDash \chi_{\psi \cdot i}\left[\bar{b}^{2}, \bar{c}^{\psi}, R\right]$, and since \bar{a}^{1}, \bar{b}^{1} have the same type over $C, \chi_{\psi, i}\left[\bar{y}, \bar{c}^{\psi}, R\right] \wedge \neg \phi\left(\bar{b}^{1}, \bar{y}, \bar{c}^{\psi}, R\right)$ is not satisfied by $\geqq m_{1}(\psi)$ pairwise disjoint sequences. Hence the above reasoning gives that

$$
A \vDash \phi\left[\bar{b}^{1}, \bar{b}^{2}, \bar{c}, R\right]
$$

which completes the proof.
Claim 6G. Suppose $Q_{I I}$ cannot be interpreted by Q_{ψ}. Then there are $n_{0}, n_{1}<\omega, \phi(x, y, \bar{z}, r), \chi_{i}\left(\bar{x}^{i}, \vec{z}, r\right) i<n_{1} l\left(\bar{x}^{i}\right)=n^{i}$ such that $\left(\exists{ }^{\leqq n} x\right) \phi(x, y, \bar{z}, r)$ and $\phi(x, x, \bar{z}, r)$ and $\left(\exists^{\leqq n_{1}} y\right) \phi(x, y, \bar{z}, r)$ hold and for any $A, R \in R_{\psi}(A)$ there is a $\bar{c} \in A$, such that if $\bar{a}, \bar{b} \in A(l \bar{a})=l(\bar{b})=n(\psi)$ and if the following conditions are met

1) if $\vDash \phi\left[\bar{a}_{i}, \bar{a}_{i_{1}}, \bar{c}, R\right]$ for $l=2, \cdots, k$ and $n^{i}=k$ then $A \vDash \chi_{i}\left[\bar{i}_{i_{1}}, \cdots, \bar{a}_{i_{k}}, \bar{c}, R\right]$ $\equiv \chi_{i}\left[\bar{b}_{i_{1}}, \cdots, \bar{b}_{i_{k}}, \bar{c}, R\right]$,
2) as in (1), interchanging \bar{a} and \bar{b},
then $A \vDash r[\bar{a}] \equiv r[\bar{b}]$.

Proof. It follows from Claim 6D and 6F and the compactness theorem. (Note that in Claim 6F, we can choose any \bar{c}^{ϕ}, as long as it satisfies a first-order condition which expresses (1), (2), and (3) of Claim 6C, when we are interested in the formula $r(\bar{x})$ only. We can have one ϕ because the disjunction of algebraic formulae is algebraic and if a is algebraic over B, then for some $n, \phi, \bar{b} \in B$, $A \vDash\left(\exists^{\leqq n} x\right) \phi(x, \bar{b}, R)$; hence a satisfies $\theta^{1}(x, \bar{b}, R)=\left(\exists^{\leqq n} y\right) \theta(y, \bar{b}, R) \wedge \theta(x, \bar{b}, R)$, and ($\left.\exists^{\leqq n} x\right) \theta^{1}(x, \bar{b}, R)$ holds.)

Proof of Lemma 6. Assume $Q_{I I}$ cannot be interpreted by Q_{ψ}, and we shall interpret Q_{ψ} by Q_{P}. We use the results and notation of Claim 6G.

Call $a, b n$-connected (in $(A, R), R \in R_{\psi}(A), \bar{c}$ as in Claim 6 G if there are $a=c^{0}$, $c^{2}, \cdots, c^{n}=b$ such that $A \vDash \phi\left[c^{i}, c^{i+1}, \bar{c}, R\right] \vee \phi\left[c^{i+1}, c^{i}, \bar{c}, R\right]$ for $1 \leqq i<n$. By the remark above, the number of b 's n-connected to a is $\leqq k(n)<\omega(k(n)$ depends only on ϕ, ψ and n).

Now choose inductively $A_{n} \subseteq A, n \geqq 1$ such that A_{n} is a maximal subset of $A-\cup_{i<n} A_{i}$ with no two 2 -connected elements. For $n \geqq k(2)+2, A_{n}$ is empty, because if $a \in A_{n}$, then by the definition of $A_{i},(i<n)$ there is a $b_{i} \in A_{i}$ such that a, b_{i} are 2 -connected. So $>k(2)$ elements are two-connected to A, a contradiction. Now for any $a \neq b \in A_{n}, \phi(A, a, \bar{c}, R), \phi(A, b, \bar{c}, R)$ are disjoint (because if c is in the intersection, then c, a and c, b are 1 -connected, hence a, b are 2-connected).

Now it is clear how to define r by permutations and sets. By dividing the A_{i} 's according to $|\phi(A, a, \bar{c}, R)|$, we get $A=\cup_{i<m} A_{i}, a \neq b \in A_{i}$ implies $\phi(A, a, \bar{c}, R)$ $\cap \phi(A, b, \bar{c}, R)=\varnothing$, and $|\phi(A, a, \bar{c}, R)|=m(i)$. For each i choose permutations of order two $f_{1}^{i}, \cdots, f_{m(i)}^{i}$ such that

$$
\phi(A, a, \bar{c}, R)=\left\{f_{J}^{i}(a): 1 \leqq j \leqq m(i)\right\}
$$

In view of Claim 6G, we thus represent $R\left[\epsilon R_{\psi}(A)\right]$ by the permutations f_{j}^{i}, the sets A_{i}, and the additional sets

$$
A_{i, k, l_{1} \cdots}=\left\{a \in A_{i}: A \vDash \chi_{k}\left[f_{l_{1}}^{i}(a), \cdots, R\right]\right\} .
$$

In fact there are only finitely many such possible representations, so by adding a sequence of elements, we can encode, by equalities, the proper case.

References

1. Bell, J. L. and A. B. Slomson, Modsls and Ultraproducts, North Holland, 1969.
2. P. Erdös and R. Rado, Intersection theorems for systems of sets, J. London Math. Soc. 44 (1969), 467-479.
3. Ju. L. Ershov, Undecidability of theories of symmetric and simple finite groups, Dokl. Akad. Nauk SSSR 158, (1964) 777-779.
4. Ju. L. Ershov. New examples of undecidability of theories, Algebra i Logika 5 (1966), 37-47.
5. R. McKenzie, On elementary types of symmetric groups, Algebra Universalis 1 (1971), 13-20.
6. M. D. Morley and R. L. Vaught, Homogeneous universal models, Math. Scand. 11 (1962), 37-57.
7. A. G. Pinus, On elementary definability of symmetric group and lattices of equivalences, Algebra Universalis, to appear.
8. M. O. Rabin, A simple method for undecidability proofs, Proc. 1964 Int. Congress for Logic, North Holland, 1965, pp. 58-68.
9. F. D. Ramsey, On a problem of formal logic, Proc. London Math. Soc. 30 (1929), 338-384.
10. S. Shelah, There are just four possible second-order quantifiers and on permutation groups, Notices Amer. Math. Soc. 19 (1972), A-717.
11. S. Shelah, First order theory of permutations groups, Israel J. Math. 14 (1973), 149-162; and Errata to "First order theory of permutations groups", Israel J. Math. 15 (in press).

Institute of Mathematics
The Hebrew University of Jerusalem
Jerusalem, Israel

