THE EXISTENCE OF LARGE ω_{1}-HOMOGENEOUS BUT NOT ω-HOMOGENEOUS PERMUTATION GROUPS IS CONSISTENT WITH ZFC+GCH

S. SHELAH and L. SOUKUP

Abstract

Denote by Perm (λ) the group of all permutations of a cardinal λ. A subgroup G of Perm (λ) is called κ-homogeneous if and only if for all $X, Y \in[\lambda]^{x}$ there is a $g \in G$ with $g^{\prime \prime} X=Y$. We show that if either (i) \diamond^{+} holds and we add ω_{1} Cohen reals to the ground model, or (ii) we add $2^{\omega_{1}}$ Cohen reals to the ground model, then in the generic extension for each $\lambda \geqslant \omega_{2}$ there is an ω_{1}-homogeneous subgroup of Perm (λ) which is not ω-homogeneous.

1. Introduction

Denote by Perm (λ) the group of all permutations of a cardinal λ. The subgroups of Perm (λ) are called permutation groups on λ. We say that a permutation group G on λ is κ-homogeneous if and only if, for all $X, Y \in[\lambda]^{\kappa}$ with $|\lambda \backslash X|=|\lambda \backslash Y|=\lambda$, there is a $g \in G$ with $g^{\prime \prime} X=Y$. Given cardinals λ, κ and μ we write $H(\lambda, \kappa, \mu)$ to mean that every κ-homogeneous permutation group on λ is μ-homogeneous, as well. P. M. Neumann has raised the problem whether $\lambda>\kappa>\mu$ implies $H(\lambda, \kappa, \mu)$. He proved [3] that $H(\lambda, \kappa, \mu)$ holds for $\lambda>\kappa \geqslant \omega$ and $\mu<\omega$. P. Nyikos [4] and independently S. Shelah and S . Thomas [5] showed that $\neg H\left(2^{\omega}, \omega_{1}, \omega\right)$ is consistent with Martin's Axiom. Recently A. Hajnal [1] proved that $\square_{\omega_{1}}$ implies $\neg H\left(\omega_{2}, \omega_{1}, \omega\right)$. The aim of this paper is to construct models of ZFC in which $\neg H\left(\lambda, \omega_{1}, \omega\right)$ for each $\lambda \geqslant \omega_{2}$.

We shall use the standard notation of set theory, see [2]. For sets A and B let us denote by Fin (A, B) the poset whose underlying set consists of all functions mapping a finite subset of A into B and whose ordering is inclusion.

The \diamond^{+}principle asserts that there is a sequence $\left\langle S_{\alpha}: \alpha<\omega_{1}\right\rangle$ of countable sets such that for each $X \subset \omega_{1}$ we have a closed unbounded $C \subset \omega_{1}$ with $X \cap v \in S_{v}$ and $C \cap \nu \in S_{v}$ for each $\nu \in C$.

Theorem 1.1. Assume that either (i) \diamond^{+}holds and $P=\operatorname{Fin}\left(\omega_{1}, 2\right)$, or (ii) $P=$ Fin ($2^{\omega_{1}}, 2$). Then

$$
V^{P} \models " \neg H\left(\lambda, \omega_{1}, \omega\right) \text { for each } \lambda \geqslant \omega_{1} " .
$$

The proof of this theorem is based on the following observation. To formulate it we need some definitions. Let G be a permutation group on λ. Given $X, Y \subset \lambda$

[^0]J. London Math. Soc. (2) 48 (1993) 193-203
we say that X is (G, Y)-large if and only if for each $n \in \omega$ and $g_{0}, \ldots, g_{n-1} \in G$ we have $\left|X \backslash \bigcup_{i<n} g_{i}^{\prime \prime} Y\right|=|X| ; G$ is called κ-inhomogeneous if and only if there are $X, Y \in[\lambda]^{\kappa}$ such that X is (G, Y)-large.

ObSERVATION 1.2. Assume that $V_{0} \subset V_{1}$ are ZFC models and $\lambda \geqslant \omega_{2}$ is a cardinal in V_{1}. If
(a) $V_{0} \vDash "|X|=\omega_{1}$ " iff $V_{1} \vDash "|X|=\omega_{1}$ " for each $X \in V_{0}$,
(b) $\forall X \in[\lambda]^{\omega_{1}} \cap V_{1} \exists Y \in[\lambda]^{\omega_{1}} \cap V_{0} X \subset Y$,
(c) $V_{1} \vDash$ "there is an ω_{1}-homogeneous, but ω-inhomogeneous permutation group G on ω_{1} containing Perm ${ }^{V_{0}}\left(\omega_{1}\right)$ ",
then $V_{1} \vDash \neg H\left(\lambda, \omega_{1}, \omega\right)$.

Proof of the observation. We shall work in V_{1}. For each $g \in G$ define $g^{*} \in \operatorname{Perm}(\lambda)$ by taking $g^{*}\left\lceil\omega_{1}=g\right.$ and $g^{*}(\alpha)=\alpha$ for $\alpha \in \lambda \backslash \omega_{1}$. Let G^{*} be the subgroup of Perm (λ) generated by the set $\left\{g^{*}: g \in G\right\} \cup \operatorname{Perm}^{V_{0}}(\lambda)$. We claim that G^{*} witnesses $\neg H\left(\lambda, \omega_{1}, \omega\right)$. First we show that G^{*} is not ω-homogeneous. Pick $X, Y \in\left[\omega_{1}\right]^{\omega}$ such that X is (G, Y)-large. We shall show that X is $\left(G^{*}, Y\right)$-large. Assume on the contrary that $X \subset \bigcup_{i<n} g_{i}^{\prime \prime} Y$, where $g_{i} \in G^{*}$. Then there must be an $i<n$ such that $X \cap g_{i}^{\prime \prime} Y$ is (G, Y)-large. So we can assume that $n=1$, that is, $X \subset g^{\prime \prime} Y$ for some $g \in G^{*}$. Write $g=h_{0} \circ\left(g_{0}\right)^{*} \circ h_{1} \circ \ldots \circ\left(g_{m-1}\right)^{*} \circ h_{m}$, where $h_{i} \in \operatorname{Perm}^{V_{0}}(\lambda)$ and $g_{i} \in G$. We can assume that X and Y were chosen such that m is minimal. Define the function $d: Y \rightarrow m$ by the equation

$$
d(y)=\max \left\{j:\left(h_{j} \circ\left(g_{j}\right)^{*} \circ \ldots \circ h_{m}\right)(y) \in \omega_{1}\right\}
$$

Take $\left.Y_{j}=d^{-1}\{ \}\right\}$ for $j \leqslant m$. For $y \in Y_{j}$ we have

$$
\left(h_{j} \circ\left(g_{j}\right)^{*} \circ \ldots \circ h_{m}\right)(y)=\left(h_{j} \circ h_{j+1} \circ \ldots \circ h_{m}\right)(y)
$$

Since $\operatorname{Perm}^{V_{0}}\left(\omega_{1}\right) \subset G$, for each $j \leqslant m$ there is an $f_{j} \in G$ such that

$$
f_{j}(y)=\left(h_{j} \circ h_{j+1} \circ \ldots \circ h_{m}\right)(y)
$$

for each $y \in Y_{j}$. Putting $W_{j}=f_{j}^{\prime \prime} Y_{j}$ and $Z_{j}=g_{j-1}^{\prime \prime} W_{j}=\left(g_{j-1}^{*}\right)^{\prime \prime} W_{j}$, this means that

$$
X \subset \bigcup_{j \leqslant m}\left(h_{0} \circ\left(g_{0}\right)^{*} \ldots \circ h_{j-1}\right)^{\prime \prime} Z_{j}
$$

But $Z_{j} \subset\left(g_{j-1} \circ f_{j}\right)^{\prime \prime} Y, g_{j-1} \circ f_{j} \in G$, so there is a $j \leqslant m$ such that, taking

$$
X^{*}=X \cap\left(h_{0} \circ\left(g_{0}\right)^{*} \ldots \circ h_{j-1}\right)^{\prime \prime} Z_{j}
$$

we have that X^{*} is $\left(G, Z_{j}\right)$-large. But $X^{*} \subset\left(h_{0} \circ\left(g_{0}\right)^{*} \ldots \circ h_{j-1}\right)^{\prime \prime} Z_{j}$ and $j-1<m$, which contradicts the minimality of m. So G^{*} is ω-inhomogeneous.

If $X, Y \in[\lambda]^{\omega_{1}}$ first pick $X_{0}, Y_{0} \in[\lambda]^{\omega_{1}} \cap V_{0}$ with $X \subset X_{0}$ and $Y \subset Y_{0}$ such that $\left|X_{0} \backslash X\right|=\left|Y_{0} \backslash Y\right|=\omega_{1}$. Fix $f, h \in \operatorname{Perm}^{V_{0}}(\lambda)$ with $f^{\prime \prime} X_{0}=\omega_{1}$ and $h^{\prime \prime} Y_{0}=\omega_{1}$. Since G is ω_{1}-homogeneous, we have a $g \in G$ with $g^{\prime \prime}\left(f^{\prime \prime} X\right)=h^{\prime \prime} Y$. Then $\left(h^{-1} \circ g \circ f\right)^{\prime \prime} X=Y$ and $h^{-1} \circ g \circ f \in G^{*}$.

By this observation the following theorem yields Theorem 1.1.

Theorem 1.3. If either (i) \diamond^{+}holds and $P=\operatorname{Fin}\left(\omega_{1}, 2\right)$, or (ii) $P=\operatorname{Fin}\left(2^{\omega_{1}}, 2\right)$, then $V^{P} \vDash$ " there is an ω_{1}-homogeneous, but ω-inhomogeneous permutation group G on ω_{1} with $G \supset \operatorname{Perm}^{V}\left(\omega_{1}\right)$ ".

2. Proof of Theorem 1.3

Since the proof of Theorem 1.3 is quite long and technical, we first sketch the main ideas.

In both cases we shall define an iterated forcing system with finite support

$$
\left\langle P_{v}:-1 \leqslant v \leqslant \kappa, Q_{v}:-1 \leqslant v<\kappa\right\rangle
$$

and an increasing sequence of permutation groups $\left\langle G_{v}: \nu\langle\kappa\rangle, G_{v} \prec \operatorname{Perm}^{\nu^{P} v}\left(\omega_{1}\right)\right.$, simultaneously, where $\kappa=\omega_{1}$ in case (i) and $\kappa=2^{\omega_{1}}$ in case (ii).

Take $G_{0}=\operatorname{Perm}^{V}\left(\omega_{1}\right)$ and $P_{0}=Q_{-1}=\operatorname{Fin}(\omega, 2)$. Denote by r the Cohen real given by the V-generic filter over P_{0}. By standard density arguments it is easy to see that ω is $\left(G_{0}, r\right)$-large. We try to carry out the inductive construction of the sequence $\left\langle G_{\nu}: \nu<\kappa\right\rangle$ in such a way that
(a) for each $v<\kappa$ we pick $X_{v}, Y_{v} \in\left(\left[\omega_{1}\right]^{\omega_{1}}\right)^{V^{P_{v}}}$, then we construct a permutation $g_{v} \in V^{P_{v}+1}$ with $g_{v}^{\prime \prime} X_{v}=Y_{v}$ and take G_{v+1} as the subgroup of $\operatorname{Perm}^{V^{P_{v+1}}}\left(\omega_{1}\right)$ generated by $G_{v} \cup\left\{g_{v}\right\}$,
(b) ω is $\left(G_{v}, r\right)$-large,
and we hope that the sequence $\left\langle G_{v}: \nu\langle\kappa\rangle\right.$ will give us a required permutation group. In case (ii) we use a book-keeping function to ensure that every pair $X, Y \in\left(\left[\omega_{1}\right]^{\omega_{1}}\right)^{V_{2} \boldsymbol{P}_{2} \omega_{1}}$ with $\left|\omega_{1} \backslash X\right|=\left|\omega_{1} \backslash Y\right|=\omega_{1}$ will be chosen as X_{v}, Y_{v} in some step. Then $G=\bigcup_{v<2^{\omega_{1}}} G_{v}$ will be ω_{1}-homogeneous. So the question is whether we can preserve (b) during the induction. In case (i) we can pick only ω_{1}-many pairs $\langle X, Y\rangle$, so we cannot expect that $G^{\prime}=\bigcup_{\nu<\omega_{1}} G_{v}$ will be ω_{1}-homogeneous. But in this case we use the \diamond^{+}principle to pick the sets X_{v}, Y_{v} for $v<\omega_{1}$ in such a way that, if we consider the elements of G^{\prime} as the family of countable approximations of our required group, and if we take

$$
G=\left\{g \in \operatorname{Perm}^{v^{P \omega_{1}}}\left(\omega_{1}\right): \forall v<\omega_{1} \exists g^{\prime} \in G^{\prime} g\left\lceil v=g^{\prime}\lceil v\}\right.\right.
$$

then G will be ω_{1}-homogeneous. Obviously, ω is (G, r)-large provided that ω is (G^{\prime}, r)-large.

So the question is whether one can preserve (b). Unfortunately we cannot prove a preservation theorm for the (G, r)-largeness of ω, but we shall introduce the notion of goodness of a pair (G, r) which can be preserved during a suitable iteration and it will be clear from the definition that the goodness of (G, r) implies that ω is (G, r) large.

After this introduction let us see the details.
For $g \in \operatorname{Perm}\left(\omega_{1}\right)$ and $r \subset \omega_{1}$ we shall write, by an abuse of notation, $g(r)$ for $g^{\prime \prime} r$. Given sets X and Y let us denote by $\operatorname{Bij}_{p}(X, Y)$ the set of all bijections between subsets of X and Y.

If a_{0}, a_{1}, b_{0} and b_{1} are subsets of ω_{1} with $a_{0} \cap a_{1}=b_{0} \cap b_{1}=\varnothing$ take

$$
Q_{a_{0}, a_{1}, b_{0}, b_{1}}=\left\{g_{0} \cup g_{1}: g_{i} \in \operatorname{Bij}_{p}\left(a_{i}, b_{i}\right) \text { and }\left|g_{i}\right|<\omega \text { for } i \in 2\right\}
$$

and $\mathscr{Q}_{a_{0}, a_{1}, b_{0}, b_{1}}=\left\langle Q_{a_{0}, a_{1}, b_{0}, b_{1}}, \supseteq\right\rangle$.

Definition 2.1. Let $\mathscr{F} \subset \operatorname{Bij}_{p}\left(\omega_{1}, \omega_{1}\right)$ and $r \subset \omega$ be given.

1. A sequence $\mathscr{X}=\left\langle x_{v}: v<\mu\right\rangle \subset\left[\omega_{1}\right]^{<\omega}$ is called (\mathscr{F}, r)-large if and only if for each $n \in \omega$ and $h_{0}, \ldots, h_{n-1} \in \mathscr{F}$ there exists a $v<\mu$ such that

$$
x_{\nu} \cap \bigcup\left\{h_{i}(r): i<n\right\}=\varnothing
$$

2. We say that the pair (\mathscr{F}, r) is good if and only if every uncountable sequence $\left\langle y_{v}: v<\omega_{1}\right\rangle$ of pairwise disjoint, finite subsets of ω_{1} has a countable initial segment $\left\langle y_{v}: \nu\langle\mu\rangle\right.$ which is (\mathscr{F}, r)-large.

Case (i): \diamond^{+}holds and $P=\operatorname{Fin}\left(\omega_{1}, 2\right)$. We shall define an iterated forcing system

$$
\left\langle P_{v}:-1 \leqslant v \leqslant \omega_{1}, Q_{v}:-1 \leqslant v \leqslant \omega_{1}\right\rangle
$$

with finite support, such that $P_{0}=Q_{-1}=\operatorname{Fin}(\omega, 2)$ and for each $v<\omega_{1}$ either $Q_{v}=\operatorname{Fin}(\omega, 2)$ or
$V^{P_{v}} \models$ " $Q_{v}=\mathscr{Q}_{A_{0}^{v}, A_{1}^{v}, B_{0}^{v}, B_{1}^{\prime}}$ for some infinite, countable subsets $A_{0}^{v}, A_{1}^{v}, B_{0}^{v}, B_{1}^{v}$ of ω_{1} ".
Since $V^{P_{v}} \models$ " the completions of Q_{v} and Fin ($\omega, 2$) are isomorphic", we have $V^{P}=V^{P_{\omega_{1}}}$, and so we may construct our desired permutation group in $V^{P_{\omega_{1}}}$. For $v \leqslant \omega_{1}$ let \mathscr{G}_{ν} be the P_{ν}-generic filter. Take $g=\cup \mathscr{G}_{0}: \omega \rightarrow 2$ and $r=g^{-1}\{1\}$.

Fix a large enough regular cardinal κ and let $\left\langle N_{v}: \nu<\omega_{1}\right\rangle$ be a sequence of countable, elementary submodels of $\mathscr{H}_{\kappa}=\left\langle H_{\kappa}, \in,\langle \rangle\right.$, where H_{κ} consists of the sets whose transitive closure has cardinality less than κ and \prec is a well-ordering of H_{κ}, with the property that $\left\langle N_{\mu}: \mu\langle\nu\rangle \in N_{v}\right.$ for each $\nu<\omega_{1}$. Fix a \diamond^{+}-sequence

$$
\mathscr{S}=\left\langle S_{\alpha}: \alpha\left\langle\omega_{1}\right\rangle \in N_{0}\right.
$$

If $v \leqslant \mu<\omega_{1}$ and \mathscr{G} is a P_{v}-generic filter, then take

$$
N_{\mu}[\mathscr{G}]=\left\{K_{\mathscr{y}}(x): x \in N_{\mu}\right\} .
$$

A $P_{\omega_{1}}$-name $\tilde{\chi}$ of the characteristic function of a subset of ω_{1} is called a canonical v-name if and only if $v \leqslant \omega_{1}$ and there exist maximal antichains $D_{\xi}^{\bar{\chi}} \subset P_{\omega_{1}}$ and functions $h_{\xi}^{\tilde{\chi}}: D_{\xi}^{\tilde{\chi}} \rightarrow 2$ for $\xi \in v$ such that

$$
\tilde{\chi}=\left\{\langle p,\langle\widehat{\xi, i}\rangle\rangle: i=h_{\xi}^{\chi}(p), p \in D_{\xi}^{\chi}, \xi \in v\right\} ;
$$

$\tilde{\chi}$ is called a nice v-name if and only if $\tilde{\chi}$ is a canonical ν-name and $\bigcup_{\xi<v} D_{\xi}^{\tilde{\chi}} \subset P_{\omega v}$. We shall usually identify sets and their characteristic functions. To simplify our notation we shall write $p \Vdash$ " $\rho \in \tilde{\chi} "$ for $p \Vdash$ " $\tilde{\chi}(\rho)=1 "$.

If \tilde{A} is a nice v-name and \mathscr{G} is a $P_{\omega \nu}$-generic filter, then we write

$$
\tilde{A}[\mathscr{G}]=\{\xi \in v: \exists p \in \mathscr{G} p \Vdash \xi \in \tilde{A}\}
$$

Given a $P_{w_{1}}$-name \tilde{A} and $v<\omega_{1}$ take

$$
\tilde{A} \Gamma^{*} \nu=\left\{\langle p, x\rangle \in \tilde{A}: p \in P_{\omega v}\right\}
$$

A triple $\langle\tilde{A}, \tilde{B}, C\rangle$ is called v-remarkable if and only if $C \subset v$ is a club, $\tilde{A} \Gamma^{*} \mu$ and $\tilde{B} \Gamma^{*} \mu$ are nice μ-names and $\left\langle\tilde{A} \Gamma^{*} \mu, \tilde{B}\left\lceil^{*} \mu, C \cap \mu\right\rangle \in N_{\mu}\right.$ for each $\mu \in C \cup\{v\}$.

Take

$$
\operatorname{Rem}\left(N_{v}\right)=\{\langle\tilde{A}, \tilde{B}, C\rangle:\langle\tilde{A}, \tilde{B}, C\rangle \text { is } v \text {-remarkable }\}
$$

First we construct the family \mathscr{F}^{\prime} of 'countable approximations' of elements of our required permutation group.

By induction on v we shall define the posets $Q_{\omega v+i}$ for $i<\omega$, functions $f_{\langle\tilde{A}, \tilde{B}, C\rangle}$ for $\langle\widetilde{A}, \widetilde{B}, C\rangle \in \operatorname{Rem}\left(N_{v}\right)$ and families $\mathscr{F}_{v} \subset \operatorname{Bij}_{p}\left(\omega_{1}, \omega_{1}\right)$ in $V^{P_{\omega_{1}}}$ such that
(a) $\mathscr{F}_{0}=\operatorname{Bij}_{p}\left(\omega_{1}, \omega_{1}\right) \cap V$,
(b) $\left\langle\mathscr{F}_{\mu}: \mu\langle\nu\rangle \in N_{v}\left[\mathscr{G}_{\omega v}\right]\right.$,
(c) $\mathscr{F}_{\nu}=\bigcup_{\mu\langle\nu} \mathscr{F}_{\mu} \cup\left\{f_{\langle\tilde{A}, \tilde{B}, C\rangle}:\langle\tilde{A}, \tilde{B}, C\rangle \in \operatorname{Rem}\left(N_{\nu}\right)\right\}$,
(d) $\operatorname{dom} f_{\langle\tilde{A}, \tilde{B}, C\rangle}=\operatorname{ran} f_{\langle\tilde{A}, \tilde{B}, C\rangle}=\gamma_{\langle\tilde{A}, \tilde{B}, C\rangle}$ for some $\gamma_{\langle\tilde{A}, \tilde{B}, C\rangle} \in C \cup\{v\}$,
(e) if $\langle\tilde{A}, \tilde{B}, C\rangle \in \operatorname{Rem}\left(N_{v}\right), \mu \in C$, then

$$
f_{\langle\tilde{A}| * \mu, \tilde{B}|* \mu, C \cap \mu\rangle}=f_{\langle\tilde{A}, \tilde{B}, C\rangle}\left[\gamma_{\langle\tilde{A}| * \mu, \tilde{B}|* \mu, C \cap \mu\rangle} .\right.
$$

Assume that $\left\langle\mathscr{F}_{\mu}: \mu\langle\nu\rangle\right.$ is constructed. From now on we shall work in $V\left[\mathscr{G}_{\omega v}\right]$. Put $\mathscr{F}_{<\nu}=\bigcup_{\mu<\nu} \mathscr{F}_{\mu}$. For a triple $\langle\tilde{A}, \tilde{B}, C\rangle \in \operatorname{Rem}\left(N_{v}\right)$ take

$$
f_{\langle\tilde{A}, \tilde{B}, C\rangle}^{*}=\bigcup_{\mu \in C} f_{\langle\tilde{A}| * \mu, \tilde{B}|* \mu, C \cap \mu\rangle}
$$

and

$$
\gamma_{\langle\tilde{A}, \tilde{B}, C\rangle}^{*}=\sup _{\mu \in C} \gamma_{\langle\tilde{A}| * \mu, \tilde{B}|* \mu, C \cap \mu\rangle} .
$$

Clearly $f_{\langle\tilde{A}, \tilde{B}, C\rangle}^{*} \in N_{v}\left[\mathscr{G}_{\omega v}\right]$.
Let

$$
\mathscr{F}_{v}^{*}=\left\{f_{\langle\tilde{A}, \tilde{B}, C\rangle}^{*}:\langle\tilde{A}, \tilde{B}, C\rangle \in \operatorname{Rem}\left(N_{v}\right)\right\} .
$$

Then $N_{v}\left[\mathscr{G}_{\omega v}\right] \in N_{v+1}\left[\mathscr{G}_{\omega v}\right]$ implies that $\mathscr{F}_{v}^{*} \in N_{v+1}\left[\mathscr{G}_{\omega v}\right]$ and \mathscr{F}_{v}^{*} is countable in $N_{v+1}\left[\mathscr{G}_{\omega v}\right]$. So we can fix an enumeration

$$
\mathscr{F}_{v}^{*}=\left\{f_{\left\langle\tilde{A}_{j}^{u}, \tilde{B}_{j}^{\prime}, C_{j}^{\prime}\right\rangle}: j<\omega\right\}
$$

in $N_{v+1}\left[\mathscr{G}_{\omega v}\right]$. To simplify our notation we shall write

$$
f_{v, j}^{*}=f_{\left\langle\tilde{A}_{j}^{\tilde{j}}, \tilde{B}^{\prime}, C_{j}^{\prime}\right\rangle}^{*} .
$$

We define the posets $Q_{\omega v+j}$ and the functions

$$
f_{\left\langle\tilde{A}_{j}^{j}, \tilde{B}_{j}^{j}, C_{j}^{j}\right\rangle} \supset f_{\left\langle\tilde{A}_{j}^{j}, \tilde{B}_{j}^{\prime}, C_{j}^{j}\right\rangle}^{*}
$$

by induction on j. Assume that we have done it for $i<j$. Take

$$
\mathscr{F}_{v}^{j}=\mathscr{F}_{<v} \cup \mathscr{F}_{v}^{*} \cup\left\{f_{\left\langle\tilde{A}_{i}^{u}, \tilde{B}_{i}^{v}, C_{i}^{v}\right\rangle} ; i<j\right\} .
$$

Put

$$
I_{v, j}=\left[\gamma_{\left\langle\tilde{j}_{j}^{\eta}, \tilde{B}_{j}^{\eta}, c_{j}^{\prime \prime}\right\rangle}^{*}, v\right) .
$$

Take $\quad \xi=\omega v+j$. Let $\quad A_{0}^{\xi}=I_{v, j} \cap \tilde{A}_{j}^{v}\left[\mathscr{G}_{\omega v}\right], \quad A_{1}^{\xi}=I_{v, j} \backslash \tilde{A}_{j}^{v}\left[\mathscr{G}_{\omega v}\right], \quad B_{0}^{\xi}=I_{v, j} \cap \tilde{B}_{j}^{v}\left[\mathscr{G}_{\omega v}\right]$, $B_{1}^{\xi}=I_{v, \lambda} \backslash \tilde{B}_{j}^{v}\left[\mathscr{G}_{\omega v}\right]$ and $\mathscr{Q}^{\xi}=\mathscr{Q}_{A_{0}^{\xi}, A_{i}^{\xi}, B_{j}^{\xi}, B_{1}^{\varepsilon} .}$

If the sets $A_{0}^{\xi}, A_{1}^{\xi}, B_{0}^{\xi}$ and B_{1}^{ξ} are all $\left(\mathscr{F}_{v}^{j}, r\right)$-large, then put $Q_{\xi}=\mathscr{Q}^{\xi}$. Let \mathscr{G}^{ξ} be the Q_{ξ}-generic filter over $V^{P_{\delta} .}$ Take

$$
f_{\left\langle\tilde{A}^{u}, \tilde{B}_{j}^{u}, C_{j}^{u}\right\rangle}^{\prime}=U \mathscr{G}^{\xi}
$$

and let
and so $\gamma_{\left\langle\tilde{A}_{j}^{y}, \tilde{B}_{j}^{\prime}, C_{0}^{\prime \prime}\right\rangle}=v$.
Otherwise, if at least one of the sets $A_{0}^{\xi}, A_{1}^{\xi}, B_{0}^{\xi}$ and B_{1}^{ξ} is not $\left(\mathscr{F}_{v}^{j}, r\right)$-large, put

$$
Q_{\omega v+j}=\operatorname{Fin}(\omega, 2), \quad f_{\left\langle\tilde{A}_{j}^{\gamma}, \tilde{B}_{j}^{\gamma}, C_{j}^{\prime}\right\rangle}^{\prime}=\varnothing \quad \text { and } \quad f_{\left\langle\tilde{A}_{j}^{\prime}, \tilde{B}_{j}^{\tilde{B}^{\prime}}, C_{j}^{\prime}\right\rangle}=f_{\left\langle\tilde{A}_{j}^{\gamma}, \tilde{B}_{j}^{\gamma}, C_{j}^{\gamma}\right\rangle}^{*} .
$$

The inductive construction is complete.
Take $\mathscr{F}=\bigcup_{\nu \in \omega_{1}} \mathscr{F}_{\nu}$. Let \mathscr{F}^{\prime} be the closure of \mathscr{F} under composition and inverse image.

Lemma 2.2. The pair $\left(\mathscr{F}^{\prime}, r\right)$ is a good pair.
Since its proof is quite long we postpone it for a while.
Having the family \mathscr{F}^{\prime} of countable approximations we are ready to construct G. A pair $\langle\tilde{A}, \tilde{B}\rangle$ is called nice if and only if both \tilde{A} and \tilde{B} are nice ω_{1}-names of uncountable, co-uncountable subsets of ω_{1}. Using the \diamond^{+}principle, for each nice pair $\langle\tilde{A}, \tilde{B}\rangle$ choose a club set $C=C_{\tilde{A}, \tilde{B}} \subset \omega_{1}$ such that $\tilde{A} \Gamma^{*} v$ and $\widetilde{B} \Gamma^{*} v$ are nice v-names and $\left\langle\tilde{A} \Gamma^{*} v, \tilde{B} \Gamma^{*} v, C \cap v\right\rangle \in N_{v}$ for all $v \in C$, and put

$$
f_{\tilde{A}, \tilde{B}}=\bigcup_{\nu \in C} f_{\langle\tilde{A}| * v, \tilde{B}|* \nu, C \cap v\rangle}
$$

Let G be the subgroup of Perm $\left(\omega_{1}\right)$ generated by the set

$$
\left\{f_{\tilde{A}, \tilde{B}}:\langle\tilde{A}, \tilde{B}\rangle \text { is a nice pair with } \operatorname{dom} f_{\tilde{A}, \tilde{B}}=\omega_{1}\right\} .
$$

We claim that G satisfies the requirements of the theorem
Since cofinally many countable initial segments of the elements of G are in \mathscr{F}^{\prime}, Lemma 2.2 implies that (G, r) is a good pair. Applying this fact for ω_{1} as an uncountable sequence of pairwise disjoint finite subsets of ω_{1} we obtain that there is a countable ordinal α which is (G, r)-large. This means that G is ω-inhomogeneous.

Next we show that G is ω_{1}-homogeneous. Pick a nice pair (\tilde{A}, \tilde{B}). Let $C=C_{\tilde{A}, \tilde{B}}$ and consider the function

$$
f=f_{\tilde{A}, \tilde{B}}=\bigcup_{\nu \in C} f_{\langle\tilde{A}|{ }^{*}, \tilde{B}, \tilde{B}[v, C \cap \nu\rangle} .
$$

If $\operatorname{dom}(f)=\omega_{1}$ then $f \in G$ and $f^{\prime \prime} A=B$, so we are done. Assume that $\operatorname{dom}(f)=$ $\mu<\omega_{1}$. Then $\mu \in C$. But the pair $\left(\mathscr{F}^{\prime}, r\right)$ is good, so there is a $v>\mu, v \in C$, such that the sets $(v \backslash \mu) \cap A,(v \backslash \mu) \backslash A,(v \backslash \mu) \cap B$ and $(v \backslash \mu) \backslash B$ are all $\left(\mathscr{F}^{\prime}, r\right)$-large. So we get

$$
\operatorname{dom}\left(f_{\left\langle\left.\tilde{A}\right|^{*},\left.\tilde{B}\right|^{*} v, C \cap v\right\rangle}^{\prime}\right)=v \backslash \mu
$$

Thus $\operatorname{dom}(f) \supset v$ which gives a contradiction, so G is ω_{1}-homogeneous.
Finally we present the postponed proof of Lemma 2.2.
Proof of Lemma 2.2. First we introduce some notion.
A condition $p \in P_{\omega_{1}}$ is called determined if and only if, for each $\xi<\omega_{1}$ if $p(\xi) \neq 1_{Q_{\xi}}$, then $p\left\lceil\xi \Vdash\right.$ " $Q_{\xi}=\operatorname{Fin}(\omega, 2)$ " or $p\left\lceil\xi \Vdash\right.$ " $Q_{\xi}=\mathscr{Q}^{\xi}$ " and there is a function $F_{p, \xi}$ in the ground model such that $p(\xi)=\hat{F}_{p, \xi}$. Put

$$
\operatorname{Det}\left(P_{\omega_{1}}\right)=\left\{p \in P_{\omega_{1}}: p \text { is determined }\right\}
$$

The proof of the following sublemma is straightforward.
Sublemma 2.2.1. We have $\operatorname{Det}\left(P_{\omega_{1}}\right)$ is dense in $P_{\omega_{1}}$.

Consider a condition $p \in \operatorname{Det}\left(P_{\omega_{1}}\right)$. For each $\left\langle\tilde{A_{j}^{v}}, \widetilde{B}_{j}^{v}, C_{j}^{\nu}\right\rangle \in \operatorname{Rem}\left(N_{v}\right)$ take

$$
\begin{gathered}
f_{v, j}^{[p]}=\bigcup\left\{p(\omega \mu+i): p\left\lceil(\omega \mu+i) \models " Q_{\omega \mu+i}=\mathscr{2}^{\omega \mu+i} ", \mu \in C_{j}^{\nu} \cup\{\nu\}\right. \text { and }\right. \\
\left\langle\tilde{A}_{i}^{\mu}, \widetilde{B}_{i}^{\mu}, C_{i}^{\mu}\right\rangle=\left\langle\tilde{A}_{j}^{v}\left\lceil{ }^{*} \mu, \tilde{B}_{j}^{v} \Gamma^{*} \mu, C_{j}^{v} \cap \mu\right\rangle\right\} .
\end{gathered}
$$

The finite function $f_{v, j}^{[p]}$ gathers all the information contained in p about $f_{\left\langle\tilde{A_{j}^{\prime}}, B_{y}^{\widetilde{\prime}}, c_{j}^{\prime \prime}\right\rangle}$.
An \mathscr{F}-term t is a sequence $\left\langle h_{0}, h_{1}, \ldots, h_{n-1}\right\rangle$ where $h_{i}=f_{i}$ or $h_{i}=f_{i}^{-1}$ for some $f_{i} \in \mathscr{F}$. We also use t to denote the function $h_{0} \circ \ldots \circ h_{n-1}$. We say that t^{\prime} is a subterm of t if $t^{\prime}=\left\langle h_{i_{0}}, \ldots, h_{i_{i}}\right\rangle$, where $0 \leqslant i_{0}<\ldots<i_{l} \leqslant n-1$.

Given an \mathscr{F}-term $t=\left\langle h_{0}, h_{1}, \ldots, h_{n-1}\right\rangle$ and a condition $p \in \operatorname{Det}\left(P_{\omega_{1}}\right)$ take $t^{[p]}=h_{0}^{\prime} \circ \ldots \circ h_{n-1}^{\prime}$, where

If T is a set of \mathscr{F}-terms let $T^{[p]}=\left\{t^{[p]}: t \in T\right\}$.
Given $p \in \operatorname{Det}\left(P_{\omega_{1}}\right), \xi \in \omega_{1}$ and a function $F \in \operatorname{Bij}_{p}\left(\omega_{1}, \omega_{1}\right)$, if $p\left\lceil\xi \Vdash " p(\xi) \cup F \in Q_{\xi}\right.$ " then write $p \wedge_{\xi} F$ for the condition $q \in \operatorname{Det}\left(P_{\omega_{1}}\right)$ defined by the formula

$$
q(\zeta)= \begin{cases}p(\zeta) \cup F & \text { if } \zeta=\xi \\ p(\zeta) & \text { otherwise }\end{cases}
$$

If $p\left\lceil\xi \in \mathscr{G}_{\xi}\right.$, then let

$$
t^{[p]}\left[\mathscr{G}_{\xi}\right]=\bigcup\left\{t^{[p \wedge q]}: q \in \mathscr{G}_{\xi}\right] \quad \text { and } \quad T^{[p]}\left[\mathscr{G}_{\xi}\right]=\left\{t^{[p]}\left[\mathscr{G}_{\xi}\right]: t \in T\right\}
$$

If $a \subset \omega_{1}$ then, by an abuse of notation, we shall write $t(a)$ for $t^{\prime \prime} a$ and $T(a)$ for $\bigcup_{t \in T} t(a)$.

Assume now on the contrary that
$p^{\prime} \Vdash{ }^{\prime \prime} Z=\left\{\tilde{z}_{\alpha}: \alpha<\omega_{1}\right\}$ is a sequence of pairwise disjoint finite subsets of ω_{1}, $\left\{\tilde{U}_{\beta}: \beta<\omega_{1}\right\}$ is a sequence of finite sets of \mathscr{F}-terms such that $\tilde{z}_{\alpha} \cap \tilde{U}_{\beta}(r) \neq \varnothing$ for each $\alpha<\beta<\omega_{1}$ ".

For each $\alpha<\omega_{1}$ choose a condition $p_{\alpha} \in \operatorname{Det}\left(P_{\omega}\right)$, a set $y_{\alpha} \in\left[\omega_{1}\right]^{<\omega}$ and a finite set of \mathscr{F}-terms T_{α} such that $p_{\alpha} \Vdash$ " $\tilde{z}_{\alpha}=\hat{y}_{\alpha}$ and $\tilde{U}_{\alpha}=\hat{T}_{\alpha}$ ". We can assume that every T_{α} is closed under subterms.

Sublemma 2.2.2. There are $\alpha<\beta<\omega_{1}$ and a condition $p \in \operatorname{Det}\left(P_{\omega_{1}}\right)$ such that $p \leqslant p_{\alpha}, p_{\beta}$ and $p \Vdash{ }^{\prime} T_{\beta}^{[p]}(r) \cap y_{\alpha}=\varnothing$ ".

Proof. Without loss of generality we can assume that $\left\{\operatorname{supp}\left(p_{\alpha}\right): \alpha<\omega_{1}\right\}$ forms a Δ-system with kernel d, such that $-1 \in d$ and $p_{\alpha}\left[d=q\right.$ for each $\alpha<\omega_{1}$. Then $q(-1) \in \operatorname{Fin}(\omega, 2)$. Take $D=\operatorname{dom}(q(-1))$.

Consider a $t \in T_{\omega}$. If $\alpha_{0}<\alpha_{1}<\omega$ then $u=\left(t^{\left[p_{\alpha_{0}} \cup p_{\alpha_{1}} \cup p_{\omega}\right]}\right)^{-1}$ is a $1-1$ function, and so $u\left(y_{\alpha_{0}}\right) \cap u\left(y_{\alpha_{1}}\right)=\varnothing$. Thus

$$
\left|\left\{\alpha<\omega:\left(t^{\left[p_{\alpha} \cup p_{\omega}\right]}\right)^{-1}\left(y_{\alpha}\right) \cap D \neq \varnothing\right\}\right| \leqslant|D|
$$

But T_{ω} is finite, so there is an $\alpha<\omega$ such that $T_{\omega}^{\left[p_{\alpha} \cup p_{\omega}\right]}(D) \cap y_{\alpha}=\varnothing$. Take $E=\left(T_{\omega}^{\left[p_{\alpha} \cup p_{\omega}\right]}\right)^{-1} y_{\alpha}$. Then $D \cap E=\varnothing$. Put $p=p_{\alpha} \wedge p_{\omega} \wedge q^{\prime}$, where q^{\prime} is defined by the equations $\operatorname{supp}\left(q^{\prime}\right)=\{-1\}$ and $g^{\prime}(-1)=\{\langle m, 0\rangle: m \in E\}$. Then p is determined and $p \Vdash{ }^{-} T_{\omega}^{[p]}(r) \cap y_{\alpha}=\varnothing "$, because $\left(T_{\omega}^{[p]}\right)^{-1}\left(y_{\alpha}\right) \subset E$ and $p \Vdash " r \cap E=\varnothing "$.

Take $T=\left(T_{\beta}\right)^{-1} \stackrel{\text { def }}{=}\left\{t^{-1}: t \in T_{\beta}\right\}$ and $y=y_{\alpha}$. Then

$$
p \Vdash \Vdash^{[p]}(y) \cap r=\varnothing \text { but } T(y) \cap r \neq \varnothing " .
$$

We shall find $p^{*} \leqslant p$ such that $p^{*} \| \square^{"} T^{[p *}(y) \cap r=\varnothing$ " and p^{*} 'fully decides' $T(y)$, that is, $p^{*} \Vdash \vdash^{"} T(y)=T^{\left[p^{*}\right]}(y)$ " contradicting $p \Vdash \vdash^{"} T(y) \cap r \neq \varnothing$ ".

Definition 2.3. Let $p^{*} \in \operatorname{Det}\left(P_{\omega_{1}}\right), s$ be an \mathscr{F}-term, S be a set of \mathscr{F}-terms, $\rho \in \omega_{1}$, $z \subset \omega_{1}, \xi \in \omega_{1}, s=\left\langle h_{0}, h_{1}, \ldots, h_{n-1}\right\rangle$.

1. We say that p^{*} fully decides $s(\rho)$ if and only if there is a sequence $\left\langle\rho_{0}, \ldots, \rho_{m}\right\rangle$ such that $\rho_{0}=\rho$ and $p^{*} \Vdash{ }^{\prime \prime} h_{i}\left(\hat{\rho}_{i}\right)=\hat{\rho}_{i+1} "$ for $i<m$ and either $m=n$ or $m<n$ and $p^{*} \Vdash{ }^{-} \hat{\rho}_{m} \notin \operatorname{dom}\left(h_{m}\right) "$.
2. We also say that p^{*} fully decides $S(z)$ if and only if it fully decides $s(\rho)$ whenever $s \in S$ and $\rho \in z$.
3. Take $\operatorname{dcd}\left(p^{*}, S, z\right)=\left\{\langle s, \rho\rangle \in S \times z: p^{*}\right.$ fully decides $\left.s(\rho)\right\}$.
4. If $p^{*}\left\lceil\xi \in \mathscr{G}_{\xi}\right.$ then put $\operatorname{dcd}\left(p^{*}, S, z\right)\left[\mathscr{G}_{\xi}\right]=\bigcup\left\{\operatorname{dcd}\left(p^{*} \wedge q, S, z\right): q \in \mathscr{G}_{\xi}\right\}$.

If $q \in \operatorname{Det}\left(P_{\omega_{1}}\right), y \in\left[\omega_{1}\right]^{<\omega}$ and S is a set of \mathscr{F}-terms we shall define the set of undecided evaluations as follows: let Und (q, S, y) be the set of triples $\langle x,\langle v, j\rangle, e\rangle$ for which there exist $s \in S, s=\left\langle h_{0}, \ldots, h_{l}\right\rangle$, and $\eta \in y$ satisfying (a) to (d) below:
(a) $x \in \omega_{1}, e \in\{-1,+1\}$ and $h_{l}=\left(f_{\left\langle\tilde{A}_{j}^{2}, \tilde{B}_{j}^{v}, C_{j}^{(j)}\right.}\right)^{e}$,
(b) taking $u=\left\langle h_{0}, \ldots, h_{l-1}\right\rangle$ we have $u^{[q]}(\eta)=x$,
(c) $x \notin \operatorname{dom} f_{\langle v, j\rangle}^{[q]}$ if $e=1$,
(d) $x \notin \operatorname{ran} f_{\langle v, j\rangle}^{[q]}$ if $e=-1$.

For $\langle\mu, i\rangle \in \omega_{1} \times \omega$ define $\operatorname{Und}^{+}(q, T, y, \mu, i)$, the set of undecided evaluations which will be decided in step μ, as follows: it contains a triple $\langle x,\langle v, j\rangle, e\rangle \in$ Und (q, T, y) if and only if (A) to (C) below are satisfied:
(A) $\left\langle\tilde{A_{i}^{\mu}}, \tilde{B}_{i}^{\mu}, C_{i}^{\mu}\right\rangle=\left\langle\tilde{A_{j}^{v}}{ }^{*} \mu, \tilde{B}_{j}^{v} \Gamma^{*} \mu, C_{j}^{v} \cap \mu\right\rangle$,
(B) $q \Vdash$-" $x \in \operatorname{dom} f_{\left\langle\tilde{A}^{\mu}, \tilde{B}_{\tilde{i}}^{u}, C_{i}^{u}\right\rangle}^{\prime} "$ provided $e=1$,
(C) $q \Vdash$ " $\left.x \in \operatorname{ran} f_{\left\langle\hat{A}_{i}^{\mu}, \tilde{B}_{i}^{u}, G\right\rangle}^{\prime M}\right\rangle "$ provided $e=-1$.

Let $\operatorname{Und}^{-}(q, T, y, \mu, i)$, the family of undecided evaluations which remain undecided in step μ, be the set of triples $\langle x,\langle v, j\rangle, e\rangle \in \operatorname{Und}(q, T, y, \mu, i)$ with $\left\langle\tilde{A}_{i}^{\mu}, \widetilde{B}_{i}^{\mu}, C_{i}^{\mu}\right\rangle \neq\left\langle\tilde{A}_{j}^{v}{ }^{*} \mu, \tilde{B}_{j}^{v} \Gamma^{*} \mu, C_{j}^{v} \cap \mu\right\rangle$ or with $q \Vdash{ }^{\prime \prime} f_{\left\langle\tilde{A}_{i}^{\mu}, \tilde{B}_{i}^{\mu}, C_{i}^{\mu}\right\rangle}^{\prime}=\varnothing$ ".

If $q\left\lceil\xi \in \mathscr{G}_{\xi}, \xi \leqslant \omega \mu+i\right.$, then take

$$
\begin{aligned}
\operatorname{Und}(q, T, y)\left[\mathscr{G}_{\xi}\right] & =\bigcup\left\{\operatorname{Und}\left(q \wedge q^{\prime}, T, y\right): q^{\prime} \in \mathscr{G}_{\xi}\right\}, \\
\operatorname{Und}^{+}(q, T, y, \mu, i)\left[\mathscr{G}_{\xi}\right] & =\bigcup\left\{\operatorname{Und}^{+}\left(q \wedge q^{\prime}, T, y, \mu, i\right): q^{\prime} \in \mathscr{G}_{\xi}\right\}
\end{aligned}
$$

and

$$
\operatorname{Und}^{-}(q, T, y, \mu, i)\left[\mathscr{G}_{\xi}\right]=\bigcup\left\{\operatorname{Und}^{-}\left(q \wedge q^{\prime}, T, y, \mu, i\right): q^{\prime} \in \mathscr{G}_{\xi}\right\}
$$

Sublemma 2.3.1. There is a condition $p^{*} \leqslant p$ which fully decides $T(Y)$ and $p^{*} \Vdash{ }^{\prime \prime} T^{[p *]}(y) \cap r=\varnothing "$.

Proof. We shall define a finite, decreasing sequence of determined conditions, $p_{0}, p_{1}, \ldots, p_{l^{*}}=p^{*}$ satisfying (I) and (II) below for each $l \leqslant l^{*}$:
(I) $p_{l} \Vdash$ " $T^{\left[p_{l}\right]}(y) \cap r=\varnothing "$;
(II) $\left|\operatorname{dcd}\left(p_{l-1}, T, y\right)\right|<\left|\operatorname{dcd}\left(p_{l}, T, y\right)\right|$.

Put $p_{0}=p$ and assume that p_{l} is constructed.

Choose the minimal $\langle\mu, i\rangle$ in the lexicographical order of $\omega_{1} \times \omega$ with the property (*) below:
(*) there is a $p^{\prime} \in P_{\omega \mu+i}, p^{\prime} \leqslant p_{l}\left\lceil(\omega \mu+i)\right.$, such that taking $p_{l}^{\prime}=p^{\prime} \wedge p_{l}$ we have $\mathrm{Und}^{+}\left(p_{l}^{\prime}, T, y, \mu, i\right) \neq \varnothing$.

To simplify our notation take $\xi=\omega \mu+i$. Let \mathscr{G}_{l} be a P_{ξ}-generic filter with $p^{\prime} \in \mathscr{G}_{l}$. By the minimality of $\langle\mu, i\rangle$ we have $T^{\left[p_{l}\right]}\left[\mathscr{G}_{l}\right](y)=T^{\left[p_{l}\right]}(y)$ and so

$$
V\left[\mathscr{G}_{l}\right] \equiv " T^{\left[p_{l}\right]}\left[\mathscr{G}_{l}\right](y) \cap r=\varnothing " .
$$

Clearly

$$
\operatorname{Und}\left(p_{l}^{\prime}, T, y\right)\left[\mathscr{G}_{l}\right]=\operatorname{Und}^{+}\left(p_{l}^{\prime}, T, y, \mu, i\right)\left[\mathscr{G}_{l}\right] \cup \operatorname{Und}^{-}\left(p_{l}^{\prime}, T, y, \mu, i\right)\left[\mathscr{G}_{l}\right]
$$

The condition p_{l+1} will be constructed by a finite induction. Working in $V\left[\mathscr{G}_{l}\right]$ we shall define a natural number o_{l} and determined conditions $p_{l, 0}, p_{l, 1}, \ldots, p_{l, o_{l}}$ such that for all $k \leqslant o_{l}$ (i) to (vi) below are satisfied:
(i) $p_{l, k}\left\lceil\xi \in \mathscr{G}_{l}\right.$,
(ii) $p_{l, k} \leqslant p_{l, k-1}$,
(iii) $p_{l, k}\left\lceil\left[\xi+1, \omega_{1}\right)=p_{l}\left\lceil\left[\xi+1, \omega_{1}\right)\right.\right.$,
(iv) $V\left[\mathscr{G}_{l}\right] \vDash " T^{\left[p_{l, k}\right]}\left[\mathscr{G}_{l}\right](y) \cap r=\varnothing$ ",
(v) $\left|\operatorname{dcd}\left(p_{l, k-1}, T, y\right)\left[\mathscr{G}_{l}\right]\right|<\left|\operatorname{dcd}\left(p_{l, k}, T, y\right)\left[\mathscr{G}_{l}\right]\right|$,
(vi) $\operatorname{Und}^{+}\left(p_{l, o_{l}}, T, y, \mu, i\right)\left[\mathscr{G}_{l}\right]=\varnothing$.

Let $p_{l, 0}=p_{l}$. Then (iv) holds by (\dagger). Assume that $p_{l, k}$ is chosen. If

$$
\operatorname{Und}^{+}\left(p_{l, k}, T, y, \mu, i\right)\left[\mathscr{G}_{l}\right]=\varnothing
$$

then put $o_{l}=k$. We remark that (v) and $\left|\operatorname{dcd}\left(p_{l, k+1}, T, y\right)\left[\mathscr{G}_{l}\right]\right| \leqslant|T \times y|$ imply that $o_{l} \leqslant|T \times y|$. Suppose now that (vi) fails for k and pick a witness

$$
\left\langle x_{k},\left\langle v_{k}, j_{k}\right\rangle, e_{k}\right\rangle \in \operatorname{Und}^{+}\left(p_{l, k}, T, y, \mu, i\right)\left[\mathscr{G}_{l}\right] .
$$

Let $T_{k}=T^{\left[p_{l, k}\right]}\left[\mathscr{G}_{l}\right]$, choose a

$$
z_{k} \in \begin{cases}\tilde{A}_{i}^{\mu}\left[\mathscr{G}_{l}\right] \backslash\left(T_{k}^{-1}(r \cup y) \cup T^{k}(r \cup y)\right) & \text { if } e_{k}=1, \\ \tilde{B}_{i}^{\mu}\left[\mathscr{G}_{l}\right] \backslash\left(T_{k}^{-1}(r \cup y) \cup T^{k}(r \cup y)\right) & \text { if } e_{k}=-1\end{cases}
$$

and take

$$
F_{k}= \begin{cases}\left\{\left\langle x_{k}, z_{k}\right\rangle\right\} & \text { if } e_{k}=1, \\ \left\{\left\langle z_{k}, x_{k}\right\rangle\right\} & \text { if } e_{k}=-1 .\end{cases}
$$

We remark that z_{k} is chosen from a non-empty set, because both $\tilde{A}_{i}^{\mu}\left[\mathscr{G}_{l}\right]$ and $\tilde{B}_{i}^{\mu}\left[\mathscr{G}_{l}\right]$ are $\left(\mathscr{F}_{\mu}^{i}, r\right)$-large.

Choose $p_{l, k}^{*} \in \mathscr{G}_{l}$ such that

$$
p_{l, k}^{*} \models " p_{l, k} \wedge_{\xi} F_{k} \in P_{w_{1}} \text { and }\left\langle x_{k},\left\langle v_{k}, j_{k}\right\rangle, e_{k}\right\rangle \in \operatorname{Und}^{+}\left(p_{l, k}, T, y, \mu, i\right)\left[\mathscr{G}_{l}\right] "
$$

and put $p_{l, k+1}=\left(p_{l, k}^{*} \wedge p_{l, k}\right) \wedge{ }_{\xi} F_{k}$. We need to check only (iv). Working in $V\left[\mathscr{G}_{l}\right]$ assume on the contrary that there are $\alpha \in y$ and $t \in T, t=\left\langle h_{0}, \ldots, h_{m-1}\right\rangle$, such that $t^{\left[p_{l, k+1}\right]}\left[\mathscr{G}_{l}\right](\alpha) \in r$. We can assume further that t is of minimal length. Write $\alpha_{0}=\alpha$ and $\alpha_{s+1}=h_{s}\left(\alpha_{s}\right)$ for $s<m$. Since (iv) holds for k, it follows that $t^{\left[p_{l, k}\right]}\left[\mathscr{G}_{l}\right](\alpha) \notin r$. Suppose first that $e_{k}=1$. Then there must be an $s<m$ such that

$$
\alpha_{s}=x_{k} \quad \text { and } \quad h_{s}=f_{\left\langle\tilde{s}_{l}^{\eta}, \tilde{B}_{l}^{n}, C_{l}^{n}\right\rangle}
$$

or

$$
\alpha_{s}=z_{k} \quad \text { and } \quad h_{s}=\left(f_{\left\langle\tilde{A}_{l}^{\eta}, \tilde{B}_{l}^{\eta}, c_{l}^{\eta}\right\rangle}\right)^{-1}
$$

where

$$
\left\langle\tilde{A_{i}^{\eta}} \Gamma^{*} \mu, \tilde{B}_{i}^{\eta} \Gamma^{*} \mu, C_{i}^{\eta} \cap \mu\right\rangle=\left\langle\tilde{A_{i}^{\mu}}, \tilde{B}_{i}^{\mu}, C_{i}^{\mu}\right\rangle .
$$

Pick the minimal s. Then $\alpha_{g} \in T^{\left[p_{l, k}\right]}\left[\mathscr{G}_{l}\right](y)$, because T is closed under subterms. But $z_{k} \notin T^{\left[p_{l, k}\right]}\left[\mathscr{G}_{l}\right](y)$, so $\alpha_{s}=x_{k}$ and $\alpha_{g+1}=z_{k}$. But t is of minimal length and T is closed under subterms, so we have that there are no $s^{\prime}>s$ with $\alpha_{s^{\prime}}=x_{k}$ and
 $z_{k}=\alpha_{s+1} \in\left(T^{\left[p_{l, k}\right]}\left[\mathscr{G}_{l}\right]\right)^{-1}(r)$, which contradicts the choice of z_{k}. If $e_{k}=-1$, then a similar argument works. Condition (v) obviously holds by the construction.

So we have $p_{l, o_{i}}$. Choose a condition $p_{l}^{*} \in \mathscr{G}_{l}$ such that

$$
p_{l}^{*} \leqslant p_{l, o_{l}}\left[\xi, p_{l}^{*} \Vdash \vdash^{\left[p_{l, o_{l}}\right]\left[\mathscr{G}_{l}\right](y) \cap r=\varnothing "}\right.
$$

and taking $p_{l+1}=p_{l}^{*} \wedge p_{l, o_{l}}$ we have

$$
\left.p_{l}^{*} \Vdash{ }^{*} t^{\left[p_{l, o_{l}}\right]\left[\mathscr{G}_{l}\right]}\right](y)=t^{\left[p_{l+1}\right]}(y) "
$$

Since $\left.t^{\left[p_{l, o_{l}}\left[\mathscr{G}_{l}\right]\right.}\right](y)=t^{\left[p_{l+1}\right]}\left[\mathscr{G}_{l}\right](y)$, it follows that p_{l+1} satisfies (I); (II) is clear from the construction.

If there are no more $\langle\mu, i\rangle$ with property ($*$), then we finish the construction of the decreasing sequence $p_{0}, p_{1}, \ldots, p_{l}$. This must happen after at most $|T \times y|$ steps, because (II) holds and $\left|\operatorname{dcd}\left(p_{l}, T, y\right)\right| \leqslant|T \times y|$. Let $p^{*}=p_{l^{*}}$. Since there are no more $\langle\mu, i\rangle$ satisfying (*), it follows that p^{*} fully decides $T(y)$ and $p^{*} \Vdash{ }^{"} T^{[p *]}(y) \cap r=\varnothing$ ", and so p^{*} satisfies the requirements of the sublemma.

We continue the proof of Lemma 2.2. Let $\mathscr{G}_{\omega_{1}}$ be any $P_{\omega_{1}}$-generic filter with $p^{*} \in \mathscr{G}$. Then in $V\left[\mathscr{G}_{\omega_{1}}\right]$ we have $T^{\left[p^{*}\right]}(y)=T(y)$, because p^{*} fully decides $T(y)$, and so $T(y) \cap r=\varnothing$. But $p \in \mathscr{G}_{\omega_{1}}$, and $p \Vdash " T(y) \cap r \neq \varnothing "$. Contradiction, the lemma is proved.

We return to the proof of Theorem 1.3.
Case (ii): $\quad P=\operatorname{Fin}\left(2^{\omega_{1}}, 2\right)$. Since the proof in this case is simpler than in Case (i) and it does not require any new ideas, we shall sketch it only and leave the details to the readers.

Consider the iterated forcing system $\left\langle P_{v}: v \leqslant 2^{\omega_{1}}, Q_{v}: v<2^{\omega_{1}}\right\rangle$ with finite support, where $Q_{0}=\operatorname{Fin}(\omega, 2)$ and $Q_{v}=\operatorname{Fin}\left(\omega_{1}, \omega\right)$ for $1 \leqslant v<2^{\omega_{1}}$. Since P is isomorphic to a dense subset of $P_{2^{\omega}}$, we must show that $V^{P_{2} \omega_{1}}$ contains a suitable permutation group.

Let r be the Cohen real in $V^{Q_{0}}$ given by the Q_{0}-generic filter. We shall define, by induction on μ, permutation groups G_{μ} on ω_{1} for $1 \leqslant \mu \leqslant 2^{\omega_{1}}$ such that
(a) $G_{v} \subset G_{\mu}$ for $v<\mu$,
(b) $V^{P_{\mu}} \vDash$ "the pair $\left(G_{\mu}, r\right)$ is good".

Case 1: $\mu=1$. Take $G_{0}=\operatorname{Perm}^{\nu}\left(\omega_{1}\right)$. Standard density arguments show that G_{0} satisfies (b).

Case 2: μ is a limit. Take $G_{\mu}=\bigcup_{\nu<\mu} G_{v}$. A suitable modification of the proof of Lemma 2.2 shows that G_{μ} satisfies (b).

Case 3: $\mu=v+1$. We shall work in $V^{P_{v}}$. Pick sets $X_{v}, Y_{v} \subset \omega_{1}$ with

$$
\left|X_{\nu}\right|=\left|\omega_{1} \backslash X_{\nu}\right|=\left|Y_{\nu}\right|=\left|\omega_{1} \backslash Y_{\nu}\right|=\omega_{1}
$$

Since $\left(G_{v}, r\right)$ is a good pair, we can fix partitions $\left\{X_{v, \alpha}^{0}: \alpha<\omega_{1}\right\},\left\{Y_{v, \alpha}^{0}: \alpha<\omega_{1}\right\}$, $\left\{X_{v, \alpha}^{1}: \alpha<\omega_{1}\right\}$ and $\left\{Y_{v, \alpha}^{1}: \alpha<\omega_{1}\right\}$ of $X_{v}, Y_{v}, \omega_{1} \backslash X_{v}$ and $\omega_{1} \backslash Y_{v}$, respectively, such that each of the $X_{v, \alpha}^{i}$ and $Y_{v, \alpha}^{i}$ are countable and $\left(G_{\nu}, r\right)$-large. Let

$$
R_{v}=\left\{f \in \operatorname{Bij}_{p}\left(\omega_{1}, \omega_{1}\right):|f|<\omega, f^{\prime \prime} X_{v, \alpha}^{i} \subset Y_{v, \alpha}^{i} \text { for each } \alpha<\omega_{1} \text { and } i \in 2\right\} .
$$

Take $\mathscr{R}_{v}=\left\langle R_{v}, \supseteq\right\rangle$. Then \mathscr{R}_{v} is isomorphic to Q_{v}, so the Q_{v}-generic filter over $V^{P_{v}}$ gives us an \mathscr{R}_{ν}-generic filter \mathscr{G}_{v} over $V^{P_{v}}$. Take $g_{\nu}=U \mathscr{G}_{v}$ and let G_{μ} be the subgroup of $\operatorname{Perm}^{V^{P}{ }_{u}}\left(\omega_{1}\right)$ generated by $G_{v} \cup\left\{g_{v}\right\}$. The proof of that (b) remains true is a suitable modification of the proof of Lemma 2.2 and it is left to the readers.

So $G=G_{2^{\omega_{1}}}$ is ω-inhomogeneous, because the pair (G, r) is good. Using a bookkeeping function we can ensure that $\left\{\left(X_{v}, Y_{v}\right): \nu<2^{\omega_{1}}\right\}$ enumerates all the pairs (X, Y) of uncountable, co-uncountable subsets of ω_{1} in $V^{P_{2} \omega_{1}}$. Since $g_{v}^{\prime \prime} X_{v}=Y_{v}$, it follows that G is ω_{1}-homogeneous.

References

1. A. Hannal, 'A remark on the homogeneity of infinite permutation groups', preprint.
2. T. Jech, Set theory (Academic Press, New York, 1978).
3. P. M. Neumann, Homogeneity of infinite permutation groups, Bull. London Math. Soc. 20 (1988) 305-312.
4. P. Nyikos, 'Transitivities of permutation groups', preprint.
5. S. Shelah and S. Thomas, 'Homogeneity of infinite permutation groups', preprint.

Institute of Mathematics
Hebrew University
Jerusalem
Israel

Mathematical Institute of the
Hungarian Academy of Sciences
Budapest V
Reáltonoda u 13-15
Hungary

[^0]: Received 31 September 1990; revised 8 November 1991.
 1991 Mathematics Subject Classification 03E35.
 The first author was supported by the United States Israel Binational Science Foundation, publication number 389.

 The second author was supported by the Hungarian National Foundation for Scientific Research grant no. 1805 .

