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Abstract We consider mainly the following version of set theory: “ZF + DC and for
every A, A%0 is well ordered”, our thesis is that this is a reasonable set theory, e.g. on the
one hand it is much weaker than full choice, and on the other hand much can be said or
at least this is what the present work tries to indicate. In particular, we prove that for a
sequenced = (85:5 € Y), cf(8) large enough compared to ¥, we can prove the pcf the-
orem with minor changes (in particular, using true cofinalities not the pseudo ones). We
then deduce the existence of covering numbers and define and prove existence of a class
of true successor cardinals. Using this we give some diagonalization arguments (more
specifically some black boxes and consequences) on Abelian groups, chosen as a char-
acteristic case. We end by showing that some such consequences hold even in ZF above.
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0 Introduction
0.1 Background and results

Everyone knows that the issue of weakening AC, the axiom of choice issue, is dead,
settled, as naturally the axiom of choice is true, and its weakenings lead to bizarre
universes on which there is not much to be proved, or assuming AC is irrelevant (as
in inner models).

The works on determinacy are not a real exception: it e.g. replace Borel sets and
projective sets by sets in L[R], so have much to say on this inner model, for which
the only choice missing is a well ordering of &(N). In [23] we suggest to consider
several related axioms, the strongest of them being Ax4, assuming ZF + DC of course.
Itis in a sense an anti-thesis to considering IL[R]: it says we can well order (not all the
subsets just) the countable subsets of any ordinal. This was continued in [25,27] and
in Larson—Shelah [8]. We may wonder how to get natural models of ZF + DC + Ax4.
Such a natural model is gotten starting with V = G.C.H. and forcing by the choiceless
version of Easton forcing except for Rg.

While [20] claims to prove that “the theory of pcf with weak choice is non-empty”,
[23] seems to us the true beginning of such set theory, proving (in ZFC 4+ DC 4 Ax4 or
s0): there is a class of successor regular cardinals, and for any set Y, ¥ can, in a suitable
sense, be decomposed to “few” well order sets (see [23, 0.3] and more here in 2.19).

Much attention there was given to trying to get the results from weaker relatives of
Ax4. A major aim of this work is to try to justify:

Thesis 0.1 ZF+DC + Axq4 is areasonable set theory, for which much of combinatorial
set theory can be generalized, but many times in a challenging way and even discover
new phenomena.

In particular we consider diagonalization arguments, including in ZF alone. Returning
to the original issue, i.e. the position that “set theory with weak choice is dead”, which
we had wholeheartedly supported, the paper’s position here is that:

(a) AC is obviously true

(b) general set theory in ZF 4+ DC 4 Ax4 is a worthwhile endeavor

(c) an important reason for not adopting ZF + DC was the lack of something like (b),
hence intellectual honesty urges you to investigate this direction

(d) this is just a way to look at strengthening existence results to existence by nicely
definable sets.

Let us try to explain the results.

We assume ZF + DC. Consider a sequence § = (8;:s € Y) of limit ordinals, when
can we get a cofinal <;-increasing sequence in (I18, <;) for I on ideal on ¥? When
can we get a parallel to the pcf-theorem?
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In [26, §5], [27] we use AC gy (and DC) to deal with true pseudo cofinality, but
here instead we continue [23] assuming Ax4. In [23, 1.8=L6.1] we generalize the pcf-
theorem [i.e. existence of (bq g, fu,g: 0 € pcf(a))] for countable index set Y. What
about large Y, with each §; having cofinality large compared to Y ? Here first we deal
with D an Nj-complete filter in 1.5; this continues the ideas of [23, 1.2=Lr.2]. We
then can! choose (Ag, Je, f: & < &(x)), Je the Ri-complete ideal on Y generated by
{Ar:¢ < ¢}, f cofinal in (H(S [Ag), <1.). Can we waive “R;-complete”? For this in
1.7 we combine the above with a generalization of [23, 1.6=1p.4], i.e. above I; is the
ideal on Y generated by {A;: ¢ < €}. If I; is not ¥j-complete we deal essentially with
all quotients of I, which are ideals on countable sets.

But in Theorem 1.7, what about 15 when s € ¥ = cf(8,) small? With choice
recalling [30], we cannot generalize the pcf theorem,? but here, even if each ds has
countable cofinality this is not necessarily the case. This motivates the definition of
the ideal cf — id 4 (8) noting that in general it may well be that s € ¥ = cf(8;) = Ro
but cf (I18) is large.

In our context, the set “A does not in general have a cardinality, i.e. its power is
not a cardinal, i.e. an N, equivalently the set is not well orderable. But surprisingly,
by Theorem 2.34 in §2.4, relevant covering numbers exist, i.e. cov(X, 63(k), k, o) is
a well defined ® when the cardinality of the sets by which we cover (<83 (k)) is large
enough compared to the ones we cover (<«). This is an additional witness for the
covering number’s naturality. This follows by moreover proving when k = o = Ny,
there is a cofinal subset which is well orderable. In particular here it gives us a way to
circumvent the non-existence of well orders of “X.

In Sects. 2.1, 2.2 we deal with relatives of Sect. 1: pcf system, eub and more. Also
in 2.19 we give an improvement of the result of [23, §1].

Another issue is the “successor of a singular cardinal is regular” in Sect. 2.3. Recall
that the consistency strength of two successive singular cardinal is large, but not for
“a successor cardinal is singular”. So a posteriori (i.e. after [23, §1]) it is natural to
hope that if 1 is singular large enough then ™ is regular. In [23, 2.13=Ls.2] we show
that for many 4 the answer is yes; here we get a stronger conclusion: u™ is a true
successor cardinal; in fact @ < u = |o|N < p suffice; see 2.28(2).

Many proofs rely on diagonalizing so seemingly inherently use strong choice. Still
we succeed to save some, see Sect. 3. As a test problem, we deal with constructing
Abelian groups and with Black Boxes. We also note that [19] applies evenin ZF+ACy,
in 0.19.

A natural question is:

(*) assume cf (1) = Ro, (Vo < p) (| < )
(@ ifu<i< /LNO and X is singular, is AT a true successor? or at least
(b) if # < A < pp(w) and A is singular is AT is regular?

We may try to use ¢ which is only 81-well founded, hence have to use DCy, .

I we temporarily cheat a little, only Ag /I, is defined.

2 still by [21], in ZFC, we can deal with (T, <) if Ay > 6 and a relative of “22(1)/I satisfies the 0-c.c.”
hold.
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Why do we concentrate on (x)? We may try to prove that if ;1 > 280 is singular
then A = ™ is regular improving [23, 2.13=Ls.2], where there are further restrictions
on /t. A natural approach is letting x < u be minimal such that x ™0 > i, so x > 2%,
so as there we can find C; = (Cy:a € Six), Cy C a = sup(Cy) and |Cy| < x.
But what about Six? Assume A = pp(x) so we can find (A,:n < w), each A, is
< x, J ideal on w, tcf(T1A,, <y) = A and f = (fu:a < A) is <y-increasing cofinal
in (ITA,,, <7). Without loss of generality cf (@) > 2% = f,, a <j-eub of flo.

Another approach is to build an AD family .# C [A]™0 which induces a “good”
function cl . ZZ(L) — P (1): where ¢l 7 (u) = U{A € & A N u infinite}, maybe
let <% be induced by f.

Naturally we may ask (and deal with some, as mentioned).

Question 0.2 (1) Can we bound hrtg(Z?(u)) for u singular? (recall Gitik—Koepke [3,
pg-2]).
(2) Can we deduce wlor(* ;) = hrtg(¥ ;) when p is singular large enough? Maybe
see [29, Ld21].
(3) In Sect. 1 we may replace 6 by several 9y, defined by the proof (i.e. 9y is minimal
satisfying some demands involving 6y, . . ., 6;,—1 and the pcf problem); but seemingly
this does not make a serious gain, maybe see on this in [29, 5.2=Le4].
(4) Can we generalize RGCH (see [19], [22, §1]), see 0.19, 2.35.

We thank the referee for checking the paper very carefully discovering many things
which should be mended much above the call of duty.

0.2 Preliminaries

Hypothesis 0.3 (1) We work in ZF 4+ DC.

(2) Usually we assume Ax4 3, see Definition 0.4(5) relying on 0.5(3), 0.4(4), so a
reader may assume it throughout; or even assume Axy, see 0.5(2),(1). Many times we
use weaker relatives so we try to mention the case of Ax4 ; ¢ 5 actually used. So the
case & = 0 = N1 means Ax4,; holds and note Ax4 is stronger than Ax4 y,.

(3) So no such assumption means ZF + DC but still 9 is a fixed cardinal > R.

Definition 0.4 (1) hrtg(A) = Min{«: there is no function from A onto «}.
(2) wlor(A) = Min{a: there is no one-to-one function from @ into Aora =0 A A =
#} so wlor(A) < hrtg(A).

Definition 0.5 (1) Axi means [A]¥0 can be well ordered so A™ is a well defined
cardinal.

(2) Ax4 means Ax} for every cardinality A.

(3) Ax4,5.9.0 means that (A > 9 > 6 > R and): there is a witness .’ which means:

@ 7 < (M7, 9
(b) forevery u; € [A]<? there is us € . such that u; C u»
(¢c) .7 is well-orderable

(d) for notational simplicity: . of minimal cardinality.
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(3A) But we may use an ordinal § instead of A above. So trivially Axi = AX40.80.8
because we can choose .¥ = [A]=N0.

(3B) If Ax4. 5.0 then we let cov(A, 9, 8, 2) be the minimal |.¥| for .# as in 0.5(3);
necessarily it is < wlor([A]<?) which is < hrtg([)»]<a); so if =Ax4, 3 3.9 then it is not
well defined.

(3C) We say (S, <) witness Ax4 . 5.0 When .7 is as in part (3) and <, is a well
ordering of .%.

(4) Let Ax4 3,5 mean Ax4 ; 5 n,; note that even if 9 = Ny, Axy,; 5 is not Ax;t.

(5) Let Ax4 5 mean Axy 5 for every A, so Ax4 j is not the same as Axg.

(6) We may write < 6 instead of 0F, and writing an ordinal « instead of d means
otp(u1) < « in clause (b) of part (3); similarly for the other parameters.

We try to make the paper reasonably self-contained. Still we assume knowledge of
[23, §(0B)], the preliminaries, in particular, recall:

Claim 0.6 (1) For every A, 0 such that Ax4. 5 there is a function ct, moreover one
which is (we may use « instead of 1) definable from (%, <) where (S, <) witness
Ax4..9, see 0.5(3),(3B), even uniformly such that:

@) cl: (L) — 2\
(b) u € cl(u) < A, (but we do not require c€(cl(u)) = cl(u))
() |cl)| < hrtg([u]™ x ), and if Ax4 even < |u|™ foru C A

(d) there is no sequence (u,:n < w) such that u,+1 C u, Q cl(uny)-

(2) We can above replace AXxq.. 5 by: there is a well orderable ., C [A1<9 such that
there is no u € [A]N0 satisfying v € . = o > v Nul.

Proof (1) Recall .7, C [A]<? and u; € [A]=N0 = (Jup € .%)(u; C uy) and <, is a
well ordering of .7, and let (w}:i < otp(-“%, <4)) list & in <,-increasing order; if
Ax4 we can use .7 = [A]N. For v € [A]=N0 leti(v) = i(v, Y%, <4) = min{i: v\w;?
is finite}.

Foru C A let ct(u) = U{w}: for some v € [u]™ we have i = i(v)} Uu U {0}.

So clearly clauses (a), (b) of the conclusion hold.

For clause (c) define F: [u]™ x 9 — A by F(v,a) = the oth member of Wity
when otp(wi*(v)) > «, and 0 otherwise; clearly F is a function from [#]™ x 3 to A and
its range is included in c£(x) and includes cf(u)\u; we like F to be onto cf(u), but
clearly u\Rang(F) is finite, hence this last part can be corrected easily hence c£(u)
has cardinality < hrtg([u]™ x 3) so we are done with clause (c).

Lastly, to prove clause (d), toward contradiction assume u = (u,:n < w) and
Unt+1 C Uy ;(_ cl(uy1) forevery n; by DC or just ACy,, choose @ = (a,:n < w) such
that o, € up\cl(uy4+1). Now letv = {o,:n < w}and i = i(v), so for every n, v\ (v N
uy) is finite hence i(v) = i(v Nu,) and let n be such that v\w; C {ap, ..., @1}, s0
o, € w?‘ C cf(uy+1), contradicting the choice of «,.

(2) Similarly but first for any infinite v C A leti(v) = i(v, %%, <,):= min{i:v N w}
is infinite}. Second, F (v, &) is:
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e the ath member of w,, if @ < otp(wy,,))
o 0 otherwise.

Third, note:

e ifu C Athen u\{F(v,®):v € [u]™ and & < 3} is finite.

[Why? If not, let v be a subset of the difference of cardinality 8y, (exist by our
assumption), hence {F (v, «): ¢ < A} is not disjoint to v, contradiction.]

Fourth, in the end, instead of “let n be such that v\w;‘ C{ag, ..., a,-1}" wechoose
n such that o, € wi*(v) N v; possible as wi*(v) Nv= wi*(v) N {a,:n < w}is infinite and
n<w=iw) =i{ar:k > n}). O

Observation 0.7 (1) For any set Y, if i a cardinal and 6:= hrtg(Y) then hrtg(Y x

w <@+t
(2) In 0.6 we can replace clause (c) by:

() |ct(u)| < max{d*, hrtg([u]™0)}.

Proof (1) Assume F is a function from Y x u onto an ordinal y.

For B < wletvg = {F(y,B):y € Y}, so {vg: B < ) is a well defined sequence
of subsets of the ordinal y with union y, and clearly 8 < u = |vg| < hrtg(Y) = 6.
Really we can use U//S = vg\U {vg:a < B}, in this case clearly (v/’s: B < wu)isa
partition of y. Hence easily |y| = | Uﬂ<ﬂ vgl =| Uﬁ<ﬂ v}’g| < 6 + u, so the desired
result follows.
2)Leto = hrtg([u]RO), if & < 9 then applying part (1), hrtg([u]NO xd) < @+t =
d+ sowearedone. If 0 > 9, then hrtg([u]™0 x 8) < hrtg([u]™ x [1]¥0) and if |u| > Ry

we have |[#]™ x [u]¥0] = |u|™ hence we are done.
Lastly, if =(Ju| > Ro) then (as # C X) necessarily « is finite and so c€(u) = u U {0}
hence |cf(u)| < 9, so having covered all cases we are done. m|

Convention 0.8 (1) Let “there is y satisfying ¥ (y, a), d-uniformly definable (or uni-
formly d-definable) for a € A” means that there is a formula ¢(x, y, z) such that:

o for every u large enough if @ € A and Axy4 , 5 holds and <, well orders some
€ [1]=? as in 0.5(3) then AlY)[@(y. a, <) A Y (y, a)l.

(1A) Note that it follows that there is a definable function A — w4 € card such that
above, 1 > 4 suffice.

(2) Similarly with (9, 6)-uniformly definable when we use Ax4 ;.05 and (u, 9, 6)-
uniformly definable when we fix x.

(3) If the parameter (d) or (d,0) or (u, d, 0) is clear we may omit it. We may not
always remember to state this.

(4) 8 denotes an ordinal, limit one if not said otherwise.
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Definition 0.9 Let D be a filter on a set Y.

(1) For § € YOrd let A = tcf(I18, <p) means that (I8, <p) has true cofinality A,
i.e. A is a regular cardinal and there is a witness that is a <p-increasing sequence
(fuio < A) of members of 18 which is cofinal in (IT8, <p); but sometimes we allow
A to be an ordinal so not unique. [Why helpful? See part (2)].

(2) We say that /\ie,)Li = tcf(I1§;, <p) when 8 € YOrd for i € I and there
is a sequence ((fo’;:o: < Ai)ii € I) such that (fol;:oz < Aj) is as above for A; =
tef (T18;, <p),

but A; may be any ordinal hence is not unique; so /\l- erri = tef (T18,, <p) and
i € I = ) = tcf(I18;, <p) has a different meaning.

(3) Assume f = (fy:a < 8)anda < 8 = f, € YOrd and D is a filter on Y. We say
f e¥Ordisa <p —eub of f when:

@ a<d= fuy<f mod D

(b) if g € YOrd and (Vs € Y)(g(s) < f(s) V g(s) = 0) then (G < 8)(g < fu
mod D).

Definition 0.10 (1) Let Y be the set and let k be an infinite cardinal.

(a) Fil,]( (Y) is the set of k-complete filters on Y, (so Y is defined from D as U{X: X €
D})

(b) Fil%(Y) = {(D1, D2): D1 € Ds are k-complete filterson Y, ( ¢ D, of course)};
in this context Z € D means Z € D>

(c) Fil2(Y, u) = {(D1, D2, h): (D1, Dy) € Fil2(Y) and h: Y — « for some o < 1},
if we omit & we mean p = hrtg([Y]=2° x ) U w, recalling 0.3

(d) Fil}(Y, w) = {(D1, D2, h, Z): (D1, D2, h) € Fil}(Y, 1) and Z € D,}; omitting
L means as above.

(2)Fory € Filt(Y, p)letY = Y=Yy, vy = (D], D), hV, ZY) = (Dy1, Dy, hy, Zy)
= (D1[p], D2[v], h[v], Z[v]); similarly for the others and let DY = D[] be D? +2ZY
recalling D + Z is the filter generated by D U {Z}.

(3) If k = R we may omit it.

We now repeat to a large extent [23,26].

Definition/Claim 0.11 Assume § is a limit ordinal (or zero for some parts), D =
D € Filé1 (Y), f = (fu:@ < §) is a sequence of members® of ¥ Ord, usually <p, -
increasing in YOrd, f is a <p-upper bound of f but there is no such g <p f;
necessarily there is such f (using DC).

(1) [Definition] Let J = J[f, f D]:={A C Y:either A =¥ mod D or A € DT but
there is a <p -upper bound g <pi4 f of f}.

) JIf, f, D] is an Rj-complete ideal on Y disjoint to D.

(3) [Definition] Recalling D1 = D, let Dy = Dy(f, f, D1) = dual(J[f, f, D1])
={ACY:Y\A e J[f, f, D11}; note that, e.g. as D is 81-complete then D> is an
R -complete filter on Y extending D;.

3 We can use any index set instead of § (in particular the empty one), except in part (5); this applies also to
Definition 0.9.
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(4)In(3), f isaunique modulo D, i.e.ifalso g € YOrd,isa <p,-upper bound of f and
Jlg, f.Di1=JLf. f. Dilthen g = f mod D», equivalently mod J[f, f, D1].
B)If(fis <p,-increasing, and) cf(§) > hrtg(#(Y)) then f fromaboveisa <p,-eub
of f, see Definition 0.9(3).

Definition 0.12 Assume f € YOrd, D, D D are Ri-complete filters on Y, ¢/ is as
in 0.6 for a(*) and Rang(f) C ().

(0) For some ¢ € Filfk1 (Y), DY = Dy, Dg = D and the function f satisfies 1, see
below.

(1) We say f:Y — Ord satisfies 1 € Fil{ (Y) when:

(a) if Z € Dg and Z C Zythen cl({f(t):t € Z}) = cl({f(t):t € Zy}

() y € Zy = hy(y) = otp(f(y) N cl(Rang(f[Zy)))

(c) ift € Y and f(¢) € cl{f(s):s € Zy} thent € Zy

d) ye¥\Zy= f(y)=0.

(2) “Semi satisfies” mean we omit clause (d).
(3) Let “weakly satisfies” means we omit clauses (c),(d).

Definition 0.13 Let Y, f, f D be as in 0.11and Y, Otg*), cf as in 0.1_2.
(1) We say f is the (1, c€) — eub of f orty — eub of f or canonical f-eub for y (and
cl) when:

(a) v € Filg, (Y)

0) f=(fora <)

(©) fu, f are from Yo (x)

A fu<p,, f

(e) Dy 1 = D and Dy, 2 dual(J[f, f, Dy4])

(f) f satisfies y (for cf).

Claim 0.14 Let Y, f, f, Dasin0.11, f,a(x), cl asin0.12.

(1) The “the” is 0.13 is justified, that is, f is unique given ct (so a (%), f, ).
(2) There is one and only one v such that

(a) v € Filg, (Y)

(b) Dy1 =D

() Dya = dual(JLf, f, D])
(d) f semi satisfies 1.

(3) For the v from part (2), letting g = (fZy) U (Oy\z,) we have g is the canonical

f —eub fory (and ct), in particular it satisfies y.
Proof Should be clear. O

Recall the related (not really used)
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Definition/Claim 0.15 Assume D € Fy (Y) and f:Y — Ord.
(1) [Definition] J[f, D] = {A C Y:A =@ mod Dor A € DV and rkpya(f) >

tkp ()}
(2) J is an Rj-complete filter disjoint to D.

) If f1, f1:Y — Ord and J[ f1, D] = J[ f2, D].

(4) There is one and only 1y € Fil§l (Y) such that f semi satisfies y, Dy 1 = D and
Dy = dual(J[f, D).

(5) In (4) there is a unique f” which satisfies y and f'[Zy = f[Z,.

Notation 0.16 Let A <, B means that A = {J or there is a function from B onto A.

Observation 0.17 Assume 0 < |Y| and even d C Y for transparency.
(D Fil§, (V) <qu [2(Z3 x V).

(2) Also “’(Filil(Y)) <qu 2(2(Y)).

(B3) If 6 = hrtg(P (L (Y)) then 0 satisfies:

e ifa < 6 then hrtg(Z2([a]™ x 3)) <6
e 50 if Ax4 then || x 8 < 6.

(4) Assume Axy. If @ < hrtg(L(Y)) then loe|¥0 < hrtg(P(Y)); hence if 0 < |Y| and
o < hrtg(P(Y)) then |a|™ x d < hrtg(Z2(Y)).

Remark 0.18 If Y is a set of ordinals, infinite to avoid trivialities then |Y x 3| = |Y]|,
justifying this see 2.13.

Proof (1) Let Yo = Y, Yppy = P(Y,) for £ = 0,1 and let Y} = [¥;]=, ¥7 =
PP, Yg=3xYand Y, = P, fort =0,1

(*)1 Yol + 1 = |Yp| and even |Yy| 4+ 0 = |Yy|.

[Why? As 0 < |Y] is an infinite cardinal.]

()2 Y1l =9 x |Yi]and 8 x |Y{| = |Y]*| and |Y{| = |V| x 3| = 3 x |Y]].
[Why? Both follow by (x)1.]

()3 [Y2| x |Y2| = [Y2] and |Yo| < [Y1] < |Y2| and |Y]]| x |Y3] = |Y;]; moreover [for
part ()] |”(Y2)| = |Y2| and | (Yy)| = |Y;]

[Why? Follows by (x)3.]
()4 {Dye:p € Filil(Y)} has power < |Y>| for ¢ =1, 2.
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[Why? By the definition each Dy, ¢ is a subset of 2 (Y) = Z(Yy) = Y1.]
()5 {Zy:y € Filg, (Y)} has power < |Y1].

[Why? As Zy C Y = Yps0 Zy € Y1.]

(*%)6 [Y]® x 3 has the same power as [Y 1=,

[Why? Let Z be a set of ordinals disjoint to Y of order type d; by ()1 we have |Y| =
|YUZ|hence |[[Y]=M0 = [[YUZ]=N0| = |[Y]=N0 x[8]=N0] > [[Y]=N0 x| > [Y]=0 ]

()7 1Y x [YTO x [Y]V] < |23 x Y)| < |2,

[Why? The mapping (y, u1, u2) = {(0, y), (1,z1), (2, z2):21 € u1, 22 € up} from
Y x [YI¥0 x [YT™ into 2(3 x Y) prove the first inequality, the second inequality
follows from |3 x Y| = |3 x Yo| < |Y{| = |Y1].]

(0 Hi= {hy:n € Fil{ ()} <qu |Y3].

[Why? Recalling (x)¢ clearly |H| < |{h:h a function, Dom(k) = Y and Rang(h)
a bounded subset of hlrtg([Y]SNO x 0)}| < |{h:h a function from Y into some o <
hrtg([Y]SRO)H Squ | X1| where

X = {(h, g): for some ordinal «, g is a partial function from [Y]SNO onto «,

so necessarily o < hrtg([Y]=™) and 4 is a function from Y into a} .

Clearly |H| < |X1|. Lett ¢ Y and for (h, g) € X let set(h, g):={(y, uy, uz) :
y =tAg) < gua)ory €Y and up,uy € [YI=N0 satisfies h(y) = g(u1)
and g(uo) = g(uy)}. Easily (h, g) +— set(h, g) is a one-to-one function from X
into X, := 2(X3) where X3:= (Y U {t}) x [Y]=N0 x [Y]=%0 and by (x)7 we have
X3 = |23 x Y)|. Hence | X1| < |X2] = |2 (X3)| < |2 (L3 x Y))|. Recalling
|H| < |X1| we are done proving (x)g.]

Now [Fil{ (V)| < [Fil§, (Y) x Fil§, (Y) x H x 2(Y)] by the definition of Fil{,
and this is, by the inequalities above <qu |Y;| % |Y;| X [Y]| x |Y{] <qu |Y2’|4 = |Y5].
(2), (3), (4) Should be clear. O

Note also we may wonder about the RGCH, see [19], we note (not using any version
of Axy4), that we can get such a result using only ACy,. From the results of Sect. 1 we
can deduce more. See 2.35.
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Theorem 0.19 [ZF + ACy,] Assume that ;o > Yo and x < p = hrtg(Z(x)) < .
Then for every ) > [ for some k < | we have:

() if0 € (k, u) and D is a k-complete filter on 0 then there is no < p-increasing
sequence (fy: a0 < A7) of members of V.

Remark 0.20 In 0.19 we can replace “x < u = hrtg(Z(x)) < u” by x < u =
wlor(Z(x)) < w; this holds by the proof.

Proof Assume that this fails for a given . We choose «, < 6, < w by induction on
n. Let kg = Rp, s0 kg = Ng < w as required. Assume «, < p has been chosen, note
that it cannot be as required so there is 6 € [«;, ) such that it exemplifies = ()3, ..,
and let 6, be the first such 6.

Given 0, let k,1:=wlor(£(6,)) so kny1 € (On, 1) S (K, ). SO {ky:n <
w) is well defined increasing and p, = >, «, < p. Let X, = {(6, D, £):0 €
[kn, knt1), D is a k,-complete filter on 6, f = (fa:a < AT)is a <p-increasing
sequence of members of 1}, so by the construction we have X, # @ and (X,:n < o)
exist being well defined. As we are assuming ACy, there is a sequence ((6,,, Dy, fn):
n <o) from [], X,.

We can consider f = (f,:n < ) (and also k = (k,:n < )) as a set of ordinals
(using a pairing function on the ordinals) hence V, = L[ f, k] is a model of ZFC and
a transitive class. In V. we can define D), as the minimal «,,-complete filter on 6, such
that f, is < p;,-increasing. Clearly 2%V« < wlor(22V(6,)) < u hence Vi & “lus
is strong limit”. By [19] or see [22, §1,1.13 = Lg.8] where 21981 is defined we geta
contradiction. O

1 The pcf theorem again

We prove a version of the pcf theorem; weaker than [11, Ch.LII] as we do not assume
just min{cf(ay):y € Y} > hrtg(Y) but a stronger inequality. Still we gain in a point
which disappears under AC: dealing with a sequence of possibly singular ordinals
(and the ideal cf — id—g(8), see below). In addition we gain in having the scales
being uniformly definable. Also the result is stronger than in [27], as we use functions
rather than sets of functions; (i.e. true cofinality rather than pseudo true cofinality; of
course, the axioms of set theory used are different accordingly; full choice in [11],
ZF+DC+ AC »y) in [27] and ZF + DC + Ax4 here).

It seems natural in our context instead of looking at {cf(;): s € Y} we should look
at:

Definition 1.1 (1) For a sequence § = (85:s € Y) of limit ordinals and a cardinal 6
let cf —id_p(8) = {X C Y: there is a sequence it = (us:s € Y) such thats € X =
ug C 6y = sup(us) and s € X = otp(uy) < 0}.

(2) Let cf — fil_(8) be the filter dual to the ideal cf — id g (5).

(3) We may replace § by a set of ordinals, i.e. instead of (&: o € u) we may write u.
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(4)For 8 = (8;:5s € Y)and 6 = (f:s € Y) we define cf — id<§(5) similarly to part
(1); similarly in the other cases.

(5) For 6 a sequence of infinite cardinals, let cf — fil <§(<§) be the dual filter; similarly
in the other cases.

Observation 1.2 (1) In 1.1, c¢f —id_g(5), cf — id<é((§) are ideals on Y or equal to
D).

(1A) Moreover Ri-complete ideals.

(2) Similarly for the filters.

Proof Should be clear, e.g. use the definitions recalling we are assuming ACy,. O

Observation 1.3 Assume

(@) D = cf — fil_s(8) is a well defined filter (that is % ¢ D), so § € YOrd is a
sequence of limit ordinals, 6 = (s:s € Y) € YCar, e.g. N Os =6
(b) U = (U:s € Y) satisfies U C 85, otp(%;) < b5 fors € Y,
(c) g € 116 is defined by
e g(s)issup{a + l:a € %} if this value is < 5

e g(s) is zero otherwise.
Then

(o) g belongs to T18 indeed
B) if f € [lyey % < T8 then f < g mod D.

Remark 1.4 Clause (b) of 1.3 holds, e.g. if % C Ord, otp(Z) < min{0;:s €
Y}, U = U N 6.

Proof Clause («) is obvious by the choice of the function g; for clause (8) let f €
HSEY U and let X = {s € Y: f(s) > g(s)}. Necessarily s € X implies (by the
assumption on f and the definition of X) that Ja)(a¢ € % A g(s) < «) which
implies (by clause (c), the definition of g) that g(s) = 0 A sup(us) = 8. So by the
definition of cf — fil_;(§) we have X € cf — fil_s(8) hence we are done. O

Claim 1.5 Assume Ax4,y, see Definition 0.5(3); if (A) then (B) where:

(A) we are given Y, an arbitrary set, 8, a sequence of limit ordinals and ., an infinite
cardinal (or just a limit ordinal) such that:

(@) 8§ = (8s:5 € Y) and p = sup{8:s € Y}
(b) D, is an Ry-complete filter on Y, it may be {Y'}
(c) 0 is any cardinal satisfying:

(o) cf —id—p(8) C dual(Dy),
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B a<b= hlrtg([oz]NO X 0)<6Os00d <6
(y) hrtg(2(Y)) <6
(8) hrtg(Fil§, (Y)) <6

(B) there are ay, f, f, A/ D,0-uniformly defined from the triple (Y, 5, D,), see 0.8
such that (see more in the proof):

(a) ay is a limit ordinal of cofinality > 6

®) f={farx <)

(¢) fy €Tldand f € I18

(d) fis< p,-increasing

(e) Ay € D}

() f is cofinal in (T18, <D,+A,)

(g) if Y\Ax € D then fisa <D, +(r\A,)-Ub of the sequence f.

Remark 1.6 (1) Note that we do not use AC g(yy and even not ACy which would
simplify.

(2) Note that 6 is not necessarily regular.

(3) In (A)(c)(8), we can restrict ourselves to Rj-complete filters on Y extending D.
(4) Originally we use several 8°s to get best results but not clear if worth it.

(5) Why for a given Y there is 6 as in 1.5(A)(c)(B), (), (§)? see 0.17(3).

(6) In 1.5 we can replace the assumption Ax4 3 by AX4’hng(yﬂ)’a, see 0.5(4),(5).

(7) Concerning (A)(c)(«) note that this holds when each §; is an ordinal < u of
cofinality > 6.

(7A) In (A)(c)(B), if Ax4 then the demand is equivalent to “0 < 6 and ¢ < 0 =
loe|¥0 < 67, see 0.17(4).

Proof We can define by (A)(a) and 6 as minimal such that (A)(c) holds and recall
a is given. Let
(91 (@) e =hrg("p)
(b) A, S [rh]"?isasin 0.5(3)
(¢) <, beawell ordering of .7},
(d) w* = (w]:i <otp(H,, <u,)) list 7, in <, -increasing order
(*)2 ¢l be as in 0.6 for A,
(%)3 Q@ ={o < X R < cf(x) < O}
(*)4 There is a sequence e (in fact, d-uniformly definable one) such that:
(a) e = (eq:x € Q)
(b) ey € o = sup(ey)
(c) ey has order type < 6;
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and we can add
(c)1 ey has order type < 9 if cf(o) = R
(c)2 eq has cardinality < hrtg([cf (o)1 x 9).
[How?
o If cf(a) = Ro leti(e) = min{i : w] N is unbounded in o} and e, = wi*(a) Na.
o If cf () > Vg let ey, = cf(e) where e is any club of « of order type cf(«) such
that (Ve')[e' C e aclub of @ = cl(e') = cl(e)].

[Why? Such e exists by the choice of ¢€ in 0.6 and if ¢/, e/ are two such clubs then
e, N e} is a club of o of order type cf(e) and cl(e’) = cl(e’ Ne”) = cl(e”) by the
assumption on ¢’ and on ¢ respectively, so e, is well defined.]

Lastly, the cardinality is as required by the clause (A)(e)(8) and 0.6(c); similarly
to [23, 2.11=Lr.9].

So ()4 holds indeed.]

Now we try to choose f, € I18 by induction on « such that 8 < a = f8 < fa
mod D..
Case l: =0

Let fy be constantly zero,i.e.s € Y = f,(s) = 0, clearly f, € [15 as each &, is
a limit ordinal.
Case2:a=pB8+1

Let fo(s) = fa(s) +1fors € Y,s0 fy € I15 as fp € I15 and each & is a limit
ordinal and y < o = f, < fy mod Dy as f), < fg < fo mod D,.
Case 3: « is a limit ordinal of cofinality < 6.

So ey is well defined and we define f, : ¥ — Ord as follows: f,(s) is equal to
sup{fg(s) + 1: B € e} if this is < 8, and is zero otherwise.

(*)5 fo € I16.
[Why? Obvious.]

Let %5 = {fp(s) + 1: B € ey}, so clearly (% s:s € Y) is well defined and
sup(%e,s) is an ordinal, itis < 8, as f € eq = fp € [16.Let X ={s € Y : fu(s) > 0
equivalently &y > sup(Z.s)}

(%)¢ X € Dy,i.e. X =Y mod D,.

[Why? For s € Y\X note that |%, 5| <qu lex| and |es| < 6 by (*¥)4(c), hence
|%y.s| < 6.By the choice of X and Definition 1.1 we have Y\ X € cf —id¢(§) hence
by the clause (A)(c)(«) of the assumption of the claim, X = ¥ mod D, as promised.]

(k)7 if B < o then fg < fu mod D;.

[Why? Clearly e, has no last element so we can choose y € e4\(8 + 1) and let
X' ={seY: fg(s) < fy(s)}. Necessarily X" € D, hence X' N X € D, but clearly
seX'NX = Sp(s) < fr(s) < fa(s) so (x)7 holds.]
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We arrive to the main case.

Case 4: o a limit ordinal of cofinality > 0
Let
o fU=(fs:B<a)
e D ={D : Dis an X{-complete filter on Y extending D,}
e D! = {D € D: % is not cofinal in (I8, <p)}
D2 = {D e D.: f% has a <p -upper bound f & I15}
e D} ={DeD2 f*hasa <p -eub f € I13}.

For every D € Dg let
o Fo,={f €l fisa <p-eubof (fg:B <a)}.
Note
@1 if Dy € D), and f exemplifies this then for some D>, D1 € D, € D and f is

a < p,-upper bound of f , i.e. f exemplifies D, € Dg; in fact Dy is uniformly
definable from f (and f%, D).

[Why? Let A= (Ay:y < a) be defined by Ay:={s € ¥ : f(s) < f,(s)}. So
(A, /Dy:y < a) is increasing (in the Boolean algebra &(Y)/Dy, of course), but
clearly {A/D1: A C Y}| <qu |Z(Y)| and hrtg(Z(Y)) < 6 by clause (A)(c)(y) of
the assumption. Let %7 = {y < a: forno g < y do we have A, = Ag mod D},
so clearly |%| < hrtg(Z(Y)) < 6 by (A)(c)(y) but by the present case assumption,
cf(a) = 0 s0(A,/Di:y < a) is necessarily eventually constant. Let () = min{y:
if B € (y,a) then Ag = A, mod D1}; itis well defined (and < o). Now Ay 4 ¢ D1
as otherwise f < fy(x) < fax)+1 mod Dj contradicting the assumption on f. Let
Dj:= D1 4 (Y\Agy(x)). Clearly D; is as required.]

O if D e Dg and f exemplifies it then for some g we have:
(a) g €T18
® g=pf
(¢) gisa <p-upper bound of (f,:y < a)

(d) there is no & € TI8 which is an <p-upper bound of ( fyy < a) such that
h<pg.

[Why? Use DC and D being R-complete.]
©3 if Dy € Dg and g is as in ®3 then for a unique pair (9, ) we have
(a) v e Filg (Y)

(b) Dy1 = D
(©) Dy, = dual(J[g, %, Dy]) from 0.11(1)
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(d) Zy satisfies:
(@) Zy € Dyp
(B) ZeDyrNZC Zy= ct((Rang(g[Zy) = ct(Rang(g|2),
(y) ifteYandg(t) € ct(Rang(g[Zy) thent € Z,
(€) hy: Zy — Ord (really into some @ < hrtg((Y)) is defined by g(s) = the
hy(s)th member of cf(Rang(g[Zy)) if s € Zy; and
(f) f:Y — Ordisdefined by f[Zy = g[Zyand f(s) =0fors € Y\Zy.

[Why? We apply 0.14(2) with g, (f},: ¥ < a) here standing for f, f there to define 1
and then let f = (g[Zy, OY\ZU) as in 0.14(3).]
In particular, the “unique” in ®3 is justified by:

©f ify e Fil§ (Y) and f’, f” are y — eub of £ then f’ = f”, i.e. 0.14(3).
Also, (recalling dom(f’) = dom(f") = Z by O3, (e), see 0.11(4))
Of ify e Fil§ (Y) and f, f” satisfy ©3(e) then f' = f” mod Dy 2.
Recalling 0.11(5), for D € D let
O4 @a p = {y € Fil} (N):DC DU 1 and some f € “9Ord is a y-eub of f*)
©s foreachy € QQ’D, let fy = f,. D b be the unique function f € H(S[ZU) which
is the canonical y-eub of (f,:y < ).
Now let
O fors e Ylet %), = {fy(s):ne m _p forsome D € D}.
Clearly
O7 (@) (%5 €Y)is well defined
b) s 8

(c) ifs €Y then|%; | <¥6.

[Why? Clause (a) holds by ©g and clause (b) by Os5 + Og. As for clause (c) by
®6, U,y is the range of the function y — fy(s) for y € @g p+ S € Zy, so clearly
|| <qu 1% pl <qu IFil§, (V)] hence |7} | < hrtg(Fil{ (Y)) which is < 6 by
(A)(c)((S) of the claim. ]
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Og X:={s € Y:sup(%,) <d;} =Y mod cf — id-(8) hence X € D,.

[Why? By ®7(a), (b), (c) and Definition 1.3 we have X = ¥ mod cf —id_4(8) but
by (A)(c)(a), this implies X € D,.]
So define f, € I16 by:

is sup(%,;) ifseX
o fuls) [ is 0 ifs € Y\X
Also clearly
O10 fou € I8
and also

O ify €, . D eDand B < athen fg < fy mod D).

Forg < aletA% ={seY: fgls) < fuls)}s0 A% = (A‘;:ﬂ < «a) is well defined and
(A‘E/D*: B < «a) is decreasing (in the Boolean Algebra &2(Y)/D,) and is eventually
constant as hrtg(Z(Y)/D,) < hrtg(Z(Y)) < 0 by clause (A)(c)(y) of the assump-
tion so let y () = min{y < «: for every 8 € (y, o) we have A%/D* = AJ/Dy}.
It A;‘j(a) € Dythen 8 <@ = A% D Aﬁlax{ﬁ’y(a)} = A;‘j(a) mod D, = f3 < fo
mod Dy, so fy is as required. Otherwise, A;‘j(a) ¢ Dy, so A= Y\A‘}"/(a) € D so
Dy = D,+A, € D.Nowif Dy € D}, thenby O, there is D5 such that D; € D, € D2
hence there is g € T18 as in ®, for D, hence there is 1y € Fi]?ﬁ (Y) as in ®3 hence
fy € [1(8) as in Os, so Zy € Dy, and by the choice of % (s € Y) and f, we
have f < fo mod Dy hence B < o = fg < fo mod Dy2 50 fr) < fa
mod Dy . But Ay € Dy = Dy 1 € Dy 3 and by the choice of A‘;‘/(a) and A, we have
JalAx < fy (@) [ A contradicting the previous sentence.

So necessarily (A, € D;” and) D1 = D, + A, € D does not belong to Dé which
means f_"‘ is cofinal in (13, <p,+4,) hence letting the desired (o, f, f_, Ax/Dy) in

(B) of 1.5be («, fu, f%, Ay/Dy) we are done. O

Theorem 1.7 The pcf Theorem: [Axi 9900 = hrtg(¥ 1) + DC]
If (A) then (B)™ where:

(A) we* are given Y, an arbitrary set, §, a sequence of limit ordinals and 1, an infinite
cardinal (or just a limit ordinal) such that

(@) 8§ = (85:5 € V) and ju = sup{8s:s € Y}

4 Clause (A) here is as in 1.5(A) but Dy is just a filter on Y, not necessarily Xj-complete filter on Y [i.e.
we weaken clause (b)], noting that possibly Dy = {Y}, still we require cf — fil_g(§) C Dx.

@ Springer



Sh:1005

256 S. Shelah

(b) D, is an R-complete filter’ on Y, it may be {Y}
(¢) 0 is any cardinal satisfying:
(@) cf —id-y(8) C dual(D,), note that this holds when each 8 is an
ordinal < p of cofinality > 6, see below
(B) @ <6 = hrtg([@]™ x3) <Hs0d <0
() hrtg(Z(Y)) <6
(8) hrtg(Fily, (Y)) <6

(B)t there are e(x), D*, A*, E*, &*, g, in fact 3-uniformly definable from (Y, 8, Dy)
such that:
(a) e(x) < hrtg(Z(Y))
(b) D* = (Df:e < e(¥)) and E* = (E¥:e < e(x))

(c) D* is a C-increasing continuous sequence of filters on Y

(d) ife = ¢ + 1 then D} is afilter on'Y generated by D; U {A} for some A €Y
such that A € D;r

(e) D§ = Dy

() D} isafilter onY for e < e(x) but D;“(*) = Z(Y),

(8) (@) a" = (e <e(x))
(B) @* is an increasing continuous sequence of ordinals
(y) a5 =0,cf(af, ) >0
(8) &e(x) is a successor ordinal

(h) g = (go:x < a;‘( *)) is a sequence of members of T18, so of functions from Y
into the ordinals

() if B <& < ey then g5 < g mod D}

(G) A* = (A¥/D¥:e < e(x)) where A* C Y, so only A*/D} is computed® not
A%, still (Y\A})/ D} and D} + (Y\A}) are well defined

(k) D, = DI+ A and E} = D + (Y\AY) if ¢ is a successor ordinal and D
if otherwise

() (8o € o, @) is increasing and cofinal in (115, <k,) so also gla} |
is.

Remark 1.8 (1) Note that unlike the ZFC case, the a}_ ;’s (and even o, | — a) are
ordinals rather than regular cardinals and we do not exclude here ¢ < ¢ Acf (oz;f +1) =

cf((xZH). Also we do not know that (cf(c)):e < &(x)) is increasing or even non-
decreasing.

(2) We may get (o} - af:e < e(x)) non-decreasing but this is of unclear value.
[For this we proceed as below but when we arrive to ¢ 4 1 and there is { < ¢ such

thate) | —of < oc; — a;k 41> choose the first one, we go back, retaining only g [a;".

5 This is reasonable as we normally use Dy = dual(cf — id _(8)) which is X|-complete by 1.3(1A).
6 But see 2.16.
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Now we try again to choose g/, for o > ay but demanding g(’x; 15 Z 8artps Gai+p-

This process converges.]

(3) However 2.11(5) below is a simpler way. Working harder we get (o}, | — o6 <
£(x)) is (strictly) increasing (using increasing rectangles of functions).
(4) As in (x)4 of the proof of 1.5, without loss of generality o
hreg([ef (e, )IM0) = ([ef (e, DIF)T.

[Why? As have first chosen (g,: o € («], oz;H]) and justas (go: 0 € (af, af 1) was
chosen before we choose (go: o € (a7, &} 1) by (e is as in (x)4)

+1_O‘;k <

o o =7 +otpley, g+ 1))
e if B e eagﬂ\(a;" +1)and y = otp(eq N BNy + 1) then g, = g}i

o if f = | then gg =g(;;+1.

So we are done.

(5) Concerning (B) of 1.7(B) ™ (e), recall that D, include cf — fil.g(8).

(6) Concerning 1.7(B)*(f), if D;‘(*) = Z(Y) then it is not really a filter.

(7) Concerning 1.7 (B)™ (i), note that using this clause in Definition 2.1(2) we mean
only <!, that is we may have

(B)" (i) ifB <o <oy thengg < gy mod Dy.

Proof Let .7, , <;, (w] :i < otp(F,, <u,)) as well as e be as in the proof of 1.5.
We try to choose (o), g[(af + 1), D?), D¢ = (Dg:é < ¢) by induction on
¢ < hrtg(Z(Y)) such that the relevant parts of (B)™ holds, but if # € D} then
gqy 1s not well defined, so g° = gloy = (gs: @ < o) and (AZ‘/DZS: ¢ < ¢) are deter-
mined. Clearly the induction has to stop before hrtg(Z?(Y)), otherwise the sequence
(Ag/D;f: ¢ < hrtg(L(Y))) gives a contradiction to the definition of hrtg(Z(Y)).

Case A:e =0
Let )} =0, D} = D, and g is constantly zero.

Case B: € a limit ordinal

Let a} = U{aZf:{ < ¢}, Df = U{Dz‘: ¢ < e} and gla} is naturally defined and
define gox € I8 by, for s € Y letting gox(s) = U{gaz«(s) + 1:¢ < g} ifitis < &
and 0 otherwise. As in Case 3 of the proof of 1.5, clause (B) ™ (i) is satisfied, because
hrtg(Z(Y)) > e.

CaseC:e=¢+1land @ ¢ DZ‘.
Let (note that A, , in (b) below is almost equal to Y\A;n but we know only
Ag,/Dg,):

(21 @ J1={ACY:Ae (DZT)*‘ and D} + A is Rj-complete}
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() Uy ={a:a=((Ap,5n):n < ) = ((Aan, San)in < w),
for every n < w we have
& << andDS = Dg‘ + (Y\A,) and
Ag:i= U{A,;:n < w} # @ mod D*}
so this concerns witnesses to D* bemg not Rj-complete and
Aa € Dj c 2Y)

© Je2={ACY: A€ (D;“)Jr and for some a € U, we have A C A,}.
Note

()2 @ Je1UJen ©(D))T isdense, ie. if A € (D) then for some B C A,
we have B € J;1 UJ; 2

(b) if€e{1,2},A€J . BC AandB € D] then B € J; ;.

[Why Clause (a)? Because we are assuming that D, is 8j-complete in (A)(b). For
clause (b), just read the definition of J; ¢].

Now we try to choose f (or pedantically f; if you like) by induction on « such
that:

(®)3 @) fo€l$
by B< ozz‘ = g < fo mod D* follows by (c) + (d)
© B<a= fg< fo modDZf
@ fo= ga?

Arriving to a, f = (fg: B < a) has been defined. Let J;a ={ACY:A¢e€ (D;)+
and f has an upper bound in (I16, <D;+A)}.
Sub-case C1: (J;,1 UJ:2) N J*,a is dense in ((D;‘)*‘, D).

First, as in the proof of 1.5, (that is, choosing f, in the inductive step in the proof)
we can define f;a such that:

e @ fly=(flaa A NI,)
(0) f/ 44 €118
(©) f{],a,A isa <Dy +A-upper bound of {ga;} U{fg:B < a}.

Second, we consider a € U; hence A, € J; 2.
Let

o foru C o} let gl*l € T18 be defined by g!“l(s) = sup{gg(s) + 1: B € u} if this
supremum is < §; and O otherwise.
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Note that

(%) () IfACY, A=0 mod DZf then for every f € [15 for some finite
v C a’g we have {s € A: =3B € v)(f(s) < gg(s))} =¥ mod D

(b) ifu; C uy are from [a§]<3 then gl“1l < gl*2l mod D,.

[Why? By induction on ¢ using (B)+(k)_, (1) recalling D_* = D, or see the proof of
2.13. Clause (b) is proved by cf —id-5(5) € cf —id-g(6) < dual(D,).]

(%)g if f € T8 then f hasa < D} +A,"Upper bound and even a <p, 1 4,-upper bound

of the form g!! for some countable u < ozzf.
[Why? Let f e TI8, now for each n there is a, < ag‘ 41 such that f < go,
mod (D .t A, p), moreover, see (x)s(a), there is a finite setv, C Ots L such that
(Vs € Aa ,1)(51,3 € v)(f(s) < gg(s)). As those are finite sets of ordinals (or use ACy,)
there is such a sequence (v,:n < ), so u = U{v,:n < w} is as required, recalling
cf —idy, (8) € dual(D,) as in earlier cases so we have proved (a) of (x)s.]

Lastly (well defined by (x)s(b) + ()¢ recalling our sub-case assumption):

()7 let fga = (fg’a,a:a € U;) be defined by: fﬁa’a is gl where u = u, € .7, is
the <, -first u € .7}, for which g emdisa <Dj+4,-COMMON upper bound
of {gar} U{fp: B < a}.

Note that

(s ifaj, a2 € U and if Ay, /D} = Aa, /D then fﬁal,a = fﬁam.

Having defined <f;‘1,a,A A el ﬂJ*’a) and (fg%a’a: acU; ﬂJ;a), of course, they
all depend on ¢; we define f, € YOrd by

(*%)9 fu(s) is: the supremum below if it is < §; and zero otherwise. where the supre-
mum is sup({f , 4() + 1A € Je 1 NI Y ULf7ya(0) + 1:a € U,

So indeed f, € TIS8 as in the end of the proof of 1.5 and is as required for o as
hrtgJz,1 N J7 ) < hrtg(P(Y)/Dy) < 60 and hrtg({ f; o,a:a € Ug}) < hrtg({Aa:a €
U;}) < hrtg(Z(Y)) < 0 because of (x)g (so even hrtg(@(Y)/DZ‘) suffice); note that
we have used (A)(c)(B).
Sub-case C2: (J;,1 NJz2) N J*,a is not dense in ((DZ‘)*, D).

Let A, € (D;k)Jr besuchthat A C A, A A € (D;k)+ = A¢ TVl NIE,
Wlog for some £ € {1, 2} we have A, € J; ¢.

As in the proof of 1.5, necessarily « is a limit ordinal of cofinality > 6. Now as in
Sub-Case C1 we define fgla = (f;gan A e T 1 U2 N J;a) satisfying: f{]’mA
isa <Dj+A-upper bound of (fg: B < a). Let f* € I15 be defined by
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e f.(s) the supremum below ifitis < §; and is zero otherwise, where sup{ f;a’ A4(8)
+1:AeJ1UJ2)N J;a

As in the proof of 1.5 there is B < o such that y € [B,a) = {s € ¥ : f,(s) <
)} = s € y: f3(s) < fuls)) mod Dy.
Let B, be the minimal such B. Lastly, let Ay = {s € y : fg,(s) > f«(s)} and
o L, =E, + A;
D} = D} + (Y\Ap)
el =af+a
gp = fp for B € (af, o)
® Zur = fu
Case D: None of the above.
So Y € D} and we are done. ]

er1)i€ < &(x)) without repetitions?

Certainly this is not obviously so and it seems we can maneuver § and the closure
operation to be otherwise. But can we replace @* and g to take care of this? Clearly if
U < oz;"(*) satisfiese < e(x) = o, | = sup(Z Na; ) thenwe canreplace g by g [%
so by renaming get &’ = (otp(Z Na)):e < &(x)). So cf(a)) = cf(otZ‘) & of(a)) =
cf(ozg) and if we have cf(a)) = cf(ozé) =, o= ozéH - ozg we can change
g to get desired implication. So if AC, ) holds we are done but we are not assuming
it. In this case we also get («, 11 \a,: & < e(*)) is a sequence of regular cardinals.

Discussion 1.9 In the results above, is {(cf(«

2 More on the pcf theorem
2.1 When the cofinalities are smaller

Definition 2.1 (1) We say x = (Y, 8,0, e(x), @*, D*, E*, f) = (Yy, &x, bx, &x, Ox,
Dy, Ex, fx) is a pcf-system or a pef-system for & or for (I18, <p) when they are as in
(B)t of 1.7, with f here standing for g there; so 5= (6525 € Y), 8§ a limit ordinal;
now 2.3 below apply, we will use Dy = (DY:e < &x) = (Dx¢: € < &), similarly for
f. Dx = D; let (x) = &x. )

(2) Above we say is “almost a pcf-system” if we demand f [[ox ¢, @x c41) iS Only
<bp, .-increasing (still cofinal) so using (B)* (i) instead of (B)* (i), see 1.7, 1.8(7).

(3) Above we say x is “weakly a pcf-system” when in 1.7(B)*—we weaken clause
(i) as in part (2) and we omit E*, i.e. omit clauses (4),(k) but retain (1) which means:
if Xo € D;‘H\D;‘, X1 = Y\Xo then f[[aj, @) is <pz-increasing and cofinal in
(T8, <ps+x,) and f is <ps-increasing.

Observation 2.2 [f0,Y, D and § = (85:5 € Y) satisfies clause (A) of 1.7, then there
is a pcf-system X for (I1§, <p) with 6x = 0.

Proof By 1.7. O
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Observation 2.3 Letx = (Y, 8,0, e(x), @*, D*, E*, f) be as in 1.7 (with f instead
of §) or Definition 2.1(2).

(1) (I18, <p,) has a cofinal well orderable set, in fact, of cardinality |oz;k(*) R

(2) Assume f € TI8 and for ¢ < &(x) we let B = min{B: B € [, o) satisfy

f < fp mod (E}, )}, then:

(@) B¢ € o), a:H) is well defined hence (B¢: e < e(x)) is well defined
(b) for some finite u C () we have f < sup{fs,:€ € u}

(b)t moreover (fg.: € € u) is d-uniformly definable from f and 8 and Dg (equiva-
lently, f and x).

Proof (1) By (2).
(2) Easy; e.g.
Clause (b): Let ¢ < &x be minimal such that

(x) & = &, for some finite u C [¢, &x) we have f < max{flggzg“ € u} mod Dy .

Now ¢ is well defined because ¢y is a successor ordinal and (fg: B < a ) is cofinal
in 18, <Dyeo-1 and so u = {Be(x)—1} is as required.

Ife = ¢+1, < exanduisasin(x)thesetZ = {s € Y : f(s) < max{fg, (s):¢ € u}
is=¢ mod E;;1 and repeat the argument for ¢ = ex — 1.

If £ is a limit ordinal, this leads to contradiction as Dy o = U{Dx ;: ¢ < &}.

Lastly, if ¢ = 0 then we are done. O

Discussion 2.4 (1) In 2.3, we may restrict ourselves to Rj-complete filters only, so
replace ¢, by {¢ < &, : E] is Xj-complete} but use countable u.
(2) Similarly for 8-complete.
(3) Recall that with choice or just ACy, the ideal cf — id_4(8) is degenerate: if, for
transparency, 6 is regular, then cf —id_y(8) = {X C Y : (Vs € X)[cf(5;) < 6] and
|X| < 6}.

We have dealt with (], 8;, <p) when D D cf — fil.p(8) and 6 > hrtg(Fil‘;;] Y));
we try to lower the restriction on the cardinal & with some price.

Definition 2.5 Assume D is a filter on ¥, o () an ordinal and f = (fy:a < (%)) is

a <p-increasing sequence of members of ¥ Ord and f € YOrd is not < p-below any
fo. We define

id(f, f, D) ={Z C Y: thereis & < a(x) such that
ZC{seY: f(s) < fu(s)} mod Dj}.

Claim 2.6 ForY, D, f. f as in Definition 2.5 above.

(Oid(f, f, D) is an ideal on Y extend_ing dual(D).

2) fisa <id(f, 7, p)-upper bound of f.

(3) For A € DT we have: Z(A) Nid(f, f, D) C dual(D) iff fis a <p4a-upper
bound of f.
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@) If A € DY Nid(f, f, D) then for every a < a(x) large enough, f < fu
mod (D + A).
(5)id(f, f. D) =id(f’, f, D) when f' € YOrd and f' =p f.

Proof Straightforward. O

Notation 2.7 (1) Given § = (8,:s € Y) and set u of ordinals let hy, 5, be the function
h with domain Y such that: h(s) is sup(u N 85) when itis < §;, is 0 when otherwise.
(2) For u = (ug:s € Y) we define h[ﬁ’g] similarly.

Claim 2.8 If we assume @ below and (A) + (B) then (C) where:

® (@) Axap AlY] =R
(b)x.o the union of any sequence of length < k of sets of ordinals
each of cardinality < 6 is of cardinality < 6
(c) k<6
(A) (a) & = (85:8 € Y) is a sequence of limit ordinals
(b) DisafilteronY
(¢) D Dcf —fil_g(d)
d) u=U{s:5s €Y}
(B) 84 is an ordinal and
(@) fo € [ley 8s fora < 8
(b) ifa < B < d4then fo < fg mod D
(©) f = (fura < &) is not cofinal in (I Tsey 85, <p)
(d) cf(8y) >«
(C) we can 6-uniformly define (or (9, k)-uniformly define) g such that:
(a) g € |l;ey s is not <p-below any fy
() ifg <p g €[lseyds thenid(g', f, D) =id(g, f, D).
Remark 2.9 (1) See more in 2.13. 5
(2) Do we uniformly have the parallel of: some stationary S C SI?J, belongs to I,.+[A]?
See later.

(3) We can weaken 2.8 ®(a) to Ax4 4.0, A hrtg(Y) < «, [see 0.5(3)] the proof is
written for this.

Proof Stage A:
Let (%, <4) witness AX4 6.«
We try to choose g;, u., Y by induction on ¢ < « such that:

B (a) g€ [lseyds
(b) ue C p has cardinality < 6 and ¢ <& = u; C u,
() Ye={seY:é =sup(6: Nug)} =¥ mod D
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(d) ifs eY\Yeand ¢ < ¢ then g (s) < ge(s)
(e) g = h[us,é]’ see 2.7
(f) if e is a limit ordinal then:
o u.=Ulus:¢ <e¢l
o g.(s)isU{gs(s):¢ < e} when itis < &
is 0 when otherwise
(g) ife=1¢+ 1then
(a) g¢ is not as required on g in clause (C)
(B) ug is the <,-first u € 7 extending u, such that if we define g
as hy, 5) then it is a counterexample like g’ there
(h) ife =0, g, is defined from u, similarly.

Now we shall finish by proving in stages B,C below that:

(x)1 if we have defined g, but g, is as required on g in clause (C)(b), then we are
done; this is obvious

(x)2 we can choose g, if e =0
(k)3 if (g¢:¢ < &) was defined we can define g, if ¢ is a limit ordinal < «
(k)4 ife = ¢+ 1and (ge: & < ¢) has been defined and g, fail (C), then we can define

8¢
(x)5 we cannot succeed to choose (g.: ¢ < ).

Stage B:
Proof of (x)5:

Toward contradiction assume (g.: & < k) is well defined.

Fore <kando < 8,letZeg ={s € ¥ : ge(s) > fa(s)}and let Yo = {s €
Y: sup(ue N 3;) = &}, it belongs. By clauses (b), (c), (e) of H we have Zg, o\ Y, <
Zeya\Ye, fore) < &2, < 4,

Now by clause (g)(B) of B, if ¢ = ¢ +1 then forsome o < 84, Z¢ « ¢ id(g;, f, D)
and let oy be the minimal such «. As cf(8,) > « by Clause (B)(d) of the assumption,
yi= Ul{a: ¢ < k}is < &y

Now the sequence (Y,:¢ < k) is C-increasing sequence of subsets of ¥ because
(us: e < k) is by H(b) and the choice of Y,. By ®&(a) we have hrtg(Y) < k.

Also clearly

® Zeii,y € Ze,, mod D and Y.

Together (Z;11,,\Z¢,, \Ye: € < ) is a sequence pairwise distinct non-empty of sub-
sets of Y, so recalling hrtg(Y) < «, this is contradiction to the first paragraph.

Stage C:
Obviously () holds.
Proof of (x)7: we can choose g, fore =0
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o) thereis g’ € [[,cy & such thate < 8, = g” £ f, mod D.

seY

[Why? By clause (B)(c) of the claim. For such a g” there is u € .%; such that
Rang(g”) C u because hrtg(Y) < « and .%, witness AX4,,6,c. We choose u € .7 as
the <,-first such u € . and choose g € [],cy &s as Apu,s1.]

So

seY

e g c H(SS
o3 ¢” < g mod D.

[Why?Recall cf —fil .y (8) C D by the assumption (A)(c), hence {s € Y: sup(undy) <
g(s)} as |u| < 0 being a member of .%. So as (Vs € Y)(g"(s) € 8; Nu) we have
g” < g mod D by the choice of u.]

o a <8 =g % fo mod D.

[Why? By e3 and by the choice of g” in e;.]

Proof of (x)3: limit &
We define g, as in H(f), as it is as required because D 2 cf — filg ) by clause
(A)(c) of the assumption recalling @(b), ¢ of the assumption.

Proof of (x)4:
So we are assuming g, is well defined but fail (C)(b) as exemplified by g, let
u € % be <,-minimal such that Rang(g) € u and let h = hfu 5] + 1, that is

s €Y = h(s) = h[u,g](s) + 1 < §; hence g <y h[u,S] mod D and we can finish
easily as in the proof of (). O

Observation 2.10 cf(a(x)) > 6 when

(@) DisafilteronY

(b) 8 = (8s:5 € Y) is a sequence of limit ordinals

() D Dcf —fileg(d)

(d) f = (fura < (%)) is <p-increasing sequence of members of [1sey 85

(e) f has no <p-upper bound in [Tiey 8s-

Proof The proof splits into cases proving the existence of a <p-upper bound g €
HseY 55'
Case 1: a(x) =0

The constantly zero function g : ¥ — {0} can serve.

Case 2: a(*) is a successor ordinal
Let a(¥) = B + 1 and g be defined by g(s) = fg(s) + 1. As each &, is a limit
ordinal, g € [[,cy ds.

Case 3: cf(x (%)) € [Xg, 0)
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Let w C a(x) be cofinal of order type cf(x(x)), letuy = { fy(s):x € w}fors € Y
so u:=(us:s € Y) is well defined and s € ¥ = |ug| < 6, hence g = h; 5 is as
required. O

Claim 2.11 If8 below holds then &1 = ©> = D3 where

®1 AX4 10,6
@ there is a well orderable set cofinal in (T18, <p), defined (i, 0, k)-uniformly

@3 we can (0, k)-uniformly define a < p-increasing sequence f = (fy:a < a(x))
in ([ ey 85, <p) with no upper bound

where

B (a) D afilteronY
(b) 8 = (85:5 € Y) is a sequence of limit ordinals
(¢) D Dcf —fily(8)
(d) hrtg(Y) <k <0
(e) u=sup{ds:s € Y}

Proof &1 = &2

Let (%, <4) witness AX4 .6«

For every g € I18, Rang(g) is a subset of sup{8s:s € Y} = pu of cardinality
< hrtg(Y) < « hence there is u € .% such that Rang(g) < u, so |u| < 0 hence
easily g < hy, 57 mod D, see 2.7. Hence 7 = {h, 5, : u € .} is a cofinal subset
of (I18, <p) and being <qu -% it is well orderable. Recall i 5 € I16 is defined by
h[u,S] (s) is sup(6s Nu) if sup(d2 Nu) < &5 and is zero otherwise.

Now .# C TI8 being cofinal in (I18, <p) follows from D D cf — fil_g(§) that is
H(c).

D2 = B3

Let .# C TI16 be cofinal in (1'[5 , <p) and <, well order .7 . We try to choose f,
by induction on the ordinal «. If f* = ( fp: B < a) has no <p-upper bound we are
done so assume g € [[,y 8 is a <p-upper bound of f* so there is /1 € .7 such that
g <p h,sohisa <p-lubof f andlet f, € .7 be the <,-minimal such /. Necessarily
for some @ we cannot continue so f¢ is as promised. O

Conclusion 2.12 In clause (C) of 2.8, assuming f has no <p —ub in 18 and letting

e Zy=1{s€Y :g(s) < fu(s)} fora < §,
o W ={a <68::Zg# Zy mod D forevery p < a}
Dy =D + Z, fora < 8,

oy = min{a < 8 ifa < 84 then Z, € DT}
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we can add:

(¢) (Zy/D:a € W) is C-increasing and oy, < 84

(d) fora € W', a > ay, Dy isaﬁltero:zY and (fo1y:y <és—aandoa+y eW)
is <p,-increasing and cofinal in T1§

() (Dg:a € #'\wy) is a strictly C-increasing sequence of filters of Y and 0 € W

) fis <p,-increasing and < p,-cofinal in 15 ifa € # \as

(g) ifcf(84) > hrtg(LP(Y)) then W has a last member.

Proof Easy or see [11, Ch.IL,§2]; but we elaborate.

Clause (c): The sequence is C-increasing as f is <p-increasing and o, < 8y as
otherwise « < § = By < g mod D hence f hasa <p —ub in I13, contradiction.
Clause (d): Dy is a filter as by clause (¢), « > ay = Z, € DT and obviously
Zy € DT = (D is a filter).

Clause (e): By the definition of 7.

Clause (f): By (C)(a),(b) and clause (d).

Clause (g): Obvious. O

Theorem 2.13 Assume H(a) — (e) of 2.11.

(1) If c£(0) > hrtg(L(Y)) and AXa, 6.« then the conclusion (B)T of Theorem 1.7
holds, i.e. there is a pcf-system X such that Yx = Y, 5y =35,0, =6.

(2) Without the extra assumption cf(0) > hrtg(Z(Y)), we get only a weakly pcf-
system [see 2.1(3)] x with 6 = hrtg(Z(Y)).

(3) Ifthere is a weak pcf-system X for 8 then T18 has a subset which is a well-orderable
and is cofinal in (113, <Dy)-

(4) If (T18, <p) has a well-orderable cofinal subset and hrtg(Z(Y)) < 6 then there
is a pcf-system X for 8 with Dy = D.

(5) If (T18, <p) has a well-ordered cofinal subset and 0 > hrtg(Y) then there is a
pcf-system Xforg with Dy = D, oy ¢+1 — Qx ¢ increasing.

Remark 2.14 Note that later parts of 2.13 supersede earlier ones. One reason for this
is that it may be better to avoid using inner models, developing the set theory of
ZF + DC + Axy per se.

Proof (1) We repeat the proof of 1.7, but using 2.8, 2.10, 2.13, i.e. in case (c) after ()3
we use [12]. But a simpler argument is that by 2.11 we know that there is a < p-cofinal
subset .Z of 18 which is well orderable, say by <.
(2) Like part (1).
(3) Let x be a weak pcf-system for (T18, <p), clearly {fx o:00 < 0y ex)} is a well
orderable subset of I8 and so is .# = {max{fx,q: € < n}:a = (ap: £ < n) is a finite
sequence of ordinals (o ¢(x))}. Hence it suffices to prove that the set .% is cofinal in
(T8, <p,).

This means to show that

(x) for every g € [15 there are n and oy < Oxe(x) for £ < n such that g <
max{ fx,«, (s):£ < n} mod Dx.
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For this we prove by induction on € < gy that

(¥)e if X € Dyeand g € I15 then we can find Z € Dy and n and oy < oy, for
£ < nsuchthats € Z\X = g(s) < max{ fxq,(s): £ < n}.

This suffices as for ¢ = gx we can use X = ¢J.

For ¢ = 0 necessarily Z:= X is as required because X € Dx = Dx.

For ¢ a limit ordinal, if X € Dy, then for some { < &, X € Dx, and use the
induction hypothesis for ¢.

Fore = ¢ 4+ 1, weare given X € Dy, and g € I15. By clause (B)*(¢) of 1.7 if
X € Dy use the induction hypothesis so without loss of generality X ¢ Dy  hence
Dy ; + (Y\X) is a filter on Yy and itis 2 Ex ;. So by clause (B)T (1) of Theorem 1.7
there is a € [ax ¢, ax,c+1) such that g < fx o mod (Dx + (Yx\X)).

Let X1 = {s € Y:s ¢ X and g(s) < fxa(s)}, s0 X1 € Dy + (¥x\X) hence
X2:=X U X € Dx so by the induction hypothesis there are n1 and B¢ < ax, for
£ < nyand Z € Dx such that s € Z\X; = g(s) < max{fxg,(s):£ < n1}. Let
n=mn;+ landletoy be B if £ < ny,apbe aif £ = ny, so0 Z, (ap: £ < n) witness
the desired conclusion in (x).. So we can carry the induction and as said above this
suffices.

(4) Let .# C I15 be well orderable < p-cofinal subset so let § = (go: o < a(x)) list
ZF.

Case 1: Y € Ord

Let Vi = L[g] and V, = V{[D], using D as a predicate so Vi, V; are transitive
models of ZFC and let D, = DNV, € V,, of course, also V, = “0 acardinal > |Y|”.

In Vo, welet & = (As:s € Y) be defined by Ay = cf(Bx)Vz. Now if u € V, is a set
of ordinals of cardinality < € then the set {s:8; > sup(u N J;)} belongs to D hence
to D N Vy; this implies that Y, = {s € Y:A; > 6} belong to D. Now apply the pcf
theorem in V, on (As:s € Y) getting (J.,, Y,:pu € b) and (g, o:A € b, < A)
where a = {A;:s € Y}, b = pcf (a)VZ, in particular such that

e b=pcf{i;:seY}
oV, CY
e J_, istheideal on Y generated by {Y,: A € b N u}

e (giata < A)is asequence of members of [[ .y, As, <+ (¥,\r,,-increasing and
<
cofinal.

We can translate this to get a pcf-system for (I18, <p) in V, hence in V.

Case 2:Y ¢ Ord

We shall show that it essentially suffices to deal with § without repetitions. Note
that each f € % orjust f a function from Y into Ord induces an equivalence relation
eq s on Yx:s1(eq f)sz & f(s1) = f(s2) Nés, = &s,. For any such equivalence relation
e on Yy, the set #, = {f € F: eqy = e} can be translated to one as in Case 1, and if
for some such e, %, is cofinal in (HS , <p,) then we are done, but in general this is
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not clear. Without loss of generality & = {e; : f € %} is closed under intersection
and assume there is no e as above. We can define a function F from & into «(*) by
F(e) = min{a:thereisno f € .% suchthate; = eAgy < f},itis well defined by the
present assumption and let u = Rang(F), so |u| < hrtg(&£) < hrtg(Z (Y x Y)) <0,
and we can finish easily.

(5)Letuy:=Rang(gy), v:i={5s: s € Y}soallaresubsets of u of cardinality < hrtg(Y),
sou = (ug:a < a(x)) is well defined and let V/1 = L[u, v] is a well defined
universe, a model of ZFC. In V/1 w can define §’, listin_g v in increasing order and
g = (g, a < a(x)) where g/, = hy,, 57- In'V define fo = (gh:a < a(x)) where
g = hy,, 5 As 0 > hrtg(Y) clearly go < g/ mod cf — fil_g(8) hence go < g/
mod D hence without loss of generality g’ = g. As there is no real difference between
8 and 8’ and we can deal with g’, 8’ via L[g’, §'] as in Case 1 of the proof of part (4)
and finish easily. O

Discussion 2.15 Alternate proof: suppose we can uniformly choose f = (fy: o < 8)
which is < p-increasing and cofinal in (HS, <D).

We define an equivalence relation E on |.%]| by:aE iff e,, = gy let B =
(Br = B(&):¢ < ¢(») list {o < |F|:a = min(e/E)} in increasing order and let
¢ | F| = ¢(x) be f () =min{¢:a € B /E}. .

Let £* = (E;:; < (%)) where’ é; = pr(otp(Rang( fo,)), otp(Rang(§)) and for
a < |.7| let g4 be the function from & ;‘(a) to Ord defined by g, (&) = y iff for some
s € Yx wehave fu(s) =y A& = pr(otp(Rang(gﬁW>) N gx(s)), otp(Rang(8) N &y)).

Lastly, let R = {(¢1, &2, &1, &2):for some s € Y for £ = 1,2 we have ¢ <
£(%). & < &5 & = pr(otp(Rang(ga,, ) N gay, (5). otp(Rang(8) N ;))}. Now we use
Vi=L[6,8 E, R, ]let D =(D;:¢ < (%), Dy = Dx(eg%), V, = V[ Dy] and
for ¢ < ¢(¥) let Ap = (heg:€ < &), Aee = cf(85) when & = pr(£, s) for some
appropriate €.

Clearly ¢ < ¢(¥) = & < 0, as before without loss of generality A; r =
cf(Aze) = 6 and 6 > hrtg(Y) by an assumption hence the pcf analysis in V5 of
1'[)_\; is O.K.; moreover and {1, ¢:§ < &} does not depend on.

Now the analysis for A recalling eq5 = egy = e€g,, s enough.

Claim 2.16 If X is a pcf-system then there is Y defined uniformly such that (so may
write YX = (Y} e < &)):

(@) Y = (Yeie < &(%))

(b) Yo C ¥x

() DY, | = Di+Y..

Proof Fixe < gx,ifex = e+ 1letY, = Y,soassumee+1 < gx. Soforsome Y C Yy
we have Dx ¢+1 = Dx« + Y hence Ex , = Dy + (Yx\Y); and fx,ax,g isa <Dyot1”

upper bound of f_x[[ax,g, Ox.e+1). But fxf[ax,s, Qx.¢+1) 1s cofinal in (I'ISX, <Ey.)
hence we can find B € [ox ¢, @x,e+1) sSuch that fx o, < fx g mod Ex.

7 Recall pris a one-to-one function from Ord x Ord onto Ord such that (] < @ AB] < B) = pr(ay, B1) <
pr(e. ).
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Let B be the minimal such 8 and easily Yy:={s € Yx : fx g,(5) < gx, tx,e+1(5)}
is as required. O

2.2 Elaborations

Claim 2.17 Assume AXx4. 5.

For any ) we can d-uniformly define the following.
(1) For § < X of cofinality Ro, an unbounded subset es of & of order type < 9.
(2) For = hrtg(Y), 8 = (8s:s € Y) a sequence of limit ordinals < ) of uncountable
cofinality satisfying Y € cf —id_y(8), (see 1.1) a closed u, < sup{ds:s € Y},
unbounded in each §; of cardinality < hrtg([01]<a) where

e 01 = min{lu| : (Vs)[s € Y — §; = sup(u N &)} is necessarily < 6.

(3) For § < A, an unbounded subset es of cardinality < hrtg([cf(S)]R(’).

Proof (1) See [23] or as in the proof of («)4 inside the proof of 1.5.

(2) Let Uy = {u : u € sup{és:s € Y} of cardinality < # and u N §; an unbounded
subset of 8 for every s € Y}. By the assumption “Y € cf —id_4(8)” clearly Us # 0,
hence U% = {u € U; : u is closed} is non-empty. Using c£ from 0.6, the set u, =

N{cl(u) :u € Ul%} has cardinality < hrtg([min{|u| : u € Us}1=%). It suffices to prove
o ifu, € U% forn < w then u:= N {u,:n < w} belongs to Uj.

[Why? Clearly it is a subset of u of cardinality < 6, being C u( and it is closed
because each u, is. But for any s € Y, why is u unbounded in §;? Because §; has
uncountable cofinality and the members of U% are closed.

e, for some u € U(%, |lu| < 61 and without loss of generality u is closed, so |u,| <
lcl(u)| < hrtg([6;]1=N0) as promised.

(3) By the proof of («)4 inside the proof of 1.5. O

We give a sufficient condition for < p-eub existence, try to write such that we get the
trichotomy.

Claim 2.18 The eub-existence claim: B
Assume AX4.y or just AXy wro(¥ ),9- The sequence f has a <p-eub [see Definition

0.11(5)], even one d-uniformly definable from (Y, D, f) when :

B (a) (0,7Y) satisfies clauses (A)(c)(B), (y), (8) of 1.5

(b) D isafilter on Y, so not necessarily ¥1-complete
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© f=(fora <)
d) fo€ YOrd is < p-increasing
(e) cf(8) =0 and cf(8) = hrtg([[,cy &) when ¢ < hrtg(P(Y)) fors € Y.

Proof Toward contradiction assume that the desired conclusion fails. Let ) = U{ fo, (s)
to0 < 8} fors € Y and oy, = sup{a) + l:s € Y}

We try to choose g, and ; < dbyinductionon¢ < hrtg(Z(Y)/D) < hrtg(Z(Y))
such that:

® @ g €ley@+D)
(b) ifa <6 then f, < g mod D
(¢c) ife <¢theng, < g, mod D and g;/D # g./D
(d) g and B; < § are defined as below.

Clearly impossible as cf (§) > hrtg(Z?(Y)) by assumption H(d), so we shall get stuck
somewhere. If g6 = (g,: e < ¢) is well defined, we let it ur = (ug5:s € Y) be defined
by u; s = {y:for some f < ¢ and n we have y +n = gg(s) or y +n = a;}, so
ure € of +1and |ug | < R+ [¢] even uniformly. Next for @ < & we let fof’l
ery(ocs + 1) be defined by ftf’l(s) = min(u¢ s\ fo(s)), clearly well defined and
belongs to [,y (@’ + 1) and is <p-increasing. Now {fa'':a < 8} € [[ ey Ue.s 50
ascf(8) > hrtg(¥ (14¢)) > hrtg([ ], u¢,s), necessarily (fof’l/D:oe < §) is eventually
constant. Let ;1 = min{8 < §:if a € (B, §) then fof’l = fé’l mod D} so o <
8= fo <D fﬂill mod D andlet g, 1 = fg;i.lf gc,1isa <p-eub of f we are done,
otherwise the construction will split to cases.

LetYo={seY: f (s) =0},Y1={seY: fé’ll (s) is a successor ordinal} and

={seY: f/3 1(s) is a limit ordinal of cofinality < f}and Y3 ={s € Y : fﬁg ) (s)

is a limit ordinal of cofinality > 60}, so (Yy, Y1, Y2, Y3) is a partition of Y.

() without loss of generality Y, € D, g, 1 is not an lub and even Yy = Y from some
< 4.

[Why? For each £ < 4 such that Y, € D, clearly we can replace D by D + Y, hence
(by the present assumption) a <p.y,-eub g exists; if Y, ¢ D7 let g, be constantly
zero. Lastly, U{g; [Yy: £ < 4} is as required.]

Case 0:Ype DsoYp =Y

Trivial.
Case l: Y1 e DsoY =Y

Define g; € HSEy(O‘s + 1) by:gc(s) = g¢,1(s) — 1. Clearly it is still a <p-upper
bound of f as f is <p-increasing, and gc < g mod D forevery ¢ < ¢. Lastly, let

Be = Be.1-
Case2:Y> € D
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Let (eq:a < ay) beasin2.17(1),(3) for @ < 8, then we define f,f’z € HseYz (a5 +
2 . .
1) by fof (s) = mln(eggvl(s)\fa(s)) and let ¢, = otp(eg{‘l(s)) < 0, this holds by
1.5(A)(c)(B) which in turn holds by H(a) of the assumption of the claim.
)2 .
Now as cf(§) > hrtg(]_[SeY2 L) = hrtg(]_[sey2 €g.1(s)) clearly (fof /D:a < §) is
eventually constant, so ;> = min{ < §:if « € (B, §) then fof’z/D = fg’z/D} is
well defined. Let B; = sup({B¢,1, Br2} U{B: + 1:e < ¢})itis < 6, cf(8) > |¢| and
let g, = fé{’z. Clearly e < ¢ = g; = fﬁij < 5;11 < g mod D, so (g, B;) are as
required.

Case3:Y3 =Y

Let f' = (fl:a < &), £ € [1, &c.1(s) defined as f,(s) if < g¢.1(s), zero other-
wise.

Now g;,1 is not a <p-eub of f hence there is & € YOrd such that h < 8,1
mod D and for no ¢ < § do we have 4 < f, mod D. But i was not canonically
chosen. Clearly the assumption of 2.2, i.e. 1.7 holds with ¥, 6, g, 1, f " here standing
forY, 9, s, fhere. So there is a pcf-system x with Yy = Y, 6y = 6, Dy = D, fx = f/
and 8y = g1

Hence by 2.3(1) we can define a pair (#, <,) such that # C [[ .y, gc,1(5) is
cofinal and <, a well ordering of .7.

So as g¢,1 is not a < p-eub of f there is i € .% witnessing this and let i, € .% be
the <,-first one.

Let

B¢,3 = min {ﬁ < a: ifa € (B, ) then {s eY: fuls) < g;(h*((s))}
={seY: fp(s) <hi(s)} mod D+Y,},

well defined as before. Lastly, let g, € YOrd be defined as follows: gr(s) is

o /1 (s) if fp 5 (5) < hi(s)
o fpo5(8)if fp,5(5) > hs(s). a]

Now we give a version of the main theorem of [23, §1]. From this we may try to
understand better “ and use it in constructions, i.e. to diagonalize.

Theorem 2.19 [Ax4, 5] For k < X letting X,, = “’(Filil (x)), we can d-uniformly
define (.S, <;) : t € X) such that:
(@ U :reX =" A
(b) <; is a well ordering of .
(¢c) there is an equivalence relation E on “\ such that:
() (“A)/E is well ordered
(B) each equivalence class is of power < X, B
(d) moreover for some g = (gpo:0 € X, a € Sp) and S = (Sy:h € Xi) and
F = (Fp: B < B(x)) we have

@ Springer



272 S. Shelah

(o) B(x) < hrtg(a(x)]™0) where a(x) = sup{rkp(A) : D € Filgzl )}
(B) B(x) =U{S5:h € Xy}

(¥) {g5,a:0 € Xy, a € Sy} is equal to “A

(8) &1, = &ip.an implies ap = a2

(6) F = (Fp: B < B(x)) is a partition of “ 1

©) 178l <qu [ Xkl

Remark 2.20 (1) We may compare with [23, §1].
(2) Recall 0.17(2).

Proof Fix a witness cf of Ax4 ;5. Forevery y € Fﬂ?&. (Y) and ordinal « there is at
most one f € ¥(A + 1) such that f satisfies y so f [(Y\Zy) is constantly zero and
D) = dual(J[ f, D{1), see 0.12,0.15 and o = rkp(f); in this case call it fy o and let
Sy, be a set of & such that fy o is well defined.

So(fya:h € Fi]?al (Y), o € Sy o) is well defined. Forevery f € A and Ry-complete
filter D1 on Y for some y € Fil;t] (Y) satisfying Dy,; = D; and ordinal o we have
f = fya mod Dy (in fact @ = rkp, (f) < rkp(A) < a(*), a(x) from (d)(a) of
the Theorem).

Now

(%)1 forevery ¥ (1 + 1) there is a countable set ) C Filf;] (Y) such that
(o) f semi-satisfies each ) € Q)
(B) Y =U{Zy:y € D)
(y) foreachy € 9, for some o we have f[Zy = fy o[ Zy.

[Why? Let 2 = {Zy:y € Filil(Y) and for some o € Sy, we have f[Zy =
fu.a[Zy}. If Y is the union of a countable subset of 2 then Y = U{Zy,,: n} for some
{h:in < 0} C Fil‘él(Y) and we are easily done. If not, D1:={Z C Y : Z includes
Uy, Zy:for some (v,:n < w) € “’(FiliO(Y)) we have Z,, € 2 forn < w}is an
R -complete filter and we easily get a contradiction.]

Recall Sy = {o < a(*) : fyq well defined} and by Ax4 we can find a list
(ng: B < B()) of {n:n € “a(x)}, B(¥) < hrig(“(x)) and even B(x) = |B()[).

Now for every §) € X, = “’(Fil‘él(Y)), let Wy = {8 < B(%):ng(n) € Sy,.» for
each n and U{ fy, 1. [Zy,: 7 < w} is a function, in fact one from Y to A + 1}. For
B € Wylet g5 g be U{ fy, npm):n < w} andlet Sy = {B € Wy : g5 p € {85,115 € X«
and y < B}}.

Note that

($)2 (@) (Sp:h € Xi) exist

®) UyS5 S B

() (Sp:h € X, ) has union B(x).
Note also that clause (d) of the theorem implies clauses (a),(b); (let 5”;, = {gpai €
Sy} and <= {(gh,a» &h,a» &p,p): @ < B are from the set Sy of ordinals).

Also clause (d) implies clause (¢) letting E = {gf, o> &5,00): D¢ € X —k, g ¢ S,
for{ =1,2and o] = o1}
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So it is enough to prove clause (d).
Now

e clause (d)(«) holds by the choices of (), B(x)

e clause (d)(B): we have only B(*) 2 U{S5: 9 € X, }, but we can replace B(x) by
otp(U{Sy: b € Xy}

e clause (d)(y): gp,p is defined above but why “A = {g54:0 € X\, € Sp}?
As said above, if f € “A by (x); there is a countable ) C FILil (Y) as there,
hence for some sequence ((h,,®,):n < w) we have P = {y,:n < o} and
f1Zy, = fo,.a,1Zy. Hence §:=(h,:n < w) € X, and for some y < B(*) we
have n, = (an:n < ). So f = U{fy, 5, ) [ Zy,:n < @} = gppso f € Wy,
and f = gj,,, hence by the choice of Sy there are 3 € X, and * < y such that
B e w% and f = gz g, so we are done

e clause (d)(8):look again at the choice of Sg.

e clauses (d) (¢), (¢): Follows O

Conclusion 2.21 Assume Ax4y. If 0 < k < p and hrtg(Fil?(l(K)) < |4 then the
following cardinals are almost equal (as in [27, §(3A)]):

(a) hrtg(“ )
(b) wlor(* )
(c) o-Depth} (“11) = sup{o — Depth}, (i) : D a filter}.

Proof By 2.19. O

A drawback of the pcf theorem is the demand 6 > hrtg(Fil‘;{l (Y)) rather than just
0 > hrtg(Z(Y)) or even § > hrtg(Y). Note:in [10, Ch.XIL§5] we work to assume
just the parallel of & > hrtg(Z2(Y)), i.e. Min(a) > 2/9 rather than the parallel of
0 > hrtg(Z (L (Y)), i.e. Min(a) > 22" and only in [16] we succeed to use just the
parallel of 6 > hrtg(Y).

We may try to analyze not I18,8 = (8;:s € Y) but rather all [1(3]Z), Z € &/
simultaneously where &/ € Z(Y), demanding Z € &/ = 6 > hrtg(Filf<1 (Z)) but
less on |Y|; hopefully see [29].

We may consider

Deﬁnitjon 2.22 LetAxs psay:if Y = k € Card then AXs ., F(c) Where A)_§5,y,9 means
that:if § = (85:s € Y) is a sequence of limit ordinals and D = cf —fil4(8) then there
is a pcf-system x; for (I18, <p), see 2.13. Moreover, the choice of x; is -uniform.

Definition 2.23 (1) We say p is a pcf-problem when it consists of:

(@) § = (8s:s € Y)and u = sup{8;:s € Y} and o7 C P(Y)
(b) D, isafilteron Y, it may be {Y}
(c) 6 =0[Y, 8, D] =0[Y, 3, D, 3] is any cardinal satisfying:

() cf —id—y(8) C dual(D,), note that this holds when each §; is an ordinal < uw
of cofinality > 6, see below
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B) a <= hrtg([oz]RO X 0) < 6 so0d < 6 and so if Ax4 then the demand is
equivalent to “9 < 6 and o < 0 = |a|™ < 6”

() hrtg(Filil (Z)) <6 forevery Z € .

(2) For p a pcf-problem let Sp =4, dp,s = &, etc., if clear from the context p is
omitted.

(3) For D a filter on Y}, extending Dy let cfp(D) = c€(D,p) = {A C Yy:if Z € &
then AU (Yp\Z) € D.

(4) p is nice if hrtg(Z(Y)) < 6p.

Definition 2.24 We say x is a wide pcf system when x consists of (if we omit
(g)(@), (B),1.e. A, we say “almost wide”):

(a) p, apcf-problem let Dy = Dy, 6 = 6,, etc.
(b) an ordinal ex = &(x)
(c) &* = ()& < &) is increasing continuous

d) (@) D= (Dg: e < gx) is a continuous sequence of filters on Y except that
possibly D, = Z(Y)

(B) De = clp(De)
(y) forlimite, D, = cép(U;Q D¢)
(e) Dy = Dy is cf — fily(8)
(f) E=(Ec:e < &)
(g) foreach e < ey < 0 there is A, € D such that
() Det1 = De + Ag
(B) E.= D:+ (u\Ag)
(y) therearea, C k and h, € [, u; such that {(i, ho({)) : i € ac} ¢ D¢

e but A, is not necessarily unique, only A./D; is, and of course, also
ag, he are not necessarily unique

(§) thereis Z € o7 such that Z € dual(D,)\dual(D;)
(h) f=(faora < é&x), fo € TI8
@) f[cxgﬂ is <p,-increasing

ice

() fllete, @e41) is <g,+z-cofinal for some Z € D .

Theorem 2.25 Assume Axy y. Assume p is a pcf-problem and hrtg(#y) < 6p, 9 < 6p.
Then there is a wide pcf-system X such that px = p.

Proof As in Sect. 1 we try to choose «; and (fy:a < o), D¢, E; by induction on
¢ satisfying the relevant demands. The main point is having chosen (o, Dg:§ <
¢), (fara < ag), we try to choose for ¢ = ¢ + 1. So we try to choose f, for
a > o by induction on « satisfying the relevant conditions. Arriving to limit o let
dV:={Z € o/:Z ¢ dual(D,)} and &2 = (Z € A): (fp:B < @) hasa <p,;z-
upper bound in I18}. If «7! = @ we are done. If 42/0!2 # () by Sect. 1 we can define
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(fa.z: Z € Jzéf) suchthat f, 7z € I15 is an <p,+z-upper bound of ( fg: B < a) and let
fu € T18 bedefined by f, (s) = sup{fu.z(s) : Z € Jzﬂf}if< 85 and zero otherwise. As
0 > hrtg(ap) > hrtg(xz/af), clearly B <a A Z € Azf/;xz = fg < fo mod (Dg + Z).
If 4&{3 = .safal # 0, then f, is as required as we are assuming Dy = clp(D;). If
,QZ,[Z * .;z%a‘, let ¢ey1 = o and fy is as required. O

2.3 True successor cardinals

Contrary to our ZFC intuition, without full choice successor cardinals, may be singular.
On history we may start with Levy proving ZF + “R; is singular” is consistent and
end with Gitik proving ZF + (Y1) (cf(X) = 8¢) is consistent, using large cardinals.
Note: for two successive cardinals are singular” has quite high consistency strength.

A major open question is whether ZF 4+ DC + (VA)(cf(A) < Ry) is consistent. But
when ZF + DC + Ax4 holds the situation is very different. Also contrary to our ZFC
intuition, successor cardinals may be measurable.

For a cardinal to be a true successor is saying it fits our ZFC intuition. In particular,
it avoid the two anomalies mentioned above, and eventually it will enable us to carry
various constructions; all this motivates Question 2.27.

We continue the investigation in [23] of successor of singulars, not relying on [23].

Definition 2.26 (1) We say A is a true successor cardinal when for some cardinal
w, » = ut and we have a witness f, which means f = (f,:a € [, A)) and f, is a
one-to-one function from « into .

(1A) We say f is an onto-witness when each f, is onto u, see 2.28(1) below.

(2) We say a set % C Ord is a smooth set when there is a witness f which means
that f = (fa:t € U), fy is a one-to-one function from « onto |«|.

We may naturally ask

Question 2.27 (1) Is there a class of successor of regular cardinals which are true
successor cardinal? See 2.28(2).

(2) Assume p is strong limit (i.e. ¢ < p = hrtg(Z(un)) < w) of cofinality 8y, so
w™ is regular, but assume in addition that ™ is regular < pp(u), see® [11, Ch.II].
Is ™ truely successor?

(3) Assume p is strong limit of cofinality R and ut?is singular, is w3 atrue successor
cardinal?

Claim 2.28 (1) If 1 is true successor then )\ is regular and has an onto-witness
(computed uniformly from a witness).

) [AxiJr orjust Axy ,+ y] Assume p is singular and (Va < ) (hrtg([a]™ x d) < w).
Then p™ is a true successor cardinall.

(3) [Ax4. 5 or just AXq ). o] The set % of ordinals a < X such that |«| is singular and
(VB < |a|)[hrtg([B1™ x 3) < |a|]} is a smooth set of ordinals.

(4) For every ordinal oy, oy € cf — id((hrtg([cf(a)]NOx3):a<a*)((a: o < ).

8 Generality with weak choice there is a choice to be made, but assuming Ax4 or so and cf (1) = R, there
is no problem.
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Proof Let pr be the classical one-to-one function from Ord x Ord onto Ord such that
pr(a, B) < (max{a, B})* and pr,, = pr|(u X ).

(1) Let f = (fy:a € [u, uh)) witness A is truely a successor. First define, for
o € [p, 1) afunction f):a — pby f1(B) = otp(Rang(fy) N fx(B)); obviously it
is a one-to-one function from « into u with range an initial segment; but |[Rang( /)| =
|| = w so Range(f2) = w, (fi:a € [, u™)) is as promised.

Second proving A is regular, toward contradiction let %7 be such that 7 C A =
sup(%), % Nu = @ and otp(%) < A, so without loss of generality < u. Now we
shall combine (fy: o € %) to get |A| < u by getting a one to one function f from A
intou x u; fori < Aletow; = min{fe € Z:« > i} and define f(i) = pr(otp(Z N
a;), fo;(@)). So f exemplifies |[A| < | x w| but the latter is p, contradiction.

(2) By part (3) applied to % = [u, u™).

(3) Let . C [A]<9 witness Ax4.3 .5 and <, a well ordering of .. Let oy, = U{ar +
lia € U} letcl : [ ] — @y be as in 0.6, let <, be a well order . and let ug for
B < oy be defined by

o if f=0thenug =10

o if =y +1thenug = {y}

e if cf(B) > R then ug = N{U{cl(v) : v € [u]™} : u a club of B}

o if cf(B) = No the ug = vg N B where vg is the <,-first v € 7 such that
B = sup(v N ).

Now choose fg for o € % N a, by induction on & using pr .
(4) By ()4 in the proof of 1.5, in particular, (c), there. O

Claim 2.29 (1) If» = u* then X is a true successor iff . € cf — id<(ut1y(X), (Which
means A € cf —id11)({o:a < A))) iff A € cf —id), ({@: a0 < X)) for some y < A.
(2) When w is singular, we can add: iff . € cf ., ({a:ax < ).

Proof (1) First condition implies second condition:

So assume A is a true successor, let (f,:a € [u, u 1)) witness it. For each o <
uT = A we choose u, as follows:

Case l:uy =aifa < p

Case2:ax >

Forany j < ulet %, ; ={B <a: fo(B) < j},50 (%, : j < |)is C-increasing
with union « and |%, ;| < |j| < . If for some j the set %, ; is unbounded in o let
Jj (@) be the minimal such j and uy = %, j(a)-

If for every j, %y, is bounded in « let uy = {sup(%,;) : j < p}, so easily
otp(ug) < p.So (ug:a < A) witness A € cf —id(,41)(A), i.e. the second condition
holds.

Second condition implies third condition:
Trivial.

Third condition implies first condition:
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Lety < Aand letu = (ug:a < A) witness A € cf —id<, ({a:a < A)); let
f«:1v — u be one-to-one. Defined a one-to-one function f,:« — p by induction on
a € [u, A), the induction step as in the proof of 2.28(1).

(2) Assume p is singular; obviously the fourth condition implies the third.

Second condition implies the fourth condition:

Let (uq:a < A) witness A € cf —id(,4+1)({(o: 0 < A)), let f, be the unique order
preserving function from u, onto otp(uy). Let u € p = sup(u) has order type cf (i)
orjust < . Letu,, be uy if otp(uy) < pandbe {B € uq : fou(B) € u}ifotp(ug) = u.

O

The next claim says that quite many partial squares on A = ™ exists.

Claim 2.30 [Ax4 ] Assume A is the true successor of u,0 < k = cf(u),0 <61 <
w9 <6ando < p = hrtg(®a) < pand a < 6 = hrg([a]=?) < 6.
Then we can find C = (Ce o1& < b, a € S¢) such that:

(@) S; € Siglzz {8 < r:cf(8) < 61}

(b) $*, S U{Ssie < u}

(¢) Ceq € aand Cey is closed unbounded in o
(d) ,3 € Ca,a = Cs,ﬁ = Ca,ot ﬂﬂ

(e) otp(Ce o) < O1.
Proof Let X C X code:

e a witness to “A is the true successor of "

¥.__ QA k __ QA
o the set §5:=S57,, 5] _S<91

a witness to cf (u) = «

(eq : € < A) asin (x)4 of the proof of 1.5s0 @ € S5 = |eq| < 0.

SOLIX] E“A=pnuT,cf(u) =k >607and x < u = x~¢ < pu. fL[X] | “n is
regular”, by [17, §4] and if L[X] = “w is singular” by Dzamonja—Shelah [2] we get

the result in L[ X] and the same C works in V. O

For more on successor, see [27, §(3A)] and in [29, 0x=Ls3].

2.4 Covering number

Definition 2.31 (1) Let cov(), 6, < Y, o) be the minimal cardinal x such that [if no
such y exists, it is co (or not well defined)]: there is a set &2 of cardinality x such that:

@ 2 < [A]*
(b) if f € Y then there is &' C &2 of cardinality < o such that Rang(f) € U{u :
ueP.
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(1A) Writing « instead “< Y” means f € [J,_, “A.
(2) If o0 = 2 we may omit it.
(3) Writing “< 6” instead of 6 means ot ie. Z e [A]=0.

Definition 2.32 (1) We say ([y]?, €) strongly® has cofinality < x when there is
f = (fa:a < ay) such that |oy| = x and f,:60 — p and for every u € [y]? there is
o such that u € Rang( fy).

(2) We replace “< x” by “x” when in addition ([y]?, C) has cofinality x.

Claim 2.33 If ([y1?, ©) has cofinality x and 07 is a truely successor then ([y1°, )
strongly has cofinality x.

Proof Easy. O

Theorem 2.34 Assume Axsp, 0 < O, (Oy = 0(Y) : Y € 6y) is such that (By,Y)
satisfies the demands on (0,Y) in 1.5 and 0y < 6, and so 0, is strong limit in the
sense Y € 0, = hrtg(Fﬂé] (Y)) < 6., equivalently k < 0, = hrtg(P (P (k)) < 04
(and 6, > 9, see 0.17).

(1) For all cardinals ). > 0, we have cov(h, < 0, < 0, 2) is well defined (i.e. < o0).
(2) Even d-uniformly and in some inner model L[ X], X C Ord we have witness for
those covering numbers.

Proof Let A, = Ufhrtg(“A): k < 6.}

B (a) let (%, <4) be such that .7, C [1,]<? satisfy (Vu € [A4]¥0)
(Fv € S)[u C v] and <, is a well ordering of .%;

(b) wedefine cl and .7, S [M] =%, <i,icr (W i < Otp(Fa,, <x)), Qs &

= I(,i k]
asin (%) — ()4 in the proof of 1.5 with « here standing for Y
there, from (Y%, <x).

So we can choose F = (FKl 1k < 60,) where

H, (a) FK1 is a function
(b) Dom(F,J):{f:fe"()»—}-l)andi</c$cf(f(i)29,(}
(c) F,(l(f) is a pair (F}, <1f) such that
() 5“} - Hi ~ f (@) is cofinal, i.e. modulo the filter {«}

(B) < isawell ordering of .7 |

[Why possible? By 2.2 and 2.3(2).]
Let (6,41 (k)) exist and is < 6., see [23, 0.14] where

9 Without “strongly” we have only fy:yy — 1 where y, < 67.
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Hs; fork < 6, let Oy(k) = 6, and 6,11 (k):= min{o:if (u; : i < k) is a sequence of
sets of ordinals each of cardinality < 6,(«x) theno > | |J,_, uil}-

Choose ((#2,,. <2 ,):k < 6,) by inductiononn,so ((#2,, <2,):n < wand ordinal

Kk < 0y) exists, such that

Hy (a) ifn =0 then 9,(2n = {f*z}, f*2 € “(A + 1) is constantly A

(b) if f € F2, then f is a function from k into {u € A + 1 : [u| < 6,(x)}

(c) <2, wellorders 72,

@ iffe ﬂ,ﬁn then for £ < 4 we let g? be the following function;
its domain is « and for i < x we let:

£=0:g7() = {o € f(i): = 0}

L=1: g? (i) = {o € f(i): « is a successor ordinal}

=12 g? (i) = {«a € f(i): « is a limit ordinal of cofinality < 6}

£=3:g5() = {a € f@):cf(@) = i)

) (@) if fi € Z}, then forsome fo € F2, . f(i) =
(B:B+1€gj0)

(B) if fi € F2, then for some f € FZ, | we have fa(i) = Ufeco:
o€ g% (i) and cf (@) < 6},

(y) if fie ﬂ,&n letting u::otp(U{g?cI ():i<k}),iet=¢f=
otp(u) < 6y, Sfl = (8f,,;:t < ¢) increasing 8y, € u and

otp(8 .. Nu) = tthen Fo\(S7) € F2

e (a) 7 K2 w1 is minimal under the conditions above

B) <,%’ 141 18 chosen naturally.

We can choose a set X, of ordinals such that (9,3,12/( € 04,n < w) belongs to
L[X5] hence a list (w):a < az(x)) € L[X3] of {Rang(f): f € ﬁ,{zn for some
Kk <0un <wyandalistii = (ug:a < a3(x)) of a cofinal subset of [z (%)™ and
X3 such that X, u € L[X3].

Now for any ordinal ¥k < 6, and f € “A we can choose finite v, € a(*) by
induction on n such that:

) @ reUwi:acv,)forn=0

by ifi < k fi@) ¢ Ulwi:a € wv,} then min(UaEUn wi\f@) >
min(Uye,, wi\f ().

So (vy:n < w) exists hence v = |J,, v, € L[X3], hence w = |J,, ws € L[X3] has
cardinality < 6, and includes Rang( f) because if i < k A f(i) ¢ U{w}:a € v} then
(min(Uaevn wi\f(i)):n < w) is a strictly decreasing sequence of ordinals. So we
should justlet & = {u C A : u € L[X3] and L[X3] = “|u| < 0,4} witness the desired
conclusion. O
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Now (like [27, §(3A)] see definitions there)

Conclusion 2.35 Assume Ax4. If @ is a singular cardinal such that k < pu =
Oc:=hrtg(P (P (k)T < pand r > p then for somek < |1 we have:cov(h, [i, L, K)
= A

Proof Use [19] in L[X] where X C Ord is as in 2.34(2). O

Discussion 2.36 (0) From 2.34, 2.35 we can get also smooth closed generating
sequence (see [18, §6], [13].

(1) We would like to get better bounds. A natural way is to fix «, consider ] > «
and f:x — [A]<9" and ask for .F C {fik — [A]<92} such that for every g €
[T- €@ ULIIN\{0}) and g; € [];_, g«(i) thereis f € .F such that (Vi < «)(f({)N
[81(D), g+(D)) # D).

(2) We can get also strong covering, see [11, Ch.VII].

(3) Can we get something better on p singular strong limit? a BB?, (BB means black
box, see [15] and in Sect. 3, possibly see more in [28].

(4) We like to improve 2.34, in particular Sect. 2.3, for this we have to improve
Sect. 2.1. We would like to replace Filf:] (Y), i.e. hrtg(Fil;t] (Y)) by hrtg(£(Y)) and
even hrtg(Y), as done in ZFC in [16]. We do not know to do this but we try a more
modest aim: suppose we deal only with [Y]=¥ or so. So hopefully in [29], we still have
hrtg(Filg, (<)) but hrtg(Z(Y)) only.

3 Black Boxes

There are many proofs in ZFC using diagonalization of various kinds so they seem to
depend heavily on choice. Using Ax4 we succeed to generalize one such method—
one of the black boxes from [15], it seems particularly helpful in constructing Abelian
groups and modules; see on applications in the books Eklof—-Mekler [1] and Gobel—
Trlifaj [4].

The proof specifically uses countable models and Ax4. Naturally we would like to
assume we have only Axy 3. But existing versions implies #?(N) is well ordered and
more, whereas Axy 3 does not imply this.

3.1 Existence proof

Hypothesis 3.1 ZF + DC + Ax4 [s0 0 = 8]

The following is like [15, 3.24(3)], the relevant cardinals provably exists but may
be less common than there: conceivably true successor are only successor of singular
strong limit cardinals.

Theorem 3.2 If (A) then (B) where:

(A) (a) A= pu™T isatrue successor
(b) p=p
() S=1{6 < Ar:cf(8) = Rg and u divides §} or just S is a stationary
subset of A such that § € § = cf(8) = Ro A < 8 A (]d)
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(d) y* = (y5:8 € S) with y§ = (ys5,:n < o) an increasing w-sequence
of ordinals with limit §, (exist, see (x)7)
(B) we can find w = (o, W, §', hK) = (0w, Wy, C'w, hw, Kw) such that (we may
denote oy by Lg(w) and may omit it):
@ (@) W= (N <ary)
(B) Ny = (Ng,n:n < w) is <-increasing sequence of models
¥) T(Ne,n) € H®Rp) and T(Noz,n) C t(Ne,nt1)
%) k= (lga:ot < Oy), ky = (kq,n:n < w) is increasing,
let kw(a,n) = k(a,n) = koz,n
(¢) |N(x,n| - |Na,n+l| C A but Na,n ?é Not,n+l
(¢) let Ny = Ny = lim(Ny), that is, T(Ny.,,) =
U{t(N,n):n < o} and (Ng,, [T(Nen)) 2 Nan
(n)  the universe of Ny p is a countable subset of A
) (@) ( is a function from oy into S, non-decreasing
(B) ift(a)=8thens = sup{y;n:n < w} = sup(Ny)
(y) ifa < ayand ;"(ot) =38 e Sandn < w then Ny n4+1\Ngy.n
S Usekem Vok@m+1) 34 [Nl S V5 k@
(¢) if M is amodel with universe A and vocabulary < H(Ro) then for stationarily
many 8 € S, there is a such that ¢ (x) =6, Ny < M.
(d) (@) ifi(@) =8="{C(B) then Ny = Ng, [No| N = [Ngl N, kg = kg
moreover, otp(| Ny |) = otp(|Ng|) and the unique order preserving
mapping is an isomorphism from Ny ,, onto Ng ,, for every n
and is the identity on |Ny| N and on Ny N Ng and so maps
Ne VY5 ki) 0110 Ng O V5 1)
(B) if (@) =8=C(B) but o # B then
e Ny N Ng is an initial segment of both Ny and of Ng

® Ny NNgC Nypt1 N Nguy1and Ny N Ng 2 Ny y = Ng
for some n.

Remark 3.3 (1) The existence proof is uniform (that is, w can be defined from (<, f )
where: <, is a well ordering of [ x ¥ for x large enough and f is a witness for A being
a true successor. Moreover, also 7* can be chosen uniformly (as well as the witness
for A-being a true successor.

(2) We would like to add (A)(e) to the assumption and add (B)(e) to the conclusion of
3.2 where:

(A)e) (@) C=(Cs:deS)
(B) Cs <3 =sup(Cs)
(y) otp(Cs) = w and let y§ = (yg’jn: n < w) list Cs in increasing order

(8) C weakly guess clubs, i.e. for every club E of A for stationarily many
8 € S we have (Vn)(E N (Va*,n’ Va*,n+1) # (), moreover
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(e) (Se:e < A)is apartition of S such that C IS, weakly guess clubs
for each ¢

(B) (&) Ny.n+1\Ng.n isincluded in [yg‘jn, yg‘jnﬂ), that is kw (a0, n) = n.

But not clear if (A) is provable in our context. Still, repeating the ZFC proof works
in ZF + DCy, and gives even “C guess clubs”, i.e. “{ys.,in < w} € Cs”. But we
ask only for “weakly guess”, see 3.3(2), (A4)(e)(8) so using Ax4 just adding AC »(xy,
suffice.!” However, clause (B)(d)(B) is a reasonable substitute.

(2) We may strengthen clause (B)(d) by adding:

(y) if £ (@) = 8 = £(B) then |Ny| N y(8,0) = [Ng| N y(8,0) call it us.

For this in ()¢ the partition should be (S¢: ¢ < A) as € should determine also Ng, etc.
(3) The use of k possibly > R in 3.4 is not necessary for 3.2.

(4) Note that in proof we need u = /,LNO for proving (x)3. Note that for (x)g(a), (b), (c)
we need just “A is a true successor of u”. To get clause (d) too, it suffices to have
p=pu.

(5) We may prove also 3.7 inside the proof of 3.2.

Proof Now

B, there are g°, g! such that
(a) g°, g' are two-place functions from A to A which are zero on

®) (@) ifa € [u,A)then (go(oz, i):i < u) enumerate
{j: j < o} without repetitions

(B) ifa,i<randa < Vi > uthen g%, i) =0
©) (@) g'(a, g%, i) =iwheni<p<a<Aa
(B) ifa<pandi < Athen g'(a,i) =0

(d) there is yx € (i, A) such that for every countable # < X closed under go, g1
there is v such that:

() v C y4 is countable

(B) otp(v) = otp(u)

) vhu=unu

(8) wvisclosed under g°, g!

(¢) the (unique) order preserving function from u onto v commute
with g%, g!

(¢) we can arrange that y, = u + u.

10 That is, having § = (Se:e < ) for each & choose the first increasing function f € “w such that
(V5 p(n) 8 € Se) weakly guess clubs.
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[Why? As A is truely successor there is no problem to choose g°, g! satisfying clauses
(@), (b), (¢). On % = {u < pt:u countable closed under g°, g'} we define an
equivalence relation E by (d)(8), (y), (¢). Now as u = ,uRO, % | E has cardinality p
hence recalling A is regular we can prove that y, as required in (d) (o) — (&) exists.
In fact, 9-uniformly we have a well ordering <4, of %/; without loss of generality
uy <q uz = sup(uy) < sup(uz).

To have y, = u + u, let T, be the vocabulary { Fy, F1} with Fy, F> binary function
and letM = {M: M is a t,-model with universe | M| a countable subset of u + w such
thata, 8 € M N u = Fy(a, B) = 0 = Fi(a, B) and the functions FM. FlM satisfies
the relevant cases of the demands (a), (b), (c) on (g%, g)}.

Clearly M has cardinality ; and moreover we can (uniformly) define alist (M: & <
) of M.

Let i, = otp(|M:|\n) and by induction on ¢ < u we choose (h¢, ¥.) such that:

Hiz @ yw=mn
(b) (yr:¢ < ¢) isincreasing continuous

(c) hg is an order preserving function from | M, |\ onto [ye, Ye+1)-

Next let N; € M be such that h¢ U id)a, |0, is an isomorphism from M, onto N,.
Now we define the two-place function gj, g7 from A to A as follows

His3 (@) ife <pandy, <o < yg41 then
o ifi € Ne N p then g, i) = Fy* (. i)
o (g5(a,i):i € u\Ng)listsa\ N, without repetition and is derived from (€%, i):i
< p) and N; as in the proof of the Cantor-Bendixon theorem (that |[A| <
IBI A |B| < |A] = |A] = |B]):

(b) ifoelmw+p A theni <p = gila,i) = g%, i)
() ifae[u,})and j < athen gf(«, j) is defined as the unique i <
such that g (o, i) = j

(d) 1in all other cases the value is zero.
Now g, g} are well defined, just recall B (a), (b), (c). So Hj holds indeed.]
Clearly
()1 ifuy, upr C X are closed under go, g1 and u; N = pup N then uy Nuy is an
initial segment of u and of u5.

Let N be the set of tuples (N, 7) satisfying

(*)2 @) N = (Ny:n < w)
(b) N, is a model with vocabulary 7(N,) € H(No)
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(¢) N:= U{N,:n < w} is countable with universe C y,

(d) t(Np) S T(Nug1) With Ny © Nyp 1 [T,

(e) y = (yu:n < w) is an increasing sequence of ordinals satisfying
Uynin <o) =Ufa+ 1:ax € U{N,:n < w}} < v,

) Ny = (Nut1 [T (N)) [V

(&) sup(Ny) < yn = min(N,11\Ny)

(h) N, is closed under go, g1.

Recalling H .y, (y) = {u:u a countable set such thatu N Ord € y and y € u\y =
[yl < Ry.Clearly N € H_y, (yx) soas w0 = 11 = |y4], clearly N is well orderable so

(and using parameter witnessing, Axi 4+ “X is a true successor cardinal” to uniformize)
let

(93 @ ((Ne,7e):e < ) listN
(b) Ns = (Nen:n <o), ¥Ye = (Yen:n < ®)
(€©) Ne= Neoi= U{Nep:in <o}, ie. No = lim(Np).
Next
(x)4 foreach e < u let N, be the set of pairs (N, y) such that:
(a) N= (Ny:n < w)
(b) N =U{N,:n < w}is a t(Ng)-model
(¢) N, isat(Ngy)-model with universe C A

(d) thereis h, an order preserving function from N, ., onto N
commuting with gO, g1 mapping Ng , onto N,
(i.e. h[Ng,y is an isomorphism from N, , onto N,)
and being the identity on N, N and mapping y; »
to v

(x)s for § € S and ¢ < pu let N s be the set of pairs (N,y) € N, such that
sup{y,:n < w} = é andforclause (B)(b)(y) forevery n forsomek, N,+1\N, S
(V;jk’ V;k-i-l)

(x)g there is a partition S ={(S;:e < p)of Sto stationary sets.

[Why? By Larson—Shelah [8].]

(x)7 thereis (y;:8 € S) such that each pj is an increasing w-sequence with limit 6.

[Why? By Ax4.]

(*)g the_re is, (in fact as in all cases in this proof, uniformly definable), a sequence
((Ng» Yo, Ug): o < a(*)) and function ¢: o (x) — S such that:
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(a) g“ is non-decreasing
(b) (N, 7a) € N, ¢ @) When ¢(a) € Se, moreover
(b) ife < pand§ € S, then {(Ny, Jx): o < (%) satisfies ¢ () = 8}
list N s
(x)9 let Ny,ow = U{Ngn:n < w}.

[Why? By (x)s, (*)¢ and using a well ordering of (A%
Now ignoring clause (c), clauses of (B) should be clear. Lastly, clause (c) holds by
the following Theorem 3.4, in our case x = Nj. O

Theorem 3.4 If (A) then (B) where:

(A) (a)(@) A > k are regular uncountable cardinals
B) a<ir=|a <2
) (@) ifa < Athencf([A]<F, Q) is < A
(B) U, C [A]™F is well orderable and cofinal (under <)
(y) U N[a]| < Xfora <X

(¢) M is a model with universe A and vocabulary t, T not necessarily
well orderable

(d) ifa <« then h > hrtg({N : N a t-model with universe o; may add

that some order preserving mapping is an elementary embedding
of N into M})

(B) there is N, uniformly defined from witnesses to (A) such that:

(@) N=(Ny;ne®n)

b)) Ny =7

(¢) Ny has cardinality < k and Ny, N k is an ordinal < k

(d) N, is an elementary submodel of M

(e) ifv<nthen N, is a (proper) initial segment of N,

(f) ifn <wandn,v €"A then there is an order preserving function
from Ny onto N, which is an isomorphism

(g) ifn <w,n € andy < i then there is v such that n <v € "t
and min(N,\N,) > y.

Remark 3.5 (1) We may consider adding: N, (n € “A) has Xi-property and use:
hrtg(the set of expansions of N*) < A.

(2) The ZFC version of 3.4 is from Rubin—-Shelah [9].

(3) Note that in 3.4 the vocabulary is constant whereas in 3.2 it is not. But the difference
is not serious as in 3.2 the vocabulary is € H(Rg) so there is one vocabulary which is
enough to code any other.

(4) We may continue in [29, 8.2=Lg19].

Proof Now
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(x)o without loss of generality U, C [A]=" is closed under countable unions and
initial segments.

[Why? By (A)(a),(b), the point is that the closure retains the properties.]

()1 let N be the set of N such that
(a) N = (Np:in < w)
(b) (@) N, < M has cardinality < «
(B) moreover, |N,| € U,
(c) |N,| is an initial segment of | N, 41|
(d) N, has cardinality < x and Ng N k is an ordinal < «
(e) T(Nn) =7

Now

(%) N is well orderable

[Why? Recall U, is well orderable so let (u): o < o) list it. Now N,, is determined
by |N,| (because N, < M) and o]0 is well orderable so we are done. ]

(#)3 let (Ny:a < ay) list N and let (u%: o < o) list Us.

[Why exists? By ()2 and (A)(b)(B) of the theorem assumption.]

()4 (a) wesay N, N” e N are equivalent and write N'&N” when

for every n, otp(|N, |) = otp(N,) and the order preserving function

from |N; | onto |N,/| is an isomorphism and Nj = N
(b) letN ={N:N = (Ng:£ <n) = N'[(n+ 1) for some N' € N, n € N}

(c) we define the equivalence relation &’ on N’ by N!'&’N? if N!, N? has
the same length and the parallel of clause (a) holds

(d) & and & have < u equivalence classes.

[Why? E.g. clause (d) by clause (A)(d) of the theorem’s assumption.]

(¥)5 Ejis aclubof A where Ej:={§ < A:4 is a limit ordinal such that M [§ < M
and if N € N and sup(Ng) < 8 then there is N’ € N which is &-equivalent to N
with Ny = Np and sup(U{N,:n < w}) < §}.

[Why? Think,_noting that we can consider only {Na: @ < oy and N, is not &-
equivalent to Ng when 8 < a}.]
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(%) for N* € Nand N € N such that No = N we define tk(N, N*) € Ord U
{—1, oo} by defining when rk(N, N*) > « by induction on the ordinal « as
follows:

(a) o =0:rk(N, N*) > « iff N&'(N*[€g(N))
(b) o limit:tk(N, N*) > o iff B < o = rk(N, N*) > B
(¢) « = B+ 1:1k(N, N*) > « iff for every y < A there is N7 such that
e NaNteN
o tk(NT,N*) > B
o Lg(N*) =tg(N)+1
o ifn=1(g(N)theny < min(N,\N,_1).
Consider the statement
X for some N* € N, tk((Ng), N*) = o0.
Why enough? Reflect. Why true? First
H; E;is aclub of A where

Ey ={8 € Ey: if N* e N, sup(U{N:n < w}) <8, N e N/,
sup(U{N¢: € < £g(N)}) < 8and 0 < rk(N, N*) < oo, then there is no
N’ such that N < N’ eN’, tk(N’, N*)=rk(N, N*) and £g(N') =£g(N)+1
such that letting n = £g(N) we have min(N/\N,—) > 8}
[Why? Reflect.]
Now choose

B, there is an increasing sequence (§,:n < w) of members of E> with limit § € E»
(in fact can do this uniformly; e.g. let §, be the nth member of E»).

Lastly, choose (1, ¢: n < w) by induction on n such that

(a) Upy € U, N[8,]7¢
(b) uy,, ¢+1 is u for the minimal o« such that u], € §, and itincludes u: 41 M8, where
uy ¢41 18 the M-Skolem hull of the set

o (U{umiU{dmbm <w,k <L}U{o:a <sup(upeNk)},

(the Skolem functions are just “the first example”; note that the sup(u, ¢ N«) may
be zero).

Let u, = U{u, ¢: € < o}, N;' = MJu,. Now we are done by (x)o(a) so H is indeed
true and said above is enough. O
Conclusion 3.6 Assume A = u* is a true successor and . = p*°. Then there is an
R1-free Abelian group of cardinality X such that Hom(G, Z) = {0}.
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Proof Straight by Theorem 3.2 as in [14] or see in Sect. 3.2. O

Theorem 3.7 (1) We can strengthen the conclusion of 3.2 by replacing (B)(c) to

B) ()T if(N,”: n € “A)isasin3.4 (B) (a), (c)-(f) for k = Ry, replacing
(B)(b) by “t(N,) € H(Ro), |N,/7| € [A=N0” then for stationarily
many 8 € S for some o and n € “1 we have ¢ («) = § and
Ny = (Nr’”n:n < w).

(2)In3.2, ifk < A as in 3.4 and we can replace (N, 7) by (Ny:n € “Zk).

Discussion 3.8 There is a recent BB helpful in constructing &,,-free Abelian groups,
(usually is the product of n BB’s); in [24] it is proved to exist, and using it construct
R, -free Abelian group G such that Hom(G, Z) = 0. This is continued, Gobel-Shelah
[5], Gobel-Shelah—Striingman [7] use it to deal with modules and in Gobel-Herden—
Shelah [6] use it to construct R, -free Abelian group with endomorphism ring isomor-
phic to a given suitable ring. See [28] for later work.

We try to generalize a version of it but note that we cannot use BB for A, with
[Nyl = Ay as in the ZFC-proof. But instead we can use 3.7! See Sect. 3.2 below and
maybe more in [29].

3.2 Black Boxes with no choice

Context 3.9 We assume ZF only (for this sub-section).
Here we try to deal with ZF-proofs.

We now define a black box, BB suitable without choice (even weak ones).

Definition 3.10 (1) For a natural number k we say x is a k-g.c.p. (general combina-
torial parameter) when x consists of (so ¥ = Yk, etc.):

(a) the set Y and the sets X, for m < k are pairwise disjoint

®) A {n:n={(ny:m<Kk)andn, € “(X,) form < k}

(c) Y] < |Xo| and moreover

(©* fo:Y — Xgis one to one

(d) if m € (0,Kk) then | X,,,| > X<m)y where X -, = H£<m “(X¢), moreover
()T fou:{t : t afunction from X _, to Y} — X,, is one to one.

(1A) We say a k-g.c.p. x is standard when fx ,, is the identity for every m < k and
we fix y, € Y.

(2) For x ak-g.c.p. (as above) we say w is a x-BB, i.e. an x-black box when w consists
of (x = Xy and):

(a) A=Ay C Ay; (if A = Ax we may omit it)
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(b) (@) h: A — &FEDx0y 50 we write h(7) = (hpma():m <K, n < @) 50 hy p i
a function from A into Y
(B) forevery g: 2 — Y, see below for some 7 € A we have
(Ym < K)(Vn)(hy () = g(1 1 (m, n))
(¢) notation:
(@) V=101 @m,n)whenv = (vp:€ <K)andvgisngif¢ <k Al #m
andisvy =ngnif £ =m
B) QLu={n1mn:n<wandn € Aw}so 2, C{n:n= "t <k)
andforl <k,[£ #m = ne € “(Xg)]and [£ =m = ny € ©~ X]}
(V) Q= Um<k Qm'

(3) Above ky = k(x) =k, Qy = Q, Qw.m = Qu, etc.
(4) In Claim 3.13 below we call z simple when it has the form (aj ,2: 17 € Ax, n < o)
where aj , € Z.

Claim 3.11 (1) ForeveryY, y, € Y andK there is, moreover we can define a standard
k-g.c.p. Xx (with witnesses fx n = identity).
(2) For every such xx we can define an X-BB w = Wy,

Remark 3.12 Why we do not choose Ay = Ax? We can have Ay = Ay using a
constant value € Y for the additional cases, so for definability choose a fixed y, € ¥
in 3.10(1), see 3.10(2).

Proof (1) By induction m < k we define (X, fi,) by:

e X, =Yifm=0
e X, = {r:tis afunction from X_,, = [[,_,,(X¢) to Y} ifm >0
e f,, =idy, (so is one to one onto).

m

Now check.
(2)Case 1:k =1

Let Ay = “(Rang(fo)), so Qw = Qw0 = “7(Rang(fo)), hw,, or pedantically
hw.0.n 1s a function from Qv 0 = Aw = {(n):n € “(Rang(fo))} and Qy = {(n):n €
“~(Rang(f0))} and (n) € Aw = (n) 1 (0,n) = (n[n).

Now forn < w we let hy 0.,: Aw — Y be defined by

® hwo0n((n) =n(n) €Y forn € Ay.
Obviously clauses (a),(b)(c«w) from 3.10(2) holds but what about clause (b)(8) of 3.10?
Now for any g: Q2w — Y we choose y, € Y by induction on n as follows: y, =

g(fove):l < n)) = g((ye:l < n)). So = (ye:t < w) € “(Rang(fo)) is as
required.
Case 2:k > 1

Let Aw = {n:n = (g, : m < k) and n,, € “(Rang(f,;)) for m < k} hence
Q= Qw,m and Q, = Q, are well defined.

We now define iy, = hw . form <k,n <o
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()1 forij € Ay = {711 (m,n):7 € Ay andn < w} welet hy () = (fr ' (1))
(mlm) if m > 0 and hy, n () = f,;l(nm (n))if m = 0.
Why welldefinedand € Y7 Clearly if m = Othenh,, ,(7) = fnjl (nm(n)) € Yasn, €
“(Xp) = ®Y andif m > Othenn,, (n) € X,, hence fnjl(nm (n)) € X<m)y soisafunc-
tion from X _,:= [],_,, “X¢ into Y so 57[m € X ., hence (f,;l(nm(n)))(r'; [m) eY.
So clause (b) («) of Definition 3.10 is satisfied. What about clause (b)(8) of Definition
3.10(2)? So let a function g: 2 — Y be given and we shall prove that there is 7 € Ay
as required, in fact define it. Toward this we choose 7,, € “(Rang(f»)) € “(X)
by downward induction on m, and we shall let n,,, = (f;, (tn.n):n < ), where we
choose t,,, € Dom(f;,) by induction on n < w as follows:

(x)2 if m > 0 then ¢, , is the following function from {n[m:n € Aw} = Xy =
ka"’(Xg) to Y:if v = (vp: € < m) € Dom(ty,,,) then t, ,(v) is g(p) € Y
where p = (p¢: £ < K) is defined by:

e if £ > m then py = ny, is well defined by the induction hypothesis on m

o if ¢ =mthenpy = (fn(tm.0), .-, fin(tm.n—1)), well defined by the induction
hypothesis on n

e if £ < m then py = vy, given

(x)3 if m = O then t,,., = g(p) where p is chosen as above except that there is no v.
Now check. O
Claim 3.13 Let x be a k-g.c.p. see 3.10(1) and w an x-BB, see 3.10(2) and A

Aw, Q = Qy, etc. Then G € 9 = Gxo0 S G Zpurely Gx,1 Where Spurely is from
3.16(0) and G € % ﬂ some 7, G = Gy z, which means:

(@) Go=Gxo=®Zx,:peQDZz
(b) G1=Gx1 =®{Qxp:p € QD Qz D {Qyj: 17 € Ax}
(¢) Z=(zj.n:n € Qw) is a sequence of members of Gx

(d) forn € A we define y; n = yz 5.0 by induction on n:
® Vi,0 = Yip

o n!Yintl = Viin — 2ok Xil(nnt1) — Tin

(e) G isthe (Abelian) subgroup of G| generated by {xj:n € QIU{y;zm:n € A,n <
o} U {z}.

Proof Straightforward. O

Claim 3.14 Letk, x, w, 7 be as in 3.10, 3.10(2), 3.13.

(1) Gx ; is almost Ry x)-free (see below Definitions 3.16 and 3.15) provided that Z has
the form {aj yz: N € Ax,n < w) where aj ,, € Z (or less as in [24]).

(2) In Claim 3.13 above, Gy ; is definable (in ZF!) from (X, 7).

(3) Forx ak-g.c.p. and w an X-BB such that Z C Yx we can define 7 = Zy such that
Gy ; (is well defined and) satisfies h € Hom(Gy z, Z) = h(z) = 0.
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(4) For x ak-g.c.p. and w an X-BB we can define an R x)-free Abelian group G such
that Hom(G, Z) = {0}.

Discussion 3.15 (1) Assume H C G = Gy is asubgroup of cardinality < N(). For
eacht € GletY; betheminimal Y C Yy = {x,: p € Qx}U{z}U{y;7:n € A} suchthat
t € &{Qx : x € Y}. If Q¢ U Ay is linearly ordered then U{Y; : r € H} has cardinality
< Ry (x) butin general this explains the “weakly” or “almost” in 3.14. However, it may
occur that this holds for the “wrong” reason say 8o £ |A| in Definition 3.16(2). But
the proof of 3.11, 3.14 gives A-s with “many” such subsets. Note that if k > 2, then
in 3.14 (1), Gy ; is strongly 8 -free.

(2) For proving 3.14(1) note that in the definition of % in [24] there is a use of
choice: dividing the stationary set S,, € A,, to A, pairwise disjoint sets or just the
choice of 7 = (zj: 7 € Ay). However, we can just “glue together” copies of the G
constructed above; i.e. start with G and for every non-zero pure z € G, add G, of
h; : G — G, identify x_. with z, etc.

Definition 3.16 Let G be a torsion free Abelian group (the torsion free means G =
“nx =0",neZ,x € Gimpliesn =0V x =0z).

(0) H € Gif H is asubgroup; H Cpurely G, H a pure subgroup of G, means H € G
andn € Z\{0},nx e G,nx € H = x € H.

(1) We say G is a weakly «-free when : there is a set A such that the pair (G, A) is
k-free, see part (2).

(2) We say (G, A) is k-free when:A € G and PCg(A) = G and if B € A has
cardinality < « then PCg(g) C G is a free Abelian group recalling PCg(A) = the
minimal pure subgroup of G which includes A.

(3) We say G is almost k-free when there is a set A such that the pair (G, A) is almost
k-free, see part (4).

(4) The pair (G, A) is almost k-free when: (G, A) is k-free and A is independent in
G (e >,_,aexe =0= A,_,ar =0whenxo,...,x, €A without repetition).

Proof Proof of 3.14: (1) Let A = {x,:p € Qx} U {z} U {y7:7 € Ax}. Itis easy to
check that A is independent in G [see 3.16(4)] and PCg(A) = G soforany t € G
there is a unique finite ¥; € A such that t € PCg(Y;), ¥; of minimal cardinality.
Now if B C A has cardinality < Nk(x), thenalso Yp:={p : x, € B}U{n | (m, n) :
¥ij € B,m < K(x) and n < o} has cardinality < N().
For some Y C Ord in L[Y] there is a k-c.p. X’1 and z; such that Gy, 7, € L[Y]is
isomorphic (in V) to PC (B). So by [24] we are done.
(2) Should be clear.
(3) We shall define uniformly (in ZF) from k-g.c.p. x and w an x-BB a sequence z
such that the Abelian group G = Gx ., satisfies h € Hom(G, Z) = h(z) = 0.
Foreach € Aleta = {(aw jn:n < w) € “Z be defined by:

(k) aw,ijn 18
o >k mnsr1() when {hy, ,(7) :m <k} CZ
e 0 when otherwise.
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We shall choose by j,, € Z for n < w such that

(%) if aw, j,0 # O then there are no #, € Z for n < w such that for every n
(eqn) n!tn—i-l =1In — aw,jn+1 = bw,r‘),n “Aw, -

Why then can we choose? We choose by 5., € N C Z as minimal such that we cannot
findtg,...,t, € Zsuchthatty ={—n,—n—1,...,—1,0,1,m..., n}and for every
m < n+wehave Z |= “nlty 11 =ty — aw jm+1 — bw,jm — aw, -

Now we define
(k) Z=2Zw = (bwjn-2:1 € Ax,n < ®).
So

(%) (a) Gy z is well defined
(b) ifg € H(Gxz, Z) then h(z) = 0z.

[Why? Clause (a) is obvious. For clause (b) if g is a counterexample by the choice
of w there is 7 € Ay suchthatm < kKA n < ® = g(X51m.n) = hmn(n) that is
n<wo= >, x&Ximn+1) = aw,ij.n. Now use the choice of (by j,:n < w) to
get a contradiction. ]
(4) We derive an example from Gy from part (3).

Let Q' = Q) = {p: p a finite sequence of members of 2} and for p € Q' let

() @ Xp=Xx,p={xp7:7 € Qw}
(®) Yp=Yxp={ypi:0 € Aw}
() (@ Gy=Gyo=Gyo® G where
®) Gho=Gloo=®Zpiip €Ly, il € Q)
© Gpy =Gy =122
() (@) G} =Gy ®Gw21®Gw21® Gyw,1,2 Where
®) Gio=Gly1o=®(QrpipeQandiie )2 G,
© Gy =Gy =Q:2G,
(d) G|, =Gy, =0{Qypi:p € Qandij € Ax}.
Let

(¥) (@) zpbezif p=()and x, () if B € Q\[{<>)
(b) let yp.7.0 = Yp.i
(c) forp e Q) and 7 € Ax we define y, ; , by inductiononn > 0

® YVoiin+1 = Opiiin + 2k Xpilmn) + dij.nzij where
(ajnin < w) € ®Z was defined above using A (1)
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(%) (a) foreveryt € G’1 let supp(x) be the minimal subset X; of Xg = {x, 5
p € Qe QIU{y, 5 p € Qand ) € Ay} such that: reX{Qx:x ¢
X}; used in part (2)

(%) for p € Q" we define an embedding %, from Gy into G| by (see Hy below):

(a) hp(z) =2p
(b) hy(xj) =xp,5 forn € Qy
©) hp(Yin) = Yp.iin-

Now

1 let Gy, be the subgroup of Gy | generated by {X,, j: p € Qi and 7} € Qw}U{z}U
Vo,an:p € Q/w, neAyandn < w}

B Gy, o S Gy is dense in the Z-adic topology.

[Why? Just look at each y, 7 ».]
B3 for p € Q}

(a) hy is a well defined homomorphism
(b) h, isindeed an embedding

(c) Rang(h,) € Gy

(d) Rang(h,) is a pure subgroup of G,
(e) ho-is?

[Why? For clause (a) note the definition of y, 7 ., also the other clauses are obvious.]

B4 Hom(G,,,Z) =0.

[Why?Let g € Hom(GY, Z). Foreach p € 2, the function goh o 1s ahomomorphism
from Gy into Z hence by the previous claim 3.14, (G o h,)(z) = 0. This means that
0=1(g0hy)(z) =g(hy(z)) = g(z,) hence g(z) = 0, using p = () and g(x, 7) =0
for p € Q4,7 € Qx using 7,7z = X, 5. By the choice of G, ) this implies g[G} ,
is zero and by Hj this implies g |G/, is zero, as promised. ] O
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