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THE EXISTENCE OF LARGE w,-HOMOGENEOUS
BUT NOT w-HOMOGENEOUS PERMUTATION GROUPS IS
CONSISTENT WITH ZFC+ GCH

S. SHELAH anp L. SOUKUP

ABSTRACT

Denote by Perm (2) the group of all permutations of a cardinal 4. A subgroup G of Perm () is called
K-homogeneous if and only if for all X, Ye[A]* there is a ge G with g”X = ¥. We show that if either (i) O*
holds and we add w, Cohen reals to the ground model, or (ii) we add 2%+ Cohen reals to the ground model,
then in the generic extension for each 4 > w, there is an w,-homogeneous subgroup of Perm (2) which is
not w-homogeneous.

1. Introduction

Denote by Perm (1) the group of all permutations of a cardinal A. The subgroups
of Perm (1) are called permutation groups on A. We say that a permutation group G
on A is k-homogeneous if and only if, for all X, Ye[A]* with |1\ X] = |4\ Y] = 4, there is
age G with g”X = Y. Given cardinals 4, k and u we write H(4, x, u) to mean that every
k-homogeneous permutation group on 4 is z-homogeneous, as well. P. M. Neumann
has raised the problem whether A > x > u implies H(A,x,u). He proved [3] that
H(A,x, 1) holds for 1 > k > w and u < w. P. Nyikos [4] and independently S. Shelah
and S. Thomas [S] showed that - H(2°,w,,w) is consistent with Martin’s Axiom.
Recently A. Hajnal [1] proved that (], 1mphes - H(w,, w,,w). The aim of this paper
is to construct models of ZFC in which - H(A, w,,w) for each 1 = w,.

We shall use the standard notation of set theory, see [2]. For sets A and B let us
denote by Fin (4, B) the poset whose underlying set consists of all functions mapping
a finite subset of 4 into B and whose ordering is inclusion.

The O* principle asserts that there is a sequence {S,:a < @,) of countable sets
such that for each X c w, we have a closed unbounded C = w, with XNveS, and
CnvesS, for each ve C.

THEOREM 1.1. Assume that either (i) & holds and P = Fin(w,, 2), or (ii) P =
Fin(2%1,2). Then
VPE“- H(, w,,w) for each A = w,

The proof of this theorem is based on the following observation. To formulate
it we need some definitions. Let G be a permutation group on 4. Given X, Yc 4
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we say that X is (G, Y)-large if and only if for each new and g, ...,g,_, € G we have
IX\ U & Y| =IXl; G is called x-inhomogeneous if and only if there are X, Ye[]*

i<n

such that X is (G, Y)-large.

OBSERVATION 1.2.  Assume that V,, < V, are ZFC models and A > w, is a cardinal
inV,. If

(@) VE“X|=w"iff VE“|X|=0w,” for each XeV,,

(b) YXe[A]*nV,IYe[A* nV, X Y,

(c) VyE=‘there is an w,-homogeneous, but w-inhomogeneous permutation group
G on w, containing Perm"«(w,)”,

then V, = - H(A, w,, ).

Proof of the observation. We shall work in V,. For each geG define
g* ePerm (4) by taking g* [w, = g and g*(a) = a for a € A\w,. Let G* be the subgroup
of Perm (1) generated by the set {g*:ge G} U Perm":(1). We claim that G* witnesses
-~H(A,w,,w). First we show that G* is not w-homogeneous. Pick X, Ye[w,]” such
that X is (G, Y)-large. We shall show that X is (G*, Y)-large. Assume on the contrary
that X < |J g{ ¥, where g,€ G*. Then there must be an i < n such that Xng; Y is

i<n

(G, Y)-large. So we can assume that n = 1, that is, X = g"Y for some ge G*. Write
g=hyo(gy)*oh,0...0(g,,_)*oh,, where h,e Perm*+ (1) and g,e G. We can assume
that X and Y were chosen such that m is minimal. Define the function d: Y - m by
the equation B

d(y) = max{j:(h,0(g)* o...0h,)(y)ew,}.

Take Y, = d~'{j} for j < m. For ye Y, we have
(ho(g)*o...oh,)(y) = (hoh,,0...0h,) ().

Since Perm"+(w,) = G, for each j < m there is an f,e G such that

S () = (hohy,0... 0hy)(y)
for each ye Y, Putting W, = f; Y, and Z, = g;_, W, = (g}-,)"W,, this means that

Xc | (ho(gy)*...oh_)'Z,

jsm
But Z, = (g,.,0f)"Y, g,.,0/,€G, so there is a j < m such that, taking
X*=XnN(hyo(g)*...0h_))'Z,

we have that X* is (G, Z))-large. But X* < (h,0(g,)*...oh,_;)"Z;and j—1 < m, which
contradicts the minimality of m. So G* is w-inhomogeneous.

If X,Ye[A]*r first pick X,, Y,e[A]**n ¥, with X = X; and Y c ¥, such that
X\ X| = |Y,\ Y| = w,. Fix f,hePerm"«() with f"X, = w, and #"Y, = w,. Since G
is w,-homogeneous, we have a ge G with g"(f’X) = h"Y. Then (h'ogof)’'X =Y
and h'ogofeG*.

By this observation the following theorem yields Theorem 1.1.
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THEOREM 1.3.  If either (i) OF holds and P = Fin(w,,2), or (ii)) P = Fin(2,2),
then VF = ““ there is an w,-homogeneous, but w-inhomogeneous permutation group G on
w, with G o Perm’ (w,)”.

2. Proof of Theorem 1.3

Since the proof of Theorem 1.3 is quite long and technical, we first sketch the main
ideas.
In both cases we shall define an iterated forcing system with finite support

(P:—1<v<kK, Q,:—1<v<kK)

and an increasing sequence of permutation groups {G,:v < k), G, < Perm"P'(col),
simultaneously, where ¥ = @, in case (i) and k¥ = 2* in case (ii).

Take G, = Perm"(w,) and P, = Q_, = Fin(w,2). Denote by r the Cohen real
given by the V-generic filter over P,. By standard density arguments it is easy to see
that w is (G,, r)-large. We try to carry out the inductive construction of the sequence
{G,:v < k) in such a way that

(a) for each v < k¥ we pick X,, Yve([cul]‘”l)"P", then we construct a permutation
g, VP*! with g’ X, = Y, and take G,,, as the subgroup of Perm” "*'(,)
generated by G, U {g,},

(b) wis (G, r)-large,

and we hope that the sequence {G,:v < k) will give us a required permutation group.
In case (ii) we use a book-keeping function to ensure that every pair X, Y e ([e,]*)" **
with |w;\X| = |w,\Y| = o, will be chosen as X,, Y, in some step. Then G= |J G,
v< 21
will be w,-homogeneous. So the question is whether we can preserve (b) during the
induction. In case (i) we can pick only w,-many pairs (X, ¥, so we cannot expect that

G’ = |J G,will be w,-homogeneous. But in this case we use the & principle to pick

V<o,
the sets X, Y, for v < w, in such a way that, if we consider the elements of G’ as the
family of countable approximations of our required group, and if we take

G= {gePerm"P""(wl):Vv <w,3geGg[v=_gv}

then G will be w,-homogeneous. Obviously, w is (G, r)-large provided that w is
(G’, r)-large.

So the question is whether one can preserve (b). Unfortunately we cannot prove
a preservation theorm for the (G, r)-largeness of w, but we shall introduce the notion
of goodness of a pair (G, r) which can be preserved during a suitable iteration and it
will be clear from the definition that the goodness of (G, r) implies that w is (G, r)-
large.

After this introduction let us see the details.

For gePerm (w,) and r < w, we shall write, by an abuse of notation, g(r) for g"r.
Given sets X and Y let us denote by Bij (X, Y) the set of all bijections between subsets
of X and Y.

If ay, a,,b, and b, are subsets of w, with a, N a, = b, N b, = J take
Qaa,al, b0y {80 U g,:8,€Bij,(a,b) and |g| < wforie2}

and '@au, ay,bg, by <Qau,al,bo, by = >
7.2
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DEerFNITION 2.1, Let # < Bij (w,,®,) and r c o be given.

1. Asequence & = (x,:v < u) < [w,]<* is called (¥, r)-large if and only if for
each new and h,, ..., h,_, € F there exists a v < u such that

x,N J{h(r):i<n}=g.
2. We say that the pair (&, r) is good if and only if every uncountable sequence

{y,:v < w,) of pairwise disjoint, finite subsets of w, has a countable initial
segment (y,:v < u) which is (#,r)-large.

Case (i): O holds and P = Fin (w,,2). We shall define an iterated forcing system
(Pi=-1<v< 0,0, —1<v<w)

with finite support, such that P,=Q_, = Fin(w,2) and for each v < w, either
0, = Fin(w,2) or

P, 6 — . : v v v v 13
VEE“Q, = 2, 4.5, 5 for some infinite, countable subsets Ay, 4}, By, B) of w,”.

Since V% = ““ the completions of Q, and Fin (w, 2) are isomorphic”, we have V* = V¥a,,
and so we may construct our desired permutation group in ¥*«. For v < w, let %, be
the P,-generic filter. Take g = U%,:w—2 and r = g7'{1}.

Fix a large enough regular cardinal x and let {(N,:v < w,) be a sequence of
countable, elementary submodels of #, = (H,,€, <), where H, consists of the sets
whose transitive closure has cardinality less than x and < is a well-ordering of H,,
with the property that {(N,:u < v)eN, for each v < w,. Fix a {*-sequence

& = (S0 <w;y€EN,.
If v< u <w, and 4 is a P-generic filter, then take
N,[9]={K4x):xeN,}.

A P, -name j of the characteristic function of a subset of w, is called a canonical
v-name if and only if v<w, and there exist maximal antichains Dfc P, and
functions h’g:D’g — 2 for £ev such that

7=1{.EDyi= hip),peDLev);

7 is called a nice v-name if and only if 7 is a canonical v-name and |J D’; <P, We
<y

shall usually identify sets and their characteristic functions. To simplify our notation
we shall write pl—“pe g for pl—"7(p) = 1".
If A4 is a nice v-name and ¥ is a P, -generic filter, then we write

A9 = {£ev:Ipegp I Ec ).
Given a P, -name A and v < w, take
A[*v={{p,xyed:peP,}.

_ Atriple {4, B, C) is called v-remarkable if and only if C = v is a club, A[*u and
B[ *u are nice y-names and (A [*u,B[*u,CnpuyeN, for each ue C U {v}.
Take
Rem (N,) = {¢4, B, C):{A, B, C) is v-remarkable}.

First we construct the family %’ of ‘countable approximations’ of elements of
our required permutation group.
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By induction on v we shall define the posets Q,,,,, for i < w, functions f ; 5 ¢, for
{A4,B,C)eRem(N,) and families #, = Bij,(,,®,) in V%= such that
(@ #,= Bl.]p(wl’ )NV,
(®) <ZF u<vieN|lg,) N
(C) ‘g’—v = U gy U {f.<1,§,c> : <A’ Bs C> € Rem (Nv)}’

u<v
(d) domﬁég'c> =r1anf; 5.y, = ¥ 5 cy 1OF SOme .z 5 o€ CU{v},
(e) if (4,B,CyeRem(N,), ueC, then

f@l'u,ﬁl*ﬂ,cnﬂ) =f<A’,§,C) [7(1[*#,5['/‘.%#)‘

Assume that (& ,:u <v) is constructed. From now on we shall work in V[%,).
Put #_,= |J &, For a triple (4, B,C)eRem(N,) take

u<v

f?ABC‘> Uf<A[#Bl'l‘Cﬂu>

uec
and

}”(*,Z,E,c> = SUPY A, Bl*p, Copy:
necC
Clearly f%; 5 c,€N,[9,.]-
Let .
={f{s.5.cy:<{4,B,CyeRem(N,)}.
Then N,[9,]J€eN,,, [ng] implies that &# *eN,,,[%,) and #} is countable in
N, [9,.) So we can fix an enumeration
F = sycpd <0}
in N,,,[9,,). To simplify our notation we shall write
v =Sy 8¢
We define the posets Q,,,, and the functions
f<,4';,§;, P of 2‘1;,5;, cp
by induction on j. Assume that we have done it for i <j. Take
=F VF IV s epi<p
Put
I,= [}’Z:;;, B¢y V).
Take &=cwv+j. Let A=1,nA4[9,], A=I1)\4[%,] Bi=1I,0nBI[Y%,)
B{=1, ,\B"[ ) and 28 = 248 4%, 8, B
If the sets Af,,Ai, B§ and B‘ are all (&1, r)-large, then put Q, = 2¢. Let % be the
Q,-generic filter over VP ¢. Take
fiaycp=VF
and let
Seay5.cp =S iy 8,0 VS Cay sy cp
and SO Y4y 55 cr =
Otherw1se if at least one of the sets 45, A%, BS and BY is not (¥ 7, r)-large, put

Qs = Fin(w,2), f(A, a.ep = = and f(A Bl.cp = ﬁ By.¢)
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The inductive construction is complete.

Take # = |J Z,. Let #' be the closure of & under composition and inverse

vEw,

image.
LEMMA 2.2. The pair (¥',r) is a good pair.
Since its proof is quite long we postpone it for a while.

Having the family &  of countable approximations we are ready to construct G.

A pair {4, B) is called nice if and only if both 4 and B are nice w,-names of
uncountable, co-uncountable subsets of w,. Using the & principle, for each nice pair
(A, B) choose a club set C = C; 5 = w, such that 4*v and B[ *v are nice v-names
and (A[*v, B[*v, CNv)eN, for all ve C, and put

- B~ Uf;A['v Bl*v,Cnv)*

veC

Let G be the subgroup of Perm (w,) generated by the set
{1 5: <4, B) is a nice pair with dom f; 5 = w,}.

We claim that G satisfies the requirements of the theorem

Since cofinally many countable initial segments of the elements of G are in &',
Lemma 2.2 implies that (G,r) is a good pair. Applying this fact for w, as an
uncountable sequence of pairwise disjoint finite subsets of w, we obtain that there is
a countable ordinal « which is (G, r)-large. This means that G is w-inhomogeneous.

Next we show that G is w,-homogeneous. Pick a nice pair (4, B). Let C = Cis
and consider the function

f=f.1,§ = Uf<.4'['v,§r-v,cnv>-

veC

If dom (f) = w, then feG and f"A = B, so we are done. Assume that dom (f) =
# < w,. Then pe C. But the pair (¥ ', r) is good, so thereis a v > u, ve C, such that the
sets (V\u) N 4, (W\u)\4, (W\u) n B and (v\u)\B are all (¥, r)-large. So we get

dom (.féﬁ['v,ﬁ['v,cnv)) = V\ﬂ.

Thus dom (f) o v which gives a contradiction, so G is w,-homogeneous.
Finally we present the postponed proof of Lemma 2.2.

Proof of Lemma 2.2. First we introduce some notion.

A condition pe P, is called determined if and only if, for each & < @, if p(&) # lop
thenp[EI—%Q, = Fm (0,2)” orp[EI=4Q, = 2¢” and there is a function F, ; in the
ground model such that po = F,,, ¢ Put

Det(P,) = {peF, :pis determined}.

The proof of the following sublemma is straightforward.

SUBLEMMA 2.2.1.  We have Det(F,,) is dense in F,, .
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Consider a condition peDet (£, ). For each (A, E;, C;>eRem(N,) take

7 = Ufplwp+):p [ (wp+)E“Q,,. = 2, ue C; U {v} and
<Aan ¢ = <A,” K, B; [*u, C 1N W}

The finite function f17 gathers all the 1nforrnat10n contained in p about f & 5 cx.

An F-term t is a sequence <hgy by .o b, > Where by = f, or h, f,1 for some
f,e%. We also use ¢ to denote the functlon h o...oh,_,. We say that ¢’ is a subterm
of tif ¢ =<hy,....hp, where 0 < iy < ... < iy < n—l.

Given an #-term t=<hy,h,,....h, > and a condition peDet(F,) take
1" = hyo...0h,_,, where

h, if hye F, (= Bij,(@;, @) 0 V),
hy={ " if h, = f & 8¢y, for some (4, B;,C)yeRem(N,),
(FIy if h, (f(A,‘Brcp) ! for some <A}, B}, C> eRem(N,).

If Tis a set of #-terms let T = {?):te T).
Given p e Det (P,), { €, and a function Fe Bij,(w,, w,), if p [ I="p(E) U Fe Q,;”
then write p A F for the condition ge Det (P, ) defined by the formula

pPOUF if{=¢,
CI(O = {p({) otherwise.

If p[{e¥,, then let
19 = J{t?"9:qe%] and T'[¥]={""[%]:1eT}.

If a = w, then, by an abuse of notation, we shall write #(a) for ¢"a and T(a) for

U #(a).

teT

Assume now on the contrary that
PI=*Z={Z a<w} is a sequence of pairwise disjoint finite subsets of w,,
{Uﬁ: B < w,} is a sequence of finite sets of F -terms such that Z,n Uﬂ(r) # & for each
a<f<w”

For each & < w, choose a condition p, € Det (P )» a set y,€[w;]<“ and a finite set
of #-terms T, such that p_IF “%, =, and U, =T, *. We can assume that every T, is
closed under subterms

SUBLEMMA 2.2.2. There are a < p < w, and a condition peDet(F,,) such that
PSPy ppand p="“TP(NNy,= .

Proof. Without loss of generality we can assume that {supp (p,):® < w,} forms
a A-system with kernel d, such that —1ed and p,[d = g for each a < w,. Then
q(—1)eFin(w,2). Take D = dom (g(—1)).

Consider a te T,. If a, < a; < o then u = (%" %+ %)) js a 1 —1 function, and
50 (7)) N u(y,,) = @ Thus

o < w:(P"%)(y )N D # P} < |D|.

But T, is finite, so there is an a < such that TPUPJI(D)ny, = &. Take
E = (TiP="?)1y . Then DNE = . Put p =p,Ap,Aq’, where g’ is defined by the

equations supp(¢’) = {—1} and g'(—1) = {{m,0):me E}. Then p is determined and
p=“TP()ny, = &, because (T1")(y,) < E and pl—“rnE=g".
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Take T = (Tp™ d;({t‘lztrs T} and y = y,. Then
p=*TP(p)nr=Fbut T)nr# .

We shall find p* < p such that p* I=“T"*")(y) nr = & and p* ‘fully decides’ T(y),
that is, p* I—=“T(y) = T'*"I(y)” contradicting pl—“T(y)Nr # & .

DEFINITION 2.3.  Let p*€Det (P, ), s be an #-term, S be a set of #-terms, pew,,
zcw, tew,s=(hyhy, .. h, ).
1. We say that p* fully decides s(p) if and only if there is a sequence {p,, ..., p,,>
such that p, =p and p*i—“h(p) = p,,,” for i <m and either m=n or
m < nand p* —“p,¢dom(h,)”.
2. We also say that p* fully decides S(z) if and only if it fully decides s(p)
whenever se S and pez.
3. Take dcd(p*, S,z) = {<s,p)> €S x z: p* fully decides s(p)}.
4. If p* [£€ ¥, then put dcd (p*, S,2)[%,] = U {dcd(p* A g, S,2):ge%,}.
If geDet(F,), ye[w,]*“ and S is a set of F-terms we shall define the set of

undecided evaluations as follows: let Und (g, S, y) be the set of triples {x, {v,j), e for
which there exist se S, s = <{h,y,...,h,), and ney satisfying (a) to (d) below:

(@) xew,, ee{—1, +1} and A, '(fu 85,03

(b) taking u = (ho, ...,h,_1> we have uiql(ﬂs

(©) x¢domfi, ife =1,

(d) x¢ranfl9, ife=—1.

For {u,i)ew, xw define Und*(q, T, y,u,i), the set of undecided evaluations
which will be decided in step u, as follows: it contains a triple {x,{v,j),ed€e
Und(q, T, y) if and only if (A) to (C) below are satisfied:

(A) <A, By, Cty = <471 *m, By [*u, 0 ),
(B) gl—“xedomfiz g c»,” provided e =1,
(C) gl—"xeranf sz g c»” provided e = —1.

Let Und~(q,T,y,u,i), the family of undecided evaluations which remain
undecided in step 4, be the set of triples (x,<v, j>,e>eUnd (g, T,y,u,i) with

(AL By Oy # (AT, By [0, G0 i or with g1z go ooy = &7
If g[¢€Y,, ¢ < wu+i, then take
Und(q, T, »)[%] = U{Und(qAq’, T, y):q' €%,
Und*(q, T, y, 1, 1)[%) = U{Und* (A ¢, T,y,u,i):q' €%
Und~(q, T, y,4,))[%9) = U{Und"(gAq, T, y,11,i):q' €9}

SUBLEMMA 2.3.1. There is a condition p* < p which fully decides T(Y) and
prI=<T® (»nr=g".

and

Proof. We shall define a finite, decreasing sequence of determined conditions,
DosP1s -+, P = p* satisfying (I) and (II) below for each / < /*:
@ p =T () nr=3”;
(D) |ded(p,y, T, )| < |ded (p,, T, )I-
Put p, = p and assume that p, is constructed.
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Choose the minimal (g, i in the lexicographical order of w, x w with the property
(*) below:

(*) there is a p’e P, ,,,p" < p,[(wu+1i), such that taking p; = p’ A p, we have
Und* (p;, T, y, 4, 1) # &.

To simplify our notation take ¢ = wu+i. Let %, be a P.-generic filter with p’e %,
By the minimality of {u,i) we have T'"?1[4](y) = T'"(y) and so

M NGIE“T™(G)»nnr=3".
Clearly

Und(p;, T, »)[9] = Und* (p;, T, y, 1, D[] U Und"~ (p}, T, y, 1, D [%}].

The condition p,,, will be constructed by a finite induction. Working in V][9] we
shall define a natural number o, and determined conditions p, g, p; 1, --+s P10, SUCh
that for all £ < o, (i) to (vi) below are satisfied:

() P [le¥,
1) pii < Pyg-1s
(111) Dy [[é‘*‘ 1,(01) =D [[5"‘ lawl)a
v) VIGIE“T™H[G]()nr=2",
(v) lded (py k-1 Ts ) [9)l < |ded (p,,4, T, ) (4],
(vi) Und*(p,,,, .y, ,) (9] = .

Let p, o = p,- Then (iv) holds by (f). Assume that p, , is chosen. If

Und* (Pl,k’ T,y,u,i) (9]l=2

then put o, = k. We remark that (v) and |ded (p, 4,1, T, ¥) [9))l < |T x y| imply that
o0, £ |T x y|. Suppose now that (vi) fails for £ and pick a witness

Xy Vs Jie)s €2 € Und* (Pz,k’ T,y,u,)[%]
Let T, = T'?.¥[%], choose a

AINTIUNUTCUY) ife, =1,
¢ {51‘[%]\(7‘;10 U UTYruy)) ife,=—1
and take
F = {{<xk’ zk>} if €y = 1,
Kz, Xy} ife,=—1.

_ We remark that z, is chosen from a non-empty set, because both A*[%) and
Bj[%] are (# !, r)-large.
Choose pf, €%, such that

P:k = “Pz,k A cF;c € Pw1 and <{x,, {Vy,J), €, € Und* (pl,k’ T,y,u,)[9]”

and put p, ,,; = (P} AP, ) A F,. We need to check only (iv). Working in V[¥)]
assume on the contrary that there are aey and teT, t = <{h,,...,h,_,>, such that
£2ue1[ 4] (o) e r. We can assume further that ¢ is of minimal length. Write a, = o and
®,,, = h(a,) for s < m. Since (iv) holds for &, it follows that r1?.#[4] () ¢ r. Suppose
first that e, = 1. Then there must be an s < m such that

a,=x, and h, =f<§';, A7,y
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or
a, =z, and h =l cg>)_1»
where
CAI*u, BY [ *u, CI0 ) = AL, BY, CF).

Pick the minimal s. Then a,e T'*.#[¥4](y), because T is closed under subterms.
But z, ¢ T'*.8[9](y), so a, = x, and a,,, = z,. But ¢ is of minimal length and T is
closed under subterms, so we have that there are no s' >s with a, = x, and
hy =f . gncry OF with a, =z, and h, =(f o8, c-,>) But this means that
Z, = ame(]‘“’l 29D 7(r), whlch contradlcts the ' choice of z,. If e, =—1, then a
similar argument works. Condition (v) obviously holds by the construction.

So we have p, ,. Choose a condition p}’ €%, such that

pE S p [ &t It [Gl(y)nr = &7
and taking p,,, = pf A Pio, WE have
PSPl [G](3) = 20 ().

Since 17100 [4,](y) = t!P1[Z] (), it follows that p,,, satisfies (I); (II) is clear from the
construction.

If there are no more {y, i) with property (x), then we finish the construction of the
decreasing sequence p,, p,, . . - , P,.. This must happen after at most | T x y| steps, because
(II) holds and |dcd (p,, T, y)| < |T x y|. Let p* = p,.. Since there are no more {u,i)
satisfying (*), it follows that p* fully decides T(y) and p* I—“T"*"(y)nr = &, and
so p* satisfies the requirements of the sublemma.

We continue the proof of Lemma 2.2. Let ¢, be any P, -generic filter with
p*e9¥. Then in V[9, ] we have T'*"(y) = T(y), because p* fully decides T(y), and
so T(y)nr=. But pe9,, and pI—=“T(y) nr # &”. Contradiction, the lemma is
proved.

We return to the proof of Theorem 1.3.

Case (ii)): P = Fin(2*,2). Since the proof in this case is simpler than in Case (i)
and it does not require any new ideas, we shall sketch it only and leave the details to
the readers.

Consider the iterated forcing system (P,:v < 2“1, Q,:v < 2“1 with finite support,
where Q, = Fin(w, 2) and Q, = Fin(w,, ) for 1 < v < 2%, Since P is isomorphic to
a dense subset of P,s,, we must show that /2“1 contains a suitable permutation group.

Let r be the Cohen real in V< given by the Q,-generic filter. We shall define, by
induction on g, permutation groups G, on w, for 1 < x < 2 such that

(@ G,=G, forv<y,
(b) V“’ I=“the pair (G, r) is good”.

Case1l: p=1.Take G, = Perm"(w,). Standard density arguments show that G,
satisfies (b).

Case 2: uis a limit. Take G, = U G, A suitable modification of the proof of
v<yu

Lemma 2.2 shows that G, satisfies (b).
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Case 3: p=v+1. We shall work in V*. Pick sets X,, ¥, € w, with
1X,| = lo,\X,| = Y] = |0\ Y] = @

Since (G,,r) is a good pair, we can fix partitions {X? :a <}, {Y}, & <},
{X; sa<o}and {Y] :a <} of X,,Y,w,\X, and w,\Y,, respectively, such that
each of the X} , and Y} , are countable and (G,, r)-large. Let

= {feBij, (0, 0):|f| <0, f'X},c Y, foreacha < w, and ie2}.

Take %, = (Rv, 2). Then £, is isomorphic to Q,, so the Q,-generic filter over V%
gives us an 4,-generic filter &, over V. Take g, = U %, and let G, be the subgroup of
Perm”” *(w,) generated by G, U {g,}. The proof of that (b) remains true is a suitable
modification of the proof of Lemma 2.2 and it is left to the readers.

So G = G, is w-inhomogeneous, because the pair (G, r) is good. Using a book-
keeping function we can ensure that {(X,, Y,):v < 2%1} enumerates all the pairs (X, Y)
of uncountable, co-uncountable subsets of w, in V" Since g, X, = ¥,, it follows that
G is w,-homogeneous.
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