DEPENDENT FIRST ORDER THEORIES, CONTINUED

BY
Saharon Shelah ****
The Hebrew University of Jerusalem
Einstein Institute of Mathematics
Edmond J. Safra Campus, Givat Ram
Jerusalem 91904, Israel
e-mail: shelah@math.huji.ac.il
and
Department of Mathematics, Hill Center-Busch Campus
Rutgers, The State University of New Jersey
110 Frelinghuysen Road
Piscataway, NJ 08854-8019 USA

Abstract

A dependent theory is a (first order complete theory) T which does not have the independence property. A major result here is: if we expand a model of T by the traces on it of sets definable in a bigger model then we preserve its being dependent. Another one justifies the cofinality restriction in the theorem (from a previous work) saying that pairwise perpendicular indiscernible sequences, can have arbitrary dual-cofinalities in some models containing them. We introduce "strongly dependent" and look at definable groups; and also at dividing, forking and relatives.

[^0]
Annotated Content

Recall: Dependent $T=T$ without the independence property.

$$
\text { §0 Introduction, } \quad \text { p. } 2
$$

$\S 1$ Expanding by making a type definable, p. 4 Suppose we expand $M \prec \mathfrak{C}$ by a relation for each set of the form $\left\{\bar{b}: \bar{b} \in{ }^{m} M\right.$ and $\left.\models \varphi[\bar{b}, \bar{a}]\right\}$, where $\bar{a} \in{ }^{\omega>} \mathfrak{C}, \varphi(\bar{x}, \bar{y}) \in \mathbb{L}\left(\tau_{T}\right)$ and $m=\ell g(\bar{x})$. We prove that the theory of this model is dependent and has elimination of quantifiers.
$\S 2$ More on indiscernible sequences,
This is complimentary to $[\mathrm{Sh}: 715, \S 5]$. Dedekind cuts with cofinal-
ity from both sides $\leq \kappa+|T|=\kappa$ inside κ-saturated models (of a
dependent theory T) tend to be filled together.
$\S 3$ Strongly dependent theories, p. 24
Being strongly dependent is related to being superstable; however, strongly dependent theories which are stable (called strongly stable) are not necessarily superstable. We start the investigation of this class of first order theories. In particular, for such a theory there is no non-algebraic types p, q with definable functions essentially from $q(\mathfrak{C})$ onto ${ }^{\omega}(p(\mathfrak{C}))$. Also there is no equivalence relation on $p(\bar{x})$ with infinitely many equivalence classes, each class has essentially one to one definable correspondence with the whole.
$\S 4$ Definable groups,
p. 32
We start to investigate definable groups for dependent and strongly dependent theories, in particular, with the size of the commutator of most members.
$\S 5$ Non-forking, p. 40
We try to see what does non-forking satisfy for dependent theories.

0. Introduction

The work in [Sh:715] tries to deal with the investigation of (first order complete) theories T which have the dependence property, i.e., do not have the independence property.

If T is stable, we expand a model M of T by $p \upharpoonright \varphi(\bar{x}, \bar{y})$, for $p \in \mathbf{S}^{m}(M)$. That is expanding M by the relation $R_{p, M}^{\varphi(\bar{x}, \bar{y})}=\left\{\bar{a} \in{ }^{\ell g(\bar{y})} M: \varphi(\bar{x}, \bar{a}) \in p\right\}$ is an
inessential one, i.e., by a relation on M definable in M with parameters. This fails for unstable theories but in $\S 1$ we prove a weak relative: if T is a dependent theory then so is the expansion above, i.e., $\operatorname{Th}\left(M, R_{p, M}^{\varphi(\bar{x}, \bar{y})}\right)_{p, \varphi(\bar{x}, \bar{y})}$.

In $[\operatorname{Sh}: 715, \S 5]$ it is shown that for any model N of a dependent unstable T, we can find a κ-saturated model M extending N, such that the following set is quite arbitrary. Pairs of cofinalities of a cut in M, for some definable partial order in N (so not fulfilled in M), or even the set of pairs $\left(\kappa_{1}, \kappa_{2}\right)$ of regular cardinals for which there is an indiscernible sequence $\left\langle a_{\alpha}: \alpha<\kappa_{1}\right\rangle \frown\left\langle b_{\beta}: \beta<\kappa_{2}^{*}\right\rangle$ such that the $\left(\kappa_{1}, \kappa_{2}\right)$-cut is respected in M. That is, we cannot find an element in M which can be added after the a_{α} 's but before the b_{β} 's linearly ordered by a partial order some $\varphi(x, y ; \bar{c})$. However, there were restrictions on the cofinalities being not too small. In $\S 2$ we show that, to a large extent, these restrictions are necessary.

The family of dependent theories is parallel to the family of stable theories. But actually a better balance than for stable of the "size" of the family of such theories and what we can tell about them is obtained by the family of superstable ones. In $\S 3$ a related family of strongly dependent theories, are defined. Now, every superstable T is strongly stable (defined as stable, strongly dependent), but the inverse fails (see also [Sh:839], [Sh:F660]). We then observe some basic properties. This is continued in [Sh:863].

In $\S 4$ we look at groups definable in models of dependent theories, and also in strongly dependent theories. In $\S 5$ we try to look systematically at a parallel to non-forking.

This work is continued in [Sh:876], [Sh:863], [Sh:886], [FiSh:E50], [CoSh:919], [Sh:F705], [Sh:877], [Sh:900] and [Sh:F906]. More specifically, on a parallel to uni-dimensionality for the theory of the real field see a hopefully forthcoming work of E. Firstenberg-S. Shelah [FiSh:E50]. For continuation of $\S 2$ see [Sh:950]. We try to investigate strongly dependent theories (see Section 3) in [Sh:863]. We should add to the history in [Sh:715] that Keisler [Ke87] connects dependent theories and measures on the set of definable subsets of a model. Also, [Sh:715, 3.2], is 5.2 of Baldwin-Benedikt [BlBn00]; we should also add Poizat [Po81] (and then [Sh:93, p. 202, 3] positively answering a question of Poizat). Poizat, dealing with the number of complete types in $\mathbf{S}(N)$ finitely satisfied in $M \prec N$, proves that the number is $\leq 2^{\|M\|}$ (when $|T| \leq\|M\|$) and asks whether it is $\leq\left(\operatorname{Ded}\left(\|M\|^{|T|}\right)\right)$ so by [Sh:93], it is. In 5.26 we follow [Sh:93] proving that we can replace finitely satisfiable but does not split.

Note that Baisalov and Poizat [BaPo98] proved a theorem concerning an o-minimal T, which is a consequence of $\S 1$.

We thank Eyal Firstenberg, Aviv Tatarsky and the referee for many helpful corrections, and more recently, Itay Kaplan and friends for pointing out deficiencies in $\S 5$.

Notation. As in [Sh:715] and, in addition
0.1. Definition: 1) For $\overline{\mathbf{b}}=\left\langle\bar{b}_{t}: t \in I\right\rangle$ an infinite indiscernible sequence, let $\operatorname{tp}^{\prime}(\overline{\mathbf{b}})=\left\langle\operatorname{tp}\left(\bar{b}_{t_{0}^{n}}{ }^{\wedge} \ldots{ }^{\wedge} \bar{b}_{t_{n-1}^{n}}, \emptyset, \mathfrak{C}\right): n<\omega\right\rangle$ where $t_{\ell}^{n}<_{I} t_{\ell, k}^{n}$ for $\ell<k<n<\omega$; the choice of the t_{ℓ}^{n} 's is immaterial.
2) Let " M is n-saturated" mean " M is \aleph_{0}-saturated" for $n<\omega$.
3) Let A / B mean $\operatorname{tp}(A, B)$, inside \mathfrak{C} or $\mathfrak{C}^{\mathrm{eq}}$.

1. Expanding by making a type definable

What, in short, do we show here? We say that A is full over M, if every $p \in \mathbf{S}^{<\omega}(M)$ is realized in A, (Definition 1.5). We let $\mathfrak{B}_{A, M}$ be the expansion of M, for each $\varphi(\bar{x}, \bar{a}), \bar{a} \in{ }^{\omega>} A$, by the following $\ell g(\bar{x})$-place relation: all realizations of $\varphi(-, \bar{a})$, i.e., by $\varphi(M, \bar{a})$ (see Definition $1.10(2)$). We prove here that if A is full over M, then $\operatorname{Th}\left(\mathfrak{B}_{M, A}\right)$ has elimination of quantifiers (see Claim $1.12(1)$, its proof depends only on $1.2,1.7(2))$. By this we prove that $\operatorname{Th}\left(\mathfrak{B}_{M, A}\right)$ is dependent (in 1.13 depending on $1.19(4), 1.12(1),(5)$ only), so for this conclusion " A is full over M " is not needed.
1.1. Context: 1) T is a (first order complete) dependent theory in the language $\mathbb{L}\left(\tau_{T}\right)$.
2) $\mathfrak{C}=\mathfrak{C}_{T}$ is a monster model for T.
1.2. Claim: Assume
(a) M a model
(b) D an ultrafilter on M, i.e. on the Boolean Algebra $\mathscr{P}(M)$.

Then for any $\bar{c} \in{ }^{\omega>} \mathfrak{C}$ and formula $\varphi(x, y, \bar{c})$ we have: if the set $\{a \in M$: $(\exists y \in M)(\mathfrak{C} \models \varphi[a, y, \bar{c}])\}$ belongs to D, then it belongs to $\operatorname{def}_{2}(D)$, see definition below.
1.3. Definition: 1) When D is an ultrafilter on a set $B \subseteq \mathfrak{C}$ let $\operatorname{def}_{2}(D)=\left\{A \in D:\right.$ some member of $\operatorname{def}_{1}(D)$ is included in $\left.A\right\}$, where
$\operatorname{def}_{1}(D)=\left\{A \in D\right.$: for some $\bar{c} \in{ }^{\omega>} \mathfrak{C}$ and formula $\psi(x, \bar{c})$ the set $\psi(M, \bar{c})=\{a \in M: \mathfrak{C} \models \psi(a, \bar{c})\}$ belongs to D and is equal to $A\}$.
2) Similarly, when D is an ultrafilter on ${ }^{m} B, m<\omega$.
1.4. Remark: Note the following easy comments.

1) Of course, Claim 1.2 holds also for $\varphi=\varphi(\bar{x}, \bar{y}, \bar{c})$ when D an ultrafilter on ${ }^{m} M$ and $m=\ell g(\bar{y})$ because, e.g. just work in $\mathfrak{C}^{\text {eq }}$.
2) T is dependent if and only if $T^{\mathrm{eq}}=\operatorname{Th}\left(\mathfrak{C}^{\text {eq }}\right)$ is; this justifies the statement above (in part (1)); and $\operatorname{Th}(\mathfrak{C})$ is dependent if and only if $\operatorname{Th}(\mathfrak{C}, c)_{c \in C}$ is (for any $C \subseteq \mathfrak{C}$) and T dependent $\Rightarrow \operatorname{Th}\left(\mathfrak{C} \upharpoonright \tau^{\prime}\right)$ is dependent when $\tau^{\prime} \subseteq \tau_{T}$.
3) $\operatorname{def}_{2}(D)$ is a filter on A.
4) In the proof of 1.2 the hypothesis " T dependent" is used only for deducing that " $\varphi(x, y, \bar{c})$ is dependent" which is naturally defined.
5) Recall the following (which is used in the proof):
(a) $\Delta \subseteq \mathbb{L}\left(\tau_{T}\right)$, means Δ is a set of objects of the form $\varphi(\bar{x}), \varphi$ a (first order) formula from $\mathbb{L}\left(\tau_{T}\right), \bar{x}$ a sequence of variables with no repetitions including the free variables of φ, but changing the variables is allowed here, i.e., there is no difference between $\varphi(x)$ and $\varphi(y)$; we may write $\varphi(\bar{x}, \bar{y})$ instead of $\varphi\left(\bar{x}^{\wedge} \bar{y}\right)$
(b) $\operatorname{tp}_{\Delta}(\bar{a}, A)=\left\{\varphi(\bar{x}, \bar{b}): \bar{x}=\left\langle x_{\ell}: \ell<\ell g(\bar{a})\right\rangle, \varphi(\bar{x}, \bar{y}) \in \Delta\right.$ and $\mathfrak{C} \models \varphi[\bar{a}, \bar{b}]$ and $\left.b \in{ }^{\omega>} A\right\}$
(c) $\left\langle\bar{b}_{t}: t \in I\right\rangle$ is Δ-indiscernible over B means that: I is a linear order and if $\varphi\left(\bar{x}_{1}, \ldots, \bar{x}_{n}, \bar{y}\right) \in \Delta, \ell g\left(\bar{x}_{\ell}\right)=\ell g\left(\bar{b}_{t}\right)$ for $\ell=1, \ldots, n$ and $t \in I$ and $\bar{c} \in{ }^{\ell g(\bar{y})} B$ then for any $s_{1}<_{I} \cdots<_{I} s_{n}$ and $t_{1}<_{I} \cdots<_{I} t_{n}$ we have $\mathfrak{C} \models " \varphi\left[\bar{b}_{t_{1}}, \ldots, \bar{b}_{t_{n}}, \bar{c}\right] \equiv \varphi\left[\bar{b}_{s_{1}}, \ldots, \bar{b}_{s_{n}}, \bar{c}\right] "$.
6) In the proof of Claim 1.2 we do not need to close Δ_{1} to Δ_{2}, i.e., we can let $\Delta_{2}=\Delta_{1}$ provided that we redefine $\operatorname{tp}_{\Delta_{1}}(a, A)$ as
$\operatorname{tp}(a, A) \cap\left\{\varphi\left(a_{0}, \ldots, a_{m-1}, x, a_{m+1}, \ldots, a_{n}\right): \varphi\left(x_{0}, \ldots, x_{m-1}, x_{m}\right.\right.$,

$$
\left.\left.x_{m+1}, \ldots, x_{n-1}\right) \in \Delta\right\}
$$

or, more specifically, in $(*)_{1}$ from \boxtimes_{1}, inside the proof of \boxtimes_{1}, we replace " a_{ℓ} realizes $\operatorname{tp}_{\Delta_{2}}\left(a_{w}, \ldots\right)$ " by " a_{ℓ} realizes $\left\{\varphi\left(a_{\ell_{0}}, \ldots, a_{\ell_{m-1}}\right.\right.$, $\left.x, a_{\omega+1}, \ldots, a_{\omega+n-1+m}, \bar{b}\right): \varphi\left(x_{0}, \ldots, x_{n-1}, \bar{y}\right) \in \Delta_{1}$ and $\bar{b} \in{ }^{\ell g(\bar{y})} B$, $m<n, \ell_{0}<\cdots<\ell_{m-1}<\ell$ and $\mathfrak{C} \models \varphi\left[a_{\ell_{0}}, \ldots, a_{\ell_{m-1}}, a_{\omega}, a_{\omega+n+1}, \ldots\right.$, $\left.\left.a_{\omega+n-1-m}, \bar{b}\right)\right\} "$.

Proof. We shall use " T is dependent" only in the last sentence of the proof toward contradiction. Assume that $\bar{c}, \varphi(x, y, \bar{c})$ form a counterexample.

So
$\circledast_{0} \quad$ (i) the set $A^{*}=\{a \in M$: for some $b \in M$ we have $\models \varphi[a, b, \bar{c}]\}$ belongs to D,
(ii) $A^{*} \notin \operatorname{def}_{2}(D)$, that is, no $A^{\prime} \in \operatorname{def}_{1}(D)$ is included in A^{*}.

By the choice of A^{*} we can, for each $a \in A^{*}$, choose $b_{a} \in M$ such that $\models \varphi\left[a, b_{a}, \bar{c}\right]$. Let $D_{1}=D$ and let D_{2} be the following ultrafilter on ${ }^{2} M: X \in D_{2}$ if and only if $X \subseteq{ }^{2} M$ and for some $A \in D$ we have $\left\{\left(a, b_{a}\right): a \in A \cap A^{*}\right\} \subseteq X$.

We can choose $\left\langle\left(a_{\omega+n}, b_{\omega+n}\right): n<\omega\right\rangle$ from \mathfrak{C} such that
\circledast_{1} for $n_{1}<n_{2}<\omega$ the pair $\left(a_{\omega+n_{1}}, b_{\omega+n_{1}}\right)$ realizes the type $\operatorname{Av}(M \cup$ $\left.\left\{a_{\omega+\ell}, b_{\omega+\ell}: \ell \in\left(n_{1}, n_{2}\right]\right\}, D_{2}\right)$.
It follows that $a_{\omega+n_{1}}$ realizes the type $\operatorname{Av}\left(M \cup\left\{a_{\omega+\ell}, b_{\omega+\ell}: \ell \in\left(n_{1}, n_{2}\right]\right\}, D_{1}\right)$ and
\circledast_{2} for $n_{1}<n_{2}$, the element $a_{\omega+n_{1}}$ realizes the type $\operatorname{Av}\left(M \cup\left\{a_{\omega+\ell}: \ell \in\right.\right.$ $\left.\left.\left(n_{1}, n_{2}\right]\right\}, D\right)$;
\circledast_{3} for $n_{1}<n_{2}$ the triple $\left(a_{2 n_{1}}, a_{2 n_{1}+1}, b_{2 n_{1}+1}\right)$ realizes the type $\operatorname{Av}(M \cup$ $\left.\left\{a_{\omega+2 \ell}, a_{\omega+2 \ell+1}, b_{\omega+2 \ell+1}: \ell \in\left(n_{1}, n_{2}\right]\right\}, D_{3}\right)$ for some ultrafilter D_{3} on ${ }^{3} M$, the set of triples of members of M.
(Why? We define $D_{3}:=\left\{X \subseteq{ }^{3} M:\{a \in M:\{(b, c) \in M \times M:\right.$ $\left.\left.(a, b, c) \in X\} \in D_{2}\right\} \in D_{1}\right\}$.)
(We use mainly \circledast_{1}).
Now, clearly,
$\boxtimes_{0}\left\langle\left(a_{\omega+n}, b_{\omega+n}\right): n<\omega\right\rangle$ is an indiscernible sequence over M
\boxtimes_{1} if $\Delta_{1} \subseteq \mathbb{L}\left(\tau_{T}\right)$ is finite, then we can find $n(*)<\omega$ and finite $\Delta_{2} \subseteq \mathbb{L}(T)$ such that
$(*)_{1}$ if $n_{1}<\omega$ and $B \subseteq M$ is finite and for each $\ell<n_{1}$ the element $a_{\ell} \in$ M realizes the type $\operatorname{tp}_{\Delta_{2}}\left(a_{\omega},\left\{a_{0}, \ldots, a_{\ell-1}\right\} \cup\left\{a_{\omega+1}, \ldots, a_{\omega+n(*)}\right\} \cup\right.$ $B)$, then $\left\langle a_{\ell}: \ell<n_{1}\right\rangle^{\wedge}\left\langle a_{\omega+\ell}: \ell<\omega\right\rangle$ is a Δ_{1}-indiscernible sequence over B (and even Δ_{2}-indiscernible).
Note that this is close to $[\mathrm{Sh}: 715,1.16]$; note that it follows from the result (that even for $n_{1}=\omega$ this holds).
(Why does \boxtimes_{1} hold? Let $n(*)$ be arity $\left(\Delta_{1}\right)$, i.e., the maximal number of free variables of a formula from Δ_{1}, it is finite as Δ_{1} is finite, so without loss of
generality each $\varphi \in \Delta_{1}$ is $\varphi(\bar{x}), \operatorname{Rang}(\bar{x}) \subseteq\left\{x_{\ell}: \ell<n(*)\right\}$. Let Δ_{2} be the closure of Δ_{1} under identifying and permuting the variables and let $\Delta_{2, k}$ be defined as Δ_{2} but we allow to add dummy variables from $\left\{x_{0}, \ldots, x_{k}\right\}$ to each formula (we can use below $\Delta_{2}=\bigcup\left\{\Delta_{2, k}: k<\omega\right\}$). We have to prove that for this choice of $n(*)$ and Δ_{2} the assertion $(*)_{1}$ holds.

So assume $n_{1}<\omega$ and B, a_{ℓ} (for $\ell<n_{1}$) are as required in the assumption of $(*)_{1}$. Now we prove, by induction on $k \leq n_{1}$, that
$(*)_{k}^{1}$ the sequences $\left\langle a_{\omega+\ell}: \ell<n_{1}+n(*)\right\rangle$ and $\left\langle a_{\ell}: \ell<k\right\rangle^{\wedge}\left\langle a_{\omega+\ell}: \ell<\right.$ $\left.n_{1}+n(*)-k\right\rangle$ realize the same $\Delta_{2, n_{1}+n(*)}$-type over B which means that: if $m \leq n(*), \bar{d} \in{ }^{m} B$ and $\varphi\left(\bar{y}_{1}, \bar{y}_{2}\right) \in \Delta_{2, n_{1}+n(*)+m}, \ell g\left(\bar{y}_{1}\right)=$ $n_{1}+n(*), \ell g\left(\bar{y}_{2}\right)=m$ then $\mathfrak{C} \models \varphi\left[\left\langle a_{\omega+\ell}: \ell<n_{1}+n(*)\right\rangle, \bar{d}\right]$ if and only if $\mathfrak{C} \models \varphi\left[\left\langle a_{\ell}: \ell<k\right\rangle^{\wedge}\left\langle a_{\omega+\ell}: \ell<n_{1}+n(*)-k\right\rangle, \bar{d}\right]$; note that we can allow $m \leq n(*)$.

For $k=0$, the two expressions give the same sequence. Assume this holds for k and we shall prove it for $k+1$. First $\left\langle a_{\ell}: \ell<k+1\right\rangle^{\wedge}\left\langle a_{\omega+\ell}: \ell<n_{1}+\right.$ $n(*)-(k+1)\rangle$ realize the same type as $\left\langle a_{0}, \ldots, a_{k}, a_{\omega+1}, \ldots, a_{\omega+n_{1}+n(*)-(k+1)}\right\rangle$, simply because $\left\langle a_{\omega+\ell}: \ell<\omega\right\rangle$ is an indiscernible sequence over M, by \boxtimes_{0}. Now by the assumption of $(*)_{1}$ we know that a_{k}, a_{ω} realizes the same Δ_{2}-type over $B \cup\left\{a_{0}, \ldots, a_{k-1}\right\} \cup\left\{a_{\omega+1}, \ldots, a_{\omega+n_{1}+n(*)-k}\right\}$.

As $n(*)$ is the arity of Δ_{1} hence also of Δ_{2} and from the definition of $\Delta_{2, n_{1}+n(*)}$ it follows that the sequence

$$
\left\langle a_{0}, \ldots, a_{k-1}, a_{k}, a_{\omega+1}, \ldots, a_{\omega+n_{1}+n(*)-k-1}\right\rangle
$$

realizes over B the same $\Delta_{2, n_{1}+n(*)}$-type as the sequence

$$
\left\langle a_{0}, \ldots, a_{k-1}, a_{\omega}, a_{\omega+1}, \ldots, a_{\omega+n_{1}+n(*)-k-1}\right\rangle
$$

but by the induction hypothesis on k the latter realizes over B the same $\Delta_{2, n_{1}+n(*)}$-type as the sequence $\left\langle a_{\omega}, a_{\omega+1}, \ldots, a_{\omega+n_{1}+n(*)-1}\right\rangle$, hence $(*)_{k+1}^{1}$ holds, so we have carried the induction on $k \leq n_{1}$. Now the desired conclusion follows from $(*)_{m}^{1}$ by \boxtimes_{0} as each formula in Δ_{1} and even Δ_{2} has $\leq n(*)$ free variables.)
\boxtimes_{2} if $\Delta_{1} \subseteq \mathbb{L}\left(\tau_{T}\right)$ is finite, then we can find $n(*)<\omega$ and finite $\Delta_{2} \subseteq \mathbb{L}\left(\tau_{T}\right)$ such that
$(*)_{2}$ if $n_{1}<\omega, B \subseteq M$ is finite and for each $\ell<n_{1}, a_{2 \ell} \in M$ realizes

$$
\operatorname{tp}_{\Delta_{2}}\left(a_{\omega},\left\{a_{2 m}, a_{2 m+1}, b_{2 m+1}: m<\ell\right\} \cup\left\{a_{\omega+\ell}, b_{\omega+\ell}: \ell=1, \ldots, n(*)\right\} \cup B\right)
$$

and $\left\langle a_{2 \ell+1}, b_{2 \ell+1}\right\rangle$ realizes

$$
\operatorname{tp}_{\Delta_{2}}\left(\left(a_{\omega}, b_{\omega}\right),\left\{a_{2 m}, a_{2 m+1}, b_{2 m+1}: m<\ell\right\} \cup\left\{a_{2 \ell}\right\}\right.
$$

$$
\left.\left.\left.\cup\left\{a_{\omega+\ell}, b_{\omega+\ell}: \ell=1, \ldots, n(*)\right\} \cup B\right)\right\}\right)
$$

then

$$
\left.\left\langle\left(a_{2 \ell}, a_{2 \ell+1}, b_{2 \ell+1}\right): \ell<n_{1}\right\rangle^{\wedge}\left\langle a_{\omega+2 \ell}, a_{\omega+2 \ell+1}, b_{\omega+2 \ell+1}: \ell<\omega\right\rangle\right)
$$

is Δ_{1}-indiscernible over B (and even Δ_{2}-indiscernible).
(Why? The proof is similar to the proof of \boxtimes_{1} mainly replacing the use of \circledast_{1} by \circledast_{3}.)
\boxtimes_{3} if $B \subseteq M$ is finite, $n^{*}<\omega$ and $\Delta \subseteq \mathbb{L}\left(\tau_{T}\right)$ is finite, then we can find $a \in M$ realizing the finite type $q=\operatorname{tp}_{\Delta}\left(a_{\omega}, B \cup\left\{a_{\omega+\ell}, b_{\omega+\ell}: \ell=\right.\right.$ $\left.\left.1, \ldots, n^{*}\right\}\right)$ such that $\models \neg(\exists y \in M) \varphi(a, y, \bar{c})$.
(Why? The set $A:=\{a \in M: a$ realizes q, equivalently satisfies the formula $\wedge q \in \operatorname{Av}(\mathfrak{C}, D)\}$ belongs to D because q is finite and the choice of $\left\langle a_{\omega+\ell}, b_{\omega+\ell}: \ell<\omega\right\rangle$; moreover, it belongs to $\operatorname{def}_{1}(D)$ by the definition of $\operatorname{def}_{1}(D)$ as $\wedge q$ is a formula. But $\operatorname{def}_{1}(D) \subseteq \operatorname{def}_{2}(D)$ hence $A \in \operatorname{def}_{2}(D)$.

So by the assumption towards a contradiction and choice of A^{*}, i.e., by $(*)_{0}$, we have $\neg\left(A \subseteq A^{*}\right)$ so there is $a \in A$ such that $a \notin A^{*}$ which means that $\neg(\exists y \in M) \varphi(a, y, \bar{c})$, so we are done.)

By the above and compactness (or use an ultrapower)
\boxtimes_{4} there are $N, a_{2 n}, a_{2 n+1}, b_{2 n+1}($ for $n<\omega)$ such that
(a) N is $|T|^{+}$-saturated;
(b) $a_{2 n}, a_{2 n+1}, b_{2 n+1} \in N$;
(c) $\left\langle a_{n}: n<\omega\right\rangle$ is an indiscernible sequence;
(d) $\left\langle\left(a_{2 n}, a_{2 n+1}, b_{2 n+1}\right): n<\omega\right\rangle^{\wedge}\left\langle\left(a_{\omega+2 n}, a_{\omega+2 n+1}, b_{\omega+2 n+1}\right): n<\omega\right\rangle$ is an indiscernible sequence;
(e) $\mathfrak{C} \models \varphi\left[a_{2 n+1}, b_{2 n+1}, \bar{c}\right]$;
(f) for no $n<\omega$ and $b \in N$ do we have $\mathfrak{C} \models \varphi\left[a_{2 n}, b, \bar{c}\right]$.
(Why? By compactness it is enough to prove the following: for every $n_{1}<\omega$ and finite $\Delta_{1} \subseteq \mathbb{L}\left(\tau_{T}\right)$ to which φ belongs there are $a_{2 n}, a_{2 n+1}, b_{2 n+1} \in M$ for $n<n_{1}$ such that clauses (a)-(f) hold when we restrict ourselves to $n<n_{1}$ and Δ_{1}-types and replace N by M. We first choose a finite $\Delta_{2} \subseteq \mathbb{L}\left(\tau_{T}\right)$ as in \boxtimes_{2}, and then choose $\left(a_{2 n}, a_{2 n+1}, b_{2 n+1}\right)$ by induction on n such that the demand in
$(*)_{2}$ of \boxtimes_{2} hold. Arriving to n, choose $a_{2 n} \in M$ such that in addition, clause (f) holds, this is possible by \boxtimes_{3}, and then choose $\left(a_{2 n+1}, b_{2 n+1}\right) \in{ }^{2} M$ recalling that $\left(a_{\omega}, b_{\omega}\right)$ realizes $\operatorname{Av}\left(M \cup\left\{a_{\omega+n}, b_{\omega+n}: 1 \leq n<\omega\right\}, D_{2}\right)$. So we are done proving \boxtimes_{4}.)

Next, by clause (d) of \boxtimes_{4},
\boxtimes_{5} there is an automorphism F of \mathfrak{C} such that $n<\omega$ implies

$$
F\left(\left(a_{\omega+2 n}, a_{\omega+2 n+1}, b_{\omega+2 n+1}\right)\right)=\left(a_{2 n}, a_{2 n+1}, b_{2 n+1}\right)
$$

Hence we can find $b_{2 n} \in \mathfrak{C}$ for $n<\omega$ such that $\left\langle\left(a_{n}, b_{n}\right): n<\omega\right\rangle$ is an indiscernible sequence (over \emptyset, not necessarily over $\bar{c}!$) and as N is $|T|^{+}$-saturated, without loss of generality, $b_{2 n} \in N$ for $n<\omega$. But $\mathfrak{C} \models \varphi\left[a_{2 n+1}, b_{2 n+1}, \bar{c}\right]$ for $n<\omega$ so as T is dependent for every large enough $n<\omega$, we have $\mathfrak{C} \models \varphi\left[a_{2 n}, b_{2 n}, \bar{c}\right]$. But as $b_{2 n} \in N$ clearly $\left\{a_{n}, b_{n}: n<\omega\right\} \subseteq N$ hence $n<\omega \Rightarrow \mathfrak{C} \models \varphi\left[a_{2 n}, b_{2 n}, \bar{c}\right]$ contradicts clause (f) of $\boxtimes_{4} . \quad \quad_{1.2}$

Recall
1.5. Definition: For $A \subseteq C(\subseteq \mathfrak{C})$, we say that C is full over A when: for every $m<\omega$ and $p \in \mathbf{S}^{m}(A)$, there is $\bar{c} \in{ }^{m} C$ which realizes p.
1.6. Observation: If
(a) D_{1}, D_{2} are ultrafilters on ${ }^{m} A$,
(b) $A \subseteq C$,
(c) C is full over A,
(d) $\operatorname{Av}\left(C, D_{1}\right)=\operatorname{Av}\left(C, D_{2}\right)$.

Then $\operatorname{def}_{\ell}\left(D_{1}\right)=\operatorname{def}_{\ell}\left(D_{2}\right)$ for $\ell=1,2$.
Proof. Easy.
1.7. Claim: 1) Assume
(a) $M \subseteq C$
(b) D_{0} is an ultrafilter on ${ }^{m_{0}} M$
(c) \bar{b}_{0} realizes $\operatorname{Av}\left(C, D_{0}\right)$
(d) $\operatorname{tp}\left(\bar{b}_{0}{ }^{\wedge} \bar{b}_{1}, C\right)$ is f.s. in M and $m_{1}=\ell g\left(\bar{b}_{1}\right)$
(e) C is full over M.

Then for some ultrafilter D on ${ }^{m_{0}+m_{1}} M$ we have
($\alpha) \operatorname{Av}(C, D)=\operatorname{tp}\left(\bar{b}_{0}{ }^{\wedge} \bar{b}_{1}, C\right)$
(β) the projection of D on ${ }^{m_{0}} M$ is D_{0}.
2) Assume that clauses (a) and (e) of part (1) hold. Then for any $\bar{c} \in{ }^{\omega>} \mathfrak{C}$ and formula $\varphi(\bar{x}, y, \bar{z}) \in \mathbb{L}\left(\tau_{T}\right), \ell g(\bar{z})=\ell g(\bar{c})$ there are $\psi\left(\bar{x}, \bar{z}^{\prime}\right)$ and \bar{d} of length $\ell g\left(\bar{z}^{\prime}\right)$ from \mathfrak{C}, (and even from $\left.C\right)$ such that $\{\bar{a} \in M:(\exists y \in M)(\models \varphi[\bar{a}, y, \bar{c}])\}=$ $\{\bar{a} \in M: \models \psi(\bar{a}, \bar{d})\}$.

Proof. 1) Let

$$
\begin{gathered}
\mathscr{E}_{0}=\left\{\left\{\bar{a} \in{ }^{m_{0}+m_{1}} M: \bar{a} \upharpoonright m_{0} \in X\right\}: X \in D_{0}\right\} \\
\mathscr{E}_{1}=\left\{\left\{\bar{a} \in{ }^{m_{0}+m_{1}} M: \mathfrak{C} \models \varphi[\bar{a} ; \bar{c}]\right\}: \varphi(\bar{x} ; \bar{y}) \in \mathbb{L}\left(\tau_{T}\right)\right. \\
\left.\ell g(\bar{x})=m_{0}+m_{1}, \ell g(\bar{y})=\ell g(\bar{c}), \bar{c} \in{ }^{\omega>} C \text { and } \mathfrak{C} \models \varphi\left[\bar{b}_{0} \frown \bar{b}_{1} ; \bar{c}\right]\right\} .
\end{gathered}
$$

Clearly, it suffices to prove that there is an ultrafilter on ${ }^{m_{0}+m_{1}} M$ extending $\mathscr{E}_{0} \cup \mathscr{E}_{1}$. For this it suffices to show that any finite subfamily of $\mathscr{E}_{0} \cup \mathscr{E}_{1}$ has a non-empty intersection. But \mathscr{E}_{0} is closed under finite intersections as D_{0} is an ultrafilter on ${ }^{m_{0}} M$ and \mathscr{E}_{1} is closed under finite intersections as $\mathbb{L}\left(\tau_{T}\right)$ is closed under conjunctions, so it suffices to prove that $X_{0} \cap X_{1} \neq \emptyset$ when
(i) $X_{0}=\left\{\bar{a} \in{ }^{m_{0}+m_{1}} M: \bar{a} \upharpoonright m_{0} \in X\right\} \in \mathscr{E}_{0}$ for some $X \in D_{0}$
(ii) $X_{1}=\left\{\bar{a} \in{ }^{m_{0}+m_{1}} M: \mathfrak{C} \models \varphi\left[\bar{b}_{0} \frown \bar{b}_{1} ; \bar{c}\right]\right\} \in \mathscr{E}_{1}$, where $\varphi(\bar{x}, \bar{y})$ and \bar{c} are as in the definition of \mathscr{E}_{1}.
As $\operatorname{tp}\left(\bar{b}_{0}{ }^{\wedge} \bar{b}_{1}, C\right)$ is finitely satisfiable in $M(=\operatorname{assumption}(d))$, clearly there is an ultrafilter D_{1}^{\prime} on ${ }^{m_{0}+m_{1}} M$ such that $\operatorname{Av}\left(C, D_{1}^{\prime}\right)=\operatorname{tp}\left(\bar{b}_{0}{ }^{\wedge} \bar{b}_{1}, C\right)$.

Let D_{0}^{\prime} be the projection of D_{1}^{\prime} to ${ }^{m_{0}} M$, i.e., $\left\{Y \subseteq{ }^{m_{0}} M:\left\{\bar{a} \in{ }^{m_{0}+m_{1}} M\right.\right.$: $\left.\left.\bar{a} \upharpoonright m_{0} \in Y\right\} \in D_{1}^{\prime}\right\}$. Clearly, D_{0}^{\prime} is an ultrafilter over ${ }^{m_{0}} M$. We have $\mathfrak{C} \models$ $\varphi\left[\bar{b}_{0}, \bar{b}_{1} ; \bar{c}\right]$, so $X_{1} \in D_{1}^{\prime}$, hence $X_{0}^{\prime}=\left\{\bar{a} \upharpoonright m_{0}: \bar{a} \in X_{1}\right\} \in D_{0}^{\prime}$; which implies that the set $X_{0}^{\prime \prime}:=\left\{\bar{a}_{0} \in{ }^{m_{0}} M\right.$: for some $\bar{a}_{1} \in{ }^{m_{1}} M$ we have $\bar{a}_{0}{ }^{\wedge} \bar{a}_{1} \in X_{1}$, i.e., $\left.\models \varphi\left[\bar{a}_{0}, \bar{a}_{1} ; \bar{c}\right]\right\}$ belongs to D_{0}^{\prime}.

By 1.2 (and $1.4(2))$ it follows that $X_{0}^{\prime \prime}$ includes some $Y_{0}^{\prime \prime} \in \operatorname{def}_{1}\left(D_{0}^{\prime}\right)$. Now $\operatorname{Av}\left(C, D_{0}\right)=\operatorname{tp}\left(\bar{b}_{0}, C\right)=\operatorname{Av}\left(C, D_{0}^{\prime}\right)$, because the first equality holds as by assumption (b) the sequence \bar{b}_{0} realizes $\operatorname{Av}\left(C, D_{0}\right)$ and second equality holds as $\bar{b}_{0}{ }^{\wedge} \bar{b}_{1}$ realizes $\operatorname{Av}\left(C, D_{1}^{\prime}\right)$ and the choice of D_{0}^{\prime}. But by assumption (e) every $p \in \mathbf{S}^{<\omega}(M)$ is realized by some sequence from C. Hence, by Observation 1.6 we have $\operatorname{def}_{2}\left(D_{0}\right)=\operatorname{def}_{2}\left(D_{0}^{\prime}\right)$. But $Y_{0}^{\prime \prime} \in \operatorname{def}_{1}\left(D_{0}^{\prime}\right)$ so $Y_{0}^{\prime \prime} \in \operatorname{def}_{2}\left(D_{0}\right)$ hence $Y_{0}^{\prime \prime} \in D_{0}$. By the choice of $Y_{0}^{\prime \prime}$ we have $Y_{0}^{\prime \prime} \subseteq X_{0}^{\prime \prime} \subseteq{ }^{m_{0}} M$ so by the previous sentence $X_{0}^{\prime \prime} \in D_{0}$, but by clause (i) above also $X \in D_{0}$ hence $X \cap X_{0}^{\prime \prime} \in D_{0}$, so we can find $\bar{a}_{0} \in X \cap X_{0}^{\prime \prime} \subseteq{ }^{m_{0}} M$. By the definition of $X_{0}^{\prime \prime}$ there is $\bar{a}_{1} \in{ }^{m_{1}} M$ such that $\mathfrak{C} \models \varphi\left[\bar{a}_{0}, \bar{a}_{1} ; \bar{c}\right]$. Now $\bar{a}_{0}{ }^{\wedge} \bar{a}_{1} \in X_{1}$, by the definition of X_{1} from clause
(ii) and $\bar{a}_{0}{ }^{\wedge} \bar{a}_{1} \in X_{0}$, because $\bar{a}_{0} \in X$ and X_{0} 's definition from clause (i). So $\bar{a}_{0}{ }^{\wedge} \bar{a}_{1} \in X_{0} \cap X_{1}$. Hence, $X_{0} \cap X_{1} \neq \emptyset$ and we are done.
2) Let $\varphi^{*}(\bar{x}, y, \bar{z}) \in \mathbb{L}\left(\tau_{T}\right)$ and $\bar{c}^{*} \in{ }^{\ell g(\bar{z})} \mathfrak{C}$ and we should find $\psi\left(\bar{x}, \bar{z}^{\prime}\right), \bar{d}$ as required. Assume that $\bar{c} \in{ }^{\ell g(\bar{z})} C$ realizes $\operatorname{tp}\left(\bar{c}^{*}, M\right)$, for our purpose we may assume, without loss of generality, that $\bar{c}^{*}=\bar{c}$. For any formula $\psi\left(\bar{x}, \bar{z}^{\prime}\right) \in \mathbb{L}\left(\tau_{T}\right)$ and $\bar{d} \in{ }^{\ell g\left(\bar{z}^{\prime}\right)} \mathfrak{C}$ let $Y_{\psi(\bar{x}, \bar{d}), M}=\left\{\bar{a} \in{ }^{\ell g(\bar{x})} M: \mathfrak{C} \models \psi[\bar{a}, \bar{d}]\right\}$ and let $X_{\varphi(\bar{x}, y, \bar{c}), M}=$ $\left\{\bar{a} \in{ }^{\ell g(\bar{x})} M: \mathfrak{C} \models \varphi[\bar{a}, b, \bar{c}]\right.$ for some $\left.b \in M\right\}$.

Lastly, let $\mathscr{P}=\left\{Y_{\psi(\bar{x}, \bar{d}), M}: \psi(\bar{x}, \bar{y}) \in \mathbb{L}\left(\tau_{T}\right), \bar{d} \in{ }^{\ell g(\bar{z})} C\right.$ and $Y_{\psi(\bar{x}, \bar{d}), M} \subseteq$ $\left.X_{\varphi(\bar{x}, y, \bar{c}), M}\right\}$. Clearly, \mathscr{P} is closed under finite unions and is a family of subsets of M. Also if $X_{\varphi(\bar{x}, y, \bar{c}), M}$ is equal to some member of \mathscr{P} then we are done, so assume toward contradiction that this fails. So as $X_{\varphi(\bar{x}, y, \bar{c})} \subseteq M$, there is an ultrafilter D on M such that $X_{\varphi(\bar{x}, y, \bar{c}), M} \in D$ but D is disjoint to \mathscr{P} which contradicts 1.2. $\quad \mathbf{■}_{1.7}$

1.8. Conclusion: Assume

(a) $M \prec M_{1}$
(b) M_{1} is $\|M\|^{+}$-saturated.

Then $\left\{A: A / M_{1}\right.$ is f.s. in $\left.M\right\}$ has amalgamation and JEP (the joint embedding property) by elementary maps from \mathfrak{C} to \mathfrak{C} which are the identity on M_{1}.

Proof. The joint embedding property is trivial. For the amalgamation, by compactness, we should consider finite sequence $\bar{a}_{0}, \bar{a}_{1}, \bar{a}_{2}$ such that $\operatorname{tp}\left(\bar{a}_{0}{ }^{\wedge} \bar{a}_{\ell}, M_{1}\right)$ is f.s. in M for $\ell=1,2$ and we should find sequences $\bar{b}_{0}, \bar{b}_{1}, \bar{b}_{2}$ such that $\ell g\left(\bar{b}_{\ell}\right)=\ell g\left(\bar{a}_{\ell}\right)$ for $\ell=0,1,2$ and $\operatorname{tp}\left(\bar{a}_{0}{ }^{\wedge} \bar{a}_{\ell}, M_{1}\right)=\operatorname{tp}\left(\bar{b}_{0}{ }^{\wedge} \bar{b}_{\ell}, M_{1}\right)$ for $\ell=1,2$ and $\operatorname{tp}\left(\bar{b}_{0}{ }^{\wedge} \bar{b}_{1}{ }^{\wedge} \bar{b}_{2}, M_{1}\right)$ is f.s. in M.

Let $m_{\ell}=\ell g\left(a_{\ell}\right)$, let D_{0} be an ultrafilter on ${ }^{m_{0}} M$ such that $\operatorname{tp}\left(\bar{a}_{0}, M_{1}\right)=$ $\operatorname{Av}\left(M_{1}, D_{0}\right)$. By 1.7(1) for $\ell \in\{1,2\}$ there is an ultrafilter D_{ℓ} on ${ }^{m_{0}+m_{\ell}} M$ such that
$(*)_{1} \operatorname{tp}\left(\bar{a}_{0}{ }^{\wedge} \bar{a}_{\ell}, M_{1}\right)$ is $\operatorname{Av}\left(M_{1}, D_{\ell}\right) ;$
$(*)_{2}$ the projection of D_{ℓ} on ${ }^{m_{0}} M$ is D_{0}.
Let $m=m_{0}+m_{1}+m_{2}$ and let D_{1}^{\prime} be the filter on ${ }^{m} M$ consisting of $\left\{Y \subseteq{ }^{m} M\right.$: for some $X \in D_{1}$ for every $\bar{a} \in{ }^{m} M$ we have $\left.\bar{a} \upharpoonright\left(m_{0}+m_{1}\right) \in X \Rightarrow \bar{a} \in Y\right\}$. Let D_{2}^{\prime} be the filter on ${ }^{m} M$ consisting of $\left\{Y \subseteq{ }^{m} M\right.$: for some $X \in D_{2}$ for every $\bar{a} \in{ }^{m} M$ we have $\left.\left(\bar{a} \upharpoonright m_{0}\right)^{\wedge}\left(\bar{a} \upharpoonright\left[m_{0}+m_{1}, m\right)\right) \in X \Rightarrow \bar{a} \in Y\right\}$. Easily, $Y_{1} \in D_{1}^{\prime}$ and $Y_{2} \in D_{2}^{\prime} \Rightarrow Y_{1} \cap Y_{2} \neq \emptyset$ because D_{1}, D_{2} has the same projection on ${ }^{m_{0}} M$.

Hence, we can find an ultrafilter D^{*} on ${ }^{m_{0}+m_{1}+m_{2}} M$ which extends $D_{1}^{\prime} \cup D_{2}^{\prime}$. Hence, if $\bar{b}_{0}{ }^{\wedge} \bar{b}_{1}{ }^{\wedge} \bar{b}_{2}$ realizes $\operatorname{Av}\left(M_{1}, D^{*}\right)$, then $\bar{b}_{0}{ }^{\wedge} \bar{b}_{\ell}$ realizes $\operatorname{tp}\left(\bar{a}_{0}{ }^{\wedge} \bar{a}_{\ell}, M_{1}\right)$ for $\ell=1,2$. This completes the proof. $\quad \boldsymbol{\square}_{1.8}$
1.9. Discussion: Next we shall deduce the promised results. If M^{+}is an expansion of a model $M \prec \mathfrak{C}$ by the restriction of relations definable in \mathfrak{C} (with parameters), then $\operatorname{Th}\left(M^{+}\right)$is still dependent. Moreover, if we do this for close enough family of such relations then $\operatorname{Th}\left(M^{+}\right)$has elimination of quantifiers. Toward formulating this result we define several extensions of T.
1.10. Definition: Let $M \prec \mathfrak{C}, A \subseteq \mathfrak{C}$ and for simplicity τ_{T} has predicate symbols only.

1) We define a universal first order theory $T_{M, A}$ as follows
(a) the vocabulary is $\tau_{M, A}=\left\{P_{\varphi(\bar{x}, \bar{a})}: \varphi \in \mathbb{L}\left(\tau_{T}\right)\right.$ and $\left.\bar{a} \in{ }^{\ell g(\bar{y})} A\right\} \cup$ $\left\{c_{a}: a \in M\right\}$ with
(i) c_{a} an individual constant
(ii) $P_{\varphi(\bar{x}, \bar{a})}$ being a predicate with arity $\ell g(\bar{x})$; but we identify $P_{R(\bar{x})}$ with $R\left(\right.$ where $\left.\bar{x}=\left\langle x_{\ell}: \ell<\operatorname{arity}(R)\right\rangle\right)$ so $\left.\tau_{T} \subseteq \tau_{M, A}\right)$
(b) $T_{M, A}$ is the set of universal (first order) sentences satisfied in $\mathfrak{B}_{M, M, A}$, see part (2).
2) Assume $M \subseteq C \prec \mathfrak{C}$ and $\operatorname{tp}(C, M \cup A)$ is f.s. in M (e.g., $C=M$). We define $\mathfrak{B}=\mathfrak{B}_{C, M, A}$ as the $\tau_{M, A}$-model with universe C such that $P_{\varphi(\bar{x}, \bar{a})}^{\mathfrak{B}}=\left\{\bar{b} \in{ }^{\ell g(\bar{x})} C: \mathfrak{C} \models \varphi[\bar{b}, \bar{a}]\right\}$ for $\varphi(\bar{x}, \bar{y}) \in \mathbb{L}\left(\tau_{T}\right), \bar{a} \in{ }^{\ell g(\bar{y})}(A)$ and such that $c_{a}^{\mathfrak{B}}=a$ for $a \in M$. If $C=M$ we may omit C.
3) A model \mathfrak{B} of $T_{M, A}$ is called quasi-standard if $c_{a}^{\mathfrak{B}}=a$ for $a \in M$.

3A) A model \mathfrak{B} of $T_{M, A}$ is called standard if it is $\mathfrak{B}_{C, M, A}$ for some $C, M \subseteq$ $C \subseteq \mathfrak{C}$ satisfying $\operatorname{tp}(C, M \cup A)$ is finitely satisfiable in M.
4) Let $T_{M, A}^{*}$ be the model completion of $T_{M, A}$ (well defined only if it exists!)
1.11. Observation: 1) If $M \subseteq C$ and $\operatorname{tp}(C, M \cup A)$ is finitely satisfiable in M, then $\mathfrak{B}_{C, M, A}$ is a model of $T_{M, A}$.
2) If \mathfrak{B} is a model of $T_{M, A}$, then \mathfrak{B} is isomorphic to the standard model $\mathfrak{B}=\mathfrak{B}_{C, M, A}$ of $T_{M, A}$ for some C.
3) Moreover, if $\mathfrak{B}_{1} \subseteq \mathfrak{B}_{2}$ are models of $T_{M, A}$ and \mathfrak{B}_{1} is standard, then \mathfrak{B}_{2} is (quasi standard and is) isomorphic over \mathfrak{B}_{1} to some standard $\mathfrak{B}_{2}^{\prime}$ satisfying $\mathfrak{B}_{1} \subseteq \mathfrak{B}_{2}^{\prime}$.
4) If $A_{1} \subseteq A_{2}, M \subseteq C$ and $\operatorname{tp}\left(C, M \cup A_{2}\right)$ is f.s. in M, then $\mathfrak{B}_{C, M, A_{1}}$ is a reduct of $\mathfrak{B}_{C, M, A_{2}}$.
5) If $M \subseteq C_{1} \subseteq C_{2}$ and $\operatorname{tp}\left(C_{2}, M \cup A\right)$ is f.s. in M, then $\mathfrak{B}_{C_{1}, M, A}$ is a submodel of $\mathfrak{B}_{C_{2}, M, A}$ (and $\operatorname{tp}\left(C_{1}, M \cup A\right.$) is finitely satisfiable in M, hence $\mathfrak{B}_{C_{1}, M, A}$ is well-defined).

Proof. Easy.
1.12. Claim: Assume A is full over M.

1) $\mathfrak{B}_{M, M, A}$ is a model of $T_{M, A}$ with elimination of quantifiers; in fact, every subset of ${ }^{m}\left(\mathfrak{B}_{M, M, A}\right)$, i.e., of ${ }^{m}|M|$ definable in $\mathfrak{B}_{M, M, A}$ by some first order formula with parameters, is definable by an atomic formula $R\left(x_{0}, \ldots, x_{m-1}\right)$ in this model.
2) If $\operatorname{tp}(C, A)$ is f.s. in M, then we can find M^{+}such that
(a) $M \cup C \subseteq M^{+} \prec \mathfrak{C}$
(b) $\operatorname{tp}\left(M^{+}, A\right)$ is f.s. in M
(c) $\mathfrak{B}_{M^{+}, M, A}$ is an elementary extension of $\mathfrak{B}_{M, M, A}$.
3) $T_{M, A}$ has amalgamation and JEP.
4) $\operatorname{Th}\left(\mathfrak{B}_{M, M, A}\right)$ is the model completion of $T_{M, A}$ so is equal to $T_{M, A}^{*}$ (which is well-defined).
5) $T_{M, A}^{*}$ is a dependent (complete first order) theory.

Proof. 1) By Claim 1.7(2), Definition 1.10(1) and A being full over M.
2) E.g., use an ultrapower $\mathfrak{C}^{\kappa} / D$ of \mathfrak{C} with $\kappa \geq|T|+|C|+|A|, D$ a regular filter on κ and let \mathbf{j} be the canonical embedding of \mathfrak{C} into $\mathfrak{C}^{\kappa} / D$. So we can find $f: C \rightarrow M^{\kappa} / D$ such that $f \cup(\mathbf{j} \upharpoonright A)$ is an elementary mapping, i.e., a $\left(\mathfrak{C}, \mathfrak{C}^{\kappa} / D\right)$-elementary embedding, now it should be clear.
3) The JEP is trivial because of the individual constants $c_{a}(a \in M)$. The amalgamation property holds by 1.8 as we can replace M_{1} there by any set full over M.
4) By parts (1),(2),(3) we have already proved.
5) As $\mathfrak{B}_{M, M, A}$ is a model of it and reflects.

That is, assume $\psi(x, \bar{y})$ is a formula with the independence property in $T_{M, A}^{*}$. Then, by part (1), without loss of generality, ψ is an atomic relation hence for some formula $\varphi(x, \bar{y}, \bar{z}) \in \mathbb{L}\left(\tau_{T}\right)$ and $\bar{c} \in{ }^{\ell g(\bar{z})} A$, for every a, \bar{b} from $M, \mathfrak{C} \models$ $\varphi[a, \bar{b}, \bar{c}]$ if and only if $\mathfrak{B}_{M, M, A} \models \psi(a, \bar{b})$.

By the choice of $\psi(x, \bar{y})$, for every $n<\omega$ there are $\bar{a}_{\ell}^{n} \in{ }^{\ell g(\bar{y})}\left(\mathfrak{B}_{M, M, A}\right)=$ $\ell g(\bar{y})(M)$ for $\ell<\omega$ and $b_{w} \in \mathfrak{B}_{M, M, A}$, i.e., $b_{w}^{n} \in M$ for $w \subseteq\{0, \ldots, n-1\}$ such that, for every $w \subseteq\{0, \ldots, n-1\}$ and $\ell<n$, we have $\mathfrak{B}_{M, M, A} \models \psi\left[b_{w}^{n}, a_{\ell}^{n}\right]^{\mathrm{if}(\ell \in w)}$. Hence, $\mathfrak{C} \models \varphi\left[b_{w}^{n}, \bar{a}_{\ell}^{n}, \bar{c}\right]^{\mathrm{if}(\ell \in w)}$. So $\varphi(x ; \bar{y}, \bar{z})$ has the independence property in T. $\boldsymbol{■}_{1.12}$
1.13. Conclusion: Assume $M \prec \mathfrak{C}$ and $A \subseteq \mathfrak{C}$. Then $\operatorname{Th}\left(\mathfrak{B}_{M, M, A}\right)$ is a dependent (complete first order) theory.

Proof. By $1.11(4)$ and $1.12(5)$ it is the reduct of a dependent (complete first order) theory. More fully, let A_{1} be full over M such that $A \subseteq A_{1}$ and let $\kappa=\left|A_{1}\right|+|T|$. Clearly if $\operatorname{Th}\left(\mathfrak{B}_{M, M A_{1}}\right)$ is dependent, then so is $\operatorname{Th}\left(\mathfrak{B}_{M, M, A}\right)=$ $\operatorname{Th}\left(\mathfrak{B}^{\prime}\right)$. By 1.12(5) we are done. $\quad \boldsymbol{\square}_{1.13}$
1.14. Definition: 1) For any model \mathfrak{B} (not necessarily of T) and $A \subseteq \mathfrak{B}$ let $\mathbb{B}^{m}[A, \mathfrak{B}]$ be the family of subsets of ${ }^{m} A$ of the form $\left\{\bar{a} \in{ }^{m} A: \varphi(\bar{x}, \bar{a}) \in p\right\}$ for some $p \in \mathbf{S}^{m}(A, \mathfrak{B})$.
2) If $\mathfrak{B} \prec \mathfrak{C}$ we may omit \mathfrak{B}.

Remark: If $\mathfrak{B}=\mathfrak{C}$ (or just if \mathfrak{B} is $|A|^{+}$-saturated), then $\mathbb{B}^{m}[A, \mathfrak{B}]=\{\{\bar{a}: \mathfrak{B} \models$ $\varphi[\bar{b}, \bar{a}]\}: \varphi(\bar{x}, \bar{y}) \in \mathbb{L}\left(\tau_{\mathfrak{B}}\right)$ and $\left.\bar{b} \in{ }^{\ell g(\bar{y})} \mathfrak{B}\right\}$.
1.15. Question: Assume $M \subseteq A \subseteq \mathfrak{C}$ and \mathfrak{B} a standard model of $T_{M, A}$ and $N=\mathfrak{B} \upharpoonright \tau_{T}$. Then do we have
$(*)_{T, T_{M, A}}$ for any ultrafilter D_{0} on $\mathbb{B}[N, N]$, the number of ultrafilters D_{1} on $\mathbb{B}[N, \mathfrak{B}]$ extending it is at most $2^{|T|+|A|}$?
1.16. Remark: 1) For complete (first order theories) $T \subseteq T_{1}$, the condition $(*)_{T, T_{1}}$ of 1.15 has affinity to conditions like "any model of T has <1 or $\leq \aleph_{0}$ or $<\|M\|$ expansions to a model of $T_{1} "$. What is the syntactical characterization?
2) When is $\mathfrak{B}_{N, M, A}$ a model of $T_{M, A}^{*}$? Assume $T_{M, A}^{*}$ has elimination of quantifiers does the following condition implies it, i.e., implies $\mathfrak{B}_{N, M, A} \models$ $T_{M, A}^{*}$?
$\square_{N, M, A}$ every formula over $N \cup A$ which does not fork over N is realized in N.

1.17. Discussion: 1) Note that in the proof 1.2 we use " T is dependent"

 just to deduce that the formula $\varphi(x, y, \bar{z})$ is dependent, i.e., for some$$
\begin{aligned}
n & =n_{\varphi(x, y, \bar{z})} \\
& \circledast \mathfrak{C} \models \neg\left(\exists x_{0} y_{0}, \ldots, x_{n-1} y_{n-1}\right) \bigwedge_{w \subseteq n}(\exists \bar{z}) \bigwedge_{\ell<n} \varphi\left(x_{\ell}, y_{\ell}, \bar{z}\right)^{\mathrm{if}(\ell \in w)} .
\end{aligned}
$$

In the proof we can use finite Δ_{1}, Δ_{2} large enough for $\varphi(x, y, \bar{c})$, i.e., such that for a suitable n :
$\circledast_{2} \Delta_{1}=\left\{(\exists \bar{z})\left(\bigwedge_{\ell<n} \varphi\left(x_{0}, y_{0}, \ldots, x_{n-1}, y_{n-1}, \bar{z}\right)^{\mathrm{if}(\ell \in w)}\right): w \subseteq n\right\}$. In particular we need
\circledast_{3} there is Δ_{1}-indiscernible sequence $\left\langle\left(a_{\ell}, b_{\ell}\right): \ell<2 n\right\rangle$ and \bar{c}^{\prime} such that $\mathfrak{C} \models \varphi\left[a_{\ell}, b_{\ell}, \bar{c}^{\prime}\right]$ if and only if ℓ is odd
$\circledast_{4} \Delta_{2}=\left\{\left(\exists y_{0}, y_{2}, \ldots, y_{2 n-2}\right)\left(\wedge q\left(x_{0}, y_{0}, \ldots, x_{2 n-1}, y_{2 n-1}\right): q\right.\right.$ is a complete Δ_{1}-type of a Δ_{1}-indiscernible sequence of pairs of length $\left.2 n\right\}$, hence,
$*_{5}$ there is no Δ_{2} indiscernible sequence

$$
\left\langle\left(a_{2 \ell}, a_{2 \ell+1}, b_{2 \ell+1}\right): \ell<n\right\rangle^{\wedge}\left\langle\left(a_{\omega+2 \ell}, a_{\omega+2 \ell+1}, b_{\omega+2 \ell+1}\right): \ell<n\right\rangle
$$

such that $\mathfrak{C} \models \varphi\left[a_{2 \ell+1}, b_{2 \ell+1}, \bar{c}\right]$ for $\ell<n$ and $\left\{\bar{a}_{2 \ell}, a_{2 \ell}, b_{2 \ell+1}: \ell<\right.$ $n\} \subseteq M$ and for each $\ell<n$ for no $b^{\prime} \in M$ do we have $\models \varphi\left[a_{2 \ell}, b^{\prime}, \bar{c}\right]$. 2) So, looking at the proof and $1.7(2)$
\circledast_{6} there is a finite set $\Delta=\Delta_{\varphi}^{*}$ of formulas of the form $\psi(x, \bar{z})$ computable from $\varphi(x, y, \bar{z})$ (and $\left.n_{\varphi}\right)$ such that:
(a) if M, \bar{c}, D are as in 1.2 , then for some \bar{c}^{\prime} the set $\psi\left(M, \bar{c}^{\prime}\right)$ belongs to D and is included in $\{a \in M$: for no $b \in M$ do we have $\models \varphi[a, b, \bar{c}]\}$
(b) $\{a \in M:(\exists b \in M)(\varphi(a, b, \bar{c})\}$ is a finite union of sets from $\left\{\psi(M, \bar{C}): \bar{c}^{\prime} \in \bar{z}^{\prime} \mathfrak{C}\right.$ and $\left.\psi\left(x, \bar{z}^{\prime}\right) \in \Delta\right\}$.
If in $\circledast_{6}(b)$ there is a bound n on the size of the set not depending on (M, \bar{c}), let $\Delta_{\varphi}^{*}=\left\{\psi_{\ell}\left(\bar{x}, \bar{z}_{\ell}\right): \ell<n_{*}\right\}$ and let $\psi^{*}(\bar{x}, \bar{z})=\bigwedge_{\ell>n} z^{n}=$ $z^{\ell} \rightarrow \psi_{\ell}\left(x, \bar{z}_{\ell}\right)$ so in \circledast_{6}, without loss of generality, $\Delta_{\varphi}^{*}=\left\{\psi_{\varphi}^{*}\left(\bar{x}, \bar{z}^{*}\right)\right\}$.
3) We elaborate; we know that if $\mathbf{I}=\left\{a \in{ }^{m} M\right.$: there is $b \in M$ such that $\mathfrak{C} \models \varphi[a, b, \bar{c}]\}$ where $\varphi=\varphi(x, y, \bar{z}) \in \mathbb{L}\left(\tau_{T}\right), \bar{c} \in \mathfrak{C}, M \prec \mathfrak{C}$, then for some $\psi\left(x, \bar{z}^{\prime}\right) \in \mathbb{L}\left(\tau_{T}\right)$ and $\bar{c}^{\prime} \in{ }^{\ell g\left(\bar{z}^{\prime}\right)} \mathfrak{C}$ we have $\mathbf{I}=\psi\left(M, \bar{c}^{\prime}\right)$. Can we characterize ψ ? Yes, but not so well. Toward proving this, first let $n(*)$
be minimal, such that there are no $a_{\ell}, b_{\ell},\left(\ell<n(*), \bar{c}_{\eta},\left(\eta \in{ }^{\eta(*)} 2\right)\right.$ from \mathfrak{C} such that $M \models \varphi\left(a_{\ell}, b_{\ell}, \bar{c}_{\eta}\right)$ if and only if $\eta(\ell)=1$.
Let $\psi_{n}\left(x_{0}, y_{0}, \ldots, x_{n(*)-1}{ }^{\wedge} y_{n(*)-1}\right)=(\exists \bar{z}) \bigwedge_{\ell<n(*)} \varphi\left(x_{\ell}, y_{\ell}, \bar{z}\right)^{\eta(\ell)}$ for $\eta \in{ }^{n(*)} 2$ and $\Delta_{1}=\left\{\psi_{\eta}\left(\bar{x}_{0}, \bar{y}_{0}, \ldots, \bar{x}_{n(*)}, \bar{y}_{n(*)-1}\right)\right\}$. Let Δ_{2} be the closure of Δ_{1} under permuting the variables.

Let $\Delta_{3, k}$ be the set of formulas of the form

$$
\begin{aligned}
& \vartheta\left(y_{2 k(*)} ;\right. \\
& x_{0}, y_{0}, x_{1}, y_{1}, \ldots, x_{2 k-1}, y_{2 k-1}-y_{2 k} \\
& \left.x_{2 k+1}, y_{2 k+1}, \ldots, x_{2 n(*)-2}, x_{2 n(*)-1}, y_{2 n(*)-1}\right)=\left(\exists y_{2 k+2}\right) \ldots\left(\exists y_{2 n(*)_{2}}\right) \psi^{*}
\end{aligned}
$$

where ψ^{*} is a conjunction or formula from Δ_{2} and their negation.
Now ψ belongs to $\Delta_{3, k}$ for some $k<n(*)$. (In fact, we could be somewhat more specific).

Why? We work with $\bigcup \Delta_{3, \ell}$ choose $a_{2 \ell}, a_{2 \ell+1}, k_{2 \ell+1}$ as in the proof for it. Then we choose $b_{2 \ell+1} \in M$ by induction on $\ell<n(*)$ such that $\left\langle\left(a_{\ell}, b_{\ell}\right): \ell<\right.$ $2 n(*)\rangle$ is Δ_{1}-indiscernible. So for every $\eta \in{ }^{(*)} 2$ we have

$$
(\exists \bar{z}) \bigwedge_{\ell<n(*)} \varphi\left(a_{\ell}, b_{\ell}, \bar{z}\right)^{\eta(\ell)}
$$

2. More on indiscernible sequences

2.1. Context: 1) T is a (first order complete) dependent theory.
2) \mathfrak{C} is the monster model of T.

This section is complimentary to $[\mathrm{Sh}: 715, \S 5]$ so recall the definition.
2.2. Definition: Let $\overline{\mathbf{a}}^{\ell}=\left\langle\bar{a}_{t}^{\ell}: t \in I_{\ell}\right\rangle$ be an indiscernible sequence which is endless (i.e., I_{ℓ} having no last element) for $\ell=1,2$.

1) We say that $\overline{\mathbf{a}}^{1}, \overline{\mathbf{a}}^{2}$ are perpendicular when:
(*) if \bar{b}_{n}^{ℓ} realizes $\operatorname{Av}\left(\left\{\bar{b}_{m}^{k}\right.\right.$: we have $m<n$ and $k \in\{1,2\}$ or we have $m=n$ and $\left.k<\ell\} \cup \overline{\mathbf{a}}^{1} \cup \overline{\mathbf{a}}^{2}, \overline{\mathbf{a}}^{\ell}\right)$ for $\ell=1,2$, then $\overline{\mathbf{b}}^{1}, \overline{\mathbf{b}}^{2}$ are mutually indiscernible (i.e., each is indiscernible over the set of elements appearing in the other) where $\overline{\mathbf{b}}^{\ell}=\left\langle\bar{b}_{n}^{\ell}: n<\omega\right\rangle$ for $\ell=1,2$.
We define " Δ-perpendicular" in the obvious way.
2) We say $\overline{\mathbf{a}}^{1}, \overline{\mathbf{a}}^{2}$ are equivalent and write \approx if for every $A \subseteq \mathfrak{C}$ we have $\operatorname{Av}\left(A, \overline{\mathbf{a}}^{1}\right)=\operatorname{Av}\left(A, \overline{\mathbf{a}}^{2}\right)$.
3) If $\overline{\mathbf{a}}^{1} \subseteq A$, let dual-cf($\left(\overline{\mathbf{a}}^{1}, A\right)=\operatorname{Min}\left\{|B|: B \subseteq A\right.$ and no $\bar{c} \in{ }^{\omega>} A$ realizes $\left.\operatorname{Av}\left(B, \overline{\mathbf{a}}^{1}\right)\right\}$; we usually apply this when $A=M$.

2.3. Claim: Assume

$(\alpha) \overline{\mathbf{b}}=\left\langle\bar{b}_{t}: t \in I_{0}\right\rangle$ is an infinite indiscernible sequence over A.
$(\beta) B \subseteq \mathfrak{C}$.
Then we can find I_{1}, J and \bar{b}_{t} for $t \in I_{1} \backslash I_{0}$ such that:
(a) $I_{0} \subseteq I_{1}, I_{1} \backslash I_{0} \subseteq J \subseteq I_{1}$ and $\left|I_{1} \backslash I_{0}\right| \leq|J| \leq|B|+|T|$
(b) $\overline{\mathbf{b}}^{\prime}=\left\langle\bar{b}_{t}: t \in I_{1}\right\rangle$ is an indiscernible sequence over A
(c) if I_{2} is a J-free extension of I_{1} (see below) and \bar{b}_{t} for $t \in I_{2} \backslash I_{1}$ are such that $\overline{\mathbf{b}}^{\prime \prime}=\left\langle\bar{b}_{t}: t \in I_{2}\right\rangle$ is an indiscernible sequence over A, then
\circledast if $n<\omega, \bar{s}, \bar{t} \in{ }^{n}\left(I_{2}\right)$ and $\bar{s} \sim_{J} \bar{t}$ (see below), then $\bar{b}_{\bar{s}}, \bar{b}_{\bar{t}}$ realize the same type over $A \cup B$ where $\bar{b}_{\left\langle t_{\ell}: \ell<n\right\rangle}=\bar{b}_{t_{0}}{ }^{\wedge} \bar{b}_{t_{1}}{ }^{\wedge} \ldots{ }^{\wedge} \bar{b}_{t_{n-1}}$.
2.4. Definition: $\quad 1)$ For linear orders J, I_{1}, I_{2} we say that I_{2} is a J-free extension of I_{1} when: $J \subseteq I_{1} \subseteq I_{2}$ and
$*$ if $t \in I_{2} \backslash I_{1}$ and $s \in J$, then for some $t^{\prime} \in I_{1}$ we have $I_{2} \models s<t^{\prime}<t$ or $I_{2} \models t<t^{\prime}<s$.
2) For linear orders J, I_{1}, I_{2} we say that I_{2} is a strong J-free extension of I_{1} when $J \subseteq I_{1} \subseteq I_{2}$ and:
\circledast if $t \in I_{2} \backslash I_{1}$, then for some $s_{1}, s_{2} \in I_{1}$ we have $s_{1}<_{I_{2}} t<_{I_{2}} s_{2}$ and $\left[s_{1}, s_{2}\right]_{I_{1}} \cap J=\emptyset$.
3) For linear orders $J \subseteq I$ and $\bar{s}, t \in{ }^{n} I$, let $\bar{s} \sim_{J} \bar{t}$ mean that $\left(s_{\ell}<_{I} s_{k}\right) \equiv$ $\left(t_{\ell}<_{I} t_{k}\right)$ and $\left(s_{\ell}<_{I} r\right) \equiv\left(t_{\ell}<_{I} r\right)$ and $\left(r<_{I} s_{\ell} \equiv r<_{I} t_{\ell}\right)$ whenever $\ell, k<n, r \in J)$. Similarly, for $\bar{s}, \bar{t} \in{ }^{\alpha} I$.
2.5. Remark: In 2.3 why do we need " J-free"? Let $M=\left(\mathbb{R},<, Q^{M}\right), Q^{M}=$ $\mathbb{Q}, B=\{0\}, A=\emptyset, I_{0}$ the irrationals, $b_{t}=t$ for $t \in I_{0}$.

Proof. We try to choose by induction on $\zeta<\lambda^{+}$where $\lambda=|T|+|B|$ a sequence $\overline{\mathbf{b}}^{\zeta}=\left\langle\bar{b}_{t}: t \in J_{\zeta}\right\rangle$ and together with $\overline{\mathbf{b}}^{\zeta+1}$ we choose $n_{\zeta}, \bar{s}_{\zeta}, \bar{t}_{\zeta}, J_{\zeta}^{\prime}, \varphi_{\zeta}, \bar{c}_{\zeta}, \bar{d}_{\zeta}$ such that
(a) J_{ζ} is a linear order, increasing continuous with ζ;
(b) $J_{0}=I_{0}\left(\right.$ so $\left.\overline{\mathbf{b}}^{0}=\overline{\mathbf{b}}\right), J_{\varepsilon+1} \backslash J_{\varepsilon}$ is finite so $\left|J_{\varepsilon} \backslash I_{0}\right|<|\varepsilon|^{+}+\aleph_{0}$;
(c) $\overline{\mathbf{b}}^{\zeta}$ is an indiscernible sequence over A;
(d) $J_{\zeta}^{\prime} \subseteq J_{\zeta}, J_{\zeta}=I_{0} \cup J_{\zeta}^{\prime}, J_{\zeta}^{\prime}$ is increasing continuous with ζ and $\left|J_{\zeta}^{\prime}\right|<$ $|\zeta|^{+}+\aleph_{0} ;$
(e) if $\zeta=\varepsilon+1$, then

$$
\begin{aligned}
n_{\varepsilon}<\omega, \bar{s}_{\varepsilon} \in{ }^{n_{\varepsilon}}\left(J_{\zeta}^{\prime}\right), \bar{t}_{\varepsilon} \in{ }^{n_{\varepsilon}}\left(J_{\zeta}^{\prime}\right), \varphi_{\varepsilon} & =\varphi_{\varepsilon}\left(\bar{x}_{0}, \ldots, \bar{x}_{n_{\varepsilon}-1}\right. \\
\left.\bar{c}_{\varepsilon}, \bar{d}_{\varepsilon}\right), \bar{c}_{\varepsilon} \subseteq B, \bar{d}_{\varepsilon} \subseteq A \text { and } J_{\zeta}^{\prime} & =J_{\varepsilon}^{\prime} \cup\left(\bar{s}_{\varepsilon}{ }^{\wedge} \bar{t}_{\varepsilon}\right)
\end{aligned}
$$

(f) $\bar{s}_{\varepsilon} \sim J_{J_{\varepsilon}^{\prime}} \bar{t}_{\varepsilon} \wedge \models \varphi_{\varepsilon}\left[\bar{b}_{\bar{s}_{\varepsilon}}, \bar{c}_{\varepsilon}, \bar{d}_{\varepsilon}\right] \wedge \neg \varphi_{\varepsilon}\left[\bar{b}_{\bar{t}_{\varepsilon}}, \bar{c}_{\varepsilon}, \bar{d}_{\varepsilon}\right]$;
(g) $J_{\zeta+1}$ is a J_{ζ}^{\prime}-free extension of J_{ζ}.

If we succeed, for some unbounded $w \subseteq \lambda^{+}$and $n_{*}, \varphi_{\xi}, \bar{c}^{*}$ and u for every $\varepsilon \in w$ we have $n_{\varepsilon}=n_{*}, \varphi_{\varepsilon}=\varphi_{*}, \bar{c}_{\varepsilon}=\bar{c}^{*}$ and $u=\left\{\ell<n_{*}: s_{\varepsilon, \ell} \in J_{\zeta}^{\prime}\right\}$. Now let $J^{*}=\bigcup\left\{J_{\zeta}^{\prime}: \zeta<\lambda^{+}\right\}$, so every $J^{\prime} \subseteq J^{*}$ of cardinality $\leq \lambda$ is included in J_{ζ}^{\prime} for some $\zeta<\lambda^{+}$and we get contradiction to clause (b) of [Sh:715, 3.2], hence we fail, i.e., we cannot choose for some ζ. But we can choose $\overline{\mathbf{b}}_{\zeta}=\left\langle b_{t}: t \in J_{\zeta}\right\rangle$, if $\zeta=0$ by clause (b) and if ζ is a limit ordinal by clause (a). So $\zeta=\varepsilon+1$, we have chosen $\overline{\mathbf{b}}=\left\langle\bar{b}_{t}: t \in J_{\zeta}\right\rangle$ but we cannot choose $J_{\zeta+1}, \overline{\mathbf{b}}^{\zeta+1}, n_{\zeta}, \bar{s}_{\zeta}, \bar{t}_{\zeta}, J_{\zeta}^{\prime}, \varphi_{\zeta}, \bar{c}_{\zeta}, \bar{d}_{\zeta}$ as required. Then $\overline{\mathbf{b}}^{\varepsilon}$ is as required. $\quad \boldsymbol{\square}_{2.3}$

The aim of 2.6 and 2.9 below is to show a complement of [Sh:715, $\S 5]$; that is, in the case of small cofinality, what occurs in one cut is the "same" as what occurs in others.
2.6. Claim: Assume
(a) $\mu \geq|T|$;
(b) I_{ℓ} for $\ell<4$ are pairwise disjoint linear orders;
(c) $I_{\ell}=\cup_{\beta<\mu^{+}} I_{\ell}^{\beta}, I_{\ell}^{\beta}$ (strictly) increasing with β and $\left|I_{\ell}^{\beta}\right| \leq \mu$ for $\ell<4$;
(d) $\ell \in\{0,2\} \Rightarrow I_{\ell}^{\beta}$ an end segment of I_{ℓ};
(e) $\ell \in\{1,3\} \Rightarrow I_{\ell}^{\beta}$ is an initial segment of I_{ℓ};
(f) $I=I_{0}+I_{1}+I_{2}+I_{3}$ and $I^{\beta}=I_{0}^{\beta}+I_{1}^{\beta}+I_{2}^{\beta}+I_{3}^{\beta}$;
$(\mathrm{g})\left\langle\bar{b}_{t}: t \in I\right\rangle$ is an indiscernible sequence.
Then we can find a limit ordinal $\beta(*)<\mu^{+}$and $\left\langle\bar{b}_{t}^{*}: t \in I\right\rangle$ such that:
(A) $\bar{b}_{t}^{*}=\bar{b}_{t}$ if $t \in I \backslash I^{\beta(*)}$;
(B) ${ }_{1}\left\langle\bar{b}_{t}^{*}: t \in I \backslash I_{0}^{\beta(*)} \backslash I_{1}^{\beta(*)}\right\rangle$ is an indiscernible sequence;
$(B)_{2}\left\langle\bar{b}_{t}^{*}: t \in I \backslash I_{2}^{\beta(*)} \backslash I_{3}^{\beta(*)}\right\rangle$ is an indiscernible sequence;
$(C)_{1} \operatorname{tp}_{*}\left(\left\langle\bar{b}_{t}^{*}: t \in I_{0}^{\beta(*)} \cup I_{1}^{\beta(*)}\right\rangle\right.$,
$\left.\cup\left\{\bar{b}_{t}^{*}: t \in\left(I \backslash I^{\beta}\right) \cup I_{2}^{\beta(*)} \cup I_{3}^{\beta(*)} \cup\left(I_{0}^{\beta(*)+\omega} \backslash I_{0}^{\beta(*)}\right) \cup\left(I_{1}^{\beta(*)+\omega} \backslash I_{1}^{\beta(*)}\right)\right\}\right)$ $\vdash \operatorname{tp}_{*}\left(\left\langle\bar{b}_{t}^{*}: t \in I_{0}^{\beta(*)} \cup I_{1}^{\beta(*)}\right\rangle, \cup\left\{\bar{b}_{t}^{*}: t \in\left(I \backslash I^{\beta(*)}\right) \cup I_{2}^{\beta(*)} \cup I_{3}^{\beta(*)}\right\}\right)$ for any $\beta \in\left[\beta(*)+\omega, \mu^{+}\right)$;
$(C)_{2} \operatorname{tp}_{*}\left(\left\langle\bar{b}_{t}^{*}: t \in I_{2}^{\beta(*)} \cup I_{3}^{\beta(*)}\right\rangle, \cup\left\{\bar{b}_{t}^{*}: t \in\left(I \backslash I^{\beta}\right) \cup I_{0}^{\beta(*)} \cup I_{1}^{\beta(*)}\right.\right.$
$\left.\left.\cup\left(I_{2}^{\beta(*)+\omega} \backslash I_{2}^{\beta(*)}\right) \cup\left(I_{3}^{\beta(*)+\omega} \backslash I_{3}^{\beta(*)}\right)\right\}\right) \vdash$
$\operatorname{tp}\left(\left\langle b_{t}^{*}: t \in I_{2}^{\beta(*)} \cup I_{3}^{\beta(*)}\right\rangle, \cup\left\{\bar{b}_{t}^{*}: t \in\left(I \backslash I^{\beta(*)}\right) \cup I_{0}^{\beta(*)} \cup I_{1}^{\beta(*)}\right\}\right)$
for any $\beta \in\left[\beta(*)+\omega, \mu^{+}\right)$;
$(D)_{1}\left\langle\bar{b}_{t}^{*}: t \in I_{0} \backslash I_{0}^{\beta(*)}\right\rangle$ is an indiscernible sequence over
$\cup\left\{\bar{b}_{t}^{*}: t \in I_{0}^{\beta(*)} \cup I_{1} \cup I_{2} \cup I_{3}\right\} ;$
$(D)_{2}\left\langle\bar{b}_{t}^{*}: t \in\left(I_{1} \backslash I_{1}^{\beta(*)}\right)+\left(I_{2} \backslash I_{2}^{\beta(*)}\right)\right\rangle$ is an indiscernible sequence over $\cup\left\{\bar{b}_{t}^{*}: t \in I_{0} \cup I_{1}^{\beta(*)} \cup I_{2}^{\beta(*)} \cup I_{3}\right\} ;$
$(D)_{3}\left\langle\bar{b}_{t}^{*}: t \in I_{3} \backslash I_{3}^{\beta(*)}\right\rangle$ is an indiscernible sequence over $\cup\left\{\bar{b}_{t}^{*}: t \in I_{0} \cup I_{1} \cup I_{2} \cup I_{3}^{\beta(*)}\right\}$.
2.7. Remark: What occurs if T is stable (or just $\overline{\mathbf{b}}$ is)? We get something like $\left\{\bar{b}_{t}^{*}: t \in I_{0}^{\beta(*)} \cup I_{1}^{\beta(*)}\right\}=\left\{\bar{b}_{t}^{*}: t \in I_{2}^{\beta(*)} \cup I_{3}^{\beta(*)}\right\}$.

Proof. For simplicity assume $I_{\ell}^{0}=\emptyset$.
We choose by induction on $n<\omega$ an ordinal $\beta(n)$ and $\left\langle\bar{b}_{t}^{n}: t \in I\right\rangle$ such that:
(α) $\beta(n)<\mu^{+}, \beta(0)=0, \beta(n)+\omega \leq \beta(n+1)$;
(β) $\bar{b}_{t}^{n}=\bar{b}_{t}$ if $t \in I \backslash I^{\beta(n)}$ or if $n=0$;
$(\gamma)_{1}\left\langle\bar{b}_{t}^{n}: t \in I \backslash I_{0}^{\beta(n)} \backslash I_{1}^{\beta(n)}\right\rangle$ realizes the same type as $\left\langle\bar{b}_{t}: t \in I \backslash I_{0}^{\beta(n)} \backslash I_{1}^{\beta(n)}\right\rangle ;$
$(\gamma)_{2}\left\langle\bar{b}_{t}^{n}: t \in I \backslash I_{2}^{\beta(n)} \backslash I_{3}^{\beta(n)}\right\rangle$ realizes the same type as $\left\langle\bar{b}_{t}: t \in I \backslash I_{2}^{\beta(n)} \backslash I_{3}^{\beta(n)}\right\rangle ;$
$(\delta)_{1}$ if n is even, then:
(1) $\bar{b}_{t}^{n+1}=\bar{b}_{t}^{n}$ for $t \in I \backslash I_{2}^{\beta(n)} \backslash I_{3}^{\beta(n)}$;
(2) if $\beta(n+1)<\beta<\mu^{+}$then the type which $\left\langle\bar{b}_{t}^{n+1}: t \in I_{2}^{\beta(n)} \cup I_{3}^{\beta(n)}\right\rangle$ realizes over $\cup\left\{\bar{b}_{t}^{n}: t \in\left(I_{0} \backslash I_{0}^{\beta}\right) \cup I_{0}^{\beta(n+1)} \cup\left(I_{1} \backslash I_{1}^{\beta}\right) \cup I_{1}^{\beta(n+1)} \cup\right.$ $\left.\left(I_{2} \backslash I_{2}^{\beta}\right) \cup\left(I_{2}^{\beta(n+1)} \backslash I_{2}^{\beta(n)}\right) \cup\left(I_{3} \backslash I_{3}^{\beta}\right) \cup\left(I_{3}^{\beta(n+1)} \backslash I_{3}^{\beta(n)}\right)\right\}$ has a unique extension over $\cup\left\{\bar{b}_{t}^{n}: t \in I \backslash I_{2}^{\beta(n)} \backslash I_{3}^{\beta(n)}\right\} ;$
(3) $\bar{b}_{t}^{n+1}=b_{t}^{n}$ if $t \in I_{2}^{\beta(k)} \cup I_{3}^{\beta(k)}, k<n$
$(\delta)_{2}$ if n is odd like $\left(\delta_{1}\right)$ inverting the roles of $\left(I_{0}, I_{1}\right),\left(I_{2}, I_{3}\right)$;
$(\varepsilon)\left\langle\bar{b}_{t}^{n}: t \in I\right\rangle$ satisfies clauses $(D)_{1},(D)_{2},(D)_{3}$ of the claim with $\beta(n)$ instead of $\beta(*)$.

The induction step is as in the proof of 2.3 (though we use the finite character for the middle clause (2) of clauses $\left.(\delta)_{1},(\delta)_{2}\right)$.

Alternatively, letting n be even we try to choose $\beta_{n}(\varepsilon), \overline{\mathbf{b}}^{n, \varepsilon}=\left\langle\bar{b}_{t}^{n, \varepsilon}: t \in\right.$ $\left.I_{2}^{\beta(n)}+I_{3}^{\beta(n)}\right\rangle$ by induction on $\varepsilon \leq \mu^{+}$such that:
\odot (a) $\beta_{n}(\varepsilon)<\mu^{+}$;
(b) $\beta_{n}(0)=\beta(n)$;
(c) $\beta_{n}(\varepsilon)$ is increasing and continuous;
(d) $\zeta<\varepsilon \Rightarrow \operatorname{tp}\left(\overline{\mathbf{b}}^{n, \varepsilon}, \cup\left\{b_{t}^{n}: t \in\left(I \backslash I_{\beta_{n}(\varepsilon)}^{\varepsilon}\right) \cup I_{\beta_{n}(\zeta)}\right\}\right) \vdash$ $\operatorname{tp}\left(\overline{\mathbf{b}}^{n, \zeta}, \cup\left\{\bar{b}_{t}^{n}: t \in\left(I \backslash I_{\beta_{n}(\varepsilon)}\right) \cup I_{\beta_{n}(\zeta)}\right\}\right) ;$
(e) if $\varepsilon=\zeta+1$, then $(\delta)_{1}(2)$ fails if we let

$$
\bar{b}_{t}^{n+1}=\left\{\begin{array}{ll}
b_{t}^{n} & \text { if } t \in I \backslash I_{2}^{\beta(n)} \backslash I_{3}^{\beta(n)} \\
\bar{b}_{t}^{n, \zeta} & \text { if } t \in I_{2}^{\beta(n)} \cup I_{3}^{\beta(n)}
\end{array} .\right.
$$

If we succeed to carry the induction, by [Sh:715], for some ε, the sequences $\left\langle\bar{b}_{t}^{n}: t \in I_{0}^{\beta_{n}(\varepsilon)}\right\rangle,\left\langle\bar{b}_{t}^{n}: t \in I_{1}^{\beta_{n}(\varepsilon)}+I_{2}^{\beta_{n}(\varepsilon)}\right\rangle,\left\langle\bar{b}_{t}^{n}: t \in I_{3}^{\beta_{n}(\varepsilon)}\right\rangle$ are mutually indiscernible over $\bigcup\left\{\bar{b}_{t}^{n, \mu^{+}}: t \in I_{2}^{\beta(n)}+I_{3}^{\beta(n)}\right\} \cup\left\{b_{t}^{n}: t \in\left(I \backslash I_{\beta_{n}(\varepsilon)}\right)\right\}$ (because $\left\langle\bar{b}_{t}: t \in I_{0} \backslash I_{0}^{\beta_{n}(\varepsilon)}\right\rangle,\left\langle\bar{b}_{t}: t \in\left(I_{1} \backslash I_{\beta_{n}(\varepsilon)}\right)+I_{2} \backslash I_{2}^{\beta_{n}(\varepsilon)}\right\rangle,\left\langle\bar{b}_{t}: t \in I_{3} \backslash I_{3}^{\beta_{n}(\varepsilon)}\right\rangle$ are mutually indiscernible, recalling (β).

This contradicts (e). So we cannot complete the induction. We certainly succeed for $\varepsilon=0$, and there is no problem for limit $\varepsilon \leq \mu^{+}$. So for some $\varepsilon=\zeta+1$ we have success for ζ and cannot choose for ε. We define \bar{b}_{i}^{n+1} as in (e) of \odot above, and choose $\beta(n+1) \in\left[\beta_{n}(\varepsilon), \mu^{+}\right)$such that clauses (ε) holds.

Let $\beta(*)=\bigcup\{\beta(n): n<\omega\}<\mu^{+}, \bar{b}_{t}^{*}$ is \bar{b}_{t}^{n} for every n large enough (exists by clause (β) if $t \in I \backslash I^{\beta(*)}$ and by ($\left.\delta\right)_{\ell}(1)$ and (3) if $t \in I^{\beta(*)}$). Clearly, we are done.
2.8. Claim: Assume
(a) $I, I^{\beta}, I_{\ell}, I_{\ell}^{\beta}$ for $\ell<4, \beta<\mu^{+}$are as in the assumption of claim 2.6;
(b) $\beta(*)$ and $\left\langle\bar{b}_{t}^{*}: t \in I\right\rangle$ are as in the conclusion of claim 2.6;
(c) $J^{+}=J_{0}^{+}+J_{1}^{+}+J_{2}^{+}+J_{3}^{+}+J_{4}^{+}$linear orders;
(d) $J=J_{0}+J_{1}+J_{2}+J_{3}+J_{4}$ linear orders;
(e) $J_{1}=J_{1}^{+}+I_{0}^{\beta(*)}+I_{1}^{\beta(*)}$ and $J_{3}=I_{2}^{\beta(*)}+I_{3}^{\beta(*)}$;
(f) $J_{0} \subseteq J_{0}^{+}$and $I_{0} \backslash I_{0}^{\beta(*)} \subseteq J_{0}^{+}$;
(g) $J_{2} \subseteq J_{2}^{+}$and $\left(I_{1} \backslash I_{1}^{\beta(*)}\right)+\left(I_{2} \backslash I_{2}^{\beta(*)}\right) \subseteq J_{2}$;
(h) $J_{4} \subseteq J_{4}^{+}$and $\left(I_{3} \backslash I_{3}^{\beta(*)}\right) \subseteq J_{4}^{+}$;
(i) $\left\langle\bar{b}_{t}^{*}: t \in J^{+}\right\rangle$is an indiscernible sequence.

1) If $J_{0}^{\prime}, J_{2}^{\prime}, J_{4}^{\prime}$ are infinite initial segments of J_{0}, J_{2}, J_{4} respectively, then
$(\alpha) \operatorname{tp}\left(\left\langle\bar{b}_{t}^{*}: t \in J_{3}\right\rangle, \cup\left\{\bar{b}_{s}: s \in J_{0}^{\prime} \cup J_{1} \cup J_{2}^{\prime} \cup J_{4}^{\prime}\right) \vdash \operatorname{tp}\left(\left\langle\bar{b}_{t}^{*}: t \in J_{3}\right\rangle, \cup\left\{\bar{b}_{s}^{*}:\right.\right.\right.$ $\left.\left.s \in J_{0} \cup J_{1} \cup J_{2} \cup J_{4}\right\}\right)$
(β) like (α) interchanging J_{3}, J_{1}.
2) If J_{0} has no first element, $J_{0}^{\prime} \subseteq J_{0}$ is unbounded from below, $J_{2}^{\prime} \subseteq J_{2}$ is infinite and J_{4} has no last element and $J_{4}^{\prime} \subseteq J_{4}$ is unbounded from above, then the conclusions of (1) holds
$(\alpha) \operatorname{tp}\left(\left\langle\bar{b}_{t}^{*}: t \in J_{3}\right\rangle, \bigcup\left\{\bar{b}_{s}: s \in J_{0}^{\prime} \cup J_{1} \cup J_{2}^{\prime} \cup J_{4}^{\prime}\right) \vdash \operatorname{tp}\left(\left\langle\bar{b}_{t}^{*}: t \in J_{3}\right\rangle, \cup\left\{\bar{b}_{s}^{*}:\right.\right.\right.$ $\left.\left.s \in J_{0} \cup J_{1} \cup J_{2} \cup J_{4}\right\}\right)$
$(\beta) \operatorname{tp}\left(\left\langle\bar{b}_{t}^{*}: t \in J_{1}\right\rangle, \bigcup\left\{\bar{b}_{s}: s \in J_{0}^{\prime} \cup J_{2}^{\prime} \cup J_{3} \cup J_{4}^{\prime}\right) \vdash \operatorname{tp}\left(\left\langle\bar{b}_{t}^{*}: t \in J_{1}\right\rangle, \cup\left\{\bar{b}_{s}^{*}:\right.\right.\right.$ $\left.\left.s \in J_{0} \cup J_{2} \cup J_{3} \cup J_{4}\right\}\right)$.
3) If $J_{0}^{*}, J_{2}^{*}, J_{4}^{*}$ has neither first element nor last element and $J_{0}^{\prime}, J_{2}^{\prime}, J_{4}^{\prime}$ are subsets of J_{0}, J_{2}, J_{4} respectively unbounded from below and $J_{0}^{\prime \prime}, J_{2}^{\prime \prime}, J_{4}^{\prime \prime}$ are subsets of J_{0}, J_{2}, J_{4} respectively unbounded from above, then the conclusion of part (1) holds.

Proof. The result follows by the local character of \vdash and by the indiscernibility demands in 2.6, i.e., clauses $(D)_{1},(D)_{2},(D)_{3} . \quad \mathbf{■}_{2.8}$
2.9. Conclusion: 1) If $\mu \geq \kappa \geq|T|$, then for some linear order J^{*} of cardinality κ we have
$\boxtimes_{\overline{\mathbf{b}}^{*}, J^{*}}$ Assume
(a) $J=J_{0}+J_{1}+J_{2}+J_{3}+J_{4}$;
(b) the cofinalities of J_{0}, J_{2}, J_{4} and their inverse are $\leq \mu$ but are infinite;
(c) $J_{1} \cong J^{*}$ and $J_{3} \cong J^{*}$ (hence J_{1}, J_{3} have cardinality $\leq \kappa$);
(d) $\left\langle\bar{b}_{t}: t \in J \backslash J_{3}\right\rangle$ is an indiscernible sequence (of m-tuples);
(e) M is a μ^{+}-saturated model;
(f) $\bigcup\left\{\bar{b}_{t}: t \in J \backslash J_{3}\right\} \subseteq M$.

Then we can find $\bar{b}_{t} \in{ }^{m} M$ for $t \in J_{3}$ such that $\left\langle\bar{b}_{t}: t \in J \backslash J_{1}\right\rangle$ is an indiscernible sequence.
2) If we allow J^{*} to depend on $\operatorname{tp}^{\prime}\left(\overline{\mathbf{b}}^{*}\right)$, see Definition $0.1(1)$, then we can use J^{*} of the form $\delta^{*}+\delta, \delta<\kappa^{+}\left(\delta^{*}-\right.$ the inverse of $\left.\delta\right)$.

Proof. Let $\overline{\mathbf{b}}^{*}$ be an infinite indiscernible sequence.
Let J_{0}, J_{2}, J_{4} be disjoint linear orders as in (b). Apply 2.6 with I_{1}, I_{3} isomorphic to $\left(\mu^{+},<\right)$and I_{0}, I_{2} isomorphic to $\left(\mu^{+},>\right)$, say $I_{\ell}=\left\{t_{\alpha}^{\ell}: \alpha<\mu^{+}\right\}$ with t_{α}^{ℓ} increasing with α if $\ell \in\{1,3\}$ and decreasing with α if $\ell \in\{0,2\}$, we get $\overline{\mathbf{b}}^{*}=\left\langle b_{t}^{*}: t \in \sum_{\ell<4} I_{\ell}\right\rangle, \beta(*)$ as in 2.6 with $\operatorname{tp}^{\prime}\left(\overline{\mathbf{b}}^{*} \upharpoonright I_{0}\right)=\operatorname{tp}^{\prime}\left(\overline{\mathbf{b}}^{\circledast}\right)$, see Definition 0.1. Let $J_{0}^{+}=J_{0}+\left(I_{0} \backslash I_{0}^{\beta(*)}\right), J_{1}^{+}=J_{1}=I_{0}^{\beta(*)}+I_{1}^{\beta(*)}$,
$J_{2}^{+}=J_{2}+\left(I_{1} \backslash I_{1}^{\beta(*)}\right)+\left(I_{2} \backslash I_{2}^{\beta(*)}\right), J_{3}^{+}=I_{2}^{\beta(*)}+I_{3}^{\beta(*)}+J_{3}$ and $J_{4}^{+}=J_{4}+\left(I_{3} \backslash I_{3}^{\beta(*)}\right)$ and $J^{+}=J_{0}^{+}+J_{1}^{+}+J_{2}^{+}+J_{3}^{+}+J_{4}^{+}$. All J_{ℓ} are infinite linear orders, choose $J^{*}=J_{1}$, clearly $J_{3} \cong J^{*}$. Now
$(*)\left\langle\bar{b}_{t}^{*}: t \in J \backslash J_{3}\right\rangle$ is an indiscernible sequence and
$(* *)$ if $M \supseteq \bigcup\left\{\bar{b}_{t}^{*}: t \in J \backslash J_{3}\right\}$ is μ^{+}-saturated then we can find $\bar{b}_{t}^{\prime} \in{ }^{m} M$ for $t \in J_{3}$ such that

$$
\left\langle\bar{b}_{t}^{*}: t \in J_{0}\right\rangle^{\wedge}\left\langle\bar{b}_{t}^{\prime}: t \in J_{3}\right\rangle^{\wedge}\left\langle\bar{b}_{t}^{*}: t \in J_{4}\right\rangle
$$

is an indiscernible sequence.
(Why? Choose $J_{0}^{\prime} \subseteq J_{0}$ unbounded from below of cardinality $\operatorname{cf}\left(J_{0},>_{J_{0}}\right)$ which is $\leq \mu$ but $\geq \aleph_{0}$, and similarly $J_{2}^{\prime} \subseteq J_{2}, J_{4}^{\prime} \subseteq J_{4}$ and choose $J_{0}^{\prime \prime} \subseteq J_{0}$ unbounded from above of cardinality $\operatorname{cf}\left(J_{0}\right)$ which is $\leq \mu$ and similarly $J_{2}^{\prime \prime} \subseteq J_{2}, J_{4}^{\prime \prime} \subseteq J_{4}$ (all O.K. by clause (b) of the assumption).

Now $p=\operatorname{tp}\left(\left\langle b_{t}^{*}: t \in J_{3}\right\rangle, \bigcup\left\{\bar{b}_{s}: s \in J_{0}^{\prime} \cup J_{0}^{\prime \prime} \cup J_{2}^{\prime} \cup J_{2}^{\prime \prime} \cup J_{4}^{\prime} \cup J_{4}^{\prime}\right\}\right)$ is a type of cardinality $\leq|T|+\left|J_{0}^{\prime}\right|+\left|J_{0}^{\prime \prime}\right|+\left|J_{2}^{\prime}\right|+\left|J_{2}^{\prime \prime}\right|+\left|J_{4}^{\prime}\right|+\left|J_{4}^{\prime \prime}\right| \leq \mu$ hence is realized by some sequence $\left\langle\bar{b}_{t}^{\prime}: t \in J_{3}\right\rangle$ from M.

By Claim 2.8 the desired conclusion in ($* *$) holds.)
So we have gotten the desired conclusion for any $\left\langle J_{\ell}: \ell \leq 4\right\rangle$ and indiscernible sequence, $\overline{\mathbf{b}}=\left\langle\bar{b}_{t}: t \in J \backslash J_{5}\right\rangle$ as long as $\operatorname{tp}^{\prime}(\overline{\mathbf{b}})=\operatorname{tp}^{\prime}\left(\overline{\mathbf{b}}^{*}\right)$ and the order type of J_{1}, J_{3} is as required for $\overline{\mathbf{b}}^{*}$. This is enough for part (2), we are left with (1).

Note that by the proof of 2.3 , the set of $\beta(*)$ as required contains $E \cap\{\delta<$ $\left.\mu^{+}: \operatorname{cf}(\delta)=\aleph_{0}\right\}$ for some club E (in fact even contains E). So if $\mu \geq 2^{|T|}$, as $\left\{\operatorname{tp}^{\prime}(\overline{\mathbf{b}}): \overline{\mathbf{b}}\right.$ an infinite indiscernible sequence $\}$ has cardinality $\leq 2^{|T|}$ we are done.

Otherwise, choose J^{*} a linear order of cardinality μ isomorphic to its inverse, to $J^{*} \times \omega$ and to $J^{*} \times(\gamma+1)$ ordered lexicographically for every $\gamma \leq \mu$ hence for every $\gamma<\mu^{+}$, (e.g. note if $J^{* *}$ is dense with no first and last element and saturated, or special, of cardinality $>\mu$, then $J^{* *} \times \omega$ satisfies this and use the L.S. argument). So we can in 2.6 and hence in 2.8 , use $I_{\ell}(\ell<4)$, such that $I_{\ell}^{\beta+1} \cong J^{*}$ for $\beta<\mu^{+}, \ell<4$. So $I_{0}^{\beta(*)}+I_{1}^{\beta(*)} \cong J^{*} \cong I_{2}^{\beta(*)}+I_{3}^{\beta(*)}$. $\quad \boldsymbol{L}_{2.9}$
2.10. Conclusion: In 2.9:
(A) we can choose $J^{*}=\mu^{*}+\mu$ i.e. $\{0\} \times(\mu,>)+\{1\} \times(\mu,<)$;
(B) if J is a linear order $(\neq \emptyset)$ of cardinality $\leq \mu$, we can use $J^{*}=\left(\mu^{*}+\mu\right) \times J$ ordered lexicographically;
(C) we can change the conclusion of 2.9 to make it symmetrical between J_{3} and J_{1};
(D) we use only clause $(E)_{2}$ of 2.6 , or we could use only clause $(E)_{1}$.

Proof. (A),(B) combine the proofs of 2.3 and 2.6 trying to contradict each formula, by bookkeeping trying for it enough times. $\boldsymbol{\Xi}_{2.10}$

We may look at it differently, part (2) is close in formulation to be a complement to [Sh:715, §5].
2.11. Conclusion: 1) Assume
(a) $J=I \times J^{*}$ lexicographically, J^{*}, μ are as in $2.9, I$ infinite;
(b) $\left\langle\bar{b}_{t}: t \in J\right\rangle$ an indiscernible sequence, $\ell g\left(\bar{b}_{t}\right)=m$ or just $\ell g\left(\bar{b}_{t}\right)<\mu^{+}$;
(c) for $s \in I$ let \bar{c}_{s} be $\left\langle\bar{b}_{t}: t \in\{s\} \times J^{*}\right\rangle$, more exactly the concatanation of the sequences in \bar{b}_{t} for $t \in\{s\} \times J^{*}$.
Then
(α) $\left\langle\bar{c}_{s}: s \in I\right\rangle$ is an infinite indiscernible sequence
(β) if $s_{0}<_{I} \cdots<_{I} s_{7}$ then there is \bar{c} realizing $\operatorname{tp}\left(\bar{c}_{s_{2}}, \bigcup\left\{\bar{c}_{s_{\ell}}: \ell \leq 7, \ell \neq 2\right\}\right)$ such that $\operatorname{tp}\left(\bar{c}, \bigcup\left\{\bar{c}_{s_{\ell}}: \ell \leq 7, \ell \neq 2\right\}\right) \vdash \operatorname{tp}\left(\bar{c}_{s_{2}}, \bigcup\left\{\bar{c}_{s}: s_{0} \leq_{I} s \leq_{I} s_{1}\right.\right.$ or $s_{3} \leq_{I} s \leq_{I} s_{4}$ or $\left.\left.s_{6} \leq_{I} s \leq_{I} s_{7}\right\}\right)$
(γ) similarly inverting the order (i.e. interchanging the roles of s_{2}, s_{5} in clause $(\beta))$.
2) Assume the sequence $\left\langle\bar{c}_{s}: s \in I\right\rangle$ from part (1) satisfies $M \supseteq \bigcup\left\{\bar{c}_{s}: s \in I\right\}$ and $\left(I_{1}, I_{2}\right),\left(I_{3}, I_{4}\right)$ are Dedekind cuts of I, each of $I_{1},\left(I_{2}\right)^{*}, I_{3},\left(I_{4}\right)^{*}$ is nonempty of cofinality $\leq \mu$. Let $I^{+} \supseteq I, t_{2}, t_{5} \in I_{1}^{+}$realize the cuts $\left(I_{1}, I_{2}\right),\left(I_{3}, I_{4}\right)$, respectively, and \bar{c}_{t} for $t \in I^{+} \backslash I$ are such that $\left\langle\bar{c}_{t}: t \in I^{+}\right\rangle$is indiscernible (then for notational simplicity), then
\square there is a sequence in M realizing $\operatorname{tp}\left(\bar{c}_{t_{2}}, \bigcup\left\{\bar{c}_{s}: s \in I\right\}\right)$ if and only if there is a sequence in M realizing $\operatorname{tp}\left(\bar{c}_{t_{5}}, \bigcup\left\{\bar{c}_{s}: s \in I\right\}\right)$.

Concluding Remark: There is a gap between [Sh:715, 5.11] and the results in $\S 2$, some light is thrown by
2.12. Claim: In [Sh:715, 5.11]; we can omit the demand $\operatorname{cf}\left(\operatorname{Dom}\left(\overline{\mathbf{a}}^{\zeta}\right)\right) \geq \kappa_{1}(=$ clause (f) there) if we add $\zeta<\zeta^{*} \Rightarrow\left(\theta_{\zeta}^{1}\right)^{+}=\lambda$.

Proof. By the omitting type argument.
2.13. Question: Assume:
(a) $\left\langle\left(N_{i}, M_{i}\right): i \leq \kappa\right\rangle$ is \prec-increasing (as pairs), M_{i+1}, N_{i+1} are λ_{i}^{+}-saturated, $\left\|N_{i}\right\| \leq \lambda_{i},\left\langle\lambda_{i}: i<\kappa\right\rangle$ increasing, $\kappa<\lambda_{0}$;
(b) $p(\bar{x})$ is a partial type over $N_{0} \cup M_{\kappa}$ of cardinality $\leq \lambda_{0}$.

1) Does $p(\bar{x})$ have a λ_{0}^{+}-isolated extension?
2) Does this help to clarify DOP?
3) Does this help to clarify "if any M is a benign set" (see [BBSh:815]).
2.14. Claim: Assume
(a) M is λ^{+}-saturated;
(b) $p(\bar{x})$ is a type of cardinality $\leq \kappa, \ell g(\bar{x}) \leq \kappa$;
(c) $\operatorname{Dom}(p) \subseteq A \cup M,|A| \leq \kappa \leq \lambda$;
(d) $B \subseteq M,|B| \leq \lambda$.

Then there is a type $q(\bar{x})$ over $A \cup M$ of cardinality $<\kappa$ and $r(\bar{x}) \in \mathbf{S}^{\lg (\bar{x})}(A \cup B)$ such that

$$
p(\bar{x}) \subseteq q(\bar{x}) \quad q(\bar{x}) \vdash r(\bar{x})
$$

Remark: This defines a natural quasi order (type definable) is it directed?

3. Strongly dependent theories

3.1. Context: T complete first order, \mathfrak{C} a monster model of T.
3.2. Definition: 1) T is strongly ${ }^{1}$ dependent (we may omit the 1) if :
there are no $\bar{\varphi}=\left\langle\varphi_{n}\left(\bar{x}, \bar{y}_{n}\right): n<\omega\right\rangle$ and $\left\langle\bar{a}_{\alpha}^{n}: n<\omega, \alpha<\lambda\right\rangle$ such that
(*) for every $\eta \in{ }^{\omega} \lambda$ the set $p_{\eta}=\left\{\varphi_{n}\left(\bar{x}, \bar{a}_{\alpha}^{n}\right)^{\mathrm{if}(\eta(n)=\alpha)}: \alpha<\lambda\right\}$ is consistent; so $\ell g\left(\bar{a}_{\alpha}^{n}\right)=\ell g\left(\bar{y}_{n}\right)$.
2) T is strongly stable if it is stable and strongly dependent.
3) $\kappa_{\text {ict }}(T)$ is the first κ such that there is no $\bar{\varphi}=\left\langle\varphi_{\alpha}\left(\bar{x}, \bar{y}_{\alpha}\right): \alpha<\kappa\right\rangle$ satisfying the parallel of part (1), in this case we say that $\bar{\varphi}$ witnesses $\kappa<\kappa_{\text {ict }}(T)$ and let $m(\bar{\varphi})=\ell g(\bar{x})$.
3.3. Claim: 1) If T is superstable, then T is strongly dependent.
2) If T is strongly dependent, then T is dependent.
3) There are stable T which are not strongly dependent.
4) There are stable not superstable T which are strongly dependent.
5) There are unstable strongly dependent theories.
6) The theory of real closed fields is strongly dependent; moreover every o-minimal (complete first-order) T is strongly dependent.
7) If T is stable, then $\kappa_{\text {ict }}(T) \leq \kappa(T)$.
8) If T is dependent, then we may add, in 3.2(1)
$(* *)$ for each $n<\omega$ for some k_{n} any k_{n} of the formulas $\left\{\varphi_{n}\left(\bar{x}, \bar{a}_{\alpha}^{n}\right)\right.$: $\alpha<\lambda\}$ are contradictory.

Proof. 1), 2), 7) and 8) are easy.
3) E.g., $T=\operatorname{Th}\left({ }^{\omega} \omega, E_{n}^{1}\right)_{n<\omega}$ where $\eta E_{n}^{1} \nu \Leftrightarrow \eta(n)=\nu(n)$ and use $\varphi_{n}\left(x, y_{n}\right)=x E_{n}^{1} y_{n}$ for $n<\omega$.
4) E.g., $T=\operatorname{Th}\left({ }^{\omega} \omega, E_{n}^{2}\right)_{n<\omega}$ where $\left(\eta E_{n} \nu\right) \equiv(\eta \upharpoonright n=\nu \upharpoonright n)$.
5) E.g., $T=\operatorname{Th}(\mathbb{Q},<)$, the theory of dense linear orders with no first and no last element.
6) For simplicity we use $\bar{x}=\langle x\rangle$, (justified in [Sh:863, Observation,1.7](1)). Assume $\left\langle\varphi_{n}\left(x, \bar{y}_{n}\right): n<\omega\right\rangle$ and $\left\langle\bar{a}_{\alpha}^{n}: \alpha<\lambda\right\rangle$ are as in Definition 3.2. Clearly we can replace $\varphi_{n}\left(x, \bar{y}_{n}\right), \bar{a}_{\alpha}^{n}$ by $\varphi^{\prime}\left(x, \bar{y}_{n}^{\prime}\right), \bar{b}_{\alpha}^{n}$ when $\bar{y}_{n} \unlhd \bar{y}_{n}^{\prime}, \bar{a}_{\alpha}^{n} \unlhd \bar{b}_{\alpha}^{n}$ and $\varphi_{n}\left(x, \bar{a}_{\alpha}^{n}\right) \equiv \varphi_{n}^{\prime}\left(x, \bar{b}_{\alpha}^{n}\right)$. We can find $b_{0}<b$ in \mathfrak{C} such that each $p_{\eta} \cup\left\{b_{0}<x<b_{1}\right\}$ is realized in \mathfrak{C}, so without loss of generality $\varphi_{n}\left(x, \bar{a}_{\alpha}^{n}\right) \vdash b_{0}<x<b_{1}$ and b_{1}, b_{2} appears in \bar{a}_{α}^{n}. Also we can restrict ourselves to $\left\langle\bar{a}_{\alpha}^{n}: n<\omega, \alpha \in u_{n}\right\rangle$ where $u_{n} \subseteq \lambda$ is infinite for $n<\omega$. Hence, by the elimination of quantifiers and density of the linear order, without loss of generality, $\varphi_{n}\left(x, \bar{y}_{n}\right)=\left(\varphi_{1, n}\left(x, \bar{y}_{n}\right) \vee\right.$ $\left.\varphi_{n, 2}\left(x, \bar{y}_{n}\right)\right) \wedge \varphi_{n, 3}\left(\bar{y}_{n}\right)$ where (without loss of generality $\bar{y}_{n}=\left\langle y_{\ell}: \ell=0, \ldots,\right\rangle$ but $u(n, 1) \subseteq k(n), u(n, 2) \subseteq k(n))$

$$
\begin{aligned}
\varphi_{n, 1}\left(x, \bar{y}_{n}\right) & =\bigvee_{\ell \in u(n, 1)}\left(y_{n, 2 \ell}<x<y_{n, 2 \ell+1}\right) \\
\varphi_{n, 2}\left(x, \bar{y}_{n}\right) & =\bigvee_{\ell \in u(n, 2)} x=y_{n, \ell}
\end{aligned}
$$

and

$$
\varphi_{n, 3}(\bar{y})=\bigwedge_{\ell<k(n)} y_{n, \ell}<y_{n, \ell+1} .
$$

For each $\eta \in{ }^{\omega} \lambda, p_{\eta}$ is consistent (and $\eta \neq \nu \in{ }^{\omega} \lambda \Rightarrow p_{\eta}, p_{\nu}$ are contradictory), hence clearly each p_{η} is not algebraic. From this it follows that (*) of Def. $3.2(1)$ is true also if we replace $\left\langle\varphi_{n}\left(x, \bar{y}_{n}\right): n<\omega\right\rangle$ by $\left\langle\varphi_{n, 1}\left(x, \bar{y}_{n}\right): n<\omega\right\rangle$.

Also without loss of generality $\left\langle\bar{a}_{\alpha}^{n}: \alpha<\lambda\right\rangle$ is indiscernible over $\bigcup\left\{a_{\beta}^{m}: m \neq\right.$ $n, m<\omega$ and $\beta<\lambda\}$. Now for some $\left\langle\ell_{n}: n<\omega\right\rangle \in \prod_{n<\omega} k(n)$, we can replace $\varphi_{n}(x, \bar{y})$ by $\varphi_{n}^{\prime}(x, \bar{y})=y_{n, \ell_{n}}<x<y_{n, \ell_{n}+1}$. So without loss of generality $n<\omega \Rightarrow k(n)=1, \ell_{n}=0, \bar{y}_{n}=\left(y_{n, 0}, y_{n, 1}\right)$.

Now $\left\langle\bar{a}_{\alpha}^{n}: \alpha<\lambda\right\rangle$ is an indiscernible sequence, and $\varphi_{n}\left(\mathfrak{C}, \bar{a}_{\alpha}^{n}\right)$ being the open convex sets which \bar{a}_{α}^{n} define. Checking by cases (they are $a_{\alpha, 0}^{n}<a_{\alpha, 1}^{n}<a_{\alpha+1,0}^{n}<$ $a_{\alpha+1,1}^{n}, a_{\alpha, 0}^{n}<a_{\alpha+1,0}^{n}<a_{\alpha, 1}^{n}<a_{\alpha+1,1}^{n}, a_{\alpha+1,0}^{n}<a_{\alpha+1,1}^{n}<a_{\alpha, 0}^{n}<a_{\alpha, 1}^{n}, a_{\alpha+1,0}^{n}<$ $a_{\alpha, 0}^{n}<a_{\alpha+1,1}^{n}<a_{\alpha, 1}^{n}$. Note that $a_{\alpha, 0}^{n}<a_{\alpha+1,0}^{n}<a_{\alpha+1,1}^{n}<a_{\alpha, 1}^{n}$ and $a_{\alpha+1,0}^{n}<$ $a_{\alpha, 0}^{n}<a_{\alpha, 1}^{n}<a_{\alpha+1,1}^{n}$ are impossible. Letting $p_{\beta}^{n}(x):=\left\{\varphi\left(x, \bar{a}_{\alpha}^{n}\right)^{\text {if }(\alpha=\beta)}: \alpha<\lambda\right\}$ we note that it is a type such that $p_{\beta}^{n}(\mathfrak{C})$ is a convex set; obviously it is disjoint from $p_{\gamma}^{n}(\mathfrak{C})$ for $\gamma \in \lambda \backslash\{\beta\}$.

Clearly, there are $\alpha \neq \beta<\lambda$ such that $p_{\alpha}^{0}(\mathfrak{C})<p_{\beta}^{0}(\mathfrak{C})$ and choose a^{*} such that $p_{\alpha}^{0}(\mathfrak{C})<a^{*}<p_{\beta}^{0}(\mathfrak{C})$. Now for every $\gamma<\lambda$ we have $p_{\gamma}^{1}(\mathfrak{C}) \cap p_{\alpha}^{0}(\mathfrak{C}) \neq \emptyset$ and $p_{\gamma}^{1}(\mathfrak{C}) \bigcap p_{\beta}^{0}(\mathfrak{C}) \neq \emptyset$, i.e., $p_{0}^{1}(\mathfrak{C})$ is disjoint neither from $p_{\alpha}^{0}(\mathfrak{C})$ nor from $p_{\beta}^{0}(\mathfrak{C})$ (by the choice of $\left.\bar{\varphi},\left\langle\bar{a}_{\alpha}^{n}: n<\omega, \alpha<\lambda\right\rangle\right)$. As $p_{\gamma}^{1}(\mathfrak{C})$ is convex, by the choice of a^{*} necessarily $a^{*} \in p_{\gamma}^{1}(\mathfrak{C})$. As γ was any ordinal $<\lambda$ it follows that $a^{*} \in \bigcap\left\{p_{\gamma}^{1}(\mathfrak{C})\right.$: $\gamma<\lambda\}$, clear contradiction. (In fact, we get contradiction even if we use only $n=0,1$, see [Sh:863]). The o-minimal case holds by the same proof. $\boldsymbol{\square}_{3.3}$
3.4. Definition: 1) We say a pair of types $(p(x), q(\bar{y}))$ is a $\left(1=\aleph_{0}\right)$-pair of types (or $(p(\bar{x}), q(\bar{y}))$ satisfies $1=\aleph_{0}$), if there is a set A such that: for every countable set $B \subseteq p(\mathfrak{C})$, there is an element $\bar{a} \in q(\mathfrak{C})$ satisfying $B \subseteq \operatorname{acl}(\{\bar{a}\} \cup A)$. We say $p(x)$ is a $\left(1=\aleph_{0}\right)$-type if this holds for some $q(\bar{y})$.

1A) If $A=\operatorname{Dom}(p)$ we add purely. We call A a witness to $p(x)$ being a $\left(1=\aleph_{0}\right)$-type.
2) We say that T is a local $\left(1=\aleph_{0}\right)$-theory if for some A (the witness) some non-algebraic type p over A is a $\left(1=\aleph_{0}\right)$-type. If $A=\emptyset$ we say purely.

2A) We say T is a global $\left(1=\aleph_{0}\right)$-theory when the type $x=x$ is a $\left(1=\aleph_{0}\right)$ type.
3) We say that a pair $(p(x), q(\bar{y}))$ of types is a semi $\left(1=\aleph_{0}\right)$-pair of types if: for some set A for every indiscernible sequence $\left\langle a_{n}: n<\omega\right\rangle$ over A satisfying $n<\omega \Rightarrow \bar{a}_{n} \in p(\mathfrak{C})$ there is $\bar{a} \in q(\mathfrak{C})$ such that $\left\{\bar{a}_{n}: n<\omega\right\} \subseteq \operatorname{acl}(\bar{a} \cup A)$. We say $p(\bar{x})$ is semi $\left(\aleph_{0}=1\right)$-type if this holds for some $q(\bar{y})$.
4) We say that the pair $(p(x), q(\bar{y}))$ of types is a weakly $\left(1=\aleph_{0}\right)$-pair of types if there are $A \supseteq \operatorname{Dom}(p)$ and an infinite indiscernible sequence $\left\langle a_{n}: n<\omega\right\rangle$
over A with each a_{n} realizing p such that for some $\bar{c} \in q(\mathfrak{C})$ we have $\left\{a_{n}: n<\right.$ $\omega\} \subseteq \operatorname{acl}(A \cup \bar{c})$.
5) We say that $p(x)$ is semi/weakly $\left(\aleph_{0}=1\right)$-type if some pair (q, p) is semi/weakly $\left(\aleph_{0}=1\right)$-pair of types.
6) In (3),(4) we let "purely", "witness" "local"; "global" be defined similarly.
7) Above we can allow $p=p(\bar{x}), \ell g(\bar{x})=m$.
3.5. ObSERvation: 1) Every algebraic type $p(x)$ is a $\left(1=\aleph_{0}\right)$-type. If $p \subseteq q$ and p is a $\left(1=\aleph_{0}\right)$-type, then q is an $\left(1=\aleph_{0}\right)$-type.
2) If $p(x)$ is a $\left(1=\aleph_{0}\right)$-type, then $p(x)$ is a semi $\left(1=\aleph_{0}\right)$-type.
3) If $p(x)$ is a semi $\left(1, \aleph_{0}\right)$-type, then $p(x)$ is a weakly $\left(1=\aleph_{0}\right)$-type.
4) If $(p(x), q(\bar{y}))$ is [semi][weakly]- $\left(1=\aleph_{0}\right)$ type in \mathfrak{C}, then the same holds in $\mathfrak{C}^{\mathrm{eq}}$. If $p(x)$ is [semi][weakly]- $\left(1=\aleph_{0}\right)$-type in $\mathfrak{C}^{\mathrm{eq}}$ such that $p\left(\mathfrak{C}^{\mathrm{eq}}\right) \subseteq \mathfrak{C}$, then so is the case in \mathfrak{C}. We can also keep track of the witness.
5) For some T, T is not locally $\left(1=\aleph_{0}\right)$-theory but T^{eq} is.

Proof. Easy.
3.6. Claim: 1) If T is strongly dependent, then no non-algebraic type is a $\left(1=\aleph_{0}\right)$-type.
2) Moreover, no non-algebraic type is a weakly $\left(1=\aleph_{0}\right)$-type.

Remark: We can weaken the assumption of 3.6 to: for some ω-sequence of nonalgebraic types $\left\langle p_{n}(x): n<\omega\right\rangle$ over A, for every $\left\langle b_{n}: n<\omega\right\rangle \in \prod_{n<\omega} p_{n}(\mathfrak{C})$, for some \bar{c} we have $\left\{b_{n}: n<\omega\right\} \subseteq c \ell(A \cup \bar{c})$.

Proof. Let $\lambda>|T|^{+}$. Assume toward a contradiction that $p(x)$ is a nonalgebraic $\left(1=\aleph_{0}\right)$-type and A a witness for it. As $p(x)$ is not algebraic, we can find $\bar{b}^{n}=\left\langle b_{\alpha}^{n}: \alpha<\lambda\right\rangle$ for $n<\omega$ such that
$(*)_{1} b_{\alpha}^{n}$ realizes $p ;$
$(*)_{2} b_{\alpha}^{n} \neq b_{\beta}^{n}$ for $\alpha<\beta<\lambda, n<\omega$;
$(*)_{3}\left\langle b_{\alpha}^{n}:(n, \alpha) \in \omega \times \lambda\right\rangle$ is an indiscernible sequence over A where $\omega \times \lambda$ is ordered lexicographically.
Let $\bar{a} \in{ }^{\omega>}(\mathfrak{C})$ be such that $\left\{b_{0}^{n}: n<\omega\right\} \subseteq \operatorname{acl}(A \cup \bar{a})$ so for each n we can find $k_{n}<\omega, \bar{c}_{n} \in{ }^{\omega>} A$ and a formula $\varphi_{n}(x, \bar{y}, \bar{z})$ such that

$$
\mathfrak{C} \models \varphi\left(b_{0}^{n}, \bar{a}, \bar{c}_{n}\right) \quad \text { and } \quad\left(\exists^{\leq k_{n}} x\right) \varphi\left(x, \bar{a}, \bar{c}_{n}\right) .
$$

By omitting some b_{α}^{n} 's we have $(n, \alpha) \in \omega \times \lambda \backslash\{(m, \omega): m<\omega\} \Rightarrow \mathfrak{C} \models$ $\neg \varphi_{n}\left[b_{\alpha}^{n}, \bar{a}, \bar{c}_{n}\right]$.

Let $\bar{a}_{\alpha}^{n}=\left\langle b_{\alpha}^{n}\right\rangle^{\wedge} \bar{c}_{n}$ and φ_{n} have already been chosen.
Now check Definition 3.2. $\quad \boldsymbol{■}_{3.6}$
3.7. Definition: 1) We say T is strongly ${ }^{2}$ (or strongly ${ }^{+}$) dependent when: there is no sequence $\left\langle\varphi_{n}\left(\bar{x}, \bar{y}_{0}, \ldots, \bar{y}_{n}\right): n<\omega\right\rangle$ and $\bar{a}_{\alpha}^{n} \in{ }^{\ell g\left(y_{n}\right)} \mathfrak{C}$ for $n<\omega, \alpha<\lambda$ (any infinite λ) such that for every $\eta \in{ }^{\omega} \lambda$ the set $\left\{\varphi_{n}\left(\bar{x}, \bar{a}_{\eta(0)}^{0}, \ldots, a_{\eta(n-1)}^{n-1}, a_{\alpha}^{n}\right)^{\mathrm{if}(\alpha=\eta(n))}: n<\omega, \alpha<\lambda\right\}$ is consistent.
2) Let $\ell \in\{1,2\}$. We say that T is strongly ${ }^{\ell, *}$ dependent when: if $\left\langle\overline{\mathbf{a}}_{t}: t \in I\right\rangle$ is an indiscernible sequence over $A, t \in I \Rightarrow \ell g\left(\overline{\mathbf{a}}_{t}\right)=\alpha$ (so constant but not necessarily finite) and $m<\omega$ and $\bar{b}_{n} \in{ }^{m} \mathfrak{C}$ for $n<\omega,\left\langle\bar{b}_{n}: n<\omega\right\rangle$ is an indiscernible sequence over $A \cup\left\{\overline{\mathbf{a}}_{t}: t \in I\right\}$, then we can divide I to finitely many convex sets $\left\langle I_{m}: m<k\right\rangle$ such that for each $m<k,\left\langle\overline{\mathbf{a}}_{t}: t \in I_{m}\right\rangle$ is an indiscernible sequence over $\cup\left\{\bar{b}_{\alpha}: \alpha<\omega\right\} \cup A \cup\left\{\bar{a}_{s}: s \in I \backslash I_{m}\right.$ and $\left.\ell=2\right\}$.
3) T is strongly ${ }^{\ell}$ stable (or strongly ${ }^{\ell, *}$ stable) when it is strongly ${ }^{\ell}$ dependent (or strongly ${ }^{\ell, *}$ dependent) and stable.
3.8. Claim: If T is strongly ${ }^{+}$dependent then:
\circledast_{1} for any $A \subseteq \mathfrak{C}$, infinite complete linear order I and indiscernible sequence $\left\langle\bar{a}_{t}: t \in I\right\rangle$ over $A, \ell g\left(\bar{a}_{t}\right)$ possibly infinite, for any finite $B \subseteq \mathfrak{C}$, there is a finite $w \subseteq I$ such that: if J is a convex subset of I disjoint to w then $\left\langle\bar{a}_{t}: t \in J\right\rangle$ is indiscernible over $A \cup B \cup\left\{\bar{a}_{s}: s \in I \backslash J\right\}$
\circledast_{2} for any set $A \subseteq \mathfrak{C}$ of cardinality λ and infinite linear orders I_{α} for $\alpha<\lambda$ and $\bar{a}_{t}^{\alpha}\left(t \in I_{\alpha}, \alpha<\lambda\right)$ such that $\left\langle\bar{a}_{t}^{\alpha}: t \in I_{\alpha}\right\rangle$ is an indiscernible sequence over $A \cup\left\{\bar{a}_{s}^{\beta}: \beta \in \lambda \backslash\{\alpha\}, s \in I_{\beta}\right\}$ and finite $B \subseteq \mathfrak{C}$ there is a finite $u \subseteq \lambda$ and $w_{\alpha} \in\left[I_{\alpha}\right]^{<\aleph_{0}}$ for $\alpha \in u$ such that: if $\bar{J}=\left\langle J_{\alpha}: \alpha<\lambda\right\rangle, J_{\alpha}$ is a convex subset of I_{α} disjoint to w_{α} when $\alpha \in u$ then $\left\langle\bar{a}_{t}^{\alpha}: t \in J_{\alpha}\right\rangle$ is indiscernible over $A \cup B \cup\left\{\bar{a}_{s}^{\beta}: \beta \in \lambda \backslash\{\alpha\}, s \in J_{\beta}\right\}$ for every $\alpha<\lambda$.

Proof. See this (and more) [Sh:863, §2].
3.9. Definition: 1) We say that $\vartheta\left(x_{1}, x_{2} ; \bar{c}\right)$ is a finite-to-finite function from $\varphi_{1}\left(\mathfrak{C}, \bar{a}_{1}\right)$ onto $\varphi_{2}\left(\mathfrak{C}, \bar{a}_{2}\right)$ when:
(a) if $b_{2} \in \varphi_{2}\left(\mathfrak{C}, a_{2}\right)$ then the set $\left\{x: \vartheta\left(x, b_{2}, \bar{c}\right) \wedge \varphi_{1}\left(x, \bar{a}_{1}\right)\right\}$ satisfies:
(i) it is finite but
(ii) it is not empty except for finitely many such b_{2} 's
(b) if $b_{1} \in \varphi_{1}\left(\mathfrak{C}, \bar{a}_{1}\right)$, then the set $\left\{x: \vartheta\left(b_{1}, x, \bar{c}\right) \wedge \varphi_{2}\left(x, \bar{a}_{2}\right)\right\}$ satisfies:
(i) it is finite but
(ii) it is not empty except for finitely many such b_{1} 's.
2) If we place "onto $\varphi_{2}\left(\mathfrak{C}, \bar{a}_{2}\right)$ " by "into $\varphi_{2}\left(\mathfrak{C}, \bar{a}_{1}\right)$ " we mean that we require above only clauses $(a)(i),(b)(i),(i i)$.
3) We can replace $\varphi_{1}\left(x, \bar{a}_{1}\right), \varphi_{2}\left(x, \bar{a}_{2}\right)$ above by types.
3.10. Claim: If T is strongly ${ }^{+}$dependent, then the following are impossible:
$(S t)_{1}$ for some $\varphi(x, \bar{a})$
(a) $\varphi(x, \bar{a})$ is not algebraic;
(b) E is a definable equivalence relation (in \mathfrak{C} by a first order formula possibly with parameters) with domain $\subseteq \varphi(\mathfrak{C}, \bar{a})$ and infinitely many equivalence classes;
(c) there is a formula $\vartheta(x, y, \bar{z})$ such that for every $b \in \operatorname{Dom}(E)$ for some \bar{c}, the formula $\vartheta(x, y ; \bar{c})$ is a finite to finite map from $\varphi(\mathfrak{C}, \bar{a})$ into b / E;
$(S t)_{2}$ for some formulas $\varphi(x), x E y, \vartheta(x, y, \bar{z})$ possibly with parameters we have:
(a) $\varphi(x)$ is non-algebraic;
(b) $x E y \rightarrow \varphi(x) \wedge \varphi(y)$;
(c) for uncountably many $c \in \varphi(\mathfrak{C})$ for some \bar{d} the formula $\vartheta(x, y ; \bar{d})$ is a finite to finite function from $\varphi(x)$ into $x E c$;
(d) for some $k<\omega$, if $b_{1}, \ldots, b_{k} \in \varphi(\mathfrak{C})$ are pairwise distinct then $\bigwedge_{\ell=1}^{k} x E b_{\ell}$ is algebraic.
$(S t)_{3}$ similarly with $\varphi(x, \bar{a})$ replaced by a type, as well as $x E y$ (and x, y, z are replaced by m-tuples and uncountable is replaced by $\bar{\kappa}$).

Proof. The proof for $(S t)_{1}$ is a special case of the proof of $(S t)_{2}$ and the proof for $(S t)_{3}$ is similar. So it is enough:

Proof of " $(S t)_{2}$ is impossible".
Without loss of generality, in clause (c) of $(S t)_{2}$ we have $\langle c\rangle \triangleleft \bar{d}$ and let $\ell g(\bar{d})=j$, i.e., $\vartheta=\vartheta(x, y, \bar{z}), \ell g(\bar{z})=j$; also let $\bar{z}^{n}=\left\langle z_{n, 0}, \ldots, z_{n, j-1}\right\rangle$.

Clearly, there is k^{*} such that
\square_{1} for some uncountable $C \subseteq \varphi(\mathfrak{C})$ for every $c \in C$ for some $\bar{d}_{c} \in{ }^{j} \mathfrak{C}$, without loss of generality, $\langle c\rangle \triangleleft \bar{d}_{c}$ and $\theta\left(x, y, \bar{d}_{c}\right)$ is a finite to finite map
from $\varphi(\mathfrak{C})$ into $x E c$ and the size of the finite sets (see Definition 3.9) is $<k^{*}$;
\square_{2} moreover, $C=r(\mathfrak{C})$ for some non-algebraic $r(x)$;
$\square_{3} k^{*}$ can serve as k in clause (d) of $(S t)_{2}$.
Let $\bar{z}_{n}=\bar{z}^{0 \wedge} \ldots \wedge \bar{z}^{n-1}$. We shall define now, by induction on $n<\omega$, formulas $\varphi_{n}\left(x, \bar{z}_{n}\right)$ and $\vartheta_{n}\left(x_{1}, x_{2}, \bar{z}_{n}\right)$ also written as $\varphi_{\bar{z}_{n}}^{n}(x), \vartheta_{\bar{z}_{n}}^{n}\left(x_{1}, x_{2}\right)$.

CASE 1: $n=0$.
So $\left(\bar{z}_{n}=<>\right.$, and) $\varphi_{n}(x)=\varphi(x)$ and $\vartheta_{n}\left(x_{1}, x_{2}\right)=\left(x_{1}=x_{2}\right)$.
CASE 2: $n=m+1$.
Let $\varphi_{\bar{z}_{n}}^{n}(x):=\varphi_{\bar{z}_{m}}^{m}(x) \wedge\left(\exists x^{\prime}\right)\left[x^{\prime} E z_{m} \wedge \vartheta_{\bar{z}_{m}}^{m}\left(x^{\prime}, x\right)\right] \wedge \vartheta_{\bar{z}_{n}}^{n}\left(x_{1}, x_{2}\right):=\varphi_{\bar{z}_{m}}^{m}\left(x_{2}\right) \wedge$ $\varphi\left(x_{1}\right) \wedge\left(\exists x^{\prime}\right)\left[\vartheta\left(x_{1}, x^{\prime}, \bar{z}^{m}\right) \wedge \vartheta_{\bar{z}_{m}}^{m}\left(x^{\prime}, x_{2}\right) \wedge x^{\prime} E z_{m}\right]$.

We now prove, by induction on n, that:
$(*)_{n}$ if $\bar{c}=\left\langle c_{\ell}: \ell<n\right\rangle$ and $c_{\ell} \in C \backslash a c \ell\left\{c_{k}: k<\ell\right\}$ for $\ell<n$ (so $\vartheta\left(x, y, \bar{d}_{c_{\ell}}\right.$) is a finite to finite function from $\varphi(x)$ into $x E c_{\ell}$ for $\left.\ell<n\right)$ and $\bar{d}=$ $\bar{d}_{c_{0}}{ }^{\wedge} \bar{d}_{c_{1}}{ }^{\wedge} \ldots \wedge \bar{d}_{c_{n-1}}$, then
$(\alpha) \varphi_{\bar{d}}^{n}(\mathfrak{C})$ is an infinite subset of $\varphi(\mathfrak{C})$;
$(\beta) \vartheta_{\bar{d}}^{n}\left(x_{1}, x_{2}\right)$ is a finite to finite function from a co-finite subset of $\varphi(\mathfrak{C})$ into a subset of $\varphi_{\bar{d}}^{n}(\mathfrak{C}) ;$
(γ) if $n=m+1$ and $e \in \varphi_{\bar{d}}^{n}(\mathfrak{C})$, then $\left(\exists c^{\prime} \in a c \ell(\bar{c} \upharpoonright m \cup\{e\})\right)\left[c^{\prime} E c_{m}\right]$;
($\delta) m<n \Rightarrow \varphi_{\bar{d}\lceil j m}^{m}(\mathfrak{C}) \subseteq \varphi_{\bar{d}}^{n}(\mathfrak{C})$.
This is straightforward. Let I be a linear order such that any interval has $<|T|$ members.

By $\boxtimes_{2}, \boxtimes_{3}$ there are $c_{t} \in C$ for $t \in I$ pairwise distinct, let $\bar{d}_{t}=\bar{d}_{c_{t}}$ so $\theta\left(x, y, \bar{d}_{t}\right)$ is a finite to finite function from $\varphi(x)$ into $x E c_{t}$ such that $\left\langle\bar{d}_{t}: t \in I\right\rangle$ is an indiscernible sequence (e.g. use \square above).

Now for every $<_{I}$-increasing sequence $\bar{t}=\left\langle t_{n}: n<\omega\right\rangle$ we consider $\bar{c}_{\bar{t}}^{n}=$ $\bar{c}_{\bar{t} \mid n}^{n}=\bar{d}_{t_{0}}{ }^{\wedge} \ldots \bar{d}_{t_{n-1}}$ and $p_{\bar{t}}=\left\{\varphi_{\bar{c}_{\bar{t} \mid n}^{n}}^{n}(x): n<\omega\right\}$.

Now
\circledast_{1} for \bar{t} as above $p_{\bar{t}}$ is consistent.
(Why? By $(*)_{n}(\alpha)$ there is an element $e \in \varphi_{\bar{c}_{t}^{n}}^{n}(\mathfrak{C})$, by $(*)_{n}(\delta)$ the element e satisfies $\left\{\varphi_{\bar{c}_{\bar{t} \mid m}^{m}}(x): m \leq n\right\}$. As this holds for every n, the set $p_{\bar{t}}=\left\{\varphi_{d_{\bar{t} n}^{n}}^{n}(x)\right.$: $n<\omega\}$ is finitely satisfiable as required.)
\circledast_{2} if e realizes $p_{\bar{t}}$, then for every n there is an element e^{\prime} algebraic over $\left\{e, \bar{d}_{t_{0}}, \ldots, \bar{d}_{t_{n-1}}\right\}$ such that $e^{\prime} E b_{t_{n}}^{1}$.
(Why? By $(*)_{n}(\gamma)$.)
\circledast_{3} if e realizes $p_{\bar{t}}$ then for every n the set $\left\{s \in I\right.$: there is e^{\prime} algebraic over $\left\{e, \bar{d}_{t_{0}}^{1}, \ldots, \bar{d}_{t_{n-1}}^{1}\right\}$ such that $\left.e^{\prime} E c_{s}^{1}\right\}$ has $\leq|T|$ members.
(Why? There are $\leq|T|$ such e^{\prime} and for each e^{\prime} by clause (d) of (St) $)_{2}$ there are only finitely many such $s \in I$ (if we phrase it more carefully we get that there are $<k_{n}(<\omega)$ many members).)

This is more than enough to show T is not strongly ${ }^{+}$dependent. $\quad \mathbf{B}_{3.10}$
3.11. Discussion: : We may phrase 3.10 for ideals of small formulas.
3.12. Claim: If T is strongly ${ }^{1}$ dependent and $\ell=1,2,3,4$, then the statement $\circledast \ell$ below is impossible where:
\circledast_{1} (a) $\left\langle\bar{a}_{\alpha}: \alpha<\lambda\right\rangle$ is an indiscernible sequence over A;
(b) $u_{n} \subseteq \lambda$ is finite, (non-empty) with $\left\langle u_{n}: n<\omega\right\rangle$ having pairwise disjoint convex hull;
(c) $\bar{b} \in{ }^{\omega>} \mathfrak{C}$
(d) for each n for some α_{n}, k and $t_{n(0)}^{\mathbf{t}}<\cdots<t_{n(k-1)}^{\mathbf{t}} \in u_{n}$ for $\mathbf{t} \in\{$ false, truth $\}$ and $\bar{c}_{n} \in{ }^{\omega>} A$ and φ we have $\mathfrak{C} \models \varphi\left(\bar{c}, a_{t_{n(0)}^{\mathbf{t}}}, \ldots, a_{t_{n(k-1)}^{\mathbf{t}}}, \bar{c}_{n}\right)^{\mathbf{t}}$ for both values of \mathbf{t};
$\circledast_{2} \quad$ like \circledast_{1} but allows \bar{a}_{α} to be infinite;
$\circledast_{3}(\mathrm{a})\left\langle\bar{a}_{\alpha}^{n}: \alpha<\lambda\right\rangle$ is an indiscernible sequence over $A \cup\left\{\bar{a}_{\beta}^{a}: m<\omega, m \neq\right.$ $n, \beta<\lambda\} ;$
(b) $\bar{a}_{\alpha}^{n} \neq \bar{a}_{\alpha+1}^{n}$;
(c) some $a \in \mathfrak{C}$ satisfies $n<\omega \Rightarrow \operatorname{acl}(A \cup\{a\}) \cap\left\{\bar{a}_{\alpha}^{n}: \alpha<\lambda\right\} \neq \emptyset$;
$\circledast_{4} \quad$ like \circledast_{3} but replace clause (c) by
(c)' for some $\bar{a} \in \mathfrak{C}$ for every n the sequence $\left\langle\bar{a}_{\alpha}^{n}: \alpha<\lambda\right\rangle$ is not an indiscernible sequence over $A \cup \bar{a}$.

Proof. Similar to the previous ones.
3.13. Discussion: 1) We have asked: show that the theory of the p-adic field is strongly dependent.

Udi Hrushovski has noted that the criterion $(\mathrm{St})_{2}$ from 3.10 applies so T is not strongly ${ }^{2}$ dependent. Namely take the following equivalence relation on $\mathbb{Z}_{p}: \operatorname{val}(x-y) \geq \operatorname{val}(c)$, where c is some fixed element with
infinite valuation. Given x, the map $y \mapsto(x+c y)$ is a bijection between \mathbb{Z}_{p} and the class.
2) By $[\mathrm{Sh}: 863]$ this theory is strongly ${ }^{1}$ dependent.
3) Onshuus shows that the theory of the field of the reals too is not strongly ${ }^{2}$ dependent (e.g. though Claim 3.10 does not apply, its proof works, using pairwise not too near \bar{b} 's, in general just an uncountable set of \bar{b} 's. In [Sh:863] we prove reasonable existence of indiscernibles for strongly dependent T (and in 3.2 we can use the case $\ell g(\bar{x})=1$).
3.14. Claim: $\quad 1$) If $x=1,2,1 *, 2 *, M \prec \mathfrak{C}, A \subseteq \mathfrak{C}$, then (the complete first order) theory $\operatorname{Th}\left(\mathfrak{B}_{M, M A}\right)$ from $1.10(4)$ is strongly* dependent if and only if T is strongly* dependent; if T is dependent then the theory is equal to $T_{M, A}^{*}$ see 1.10(4), 1.12(4).
2) $\kappa_{\text {ict }}(T)=\kappa_{\text {ict }}\left(\operatorname{Th}\left(\mathfrak{B}_{M, M A}\right)\right)$ if $M \prec \mathfrak{C}, A \subseteq \mathfrak{C}$;
3) If $x=1,2,1 *, 2 *$ and $T_{1} \subseteq T_{2}$ are complete first order theories (so $\left.\tau\left(T_{1}\right) \subseteq \tau\left(T_{2}\right)\right)$, then
(a) if T_{2} is strongly* dependent then so is T_{1}
(b) $\kappa_{\text {ict }}\left(T_{1}\right) \leq \kappa_{\text {ict }}\left(T_{2}\right)$.
4) If $T_{1} \subseteq T_{2}$ are complete first order and $\tau\left(T_{2}\right) \backslash \tau\left(T_{1}\right)$ consist of individual constants only, then
(α) T_{2} is strongly* dependent if and only if T_{1} is strongly* dependent;
$(\beta) \kappa_{\text {ict }}\left(T_{1}\right)=\kappa_{\text {ict }}\left(T_{2}\right)$.
5) For $\ell=1,2, T$ is strongly ${ }^{\ell}$ dependent if and only if $T^{e q}$ is strongly ${ }^{\ell}$ dependent; similarly for strongly ${ }^{\ell, *}$.
6) $\kappa_{\text {ict }}(T)=\kappa_{\text {ict }}\left(T^{e q}\right)$.

Proof. Easy.

4. Definable groups

4.1. Context: (a) T is first order complete

(b) \mathfrak{C} is a monster model of T.

We try here to generalize the theorem on the existence of commutative infinite subgroups for stable T to dependent T. Theorems on definable groups in a monster $\mathfrak{C}, \operatorname{Th}(\mathfrak{C})$ stable, are well-known.
4.2. Definition: 1) We say that G is a type-definable group (in \mathfrak{C}) if $G=$ $(p, *, \operatorname{inv})=\left(p^{G}, *^{G}, \operatorname{inv}^{G}\right)$ where
(a) $p=p(x)$ is a type.
(b) $*$ is a two-place function on \mathfrak{C}, possibly partial, definable (in \mathfrak{C}), we normally write $a b$ instead of $a * b$ or $*(a, b)$.
(c) $(p(\mathfrak{C}), *)$ is a group, we write $x \in G$ for $x \in p(\mathfrak{C})$.
(d) inv G is a (partial) unary function, definable (in \mathfrak{C}), which on $p(\mathfrak{C})$ is the inverse, so if no confusion arises we shall write $(x)^{-1}$ for $\operatorname{inv}(x)$.
1A) We let B_{2}^{G} be the set of parameters appearing in p^{G}; let B^{G} be the set of parameters appearing in p^{G} or in the definition of $*$ or of inv ${ }^{G}$.
2) We say that G is a definable group if $p(x)$ is a formula, i.e., a singleton.
3) We say that G is an almost type definable group if $p(x)$ is replaced by $\bar{p}=\left\langle p_{i}(x): i<\delta\right\rangle, p_{i}(\mathfrak{C})$ increasing with i and $\bar{p}(\mathfrak{C})$ is defined as $\bigcup\left\{p_{i}(\mathfrak{C}): i<\delta\right\}$.

Remark: Of course, we can use $p(\bar{x})$ and/or work in $\mathfrak{C}^{\text {eq }}$.
4.3. Claim: Assume
(a) T is dependent;
(b) G is a definable group in \mathfrak{C} or just type-definable;
(c) $A \subseteq G$ is a set of pairwise commuting elements, D a non-principal ultrafilter on A or just
$(c)^{-} A \subseteq G, D$ a non-principal ultrafilter on A such that

$$
\left(\forall^{D} a_{1}\right)\left(\forall^{D} a_{2}\right)\left(a_{1} a_{2}=a_{2} a_{1}\right)
$$

where $\forall^{D} x \varphi(x, \bar{a})$ means $\{b \in \operatorname{Dom}(D): \mathfrak{C} \models \varphi[b, \bar{a}]\} \in D$.
Then there is a formula $\varphi(x, \bar{a})$ such that:
$(\alpha) \varphi(x, \bar{a}) \in \operatorname{Av}(\bar{a}, D) ;$
(β) $G \cap \varphi(\mathfrak{C}, \bar{a})$ is an abelian subgroup of G;
$(\gamma) \bar{a} \subseteq A \cup B^{G} \cup\left\{c: c\right.$ realizes $\left.\operatorname{Av}\left(A \cup B_{2}^{G}, D\right)\right\}$.
4.4. Remark: 1) If D is a principal ultrafilter, say $\left\{a^{*}\right\} \in D$, then $\varphi(x, \bar{a})$ is essentially $\operatorname{Cm}_{G}\left(\operatorname{Cm}_{G}\left(a^{*}\right)\right)$ so no new point, $\left(\operatorname{Cm}_{G}(A)=\{x \in A: x\right.$ commutes with every $a \in A\}$).
2) If D is a non-principal ultrafilter, then necessarily $\varphi(x, \bar{a})$ is not algebraic as it belongs to $\operatorname{Av}(\bar{a}, D)$.

Proof. We try to choose a_{n}, b_{n} by induction on $n<\omega$ such that:
(i) a_{n}, b_{n} realizes $p_{n}(x):=\operatorname{Av}\left(A_{n}, D\right)$ where $A_{n}=A \cup B^{G} \cup\left\{a_{k}, b_{k}: k<n\right\}$ so as $A \in D, A \subseteq G$ necessarily $p^{G}(x) \subseteq p_{n}(x)$;
(ii) a_{n}, b_{n} does not commute (in G, they are in G because $p^{G}(x) \subseteq p_{n}$).

Case 1: We succeed.
Assume $n<m<\omega, c^{\prime} \in\left\{a_{n}, b_{n}\right\}$ and $c^{\prime \prime} \in\left\{a_{m}, b_{m}\right\}$ clearly $c^{\prime}, c^{\prime \prime}$ are in G. Now we shall show that they commute because $c^{\prime \prime}$ realizes $\operatorname{Av}\left(A \cup B^{G} \cup\left\{c^{\prime}\right\}, D\right)$ and c^{\prime} realizes $\operatorname{Av}\left(A \cup B_{2}^{G}, D\right)$ recalling either assumption (c) about commuting in A or assumption $(c)^{-}$. Hence if $k<\omega, n_{0}<\cdots<n_{k-1}<\omega$ and $n<\omega$ then $c:=b_{n_{0}} b_{n_{1}} \ldots b_{n_{k-1}}$ satisfies: c, a_{n} commute if and only if $n \notin\left\{n_{0}, \ldots, n_{k-1}\right\}$, so $\varphi(x, y)=[x y=y x]$ has the independence property contradicting assumption (a). So $c^{\prime}, c^{\prime \prime}$ actually commute and we are done.

CASE 2: We are stuck at $n<\omega$.
So $p_{n}(x) \cup p_{n}(y) \vdash(x y=y x)$, hence there is a formula $\psi\left(x, \bar{a}^{*}\right) \in \operatorname{Av}\left(A_{n}, D\right)$ such that
$(*)_{1} \psi\left(x, \bar{a}^{*}\right) \wedge \psi\left(y, \bar{a}^{*}\right) \vdash x y=y x$ (so both products are well-defined).
Let $p^{G}(x)=\{\vartheta(x, \bar{a})\}$ or just $p^{G}(x) \vdash \vartheta(x, \bar{a}), \bar{a} \in B_{i}^{G}$ and $\vartheta(x, \bar{a}) \wedge \vartheta(y, \bar{a}) \rightarrow$ ($x y$ well defined). Without loss of generality $\bar{a} \unlhd \bar{a}^{*}$ and $\psi\left(x, \bar{a}^{*}\right) \vdash \vartheta(x, \bar{a})$ and let $\vartheta^{*}\left(x, \bar{a}^{*}\right)=(\forall y)\left(\psi\left(y, \bar{a}^{*}\right) \rightarrow y x=x y\right.$ (so both well-defined)). So $\psi(x, \bar{a}) \vdash$ $\vartheta^{*}\left(x, \bar{a}^{*}\right)$.

Let

$$
\varphi(x)=\varphi(x, \bar{a})=\vartheta\left(x, \bar{a}^{*}\right) \wedge(\forall y)\left[\vartheta^{*}\left(y, \bar{a}^{*}\right) \rightarrow x y=y x(\text { both well-defined })\right] .
$$

So $\psi\left(x, \bar{a}^{*}\right) \vdash \varphi\left(x, \bar{a}^{*}\right) \vdash \vartheta^{*}\left(x, \bar{a}^{*}\right)$ hence the formula $\varphi\left(x, \bar{a}^{*}\right)$ belongs to the type $p_{n}(x)$ which is equal to $\operatorname{Av}\left(A_{n}, D\right)$ hence $\varphi(x, \bar{a}) \in \operatorname{Av}\left(\bar{a}^{*}, D\right)$ and $\bar{a}^{*} \subseteq A_{n} \subseteq A \cup B^{G} \cup \cup\left\{c: c\right.$ realizes $\left.\operatorname{Av}\left(A \cup B^{G}, D\right)\right\}$.

We are done as $\varphi\left(\mathfrak{C}, \bar{a}^{*}\right) \cap G$ is a subgroup and is abelian by the definition of $\varphi(x) . \quad \mathbf{■}_{4.3}$

4.5. Claim: Assume

(a) G is a definable (infinite) group, (or just type-definable);
(b) every element of $G \backslash\left\{e_{G}\right\}$ commutes with only finitely many others;
(c) G has infinitely many pairwise non-conjugate members.

Then T is not strongly ${ }^{+}$dependent.

Proof. Assume first $p^{G}=\{\varphi(x)\}$.
Let $x E y:=[x, y$ are conjugates $]$, clearly it is an equivalence relation, and let

$$
\vartheta\left(x_{1}, x_{2}, y\right):=\left(x_{1}=x_{2} y x_{2}^{-1}\right)
$$

Note that: if $M \models \vartheta\left(x_{1}, z_{1}, y\right) \wedge \vartheta\left(x_{1}, z_{2}, y\right)$ then $M \models z_{1} y z_{1}^{-1}=z_{2} y z_{2}^{-1}$ hence $M \models\left(z_{2}^{-1} z_{1}\right) y=y\left(z_{2}^{-1} z\right)$ so $z_{2}^{-1} z_{1} \in \operatorname{Cm}_{G}(y)$ so $\left\{z: \vartheta\left(x_{1}, z, y\right)\right\}$ is finite. Trivially $\left\{x_{1}: \vartheta\left(x_{1}, x_{2}, y\right)\right\}$ is finite.

We now get a contradiction by 3.10: $\varphi(x), \vartheta\left(x_{1}, x_{2}, y\right)$ satisfies the demands in $(S t)_{1}$ there, which is impossible if T is strongly ${ }^{+}$dependent; so we are done.

If p^{G} is a type use $(S t)_{3}$ of 3.10. $\mathbf{\square}_{4.5}$

4.6. Definition: 1) A place \mathbf{p} is a tuple

$(p, B, D, *, \operatorname{inv})=\left(p^{\mathbf{p}}, B^{\mathbf{p}}, D^{\mathbf{p}}, *_{\mathbf{p}}, \operatorname{inv}_{\mathbf{p}}\right)=(p[\mathbf{p}], B[\mathbf{p}], D[\mathbf{p}], *[\mathbf{p}], \operatorname{inv}[\mathbf{p}])$ such that:
(a) B is a set $\subseteq \mathfrak{C}, D$ is an ultrafilter on $B, p \subseteq \operatorname{Av}(B, D)$;
(b) $*$ is a partial two-place function defined with parameters from B; we shall write $a *_{\mathbf{p}} b$ or, when clear from the context, $a * b$ or $a b$;
(c) inv is a partial unary function definable from parameters in B.

1A) \mathbf{p} is non-trivial if for every A the type $\operatorname{Av}(A, D)$ is not algebraic.
2) We say \mathbf{p} is weakly a place in a definable group G or type definable group G if \mathbf{p} is a place, $p^{\mathbf{p}} \vdash p^{G}$, the set $B^{\mathbf{p}}$ includes $\operatorname{Dom}\left(p^{G}\right)$ and the operations agree on $p_{\mathbf{p}}[\mathfrak{C}]$ when the place operations are defined.
2A) If those operations are the same, we say that \mathbf{p} is strongly a place in G.
3) We say $\mathbf{p}_{1} \leq \mathbf{p}_{2}$ if both are places, $B^{\mathbf{p}_{1}} \subseteq B^{\mathbf{p}_{2}}$ and $p^{\mathbf{p}_{2}} \vdash p^{\mathbf{p}_{1}}$ and the operations are same.
4) $\mathbf{p} \leq_{\operatorname{dir}} \mathbf{q}$ if $\mathbf{p} \leq \mathbf{q}$ and $B^{\mathbf{q}} \subseteq A \Rightarrow \operatorname{Av}\left(A, D^{\mathbf{p}}\right)=\operatorname{Av}\left(A, D^{\mathbf{q}}\right)$.

4.7. Definition: 1) A place \mathbf{p} is σ-closed when:

(a) σ has the form $\sigma\left(\bar{x}_{1} ; \ldots ; \bar{x}_{n(*)}\right)$, a term in the vocabulary of groups;
(b) if $\bar{a}_{\ell} \in{ }^{\left(\ell g\left(\bar{x}_{\ell}\right)\right.} \mathfrak{C}$, for $\ell=1, \ldots, n(*)$ and $B \subseteq A$, then $\sigma\left(\bar{a}_{1}, \ldots, \bar{a}_{n(*)}\right)$ is well-defined ${ }^{1}$ and realizes $\operatorname{Av}(A, D)$ provided that
$(*) n \leq n(*)$ and $\ell<\ell g\left(\bar{a}_{n}\right) \Rightarrow a_{n, \ell}$ realizes

$$
\operatorname{Av}\left(A \cup \bar{a}_{1} \wedge \ldots{ }^{\wedge} \bar{a}_{n-1}, D\right)
$$

2) A place \mathbf{p} is $\left(\sigma_{1}=\sigma_{2}\right)$-good or satisfies $\left(\sigma_{1}=\sigma_{2}\right)$ when

[^1](a) $\sigma_{\ell}=\sigma_{\ell}\left(\bar{x}_{1}, \ldots, \bar{x}_{n(*)}\right)$ a term in the vocabulary of groups for $\ell=$ 1,2 (so e.g. $\left(x_{1} x_{2}\right) x_{3}, x_{1}\left(x_{2} x_{3}\right)$ are considered as different terms);
(b) if $\bar{a}_{\ell} \in{ }^{\left(\ell g\left(\bar{x}_{n}\right)\right.} \mathfrak{C}$ for $\ell \leq n$ then $\sigma_{1}\left(\bar{a}_{1} ; \ldots ; \bar{a}_{n(*)}\right)=\sigma_{2}\left(\bar{a}_{1} ; \ldots ; \bar{a}_{n(*)}\right)$ whenever $(*)$ of part (1) holds for $A=B$; so both are well-defined.
3) We can replace σ in part (1) by a set of terms. Similarly in part (2) for a set of pairs.
4) We may write x_{ℓ} instead of $\left\langle x_{\ell}\right\rangle$. So if we write $\sigma\left(\bar{x}_{1} ; \bar{x}_{2}\right)=\sigma\left(x_{1} ; x_{2}\right)=$ $x_{1} x_{2}$ or $\sigma=x_{1} x_{2}$ we mean $x_{1}=x_{1,0}, x_{2}=x_{2,0}, \bar{x}_{1}=\left\langle x_{1,0}\right\rangle, \bar{x}_{2}=\left\langle x_{2,0}\right\rangle$. We may use also $\sigma(\bar{x} ; \bar{y})$ instead of $\sigma\left(\bar{x}_{1} ; \bar{x}_{2}\right)$ and $\sigma(\bar{x} ; \bar{y} ; \bar{z})$ similarly.
4.8. Definition: 1) We say a place \mathbf{p} is a poor semi-group if it is σ-closed for $\sigma=x y$ and satisfies $\left(x_{1} x_{2}\right) x_{3}=x_{1}\left(x_{2} x_{3}\right)$.
2) We say a place \mathbf{p} is a poor group if it is a poor semi-group and is σ-closed for $\sigma=\left(x_{1}\right)^{-1} x_{2}$.
3) We say a place \mathbf{p} is a quasi semi group if for any semi group term $\sigma_{*}(\bar{x}), \mathbf{p}$ is σ-closed for $\sigma(\bar{x} ; y)=\sigma_{*}(\bar{x}) y$.
4) We say a place \mathbf{p} is a quasi group if for any semi-group terms $\sigma_{1}(\bar{x}), \sigma_{2}(\bar{x})$ we place \mathbf{p} is σ-closed for $\sigma(\bar{x} ; y)=\sigma_{1}(\bar{x}) y \sigma_{2}(\bar{x})$.
5) We say \mathbf{p} is abelian (or is commutative) if it is ($x y$)-closed and satisfies $x y=y x$.
6) We say \mathbf{p} is affine if \mathbf{p} is $\left(x y^{-1} z\right)$-closed.
7) We say that a place \mathbf{p} is a pseudo semi-group when: if the terms $\sigma_{1}\left(x_{1}, \ldots, x_{n}\right), \sigma_{2}\left(x_{1}, \ldots, x_{n}\right)$ are equal in semi-groups then \mathbf{p} satisfies $\sigma_{1}\left(x_{1}, \ldots, x_{n}\right)=\sigma_{2}\left(x_{1}, \ldots, x_{n}\right)$.
8) We say that a place \mathbf{p} is a pseudo group if any term $\sigma_{1}\left(x_{1}, \ldots, x_{n}\right)$, $\sigma_{2}\left(x_{1}, \ldots, x_{n}\right)$ which are equal in groups, \mathbf{p} satisfies $\sigma_{1}\left(x_{1}, \ldots, x_{n}\right)=$ $\sigma_{2}\left(x_{1}, \ldots, x_{n}\right)$.
4.9. Definition: We say a place \mathbf{p} is a group if $G=G^{\mathbf{p}}=\left(\operatorname{Av}\left(B^{\mathbf{p}}, D\right),{ }^{*} \mathbf{p}, \operatorname{inv}_{\mathbf{p}}\right)$ is a group. Similarly for a semi-group.
4.10. Claim: 1) The obvious implications hold.
2) If we use $\overline{\mathbf{b}}$ i.e. $\overline{\mathbf{b}}$ is an endless indiscernible sequence $A=\cup\left\{\bar{b}_{t}: t \in\right.$ $\operatorname{Dom}(\overline{\mathbf{b}})\}, D$ the co-bounded filter on $\overline{\mathbf{b}}$, every $\overline{\mathbf{b}}^{\prime}$ realizing the same type has the same properties.
3) For a place \mathbf{p} the assertion "p satisfies $\sigma\left(\bar{x}_{1}, \ldots, \bar{x}_{n(*)}\right)=\sigma\left(\bar{x}_{1}, \ldots, \bar{x}_{n(*!)}\right)$ " means just that in Definition 4.7 the term $\sigma\left(a_{1}, \ldots, a_{n}\right)$ is well-defined.
4.11. Claim: 1) Assume that G is a definable group and $a_{n} \in p^{G}[\mathfrak{C}]$ for $n<\omega$. We define $a_{[u]} \in p^{G}[\mathfrak{C}]$ for any finite non-empty $u \subseteq \omega$ by induction on $|u|$, if $u=\{n\}$, then $a_{[u]}=a_{n}$, if $|u|>1, \max (u)=n$ then $a_{[u]}=a_{[u \backslash\{n\}]} *^{G} a_{n}$ and we are assuming they are all well-defined and $a_{\left[u_{1}\right]} \neq a_{\left[u_{2}\right]}$ when $u_{1} \triangleleft u_{2}$. Then we can find D^{*}, \mathbf{q} such that:
(a) \mathbf{q} is a place inside G;
(b) \mathbf{q} is a poor semi-group and non-trivial;
(c) $B^{\mathbf{q}}=B^{G} \cup \bigcup\left\{a_{[u]}: u \subseteq \omega\right.$ is finite $\}$;
(d) D^{*} is an ultrafilter on $[\omega]^{<\aleph_{0}}$ such that $(\forall n)\left([\omega \backslash n]^{<\aleph_{0}} \in D^{*}\right)$ and for every $Y \in D^{*}$ we can find $Y^{\prime} \subseteq Y$ from D^{*} closed under convex union, i.e., if $u, v \in Y^{\prime}$ and $\max (u)<\min (v)$ then $u \cup v \in Y^{\prime}$;
(e) $D^{\mathbf{q}}=\left\{\left\{a_{[u]}: u \in Y\right\}: Y \in D^{*}\right\}$;
(f) if the a_{n} 's commute (i.e. $a_{n} a_{m}=a_{m} a_{n}$ for $n \neq m$), then \mathbf{q} is abelian.

Proof. By a well-known theorem of Glazer ${ }^{2}$, relative of Hindman theorem saying D^{*} as in clause (d) exists, see Comfort [Cmf77]. $\mathbf{4}_{4.11}$
4.12. Remark: 1) This can be combined naturally with $\S 1$.
2) In 4.11, " $u \triangleleft v \Rightarrow a_{[u]} \neq a_{[v]}$ " holds if a_{n} is not in the subgroup generated by $\left\{a_{\ell}: \ell<n\right\}$ (even less).
3) Really in $4.11, G$ has to be just a type-definable group.

4.13. Claim: 1) Assume

(a) \mathbf{p} is a place in a type-definable group (or much less);
(b) the place \mathbf{p} is a semi-group;
(c) \mathbf{p} is commutative (in the sense of Definition $4.7+4.8$, so $\sigma_{1}(x ; y)=$ $[x * y=y * x]$ but not necessarily $\left.\sigma_{2}\left(\bar{x}_{1}\right)=\left[x_{1,0} * x_{1,1}=x_{1,1} * x_{1,0}\right]\right) ;$
(d) if $A \supseteq B^{\mathbf{p}}$ then for some b, c realizing $\operatorname{Av}\left(D^{\mathbf{p}}, A\right), c *_{G} b, b *_{G} c$ are (necessarily well-defined, and) distinct.
Then T has the independence property.
2) We can weaken clause (a) to
$(a)^{\prime} \mathbf{p}$ is a place such that for $n<\omega$ and $\left\langle a_{1} a_{1}^{\prime}\right\rangle, \ldots,\left\langle a_{n} a_{n}^{\prime}\right\rangle$ are as in Definition 4.7 and $a_{\ell} \neq a_{\ell}^{\prime} \Leftrightarrow \ell=m$, then a_{1}, \ldots, a_{m-1}, $a_{m} a_{m+1} \ldots a_{n} \neq a_{1}, \ldots, a_{m-1} a_{m}^{\prime} a_{m+1} \ldots a_{m}$.

[^2]Remark: This is related to the well-known theorems on stable theories (see Zilber and Hrushovski's works).

Proof. 1) We choose A_{i}, b_{i}, c_{i} by induction on $i<\omega$. In stage i first let $A_{i}=$ $B^{\mathbf{P}} \cup\left\{b_{j}, c_{j}: j<i\right\}$ and add B^{G} if $B^{G} \nsubseteq B^{\mathbf{P}}$.

Second, choose b_{i}, c_{i} realizing $\operatorname{Av}\left(A_{i}, D^{\mathbf{p}}\right)$ such that $b_{i} * c_{i} \neq c_{i} * b_{i}$.
Now, if $i<j<\omega$ and $a^{\prime} \in\left\{b_{i}, c_{i}\right\}, a^{\prime \prime} \in\left\{b_{j}, c_{j}\right\}$ then a^{\prime} realizes $\operatorname{Av}\left(A_{i}, D^{\mathbf{p}}\right)$ and $a^{\prime \prime}$ realizes $\operatorname{Av}\left(A_{j}, D^{\mathbf{p}}\right)$ which include $\operatorname{Av}\left(A_{i} \cup\left\{a^{\prime}\right\}, D^{\mathbf{p}}\right)$. So, by assumption (c), the elements $a^{\prime}, a^{\prime \prime}$ commute in G.

So, as is well-known, for $n<\omega, i_{0}<i_{1}<\cdots<i_{n}$ the element $b_{i_{0}} * b_{i_{1}} * \cdots *$ $b_{i_{n-1}}$ commute in G with a_{j} if and only if $j \notin\left\{i_{0}, \ldots, i_{n-1}\right\}$, hence T has the independence property.
2) Similarly. $\quad \mathbf{母}_{4.13}$

Note that 4.14 is interesting for G with a finite bound on the order of elements; as if $a \in G$ has infinite order, then $\operatorname{Cm}_{G}\left(\operatorname{Gm}_{G}(a)\right)$ is as desired.
4.14. Conclusion: (T is dependent).

Assume G is a definable group.

1) If \mathbf{p} is a commutative semi-group in G, non-trivial, then for some formula $\varphi(x, \bar{a})$ such that $\varphi(\bar{x}) \vdash " x \in G$ " and $\varphi(x, \bar{a}) \in \operatorname{Av}\left(\bar{a}, D^{\mathbf{p}}\right)$ and $G \upharpoonright \varphi(\mathfrak{C})$ is a commutative place.
2) If G has an infinite abelian subgroup, then it has an infinite definable commutative subgroup.

Proof. 1) By 4.13 for some $A \supseteq B^{\mathbf{p}}$ for every b, c realizing $q:=\operatorname{Av}\left(A, D^{\mathbf{p}}\right)$ we have: the elements of $q(\mathfrak{C})$, which are all in G, pairwise commute. By compactness there is a formula $\varphi_{1}(x) \in p[\mathbf{p}]$ such that the elements of $\varphi_{1}(\mathfrak{C}) \cap$ G pairwise commute and, without loss of generality, $\varphi_{1}(x) \vdash[x \in G]$; note, however, that this set is not necessarily a subgroup. Let $\varphi_{2}(x):=[x \in G] \wedge$ $(\forall y)\left(\varphi_{1}(y) \rightarrow x * y=y * x\right)$. Clearly, $\varphi_{1}(\mathfrak{C}) \subseteq \varphi_{2}(\mathfrak{C}) \subseteq G$ and every member of $\varphi_{2}(\mathfrak{C})$ commutes with every member of $\varphi_{1}(\mathfrak{C})$. So $\varphi(z):=[z \in G] \wedge(\forall y)\left[\varphi_{2}(y) \rightarrow\right.$ $y z=z y]$ is first order and defines the center of $G \upharpoonright \varphi_{2}[\mathfrak{C}]$ which includes $\varphi_{1}(\mathfrak{C})$, so we are done.
2) Let $G^{\prime} \subseteq G$ be infinite abelian. Choose by induction on $n<\omega, a_{n} \in G^{\prime}$ as required in 4.13 and then apply it. $\quad \mathbf{U}_{4.14}$
4.15. Remark: So 4.14 tells us that having some commutativity implies having a lot. If in 4.13 every $a_{[u]}$ is not in any "small" definable set defined with parameters in $B^{\mathbf{p}} \cup\left\{a_{n}: n<\max (u)\right\}$, then also $\varphi(x, \bar{a})$ is not small where small means some reasonably definable ideal.

4.16. Definition: Assume

(a) G is a type definable semi-group;
(b) $M \supseteq B^{G}$ is $\left(|T|+\left|B^{G}\right|\right)^{+}$-saturated;
(c) \mathfrak{D} is the set of ultrafilters D on M such that $p^{G} \subseteq \operatorname{Av}(M, D)$;
(d) on $\mathfrak{D}=\mathfrak{D}_{G, M}$ we define an operation;
$D_{1} * D_{2}=D_{3} \quad$ if and only if for any $\quad A \supseteq M$ and a realizing $\operatorname{Av}\left(A, D_{1}\right)$ and b realizing $\operatorname{Av}\left(A+a, D_{2}\right)$ the element $a * b$ realizes $\operatorname{Av}\left(A, D_{3}\right)$.
(e) $I D_{G, M}=\left\{D \in \mathfrak{D}_{G, M}: D * D=D\right\}$
(f) $H_{G, M}^{\text {left }}=\{a \in G$: for every $D \in \mathfrak{D}$, and $A \supseteq M$ if b realizes $\operatorname{Av}(A+a, D)$ then $a * b$ realizes $\operatorname{Av}(A, D)\}$
(g) $H_{G, M}^{\text {right }}$ similarly using $b * a$
(h) $H_{G, M}=H_{G, M}^{\text {left }} \cap H_{G, M}^{\text {right }}$.

The following fact is as in 4.11.
4.17. FACT: \mathfrak{D} is a semi-group, i.e., associativity holds and the operation is continuous in the second variable hence there is an idempotent (even every non-empty subset closed under $*$ and topologically closed has an idempotent).
4.18. FACT: 1) If G is a group, then
(a) $H_{G, M}^{\mathrm{left}}$ is a subgroup of G, with bounded index, is of the form $\bigcup\{q(\mathfrak{C})$:
$\left.q \in \mathbf{S}_{G, M}^{\text {left }}\right\}$ for some $\mathbf{S}_{G, M}^{\text {left }} \subseteq \mathbf{S}(M)$
(b) Similarly $H_{G, M}^{\text {right }}, H_{G, M}=H_{G, M}^{\text {right }} \cap H_{G, M}^{\text {left }}$ with $\mathbf{S}_{G, M}^{\text {right }}, \mathbf{S}_{G, M}$.
2) If $D \in \mathfrak{D}$ is non-principal and $\operatorname{Av}(M, D) \in \mathbf{S}_{G, M}^{\text {right }}$, then for any $A \supseteq M$ and element a realizing $\operatorname{Av}(A, D)$ and b realizing $\operatorname{Av}(A+a, D)$ we have
($\alpha) a *_{G} b$ realizes $\operatorname{Av}(A, D)$
(β) also $a^{-1} * b \in D$.
3) $\mathbf{S}_{G, M}^{\mathrm{left}} \subseteq I D_{G, M}$.
4) Similarly for $\mathbf{S}_{G, M}^{\text {right }}, \mathbf{S}_{G, M}$.
5) If $D \in \mathfrak{D}, p=\operatorname{Av}(M, D) \in \mathbf{S}_{G, M}$ then
(a) $\mathbf{p}=(M, D, *$, inv $)$ is a quasi group
(b) $\left\{a^{-1} b: a, b \in p(M)\right\}$ is a subgroup of G with bound index, in fact is $\left\{a \in \mathfrak{C}: \operatorname{tp}(a, M) \in \mathbf{S}_{G, M}\right\}$.

5. Non-forking

5.1. Hypothesis: T is dependent.
5.2. Definition ([Sh:93]): 1) An α-type $p=p(\bar{x})$ divides over B if some sequence $\overline{\mathbf{b}}$ and formula $\varphi(\bar{x}, \bar{y})$ witness it which means
(a) $\overline{\mathbf{b}}=\left\langle\bar{b}_{n}: n\langle\omega\rangle\right.$ is an indiscernible sequence over B;
(b) $\varphi(\bar{x}, \bar{y})$ is a formula with $\ell g(\bar{y})=\ell g\left(\bar{b}_{n}\right)$;
(c) $p \vdash \varphi\left(\bar{x}, \bar{b}_{0}\right)$;
(d) $\left\{\varphi\left(\bar{x}, \bar{b}_{n}\right): n<\omega\right\}$ is contradictory.

1A) Above we say $\varphi\left(\bar{x}, \bar{b}_{0}\right)$ explicitly divide over B.
1B) An α-type $p=p(\bar{x})$ splits strongly over B when for some sequence $\overline{\mathbf{b}}$ and formula $\varphi(\bar{x}, \bar{y})$ witness it which means:
(a),(b) as above;
(c) $\varphi\left(\bar{x}, \bar{b}_{0}\right), \neg \varphi\left(\bar{x}, \bar{b}_{1}\right) \in p$.
2) An α-type p forks over B if for some $\left\langle\varphi_{\ell}\left(\bar{x}, \bar{a}_{\ell}\right): \ell<k\right\rangle$ we have $p \vdash \bigvee_{\ell<k} \varphi_{\ell}\left(\bar{x}, \bar{a}_{\ell}\right)$ and $\left\{\varphi_{\ell}\left(\bar{x}, \bar{a}_{\ell}\right)\right\}$ divides over B for each $\ell<k$ (note: though \bar{x} may be infinite, the formulas are finitary).

We say $p(\bar{x})$ exactly forks (or ex-forks) over B when some $\varphi(\bar{x}, \bar{b}) \in p$ does exactly fork over B, which means that for some $\left\langle\varphi_{\ell}(\bar{x}, \bar{b}): \ell<k\right\rangle$ we have: $\varphi(\bar{x}, \bar{b}) \vdash \bigvee_{\ell<k} \varphi_{\ell}(\bar{x}, \bar{b})$ and each $\varphi_{\ell}(\bar{x}, \bar{b})$ explicitly divides over B.
3) We say C / A does not fork over B if letting $\overline{\mathbf{c}}$ list $C, \operatorname{tp}(\overline{\mathbf{c}}, A)$ does not fork over B, or what is equivalent $\bar{c} \in{ }^{\omega>} C \Rightarrow \operatorname{tp}(\bar{c}, A)$ does not fork over B (so below we may write claims for \bar{c} and use them for C).
4) The m-type p is f.s. (finitely satisfiable) in A if every finite $q \subseteq p$ is realized by some $\bar{b} \subseteq A$.
5) The Δ-multiplicity of p over B is $\operatorname{Mult}_{\Delta}(p, B)=\sup \{\mid\{q \upharpoonright \Delta: p \subseteq q \in$ $\mathbf{S}^{m}(M), q$ does not fork over $\left.\left.B\right\} \mid: M \supseteq B \cup \operatorname{Dom}(p)\right\}$.

Omitting Δ means $\mathbb{L}\left(\tau_{T}\right)$, omitting B we mean $\operatorname{Dom}(p)$.
5.3. Definition: 1) Let $p=p(\bar{x})$ be an α-type and Δ be a set of $\mathbb{L}\left(\tau_{T}\right)$-formulas of the form $\varphi(\bar{x}, \bar{y})$ and $k \leq \omega$. For a type $p(\bar{x})$ we say that it (Δ, k)-divides over A if some $\overline{\mathbf{b}}, \varphi(\bar{x}, \bar{y})$ witness it which means
(a) $\overline{\mathbf{b}}=\left\langle\bar{b}_{n}: n<2 k+1\right\rangle$ is Δ-indiscernible;
(b) $\varphi(\bar{x}, \bar{y}) \in \mathbb{L}\left(\tau_{T}\right)$;
(c) $p \vdash \varphi\left(\bar{x}, \bar{b}_{0}\right)$;
(d) $\left\{\varphi\left(\bar{x}, \bar{b}_{n}\right): n<2 k+1\right\}$ is k-contradictory.
2) For a type $p(\bar{x})$ we say that it (Δ, k)-forks over B if $p \vdash \bigvee_{\ell<n} \varphi_{\ell}\left(x, \bar{a}_{\ell}\right)$ for some $n, \varphi_{\ell}(\bar{x}, \bar{y})$ and \bar{a}_{ℓ}, where each $\varphi_{\ell}\left(\bar{x}, \bar{a}_{\ell}\right)$ does (Δ, k)-divide over B.
5.4. Observation: 0) In Definition 5.2(1), if $p=\{\varphi(x, \bar{b})\}$ then without loss of generality $\bar{b}=\bar{b}_{0}$. If p divides over B then p forks over B.
$0 A)$ Forking is preserved by permuting and repeating the variables. If $\operatorname{tp}\left(\bar{b}^{\wedge} \bar{c}, A\right)$ does not fork over B then so does $\operatorname{tp}(\bar{b}, A)$ and both do not divide over B. Similarly for dividing and ex-forking and later versions.

1) If $p \in \mathbf{S}^{m}(A)$ is finitely satisfiable in B, then p does not fork over B; hence every type over M does not fork over M.
2) If $p \in \mathbf{S}^{m}(A)$ does not fork or just does not divide over $B \subseteq A$, then p does not split strongly over B. (Of course, if p divides over A, then p forks over A).

The type $p(\bar{x})$ divides over B iff for some $k<\omega$ and $\varphi_{\ell}\left(\bar{x}, \bar{c}_{\ell}\right) \in p(\bar{x})$ for $\ell<k$, letting $\bar{c}=\bar{c}_{0}{ }^{\wedge} \ldots{ }^{\wedge} \bar{c}_{k-}$, the formula $\varphi(\bar{x}, \bar{c})=\bigwedge_{\ell<k} \varphi_{\ell}\left(\bar{x}, \bar{c}_{\ell}\right)$ explicitly divides over B.

Assume the type $p((\bar{x})$ is $\{\varphi(\bar{x}, \bar{b})\}$ or is complete, i.e. $\in \mathbf{S}(A)$ for some set A or just is directed by \vdash, (i.e. for every finite $q(\bar{x}) \subseteq p(\bar{x})$ there is $\psi(\bar{x}, \bar{b}) \in p(\bar{x})$ such that $\psi(\bar{x}, \bar{x}) \vdash q(\bar{x}))$; then $p(\bar{x})$ divides over B iff $\psi(\bar{x}, \bar{b})$ explicitly divides over B for some $\psi(\bar{x}, \bar{b}) \in p$, and each of them imply that in Definition $5.1(1)$, we can choose $\bar{b}_{0}=\bar{b}$ and that $\{\varphi(\bar{x}, \bar{b})\}$ forks over B.

If $p(\bar{x}) \in \mathbf{S}^{m}(A)$ or just $p(\bar{x})$ is closed under conjunctions (or just is directed by $\vdash)$, then $p(\bar{x})$ forks over B iff some $\varphi(\bar{x}, \bar{a}) \in p(\bar{x})$ forks over B.

The m-type $p(\bar{x})$ forks over B iff there is $\varphi(\bar{x}, \bar{a})$ which exactly forks over B such that $p(\bar{x}) \vdash \varphi(\bar{x}, \bar{a})$.
3) (Extension property) If an m-type p is over A and does not fork over B, then some extension $q \in \mathbf{S}(A)$ of p does not fork over B.
4) (Few non-forking types) For $B \subseteq A$ the set $\left\{p \in \mathbf{S}^{m}(A): p\right.$ does not fork over B (or just does not split strongly) over $B\}$ has cardinality $\leq 2^{2^{|B|+|T|}}$. If $p(\bar{x})$ does not fork over M, then it does not split over M.
5) (Monotonicity in the sets) If $B_{1} \subseteq B_{2} \subseteq A_{2} \subseteq A_{1}$ and $p \in \mathbf{S}\left(A_{1}\right)$ does not fork over B_{1}, then $p \upharpoonright A_{2}$ does not fork over B_{2}.
6) (Indiscernibility preservation) If $\overline{\mathbf{b}}$ is an infinite indiscernible sequence over A_{1} and $B \subseteq A_{1} \subseteq A_{2}$ and $\overline{\mathbf{b}} \subseteq A_{2}$ and $\operatorname{tp}\left(\bar{c}, A_{2}\right)$ does not fork over B or just does not divide over B or just does not split strongly over B then $\overline{\mathbf{b}}$ is an (infinite) indiscernible sequence over $A_{1} \cup \bar{c}$.
7) (Finite character) If p forks over B then some finite $q \subseteq p$ does; if p is closed under conjunction (up to equivalence suffices) then we can choose $q=\{\varphi\}$. Similarly for divides and the type $p(\bar{x})$ strongly split over A iff some subtype with exactly two members strongly split over A.
8) (Monotonicity in the type) If $p(\bar{x}) \subseteq q(\bar{x})$ or just $q(\bar{x}) \vdash p(\bar{x})$ and $p(\bar{x})$ forks over B then $q(\bar{x})$ forks over B; similarly for divides and for split strongly.
9) An m-type p is finitely satisfiable in A if and only if for some ultrafilter D on ${ }^{m} A$ we have $p \subseteq \operatorname{Av}(\operatorname{Dom}(p), D)$.

Remark: 1) Only parts (2), (4), (6) of 5.4 use " T is dependent".
2) If T is unstable then for every κ there are some A and $p \in \mathbf{S}(A)$ such that p divides over every $B \subseteq A$ of cardinality $<\kappa$ (use a Dedekind cut with both cofinalities $\geq \kappa$).

Proof. 0), 0A), 1) Easy. The proof of part (1) is included in the proof of part (2).
2) Assume toward contradiction that p splits strongly, then for some infinite indiscernible sequence $\left\langle\bar{b}_{n}: n<\omega\right\rangle$ over B and $n<m$ we ${ }^{3}$ have $\left[\varphi\left(\bar{x}, \bar{b}_{n}\right) \equiv \neg \varphi\left(x, \bar{b}_{m}\right)\right] \in p$ (really $p \vdash\left[\varphi\left(\bar{x}, \bar{b}_{n}\right) \equiv \neg \varphi\left(\bar{x}, \bar{b}_{m}\right)\right]$ suffices). By renaming, without loss of generality $n=0, m=1$. Let $\bar{c}_{n}=\bar{b}_{2 n}{ }^{\wedge} \bar{b}_{2 n+1}, \psi\left(\bar{x}, \bar{c}_{n}\right)=$ $\left[\varphi\left(\bar{x}, \bar{b}_{2 n}\right) \equiv \neg \varphi\left(\bar{x}, \bar{b}_{2 n+1}\right)\right]$. Clearly $\left\langle\bar{c}_{n}: n<\omega\right\rangle$ is an indiscernible sequence over $B, p \vdash \psi\left(\bar{x}, \bar{c}_{0}\right)$ and $\left\{\psi\left(\bar{x}, \bar{c}_{n}\right): n<\omega\right\}$ is contradictory as T is dependent. This proves the first sentence. The second is by the definitions and the third sentence.

[^3]For the third, the "if" part is obvious, hence let us prove the "only if", so assume that $p(\bar{x})$ divides over B, we can find $\varphi\left(\bar{x}, \bar{b}_{0}\right),\left\langle\bar{b}_{n}: n<\omega\right\rangle$ as in Definition $5.2(1)$, i.e. satisfies clauses (a)-(d) there. As $p(\bar{x}) \vdash \varphi\left(\bar{x}, \bar{b}_{0}\right)$, necessarily there is a finite subset $p^{\prime}(\bar{x})$ of $p(\bar{x})$ such that $p^{\prime}(\bar{x}) \vdash \varphi\left(\bar{x}, \bar{b}_{0}\right)$. Let $\left\langle\varphi_{\ell}\left(\bar{x}, \bar{c}_{\ell}\right): \ell<k\right\rangle$ list $p^{\prime}(x)$ and as $p(\bar{x})$ is directed by \vdash we can find a formula $\psi(\bar{x}, \bar{c}) \in p(\bar{x})$ such that $\psi(\bar{x}, \bar{c}) \vdash \varphi_{\ell}\left(\bar{x}, \bar{c}_{\ell}\right)$ for every $\ell<k$ hence $\psi(\bar{x}, \bar{c}) \vdash \varphi\left(\bar{x}, \bar{b}_{0}\right)$. Now for each $n<\omega$, the sequences \bar{b}_{n}, \bar{b}_{0} realize the same type over B, hence there is a sequence $\bar{c}^{n} \in{ }^{\ell g(\bar{c})} \mathfrak{C}$ such that the sequences $\bar{b}_{0}{ }^{\wedge} \bar{c}, \bar{b}_{n}{ }^{\wedge} \bar{c}^{n}$ realize the same type over B By Ramsey theorem and compactness we can find $\left\langle\bar{d}_{n}: n<\omega\right\rangle$ such that $\bar{b}_{n}{ }^{\wedge} \bar{d}_{n}$ realizes the same type as $\bar{b}_{0}{ }^{\wedge} \bar{c}$ over B and $\left\langle\bar{b}_{n}{ }^{\wedge} \bar{d}_{n}: n<\omega\right\rangle$ is an indiscernible sequence over B. So let F be an automorphism of \mathfrak{C} over B which maps $\bar{b}_{0} \wedge \bar{d}_{0}$ to $\bar{b}_{0}{ }^{\wedge} \bar{c}$. So $\left\langle F\left(\bar{d}_{n}\right): n<\omega\right\rangle$ is an indiscernible sequence over B and $F\left(\bar{d}_{0}\right)=\bar{c}$ so $\psi\left(\bar{x}, \bar{d}_{0}\right)=\psi(\bar{x}, \bar{c}) \vdash \bigwedge_{\ell<k} \varphi_{\ell}\left(\bar{x}, \bar{c}_{\ell}\right) \vdash \varphi\left(\bar{x}, \bar{b}_{0}\right)=\varphi\left(\bar{x}, F\left(\bar{b}_{0}\right)\right)$.

Necessarily also $n<\omega \Rightarrow \psi\left(\bar{x}, \bar{d}_{n}\right) \vdash \varphi\left(x, \bar{b}_{n}\right)$ and as $\left\{\varphi\left(\bar{x}, \bar{b}_{n}\right): n<\omega\right\}$ is contradictory, so is $\left\{\psi\left(\bar{x}, \bar{d}_{n}\right): n<\omega\right\}$. So $\left\langle F\left(\bar{d}_{n}\right): n<\omega\right\rangle$ examplifies that $\psi\left(\bar{x}, \bar{d}_{0}\right)=\psi(\bar{x}, \bar{c})$ explicitly divides over B as promised.

The fourth and fifth sentences are obvious.
3) By the definitions (or see [Sh:93]).
4) Easy or see [Sh:3]; e.g. by part (3) without loss of generality $B=M$, $A=|N|$ is $\|M\|^{+}$-saturated. Now if $\bar{a}_{\ell} \in{ }^{m} N$ realizes the same type over M for $\ell=1,2$ then for some $\bar{c}_{n} \in{ }^{m} N$ for $n=1,2, \ldots,\left\langle\bar{a}_{\ell}\right\rangle^{\wedge}\left\langle\bar{c}_{1}, \bar{c}_{2}, \ldots\right\rangle$ is indiscernible over M.
5) Easy.
6) By part (2) and transitivity of "equality of types" and Fact 5.5 below.
7), 8), 9) Easy. $\quad \mathbf{■ . 4 ~}$

We implicitly use the trivial.
5.5. FACT: 1) If I is a linear order, \bar{s}_{0}, \bar{s}_{1} are increasing n-tuples from I then
\circledast_{ω} there is a linear order $J \supseteq I$ such that for $\ell \in\{0,1\}$ there is an indiscernible sequence $\left\langle\bar{t}_{k}^{\ell}: k<\omega\right\rangle$ of increasing n-tuples from J such that $\bar{t}_{k+1}^{0}=\bar{t}_{k+1}^{1}$ for $k<\omega$ and $\ell=0,1 \Rightarrow \bar{s}_{\ell}=\bar{t}_{0}^{\ell}$; indiscernible means for quantifier free formulas in the order language, i.e., in the vocabulary $\{<\}$ is satisfaction in J. If I has no last element or no first element then we can take $I=J$.
2) Similarly, for $\left\langle\bar{b}_{t}: t \in I\right\rangle$ an infinite indiscernible sequence over A in \mathfrak{C}.

Proof. 1) Let $J \supseteq I$ be with no last element. Choose for $k=1,2, \ldots$ an increasing sequence \bar{t}_{k} of length n from J such that $2 \leq k<\omega \Rightarrow \operatorname{Rang}\left(\bar{s}_{0}{ }^{\wedge} \bar{s}_{1}\right)<$ $\operatorname{Rang}\left(\bar{t}_{k}\right)<\operatorname{Rang}\left(\bar{t}_{k+1}\right)$. So $\left\langle\bar{s}_{\ell}\right\rangle^{\wedge}\left\langle\bar{t}_{1}, \bar{t}_{2}, \ldots\right\rangle$ is an indiscernible sequence in J for $\ell=0,1$.
2) Easy. $\quad \mathbf{m}_{5.5}$
5.6. Definition: 1) Let p be an m-type, $p \upharpoonright B_{2} \in \mathbf{S}^{m}\left(B_{2}\right)$. We say that p strictly does not divide over $\left(B_{1}, B_{2}\right)$, (when $B_{1}=B_{2}=B$ we may write "over B ") if :
(a) p does not divide over B_{1};
(b) if $\left\langle\bar{c}_{n}: n<\omega\right\rangle$ is an indiscernible sequence over B_{2} such that \bar{c}_{0} realizes p and A is any set satisfying $\operatorname{Dom}(p) \cup B_{2} \subseteq A$, then there is an indiscernible sequence $\left\langle\bar{c}_{n}^{\prime}: n<\omega\right\rangle$ over A such that \bar{c}_{0}^{\prime} realizes p and $\operatorname{tp}\left(\left\langle\bar{c}_{n}: n<\omega\right\rangle, B_{2}\right)=\operatorname{tp}\left(\left\langle\bar{c}_{n}^{\prime}: n<\omega\right\rangle, B_{2}\right)$.
1A) "Strictly divide" is the negation.
2) We say that p strictly forks over $\left(B_{1}, B_{2}\right)$ if and only if $p \vdash \bigvee_{\ell<n} \varphi_{\ell}$ for some $\left\langle\varphi_{\ell}: \ell<n\right\rangle$ such that $\left(p \upharpoonright B_{2}\right) \cup\left\{\varphi_{\ell}\right\}$ strictly divides over $\left(B_{1}, B_{2}\right)$ for each $\ell<n$.
3) An m-type $p(\bar{x})$ strictly does not fork over $\left(B_{1}, B_{2}\right)$ when: the type $p(\bar{x})$ does not fork over B_{1} and $p(\bar{x}) \upharpoonright B_{2} \in \mathbf{S}^{M}\left(B_{2}\right)$ and if $\left\langle\bar{c}_{n}: n<\omega\right\rangle$ is an indiscernible sequence over B_{2} of sequences realizing $p(\bar{x})$ and $C \supseteq B_{1} \cup \operatorname{Dom}(p(\bar{x}))$ and $q(\bar{x}) \in \mathbf{S}^{m}(C)$ extend $p(\bar{x})$ and does not fork over B_{1} then there is an indiscernible sequence $\left\langle\bar{c}_{n}^{\prime}: n<\omega\right\rangle$ over C realizing $\operatorname{tp}\left(\left\langle\bar{c}_{n}: n<\omega\right\rangle, B_{2}\right)$ such that \bar{c}_{0}^{\prime} realizes $q(\bar{x})$; note that "strictly does not fork" is not defined as "does not strictly forks"; to stress we may write "strictly* does not fork".

We shall need some statements concerning "strictly does not fork" parallel to those on "does not fork".
5.7. Observation: 0) In clause (b) of Definition 5.6(1) we can weaken the assumption " \bar{c}_{0} realizes p " to " \bar{c}_{0} realizes $p \upharpoonright B_{2}$ ".

1) "Strictly does not divide/fork over $\left(B_{1}, B_{2}\right)$ " is preserved by permuting the variables, repeating variables and by automorphisms of \mathfrak{C} and if it holds for $\operatorname{tp}\left(\bar{b}^{\wedge} \bar{c}, A\right)$, then it holds for $\operatorname{tp}(\bar{b}, A)$. Similarly for does not strictly fork.

1A) The m-type $p(\bar{x})$ strictly does not divide over $\left(B_{1}, B_{2}\right)$ iff $p(\bar{x}) \upharpoonright$ $B_{2} \in \mathbf{S}^{m}\left(B_{2}\right)$ and $\left(p(\bar{x}) \upharpoonright B_{2}\right) \cup q(\bar{x})$ strictly does not divide over $\left(B_{1}, B_{2}\right)$ for every finite $q(\bar{x}) \subseteq p(\bar{x})$.
2) If p strictly does not fork over $\left(B_{1}, B_{2}\right)$ then p does not strictly fork over B which implies p strictly does not divide over $\left(B_{1}, B_{2}\right)$.
3) If p strictly does not divide over B, then p does not divide over B.
4) If p does not strictly fork over B, then p does not fork over B.
5) If p is an m-type which strictly does not fork over $\left(B_{1}, B_{2}\right)$ and $\operatorname{Dom}(p) \subseteq$ A, then there is $q \in \mathbf{S}^{m}(A)$ extending p which strictly does not fork over $\left(B_{1}, B_{2}\right)$. If $p_{1}(\bar{x}) \subseteq p_{2}(\bar{x})$ and $p_{1}(\bar{x})$ strictly does not fork over $\left(B_{1}, B_{2}\right)$ and $p_{2}(\bar{x})$ does not fork over B_{1} then $p_{2}(\bar{x})$ does not strictly fork over $\left(B_{1}, B_{2}\right)$.
6) If $B_{1} \subseteq B_{1}^{\prime} \subseteq B_{2}^{\prime}=B_{2}$ and $p(\bar{x}) \vdash p^{\prime}(\bar{x})$ and $p(\bar{x})$ strictly does not divide/fork over $\left(B_{1}, B_{2}\right)$ and $p^{\prime} \upharpoonright B_{2}$ is complete then $p^{\prime}(\bar{x})$ strictly does not divide/fork over ($B_{1}^{\prime}, B_{2}^{\prime}$).
7) In Definition 5.6, clause (b) the case $A=\operatorname{Dom}(p) \cup B_{2}$ suffices.
8) If p strictly forks over $\left(B_{1}, B_{2}\right)$, then for some finite $q \subseteq p$ the type $q \cup\left(p \upharpoonright B_{2}\right)$ strictly forks over $\left(B_{1}, B_{2}\right)$. Moreover, for some finite $B_{2}^{\prime} \subseteq B_{2},(p$ is an m-type $)$, if $B_{1} \cup B_{2}^{\prime} \subseteq B_{2}^{\prime \prime}$ and p^{\prime} is an m-type extension of q and $p^{\prime} \upharpoonright B_{2} \in \mathbf{S}^{m}\left(B_{2}\right)$, then p^{\prime} strictly forks over $\left(B_{1}, B_{2}^{\prime \prime}\right)$. Similarly for strictly divide.
9) If $M \subseteq A, p=\operatorname{tp}(\bar{b}, A)$ and $\operatorname{tp}(A, M+\bar{b})$ is finitely satisfiable in M, then p strictly does not fork over M.

Proof. Easy, e.g.,
$0)$ The new version is stronger hence it implies the one from the definition.
So assume that p is an m-type, $p \upharpoonright B_{2} \in \mathbf{S}^{m}\left(B_{2}\right)$ and p strictly does not divide over $\left(B_{1}, B_{2}\right)$ and we shall prove the new version of clause (b). I.e., we have $\left\langle\bar{c}_{n}: n<\omega\right\rangle$ is an indiscernible sequence over B_{2} and \bar{c}_{0} realizes $p \upharpoonright B_{2}$. Let $\bar{c}_{0}^{\prime \prime} \in{ }^{m} \mathfrak{C}$ realizes p hence it realizes $p \upharpoonright B_{2}$, but $p \upharpoonright B_{2} \in \mathbf{S}^{m}\left(B_{2}\right)$ so $\operatorname{tp}\left(\bar{c}_{0}, B_{2}\right)=\operatorname{tp}\left(\bar{c}_{0}^{\prime \prime}, B_{2}\right)$. We can deduce that there is an automorphism F of \mathfrak{C} over B_{2} which maps \bar{c}_{0} to $\bar{c}_{0}^{\prime \prime}$, and define $\bar{c}_{n}^{\prime \prime}=F\left(\bar{c}_{n}\right)$.

Now $\left\langle F\left(\bar{c}_{n}\right): n<\omega\right\rangle$ satisfies the assumption of clause (b) from Definition $5.6(1)$ hence there is an indiscernible sequence $\left\langle\bar{c}_{n}^{\prime}: n<\omega\right\rangle$ over A such that $\operatorname{tp}\left(\left\langle\bar{c}_{n}^{\prime}: n<\omega\right\rangle, B_{2}\right)=\operatorname{tp}\left(\left\langle F\left(\bar{c}_{n}^{\prime}\right): n<\omega\right\rangle, B_{2}\right)$, but the latter is equal to $\operatorname{tp}\left(\left\langle c_{n}: n<\omega\right\rangle, B_{2}\right)$ so we are done.
6) Without loss of generality $\operatorname{Dom}(p) \cup B_{2}^{\prime} \subseteq A$. Recall that by part (0) in Claim 5.5, clause (b) we can demand only " \bar{c}_{0} realizes $p \upharpoonright B_{2}$ " and for any such $\left\langle\bar{c}_{n}: n<\omega\right\rangle$ there is $\bar{c}_{0}^{\prime \prime}$ realizing p hence \bar{c}_{0} and $\bar{c}_{0}^{\prime \prime}$ realizes the same type over
B_{2} hence there is automorphism F of \mathfrak{C} over B_{2} mapping \bar{c}_{0} to $\bar{c}_{0}^{\prime \prime}$ and use the definition for $\left\langle F\left(\bar{c}_{n}\right): n<\omega\right\rangle$.
7) By Ramsey theorem and compactness.
9) Use an ultrafilter D. $\quad \boldsymbol{■}_{5.7}$

The next claim is a parallel of: every type over A does not fork over some "small" $B \subseteq A$. If we have " p is over A implies p does not fork over A " we could have improvement.

More elaborately, note that if M is a dense linear order and $p \in \mathbf{S}(M)$, then p actually corresponds to a Dedekind cut of M. So though in general p is not definable, $p \upharpoonright\{c \in M: c \notin(a, b)\}$ is definable whenever (a, b) is an interval of M which includes the cut. So p is definable in large pieces. The following (as well as 5.20) realizes the hope that something in this direction holds for every dependent theory.
5.8. Claim: If $p \in \mathbf{S}^{m}(A)$ and $B \subseteq A$, then we can find $C \subseteq A$ of cardinality $\leq|T|$ such that:
\circledast if $\left\langle\bar{a}_{n}: n<\omega\right\rangle$ is an indiscernible sequence over $B \cup C$ such that $\bar{a}_{0} \subseteq A$ and $\operatorname{tp}\left(\bar{a}_{0}, B \cup C\right)$ strictly does not fork over B and $\left\{\varphi\left(\bar{x}, \bar{a}_{n}\right): n<\omega\right\}$ is contradictory or just $\varphi\left(\bar{x}, \bar{a}_{0}\right)$ ex-forks over $B \cup C$, then $\neg \varphi\left(x, \bar{a}_{0}\right) \in p$.
5.9. Conclusion: 1) For every $p \in \mathbf{S}^{m}(A)$ and $B \subseteq A$, we can find $C \subseteq$ $A,|C| \leq|T|$ such that:
\circledast if $\left\langle\bar{a}_{n}: n<\omega\right\rangle$ is an indiscernible sequence over $B \cup C$ satisfying $\bar{a}_{0} \cup \bar{a}_{1} \subseteq$ A and $\operatorname{tp}\left(\bar{a}_{0}{ }^{\wedge} \bar{a}_{1}, B \cup C\right)$ strictly does not fork over B, then for any φ $(*) \varphi\left(x, \bar{a}_{0}\right) \in p$ if and only if $\varphi\left(x, \bar{a}_{1}\right) \in p$.
2) For every $\bar{x}=\left\langle x_{\ell}: \ell<m\right\rangle$ and formula $\varphi=\varphi(\bar{x} ; \bar{y})$ for some finite $\Delta \subseteq \mathbb{L}(T)$ we have:
if $p \in \mathbf{S}^{m}(A), B \subseteq A$, then for some finite $C \subseteq A$ (in fact $|C|<f(m, \varphi, T)$ for some function $f)$, we have:
if $\left\langle\bar{a}_{\ell}: \ell<k\right\rangle$ is Δ-indiscernible sequence over $B \cup C$ and $\operatorname{tp}_{\Delta}\left(\bar{a}_{0} \wedge \bar{a}_{1}, B \cup C\right)$ strictly does not fork over A, then $\varphi\left(x, \bar{a}_{0}\right) \in$ $p \Leftrightarrow \varphi\left(x, \bar{a}_{1}\right) \in p$.
3) The local version of 5.8 holds with a priori finite bound on C.

Proof of 5.8. By induction on $\alpha<|T|^{+}$we try to choose $C_{\alpha}, \bar{a}_{\alpha}, k_{\alpha}$ and $\left\langle\bar{a}_{\alpha, n}^{k}\right.$: $n<\omega\rangle$ and $\varphi_{\alpha}\left(\bar{x}, \bar{y}_{\alpha}\right), \varphi_{\alpha, k}\left(\bar{x}, \bar{y}_{\alpha, k}\right)$ such that:
(a) $C_{\alpha}=\bigcup\left\{\bar{a}_{\beta}: \beta<\alpha\right\} \cup B$;
(b) $\left\langle\bar{a}_{\alpha, n}^{k}: n<\omega\right\rangle$ is an indiscernible sequence over C_{α} for $k<k_{\alpha}$;
(c) $\bar{a}_{\alpha} \subseteq A$ and $\bar{a}_{\alpha}=\bar{a}_{\alpha, 0}^{k}$ for $k \leq k_{\alpha}$;
(d) $\varphi_{\alpha}\left(\bar{x}, \bar{a}_{\alpha}\right) \in p$;
(e) $\left\{\varphi_{\alpha, k}\left(\bar{x}, \bar{a}_{\alpha, n}^{k}\right): n<\omega\right\}$ is contradictory;
(f) $\operatorname{tp}\left(\bar{a}_{\alpha}, B \cup C_{\alpha}\right)$ strictly does not fork over B;
(g) $\varphi_{\alpha}\left(\bar{x}, \bar{a}_{\alpha}\right) \vdash \bigvee_{k<k_{\alpha}} \varphi_{\alpha, k}\left(\bar{x}, \bar{a}_{\alpha, 0}^{k}\right)$.

If for some $\alpha<|T|^{+}$we are stuck, $C=C_{\alpha} \backslash B$ is as required. So assume that we have carried the induction and we shall eventually get a contradiction.
By induction on $\alpha<|T|^{+}$we choose $D_{\alpha}, F_{\alpha}, \bar{b}_{\beta},\left\langle\overline{b_{\beta}^{k}, n}: n<\omega\right\rangle$ for $\beta<\alpha$ such that (but $\bar{b}_{\alpha, n}^{k}$ are defined in the ($\alpha+1$)-th stage):
(α) F_{α} is an elementary mapping, increasing continuous with α;
(β) $\operatorname{Dom}\left(F_{\alpha}\right)=C_{\alpha}, \operatorname{Rang}\left(F_{\alpha}\right) \subseteq D_{\alpha}$;
(γ) $D_{\alpha}=\operatorname{Rang}\left(F_{\alpha}\right) \cup \bigcup\left\{\bar{b}_{\beta, n}^{k}: \beta<\alpha, k<k_{\alpha}\right.$ and $\left.n<\omega\right\}$ so $D_{\alpha} \subseteq \mathfrak{C}$ is increasing continuous;
($\delta)\left\langle\bar{b}_{\alpha, n}^{k}: n\langle\omega\rangle\right.$ is an indiscernible sequence over $D_{\alpha} \supseteq F_{\alpha}\left(C_{\alpha}\right)$ and $\bar{b}_{\alpha, 0}^{k}=\bar{b}_{\alpha} ;$
(ع) $F_{\alpha+1}\left(\bar{a}_{\alpha}\right)=\bar{b}_{\alpha}$ and $\operatorname{tp}\left(\bar{b}_{\alpha}, D_{\alpha}\right)$ does not fork over $F_{\alpha}(B)$;
(ら) Some automorphism $F_{\alpha+1}^{k} \supseteq F_{\alpha+1}$ of \mathfrak{C} maps $\bar{a}_{\alpha, n}^{k}$ to $\bar{b}_{\alpha, n}^{k}$ for $n<\omega, k<$ k_{α}.
For $\alpha=0, \alpha$ limit this is trivial. For $\alpha=\beta+1$, clearly $F_{\alpha}\left(\operatorname{tp}\left(\bar{a}_{\alpha}, C_{\alpha}\right)\right)$ is a type in $\mathbf{S}^{<\omega}\left(F\left(C_{\alpha}\right)\right)$ which strictly does not fork over $F_{\alpha}(B)=F_{0}(B)$ hence has an extension $q_{\alpha} \in \mathbf{S}^{<\omega}\left(D_{\alpha}\right)$ which does not fork over $F_{0}(B)$ and let \bar{b}_{α} realize it. Let $F_{\alpha+1} \supseteq F_{\alpha}$ be the elementary mapping extending F_{α} with domain $C_{\alpha+1}$ mapping \bar{a}_{α} to \bar{b}_{α}. Let $F_{\alpha+1}^{k} \supseteq F_{\alpha}+1$ be an automorphism of \mathfrak{C} as required by clauses $(\delta)+(\zeta) ; F_{a+1}^{k}$ exists as $\operatorname{tp}\left(\bar{a}_{\alpha}, B \cup C_{\alpha}\right)$ strictly* does not fork over B; and let $\bar{b}_{\alpha, n}^{k}=F_{\alpha+1}^{k}\left(\bar{a}_{\alpha, n}^{k}\right)$ for $n<\omega, k<k_{\alpha}$. So $D_{\alpha+1}$ and $F_{\alpha+1}$ are well-defined.

Having carried the induction let $F \supseteq \bigcup\left\{F_{\alpha}: \alpha<|T|^{+}\right\}$be an automorphism of \mathfrak{C}. We claim that for each $\alpha<|T|^{+}$and $k<k_{\alpha}$, for every $\beta \in\left[\alpha,|T|^{+}\right]$we have
$(*)_{\alpha, \beta}\left\langle\bar{b}_{\alpha, n}^{k}: n<\omega\right\rangle$ is an indiscernible sequence over $D_{\alpha} \cup \bigcup\left\{\bar{b}_{\gamma}: \gamma \in\right.$ $[\alpha+1, \beta)\}$.
We prove this by induction on β. For $\beta=\alpha$ this holds by clause (δ), for $\beta \equiv \alpha+1$ this is the same as for $\beta=\alpha$. For β limit use the definition of indiscernibility. For $\beta=\zeta+1$ use the fact that $\operatorname{tp}\left(\bar{b}_{\zeta}, D_{\zeta}\right)$ does not fork over
$F_{0}(B)$ hence over $D_{\alpha} \cup\left\{F_{\gamma+1}\left(\bar{b}_{\gamma}\right): \alpha<\gamma<\zeta\right\}$ by $5.4(5)$; so by the induction hypothesis and $5.4(6)$ clearly $(*)_{\alpha, \beta}$ holds.
¿From $\alpha<|T|^{+} \Rightarrow(*)_{\alpha,|T|^{+}}$we can conclude
$(* *)$ for any $n<\omega$ and $\alpha_{0}<\cdots<\alpha_{n-1}<|T|^{+}$and $\nu \in \prod_{\ell<n} k_{\alpha_{\ell}}$ and $\eta \in{ }^{n} 2$ the sequences

$$
\bar{b}_{\alpha_{0}, 0}^{\nu(0)} \wedge \bar{b}_{\alpha_{1}, 0}^{\nu(1)} \wedge \ldots{ }^{\wedge} \bar{b}_{\alpha_{n-1}, 0}^{\nu(n-1)} \quad \text { and } \quad \bar{b}_{\eta}^{\nu}:=\bar{b}_{\alpha_{0}, \eta(0)}^{\nu(0)}{ }^{\left(\bar{b}_{\alpha_{1}, \eta(1)}^{\nu(1)}\right.} \ldots^{\wedge} \bar{b}_{\alpha_{n-1}, \eta(n-1)}^{\nu(n-1)}
$$

realize the same type over B.
(Why? By induction on $\max \{\ell: \eta(\ell)=1$ or $\ell=-1\}$. If $\ell(*)=-1$ then the two sequences are the same so $(* *)$ holds trivially. Let $\rho \in{ }^{n} 2$ is defined by: $\rho(\ell)$ is 0 if $\ell=\ell(*)$ and is $\eta(\ell)$ otherwise. So the induction hypothesis applied to ρ, hence it suffice to prove that the sequences $\bar{b}_{\rho}^{\nu}, \bar{b}_{\eta}^{\nu}$ realize the same type over B. Now assume $\ell(*) \in\{0, \ldots, n-1\}$ and use $(*)_{\alpha_{\ell(*)},|T|^{+}}$for $k=\nu(\ell(*))$, it says that the sequence $\left\langle\bar{b}_{\alpha_{\ell(*), n}}^{\nu(\ell(*))}: n<\omega\right\rangle$ is an indiscernible sequence over $D_{\alpha_{\ell(*)}} \cup\left\{\bar{b}_{\gamma}: \gamma \in\left[\alpha_{\ell(*)+1},|T|^{+}\right)\right\}$.

The second part in the union includes

$$
\left\{\bar{b}_{\alpha_{\ell(*)+1}, 0}^{\nu(\ell(*)-1)}, \ldots, \bar{b}_{\alpha_{n-1}, 0}^{\nu(n-1)}\right\}=\left\{\bar{b}_{\alpha_{\ell(*)+1}, \eta(\ell(*)+1)}^{\nu(\ell(*))}, \ldots, \bar{b}_{\alpha_{n-1}, \eta(n-1)}^{\nu(n-1)}\right\}
$$

by the choice of $\ell(*)$, and the first part of the union includes the rest. So it suffice to show that $\bar{b}_{\alpha_{\ell(*)}}^{\nu(\ell(*))}=\bar{b}_{\alpha_{\ell(*)}, 0}^{\nu(\ell(*))}=\bar{b}_{\left.\alpha_{\ell(*)}\right), \rho(\ell(*))}^{\nu(\ell(*)))}$ and $\bar{b}_{\alpha_{\ell(*)}, 1}^{\nu(\ell(*))}=\bar{b}_{\alpha_{\ell(*)}, \eta(\ell(*))}^{\nu(\ell(*))}$ realize the same type over $D_{\alpha_{\ell(*)}} \cup\left\{\bar{b}_{\gamma}: \gamma=\right.$ $\left.\alpha_{\ell(*)+1}, \ldots, \alpha_{n-1}\right\}$ which has been proved above.)
Let \bar{c} realize p. For each $\alpha<|T|^{+}, \varphi_{\alpha}\left(x, \bar{a}_{\alpha}\right) \in p$, hence $\varphi_{\alpha}\left(x, \bar{b}_{\alpha}\right) \in F(p)$. Also $\varphi_{\alpha}\left(x, \bar{a}_{\alpha}\right) \vdash \bigvee_{k<k_{\alpha}} \varphi_{\alpha, k}\left(x, a_{\alpha, 0}^{k}\right)$, hence by clause (ζ)

$$
\varphi_{\alpha}\left(x, \bar{b}_{\alpha}\right) \vdash \bigvee_{k<k_{\alpha}} \varphi_{\alpha, k}\left(x, a_{\alpha, 0}^{k}\right),
$$

hence we can choose $k(\alpha)<k_{\alpha}$ such that $\mathfrak{C} \models \varphi\left[\bar{c}, \bar{a}_{\alpha, 0}^{k(\alpha)}\right]$.
Now as $\left\{\varphi_{\alpha, k(\alpha)}\left(x, \bar{b}_{\alpha, n}^{k(\alpha)}\right): n<\omega\right\}$ is contradictory there is $n=n[\alpha]<\omega$ such that $\mathfrak{C} \models \neg \varphi_{\alpha, k(\alpha)}\left(\bar{c}, \bar{b}_{\alpha, n}^{k(\alpha)}\right)$, whereas $\mathfrak{C} \models \varphi_{\alpha, k(\alpha)}\left[\bar{c}, \bar{b}_{\alpha, 0}^{k(\alpha)}\right]$; by renaming without loss of generality $\mathfrak{C} \models \neg \varphi_{\alpha, k(\alpha)}\left[c, \bar{b}_{\alpha, n}^{k(\alpha)}\right]$ for $\alpha<|T|^{+}, n \in[1, \omega)$. Now if $n<\omega$, $\alpha_{0}<\cdots<\alpha_{n-1}<|T|^{+}$and $\eta \in{ }^{n} 2$, then $\mathfrak{C} \models \bigwedge_{\ell<m} \varphi_{\alpha_{\ell}, k\left(\alpha_{\ell}\right)}\left(\bar{c}, \bar{b}_{\alpha_{\ell}, \eta(\ell)}^{k\left(\alpha_{\ell}\right)} \mathrm{if}^{\mathrm{if}(\eta(\ell)=0)}\right.$ hence $\mathfrak{C} \models(\exists \bar{x})\left[\bigwedge_{\ell<n} \varphi_{\alpha_{\ell}, k\left(\alpha_{\ell}\right)}\left(\bar{x}, \bar{b}_{\alpha_{\ell}, \eta(\ell)}\right)^{\text {if }(\eta(\ell)=0)}\right]$ hence by $(* *)$ we have

$$
\mathfrak{C} \models(\exists \bar{x})\left[\bigwedge_{\ell<n} \varphi_{\alpha_{\ell}, k\left(\alpha_{\ell}\right)}\left(\bar{x}, \bar{b}_{\alpha_{\ell}, 0}^{k\left(\alpha_{\ell}\right)}\right)^{\operatorname{if}(\eta(\ell)=0)}\right]
$$

Hence the independence property holds, contradiction. $\quad \boldsymbol{■}_{5.8}$

Proof of 5.9. 1) Follows from 5.8 by $5.4(2)$.
2) By 5.8 and compactness or repeating the proof.
3) Similarly. $\quad \mathbf{■}_{5.9}$
5.10. Claim: 1) Assume p is a type, $B \subseteq M, \operatorname{Dom}(p) \subseteq M$ and M is $|B|^{+}$-saturated. Then
(A) p does not fork over B if and only if p has a complete extension over M which does not fork over B if and only if p has a complete extension over M which does not divide over B if and only if p has a complete extension over M which does not split strongly over B;
(B) if $p=\operatorname{tp}(\bar{c}, M)$ and $\varphi(\bar{x}, \bar{a}) \in p$ forks over B, then for some $\left\langle\bar{a}_{n}: n<\omega\right\rangle$ indiscernible over $B,\left\{\bar{a}_{n}: n<\omega\right\} \subseteq M, \bar{a}_{0}=a$ and $\neg \varphi\left(\bar{x}, \bar{a}_{1}\right) \in p$, and of course, $\varphi\left(\bar{x}, \bar{a}_{0}\right) \in p$.
2) Assume $\operatorname{tp}\left(C_{1} / A\right)$ does not fork over $B \subseteq A$ and $\operatorname{tp}\left(C_{2},\left(A \cup C_{1}\right)\right)$ does not fork over $B \cup C_{1}$. Then $\left.\operatorname{tp}\left(C_{1} \cup C_{2}\right), A\right)$ does not fork over B.

Proof. 1) Read the definitions.
Clause (A):
First implies second by $5.4(3)$, second implies third by Definition 5.2 or $5.4(2)$, third implies fourth by $5.4(2)$. If the first fails, then $p \vdash \bigvee_{\ell<k} \varphi_{\ell}\left(\bar{x}, \bar{a}_{\ell}\right)$ for some k where each $\varphi_{\ell}\left(\bar{x}, \bar{a}_{\ell}\right)$ divides over B; let $\left\langle\bar{a}_{\ell, n}: n<\omega\right\rangle$ witness this hence by $5.4(2)$ without loss of generality $\bar{a}_{\ell}=\bar{a}_{\ell, 0}$. As M is $|B|^{+}$-saturated, without loss of generality $\bar{a}_{\ell, n} \subseteq M$. So for every $q \in \mathbf{S}^{m}(M)$ extending p, for some $\ell<k, \varphi_{\ell}\left(\bar{x}, \bar{a}_{\ell}\right) \in q$ but for every large enough $n, \neg \varphi_{\ell}\left(\bar{x}, \bar{a}_{\ell, n}\right) \in q$, so q splits strongly, i.e., fourth fails. So fourth implies first, "closing the circle".

Clause (B): Similar.
2) Let M be $|B|^{+}$-saturated model such that $A \subseteq M$. By $5.4(3)$ there is an elementary mapping f_{1} such that $f_{1} \upharpoonright A=\operatorname{id}_{A}$ and $\operatorname{Dom}\left(f_{1}\right)=C_{1} \cup A$ and $f_{1}\left(C_{1}\right) / M$ does not fork over B. Similarly we can find an elementary mapping $f \supseteq f_{1}$ such that $\operatorname{Dom}(f)=C_{1} \cup C_{2} \cup A$ and $f\left(C_{2}\right) /\left(M \cup f\left(C_{1}\right)\right)$ does not fork over $A \cup f\left(C_{1}\right)$. By $5.4(2), f_{1}\left(C_{1}\right) / M$ does not split strongly over B. Again by $5.4(2), f\left(C_{2}\right) /\left(M \cup f_{1}\left(C_{1}\right)\right)$ does not split strongly over $B \cup f_{1}\left(C_{1}\right)$. Together they imply that if $\overline{\mathbf{b}} \subseteq M$ is an infinite indiscernible sequence over B then it is an indiscernible sequence over $f\left(C_{1}\right) \cup B$ and even over $f\left(C_{2}\right) \cup\left(f\left(C_{1}\right) \cup B\right)$ (use the two previous sentences and $5.4(6))$. But this means that $f\left(C_{1}\right) \cup f\left(C_{2}\right) / M$ does not split strongly over B, (here the exact version of strong splitting we choose is immaterial as M is $|B|^{+}$-saturated). So by $5.10(1)$ we get that $f\left(C_{1}\right) \cup f\left(C_{2}\right) / M$
does not fork over B hence $f\left(C_{1} \cup C_{2}\right) / A$ does not fork over B but $f \supseteq \operatorname{id}_{A}$ so also $C_{1} \cup C_{2} / A$ does not split strongly over B. $\quad \mathbf{\square}_{5.10}$
5.11. Conclusion: 1) If M is $|B|^{+}$-saturated and $B \subseteq M$ and $p \in \mathbf{S}^{n}(M)$ then p does not fork over B if and only if p does not strongly split over B.
2) If $A=|M|$, then in Conclusion $5.9(1)$ we can replace strong splitting by dividing.

Proof. 1) By 5.10. 2) By part (1). $\boldsymbol{■}_{5.11}$
5.12. Definition: 1) We say $\left\langle\bar{a}_{t}: t \in J\right\rangle$ is a non-forking sequence over (B, A) when $B \subseteq A$ and for every $t \in J$ we have

$$
\operatorname{tp}\left(\bar{a}_{t}, A \cup \bigcup\left\{\bar{a}_{s}: s<_{J} t\right\}\right)
$$

does not fork over B.
2) We say that $\left\langle\bar{a}_{t}: t \in J\right\rangle$ is a strict non-forking sequence over $\left(B_{1}, B_{2}, A\right)$ if $B_{1} \subseteq B_{2} \subseteq A$ and for every $t \in J$ the type $\operatorname{tp}\left(\bar{a}_{t}, A \cup \bigcup\left\{\bar{a}_{s}: s<_{J} t\right\}\right)$ strictly does not fork over $\left(B_{1}, B_{2}\right)$, see Definition 5.6. If $B_{1}=B_{2}$ we may write $\left(B_{1}, A\right)$ instead of $\left(B_{1}, B_{1}, A\right)$.
3) We say $\mathscr{A}=\left(A,\left\langle\left(\bar{a}_{\alpha}, B_{\alpha}\right): \alpha<\alpha^{*}\right\rangle\right)$ is an \mathbf{F}_{κ}^{f}-construction or $\left\langle\left(\bar{a}_{\alpha}, B_{\alpha}\right)\right.$: $\left.\alpha<\alpha^{*}\right\rangle$ an \mathbf{F}_{κ}^{f}-construction over A if $B_{\alpha} \subseteq A_{\alpha}:=A \cup \bigcup\left\{\bar{a}_{\beta}: \beta<\alpha\right\}$ has cardinality $<\kappa$ and $\operatorname{tp}\left(\bar{a}_{\alpha}, A_{\alpha}\right)$ does not fork over B_{α}.
4) We can above replace \bar{a}_{t} by A_{t} meaning for some/every \bar{a}_{t} listing A_{t} the demand holds.
5.13. Claim:

1) Assume
(a) $\left\langle\bar{a}_{t}: t \in J\right\rangle$ is a strictly non-forking sequence over (B, B, A);
(b) $\left\langle\bar{b}_{t, n}: n<\omega\right\rangle$ is an indiscernible sequence over B each $\bar{b}_{t, n}$ realizing $\operatorname{tp}\left(\bar{a}_{t}, B\right)$ for each $t \in J$.
Then we can find $\bar{a}_{t, n}$ for $t \in J, n<\omega$ such that
$(\alpha)\left\langle\bar{a}_{t, n}: n<\omega\right\rangle$ is an indiscernible sequence over $A \cup\left\{\bar{a}_{s, n}: n<\right.$ $\omega, s \in J \backslash\{t\}\} ;$
$(\beta) \operatorname{tp}\left(\left\langle\bar{b}_{t, n}: n<\omega\right\rangle, B\right)=\operatorname{tp}\left(\left\langle\bar{a}_{t, n}: n<\omega\right\rangle, B\right)$;
$(\gamma) \bar{a}_{t, 0}=\bar{a}_{t}$.
Proof. We prove by induction on $|J|$.
Case 1: J is finite.

We prove this by induction on n, for $n=0,1$ this is trivial; assume we have proved for n and we shall prove for $n+1$. Let $\lambda=(|A|+|T|)^{+}$.

So let $J=\left\{t_{\ell}: \ell \leq n\right\} t_{\ell}$ increasing with ℓ. First we can find an indiscernible sequence $\left\langle\bar{a}_{t_{0}, \alpha}: \alpha<\lambda\right\rangle$ over A such that $\bar{a}_{t_{0}, 0}=\bar{a}_{t_{0}}$ and for some automorphism F of \mathfrak{C} over B we have $k<\omega \Rightarrow F\left(\bar{b}_{t_{0}, k}\right)=\bar{a}_{t_{0}, k}$. Let $A^{\prime}:=A \cup\left\{\bar{a}_{t_{0}, \alpha}: \alpha<\lambda\right\}$. (This is possible by Definition 5.6.)

Second, we can choose $\bar{a}_{t_{\ell}}^{\prime}$, by induction on ℓ, such that $\bar{a}_{t_{0}}^{\prime}=\bar{a}_{t_{0}}$ and if $\ell>0$ then $\operatorname{tp}\left(\bar{a}_{t_{\ell}}^{\prime}, A^{\prime} \cup \bigcup\left\{\bar{a}_{t_{m}}^{\prime}: m=1, \ldots, \ell-1\right\}\right)$ strictly does not fork over B and the two sequences $\bar{a}_{t_{0}}{ }^{\wedge} \ldots{ }^{\wedge} \bar{a}_{t_{\ell}}, \bar{a}_{t_{0}}^{\prime}{ }^{\wedge} \ldots{ }^{\wedge} \bar{a}_{t_{\ell}}^{\prime}$ realizes the same type over A. We can do it by $5.6(5)$ and "strictly does not fork" being preserved by elementary mapping. By $5.10(2)$ the type $\left.\operatorname{tp}\left(\bar{a}_{t_{1}}^{\prime}{ }^{\wedge} \ldots{ }^{\wedge} \bar{a}_{t_{n}}^{\prime}, A^{\prime}\right\}\right)$ does not fork over B hence by $5.4(6)$ the sequence $\left\langle\bar{a}_{t_{0}, \alpha}: \alpha<\lambda\right\rangle$ is an indiscernible sequence over $A \cup\left(\bar{a}_{t_{1}}^{\prime}{ }^{\wedge} \ldots{ }^{\wedge} \bar{a}_{t_{n}}^{\prime}\right)$. As $\operatorname{tp}\left(\bar{a}_{t_{\ell}}, A \cup\left\{\bar{a}_{t_{m}}: m<i\right\}\right)$ strictly does not fork over (B, A) without loss of generality $\left\langle\bar{b}_{t_{\ell}, m}: m<\omega\right\rangle$ is an indiscernible sequence over A^{\prime} such that each $\bar{b}_{t_{\ell}, m}$ realizes $\operatorname{tp}\left(\bar{a}_{t_{\ell}}^{\prime}, A\right)$.

Now we use the induction hypothesis with $B, A^{\prime},\left\langle\bar{a}_{t_{\ell}}^{\prime}: \ell=1, \ldots, n\right\rangle,\left\langle\bar{b}_{t_{\ell}, m}\right.$: $m<\omega\rangle$ for $\ell=1, \ldots, n$ and let $\left\langle\bar{a}_{t_{\ell}, n}^{\prime}: n<\omega\right\rangle$ for $\ell=1, \ldots, n$ be as in the claim.

By [Sh:715] for some $\alpha^{*}<\lambda$ the sequence $\left\langle\bar{a}_{t_{0}, \alpha}^{\prime}: \alpha \in\left[\alpha^{*}, \alpha^{*}+\omega\right)\right\rangle$ is an indiscernible sequence over $A \cup \bigcup\left\{\bar{a}_{t_{\ell}, m}^{\prime}: m<\omega, \ell=1, \ldots, n\right\}$ and as $A^{\prime}=A \cup\left\{\bar{a}_{t_{0}, \alpha}^{\prime}: \alpha<\lambda\right\}$ clearly for $\ell=1, \ldots, n$ the sequence $\left\langle\bar{a}_{t_{\ell}, m}^{\prime}: m<\omega\right\rangle$ is indiscernible over $A \cup \bigcup\left\{\bar{a}_{t_{k}, m}^{\prime}: k \in\{1, \ldots, n\} \backslash\{\ell\}\right.$ and $\left.m<\omega\right\} \cup \bigcup\left\{\bar{a}_{\alpha^{*}+m}^{\prime}\right.$: $m<\omega\}$. But we know that $\left\langle\bar{a}_{t_{0}, \alpha}^{\prime}: \alpha<\alpha^{*}+\omega\right\rangle$ is an indiscernible sequence over $A \cup\left\{\bar{a}_{t_{\ell}}^{\prime}: \ell=1, \ldots, n\right\}$, hence the sequence $\bar{a}_{t_{\alpha}, \alpha^{*}}^{\prime} \bar{a}_{t_{1}}^{\prime}{ }^{\wedge} \ldots{ }^{\wedge} \bar{a}_{t_{n}}^{\prime}$ realizes over A the same type as $\bar{a}_{t_{0}, 0}^{\prime}{ }^{\wedge} \bar{a}_{t_{1}}^{\prime}{ }^{\wedge} \ldots^{\wedge} \bar{a}_{t_{n}}^{\prime}$ hence it realizes over A the same type as $\bar{a}_{t_{0}}{ }^{\wedge} \ldots \wedge \bar{a}_{t_{n}}$ over A. So for some automorphism F of $\mathfrak{C}, F \upharpoonright A=\operatorname{id}_{A}, \ell=$ $1, \ldots, n \Rightarrow \bar{a}_{t_{\ell}}=F\left(\bar{a}_{t_{\ell}, 0}^{\prime}\right)$ and $\bar{a}_{t_{0}}=F\left(\bar{a}_{t_{0}, \alpha^{*}}^{\prime}\right)$ and let $\bar{a}_{t_{\ell}, m}=F\left(\bar{a}_{t_{\ell}, m}^{\prime}\right)$ for $\ell=1, \ldots, n$ and $m<\omega$ and $\bar{a}_{t_{0}, m}=F\left(\bar{a}_{t_{0}, \alpha^{*}+m}^{\prime}\right)$.

So we are done.
Case 2: J infinite.
By Case $1+$ compactness. $\quad \mathbf{■ . 1 3 ~}$
Remark: Can we use just no dividing?
5.14. Claim: 1) Assume $\left\langle A_{t}: t \in J\right\rangle$ is a non-forking sequence over (B, A)
and $C_{t} \subseteq \mathfrak{C}$ for $t \in J$. Then we can find $\left\langle f_{t}: t \in J\right\rangle$ such that
(a) f_{t} is an elementary mapping with domain

$$
A \cup A_{t} \cup C_{t}
$$

(b) $f_{t} \upharpoonright\left(A \cup A_{t}\right)$ is the identity;
(c) $\operatorname{tp}\left(A_{t}, A \cup \bigcup\left\{A_{s} \cup f_{s}\left(C_{s}\right): s<t\right\}\right.$ does not fork over B.
2) If, in addition, $\operatorname{tp}\left(C_{t}, A \cup A_{t}\right)$ does not fork over $A \cup A_{t}$, then we can add
$(c)^{+}\left\langle A_{t} \cup f_{t}\left(C_{t}\right): t \in J\right\rangle$ is a non-forking sequence over (B, A).
5.15. Remark: 1) We may consider \mathbf{F}^{f}-construction, i.e., $\mathscr{A}=\left(A,\left\langle a_{\alpha}^{B_{i}}\right.\right.$: $\left.\left.\alpha<\alpha^{*}\right\rangle\right)$ is an \mathbf{F}^{f}-construction, when
(a) $B_{i} \subseteq A_{i}:=A \cup\left\{a_{j}: j<i\right\}$;
(b) $\operatorname{tp}\left(a_{i}, A_{i}\right)$ does not fork over B_{i};
(c) $\left|B_{i}\right|<\kappa$.

1A) We may replace α above by a linear order I, not necessarily wellfounded.
2) In $5.14(2)$ we may weaken the assumption to: for every $A^{\prime} \supseteq A$, $A_{t} \cup C_{t} / A$ can be embedded to a complete non-forking type over A^{\prime}.

Proof. 1) As in the proof of 5.8.
2) Similarly.
5.16. Claim: 1) Assume
(a) $\left\langle A_{t}: t \in J\right\rangle$ is a non-forking sequence over (B, A).

Then for any initial segment I of $J, \operatorname{tp}\left(\bigcup\left\{A_{t}: t \in J \backslash I\right\}, A \cup \bigcup\left\{A_{t}: t \in\right.\right.$ $I\}$) does not fork over B.
2) Assume (a) and
(b) $\left\langle\bar{a}_{t, n}: n<\omega\right\rangle$ is an indiscernible sequence over A;
(c) $\bar{a}_{t, n} \in{ }^{\omega>}\left(A_{t}\right)$;
(d) $\left\langle\bar{a}_{t, n}: n<\omega\right\rangle$ is an indiscernible sequence over $A \cup \bigcup\left\{A_{s}: s<_{J} t\right\}$. Then $\left\langle\left\langle\bar{a}_{t, n}: n\langle\omega\rangle: t \in J\right\rangle\right.$ are mutually indiscernible over A. Also for any non-zero $k<\omega$ and $t_{0}<\cdots<t_{k-1}$ in J the sequences $\left\langle\bar{a}_{t_{\ell}, n}\right.$: $n<\omega\rangle$ for all $\ell<k$ are mutually indiscernible over $A \cup \bigcup\left\{A_{s}: \neg\left(t_{0} \leq\right.\right.$ $\left.\left.s \leq t_{k-1}\right)\right\}$.
5.17. Question: If $n_{\ell}<\omega$ for $\ell<n$ do the sequences

$$
\left\langle\bar{a}_{t_{0}, n_{0}}{ }^{\wedge} \bar{a}_{t_{1}, n_{1}} \wedge \ldots^{\wedge} \bar{a}_{t_{k-1}, n_{k-1}}\right\rangle \quad \text { and }\left\langle\bar{a}_{t_{0}, 0}{ }^{\wedge} \bar{a}_{t_{1}, 0} \wedge \ldots \wedge \bar{a}_{t_{k-1}, 0}\right\rangle
$$

realize the same type over $A \cup \bigcup\left\{A_{s}: s<_{J} t_{0}\right.$ or $\left.s_{J}>t_{k-1}\right\}$. Need less?
Remark: A statement similar to $5.16(1)$ for \mathbf{F}_{κ}^{f}-construction holds.
Proof. 1) If $J \backslash I$ is finite, we prove this by induction on $|J \backslash I|$ using 5.10(2). The general case follows by $5.4(7)$.
2) It is enough to prove the second sentence. For $k=1$ this follows by $5.4(6)$ and 5.10(2) using part (1) with $A \cup \bigcup\left\{A_{s}: s<t\right\},\left\langle A_{r}: r \in J, r>t\right\rangle$ instead $A,\left\langle A_{r}: r \in J\right\rangle$.

For $k+1>1$, let $t_{0}<{ }_{J} \cdots<{ }_{J} t_{k}$ be given. Use the case $k=1$ for each t_{ℓ} and combine. $\mathbf{■}_{5.16}$

Recall by 5.10
5.18. Remark: 1) Recall that by 5.10 if $p \in \mathbf{S}^{m}(M), M$ is quite saturated, then dividing is the same as forking for the type p.
5.19. Claim: Assume that for every set B, if $p(\bar{x}) \in \mathbf{S}^{m}(B)$ then p does not fork over B. Assume that $\left\langle\bar{a}_{t}: t \in J\right\rangle$ is a non-forking sequence over (B, A) and $A=|M|$.

1) For every (finite sequence) \bar{b} the set $\left\{t: \bar{b} /\left(A \cup \bar{a}_{t}\right)\right.$ forks over $\bigcup_{s<t} a_{s} \cup A$ or if A is a model over $A\}$ has cardinality $\leq|T|$.
2) For each $\varphi(\bar{x}, \bar{y}, \bar{z})$ and $k<\omega$ for some $n=n_{\varphi(\bar{x}, \bar{y}), k}$ the set $W_{\bar{b}}^{\varphi}:=$ $\left\{t: \operatorname{tp}_{\varphi}\left(\bar{b}, A \cup \bar{a}_{t}\right)\right.$ has a subset with $\leq k$ members which forks over $\left.\cup_{s<\tau} \bar{a}_{s} \cup A\right\}$ has $\leq n$ members.

Proof. 1) By (2).
2) Fix k. Assume toward contradiction that this fails for n. We can find $t_{0}<{ }_{I} t_{1}<{ }_{J} \cdots<{ }_{J} t_{n-1}$ from $W_{\bar{b}}^{\varphi}$.

Now, for every $u \subseteq\{0, \ldots, n-1\}$ there is \bar{b}_{u} realizing $\operatorname{tp}\left(\bar{b}, A \cup\left\{\bar{a}_{t_{\ell}}: \ell \in u\right\}\right)$ such that $\operatorname{tp}\left(\bar{b}_{u}, \mathrm{~A} \cup\left\{\bar{a}_{t_{\ell}}: \ell<n\right\}\right)$ does not fork over $A \cup\left\{\bar{b}_{t_{\ell}}: \ell \in u\right\}$. For each $\ell<n$ we can find $q_{\ell} \subseteq \operatorname{tp}_{\varphi}\left(\bar{b}, A \cup \bar{a}_{t_{\ell}}\right)$ and with $\leq k$ members which forks over A. Let $A_{\ell}=A \cup \bar{a}_{t_{0}} \cup \cdots \cup \bar{a}_{t_{\ell-1}}$. Clearly, $\ell \in u \Rightarrow q_{\ell} \subseteq$ $\operatorname{tp}\left(\bar{b}_{u}, A \cup\left\{\bar{a}_{t_{m}}: m<n\right\}\right)$. If $\ell \in n \backslash u$, let $i_{\ell, 0}<\cdots<i_{\ell, m(\ell)-1}<n$ list $u \backslash \ell$ so $\operatorname{tp}\left(\bar{a}_{i_{\ell, m}}, A_{\ell} \cup \bar{a}_{t_{\ell}} \cup \bar{a}_{t_{i_{\ell, 0}}} \cdots \cup \bar{a}_{t_{i_{\ell, m-1}}}\right)$ does not fork over A for $m<m(\ell)$ and $\operatorname{tp}\left(\bar{b}_{u}, A_{\ell} \cup \bar{a}_{t_{\ell}} \cup \bar{a}_{t_{i_{\ell, 0}}} \cup \cdots \cup \bar{a}_{t_{i_{\ell, m(\ell)-1}}}\right)$ does not fork over $A \cup\left\{\bar{a}_{t_{k}}: k \in u\right\} \subseteq$
$A_{\ell} \cup\left\{\bar{a}_{t_{i_{\ell, 0}}, \ldots}, \bar{a}_{t_{i_{\ell, m(\ell)-1}}}\right\}$ hence by $5.10(2)+5.4(0) \operatorname{tp}\left(\bar{b}_{u}, \mathrm{~A} \cup \bar{a}_{t_{\ell}}\right)$ does not fork over A_{ℓ}, hence $\neg \wedge q_{\ell}$ belongs to it. As for our fixed k this holds for every n, we get that T has the independence property contradiction. $\quad \boldsymbol{\square}_{5.19}$
5.20. Claim: Assume that $p(\bar{x})$ is a type of cardinality $<\kappa$ which does not fork over A. then for some $B \subseteq A$ of cardinality $<\kappa+|T|^{+}$, the type p does not fork over B.

Proof. Without loss of generality p is closed under conjunction.
For any finite sequence $\bar{\varphi}=\left\langle\left(\varphi_{\ell}\left(\bar{x}, \bar{y}_{\ell}\right), n_{\ell}\right): \ell<n\right\rangle$ and formula $\psi(x, \bar{c}) \in p$ and set $B \subseteq A$ we define

$$
\begin{aligned}
\Gamma_{B, \bar{\varphi}, \psi(\bar{x}, \bar{c})}= & \left\{(\forall x)\left(\psi(x, \bar{c}) \rightarrow \bigvee_{\ell<n} \varphi_{\ell}\left(\bar{x}, \bar{y}_{\ell, 0}\right)\right)\right\} \\
& \cup\left\{\neg(\exists \bar{x}) \bigwedge_{n \in w} \varphi_{\ell}\left(\bar{x}, y_{\ell, n}\right): \ell<n \text { and } w \in[\omega]^{n_{\ell}}\right\} \\
& \cup\left\{\vartheta\left(y_{\ell, m_{1}}, \ldots, y_{\ell, m_{k}}, \bar{b}\right)=\vartheta\left(y_{\ell, 0}, \ldots, y_{\ell, k}, \bar{b}\right):\right. \\
& \left.\bar{b} \subseteq B, \vartheta \in \mathbb{L}\left(\tau_{T}\right), m_{1}<\cdots<m_{k}<\omega\right\} .
\end{aligned}
$$

Now as p does not fork over A, clearly for any $\bar{\varphi}$ as above and $\psi(\bar{x}, \bar{c}) \in p$ the set $\Gamma_{A, \bar{\varphi}, \psi(\bar{x}, \bar{c})}$ is inconsistent. Hence for some finite set $B=B_{\bar{\varphi}, \psi(x, \bar{c})} \subseteq A$ the set $\Gamma_{B, \bar{\varphi}, \psi(x, \bar{c})}$ is inconsistent. Now $B^{*}=\bigcup\left\{B_{\bar{\varphi}, \psi(\bar{x}, \bar{c})}: \psi(\bar{x}, \bar{c}) \in p\right.$ and $\bar{\varphi}$ is as above is as required. $\square_{5.20}$

The following is another substitute for "every type p does not fork over a small subset of $\operatorname{Dom}(p)$ ".
5.21. Claim: Assume that for every set B, if $p \in \mathbf{S}^{<\omega}(B)$ then p does not fork over B. Assume $p \in \mathbf{S}^{m}(M)$ and $B \subseteq M$. Then we can find C such that
$(*)_{1} C \subseteq M$ and $|C| \leq|T|$ and
$(*)_{M, B, C}^{p}$ if $D \subseteq M$ and $\operatorname{tp}(D / B \cup C)$ does not fork over B, then $p \upharpoonright(B \cup D)$ does not fork over $B \cup C$.

Proof. Follows by 5.19.
5.22. Definition: Assume that $C=|M|, M$ is κ-saturated $A \subseteq M,|A|<\kappa$ and $p \in \mathbf{S}^{m}(M)$ does not split over A. For any set $B(\subseteq \mathfrak{C})$ let $p^{[A, B]}$ be $q \upharpoonright B$, where $q \in \mathbf{S}^{m}(M \cup B)$ is the unique type in $\mathbf{S}^{m}(M \cup B)$ which does not split over A.
5.23. ObSERVATION: 1) In Definition 5.22, $p^{\left[{ }^{A},{ }^{B}\right]}$ is well-defined.
2) In 5.22 instead " C is κ^{+}-saturated; $|A|<\kappa$ " it suffices to assume that every $q \in \mathbf{S}^{<\omega}(B)$ is realized in C.
3) $p^{\left[A, B_{1}\right]} \subseteq p^{\left[A, B_{2}\right]}$ if $B_{1} \subseteq B_{2}$.
5.24. Claim: 1) If the triple (A, C, p) is as in 5.23(2), $A \subseteq A_{0}$ and $\bar{a}_{n} \in{ }^{m} \mathfrak{C}$ realizes $p^{\left[A, A_{n}\right]}$ for $n<\omega$ where $A_{n}=A_{0} \cup \bigcup\left\{\bar{a}_{\ell}: \ell<n\right\}$, then $\left\langle\bar{a}_{n}: n<\omega\right\rangle$ is an indiscernible sequence over A_{0}. Also $\operatorname{tp}\left(\left\langle\bar{a}_{n}: n<\omega\right\rangle, A_{0}\right)$ is determined by $\left(A, C, p, A_{0}\right)$ and we call it $p^{\left[A, A_{o}, \omega\right]}$.

Proof. See [Sh:c, II, §1] or [Sh:3].

5.25. Claim: Assume that

(a) (C, A) is as in 5.23(2)
(b) $p_{0}, p_{1} \in \mathbf{S}^{m}(C)$ does not split over A
(c) $p_{0}^{[A, A, \omega]}=p_{1}^{[A, A, \omega]}$.

Then $p_{0}=p_{1}$.
Proof. Let $\left\langle\bar{a}_{n}^{\ell}: n<\omega\right\rangle$ realize $p_{\ell}^{[A, A, \omega]}$ so by clause (c) of the assumption $(*)_{1} \quad \bar{a}_{0}^{0}, \ldots, \bar{a}_{n-1}^{0}$ and $\bar{a}_{0}^{1 \wedge} \ldots^{\wedge} \bar{a}_{n-1}^{1}$ realizes the same type over A.

If the conclusion fails, we can find \bar{c} and $\varphi(\bar{x}, \bar{y}) \in \mathbb{L}\left(\tau_{T}\right)$ such that $(*)_{2} \neg \varphi(\bar{x}, \bar{c}) \in p_{0}$ and $\varphi(\bar{x}, \bar{c}) \in p_{1}$ so $\bar{c} \in{ }^{\ell g(\bar{y})} C$.

Now we choose by induction on n a sequence \bar{a}_{n} such that
$(*)_{3}$ if $\ell<2$ and $n=\ell \bmod 2$ and we let $A_{n}=A \cup \bigcup\left\{\bar{a}_{n}, \ldots, \bar{a}_{n-1}\right\}$ then $\operatorname{tp}\left(\bar{a}_{n}, A_{k, n} \cup \bar{c}\right)=p_{\ell}^{\left[A, A_{n} \cup \bar{c}\right]}$.
Now we can prove by induction on $n<\omega$ that
$(*)_{4}$ the sequences $\bar{a}_{0}^{0 \wedge} \ldots{ }^{\wedge} a_{n-1}^{0}, \bar{a}_{0}^{1 \wedge} \ldots{ }^{\wedge} \bar{a}_{n-1}^{1}$ and $\bar{a}_{0}{ }^{\wedge} \ldots{ }^{\wedge} \bar{a}_{n-1}$ realizes the same type over A.
(Why? The first two sequences realizes the same type by $(*)_{1}$. For the induction step, if $n=\ell \bmod 2$, by the definition 5.22 , we have $\bar{a}_{0}^{\ell}{ }^{\wedge} \ldots{ }^{\wedge} \bar{a}_{n-1}^{\ell}{ }^{\wedge} \bar{a}_{n}^{\ell}$ and $\bar{a}_{0}{ }^{\wedge} \ldots \wedge \bar{a}_{n-1}{ }^{\wedge} \bar{a}_{n}$ realizes the same type over A.)

So $\left\langle\bar{a}_{n}: n<\omega\right\rangle$ is an indiscernible sequence and $\mathfrak{C} \models \varphi\left[\bar{a}_{n}, \bar{c}\right]$ if and only if n is odd, contradiction to " T dependent".
5.26. Conclusion: 1) If $A \subseteq C$ and every $p \in \mathbf{S}^{<\omega}(A)$ is realized in C then $\left\{p \in \mathbf{S}^{m}(C): p\right.$ does not split over $\left.A\right\}$ has cardinality $\leq\left|\mathbf{S}^{\omega}(A)\right|$ which is
$\leq\left(\operatorname{Ded}_{r}(|A|+|T|)^{|T|} \leq 2^{|A|+|T|}\right.$ recalling $\operatorname{Ded}_{r}(\mu)=\operatorname{Min}\{\lambda: \lambda$ is regular and every linear order of density $\leq \mu$ has cardinality $\leq \lambda\}$.
2) Also, for any finite $\Delta \subseteq \mathbb{L}\left(\tau_{T}\right)$, the set $\left\{p \upharpoonright \Delta: p \in \mathbf{S}^{m}(C)\right.$ does not split over $A\}$ has cardinality $\leq \operatorname{Ded}_{r}(C)$.
3) If $p \in \mathbf{S}^{m}(C)$ is finitely satisfiable in $A \subseteq C$ then p does not split over A. Proof. Should be clear.
5.27. Definition: For $\ell \in\{1,2\}$, we say $\left\{\bar{a}_{\alpha}: \alpha<\alpha^{*}\right\}$ is ℓ-independent over A if we can find $\bar{a}_{\alpha, n}$ (for $\left.\alpha<\alpha^{*}, n<\omega\right\rangle$ such that:
(a) $\bar{a}_{\alpha}=\bar{a}_{\alpha, 0}$;
(b) $\left\langle\bar{a}_{\alpha, n}: n<\omega\right\rangle$ is an indiscernible sequence over $A \cup \bigcup\left\{\bar{a}_{\beta, m}: \beta \in \alpha^{*} \backslash\{\alpha\}\right.$ and $m<\omega\}$;
(c) (α) if $\ell=1$, then for some $\bar{b}_{n} \in A(n<\omega)$ for every $\alpha<\alpha^{*}$ we have $\left\langle\bar{b}_{n}: n<\omega\right\rangle^{\wedge}\left\langle\bar{a}_{\alpha, n}: n<\omega\right\rangle$ is an indiscernible sequence;
(β) if $\ell=2$, then for some $\bar{b}_{\alpha, n} \subseteq A$ (for $\alpha<\alpha^{*}, n<\omega$),

$$
\left\langle\bar{b}_{\alpha, n}: n<\omega\right\rangle^{\wedge}\left\langle\bar{a}_{\alpha, n}: n<\omega\right\rangle
$$

is an indiscernible sequence.
We now show that even a very weak version of independence has limitations.
5.28. Claim: 1) For every finite $\Delta \subseteq \mathbb{L}\left(\tau_{T}\right)$ there is $n^{*}<\omega$ such that we cannot find $\bar{\varphi}=\left\langle\varphi_{n}\left(\bar{x}, \bar{a}_{n}\right): n<n^{*}\right\rangle$ for which
$(*)_{\bar{\varphi}}$ for each $n<n^{*}$ there are $m_{n}<\omega$ and $\left\langle\bar{b}_{m, \ell}^{n}: \ell<\omega, m<m_{n}\right\rangle$ and $\left\langle\psi_{m}^{n}\left(\bar{x}, \bar{y}_{n}\right): m<m_{n}\right\rangle$ such that
$(\alpha)\left\langle\bar{b}_{m, \ell}^{n}: \ell<\omega\right\rangle$ is an indiscernible sequence over $\cup\left\{\bar{a}_{k}: k<n^{*}, k \neq\right.$ $n\} ;$
(β) $\bar{b}_{m, 0}^{n}=\bar{a}_{n}$;
$(\gamma)\left\{\psi_{m}^{n}\left(x, \bar{b}_{m, \ell}^{n}\right): \ell<\omega\right\}$ is contradictory for each n and $m<m_{n}$;
($\delta) \psi_{m}^{n}\left(\bar{x}, \bar{y}_{n}\right) \in \Delta$;
(ع) $\varphi_{n}\left(\bar{x}, \bar{a}_{n}\right) \vdash \bigvee_{m<m_{n}} \psi_{m}^{n}\left(\bar{x}, \bar{a}_{n}\right)$;
$(\zeta) \models(\exists \bar{x}) \bigwedge_{n<n^{*}} \varphi_{n}\left(\bar{x}, \bar{a}_{n}\right)$.
2) We weaken (α) above to $\operatorname{tp}\left(\bar{b}_{m, \ell}^{n}, \bigcup\left\{\bar{a}_{k}: k<n^{*}, k \neq n\right\}\right)=\operatorname{tp}\left(\bar{a}_{n}, \bigcup\left\{\bar{a}_{k}\right.\right.$: $\left.k<n^{*}, k \neq n\right\}$).
3) For some finite $\Delta^{+} \subseteq \mathbb{L}\left(\tau_{T}\right)$, we can in (α) demand only Δ^{+}-indiscernible; also without loss of generality $\varphi_{n}\left(\bar{x}, \bar{y}_{n}\right)=\bigvee_{m<m_{n}} \psi_{m}^{n}\left(\bar{x}, \bar{y}_{n}\right)$.

Proof. 1) [Close to 5.8.] Note
\circledast if $\bar{c} \in{ }^{\ell g(\bar{x})}(\mathfrak{C})$ and $n<n^{*}$ and $\models \varphi_{n}\left(\bar{c}, \bar{a}_{n}\right)$ then for some $\bar{c}^{\prime} \in{ }^{\ell g(\bar{x})}(\mathfrak{C})$ we have
(i) $\operatorname{tp}\left(\bar{c}^{\prime}, \bigcup\left\{\bar{a}_{k}: k<n^{*}, k \neq n\right\}\right)=\operatorname{tp}\left(\bar{c}, \bigcup\left\{\bar{a}_{k}: k<n^{*}, k \neq n\right\}\right)$;
(ii) $\operatorname{tp}_{\Delta}\left(\bar{c}, \bar{a}_{n}\right) \neq \operatorname{tp}_{\Delta}\left(\bar{c}^{\prime}, \bar{a}_{n}\right)$.
(Why \circledast holds? Clearly it is enough to find \bar{b}_{n}^{\prime} such that
(i) $\bar{b}_{n}, \bar{b}_{n}^{\prime}$ realize the same type over $\bigcup\left\{\bar{a}_{k}: k<n^{*}, k \neq n\right\}$
(ii) for some $m<m_{n}$ we have $\psi_{m}^{n}\left(\bar{b}_{n}, \bar{a}_{n}\right) \wedge \neg \psi_{m}^{n}\left(\bar{b}_{n}^{\prime}, \bar{a}_{n}\right)$.

Why does \bar{b}_{n}^{\prime} exist? As $\models \varphi_{n}\left[\bar{c}, \bar{a}_{n}\right]$ by (ε) for some $m<m_{n}, \models \psi_{n}^{n}\left[\bar{c}, \bar{a}_{n}\right]$ and by $(\alpha)+(\gamma)$, for some $\ell<\omega, b_{n}^{\prime}=\bar{b}_{m, \ell}^{n}$ is as required.)

By repeated use of \circledast we get $m_{\ell}^{*}<m_{\ell}$ such that $\left\langle\psi_{m_{\ell}^{*}}^{n}\left(\bar{x}, \bar{a}_{n}\right): n<n^{*}\right\rangle$ is independent but $\psi_{m_{\ell}^{*}}^{n}\left(\bar{x}, \bar{y}_{n}\right) \in \Delta$ is finite, so n^{*} as required exists.
2),3) Similarly. $\quad \boldsymbol{\square}_{5.28}$

5.29. Claim: Assume

(a) $\left\langle\bar{b}_{n}: n<\omega\right\rangle$ is indiscernible over M;
(b) $\left\{\varphi\left(\bar{x}, \bar{b}_{n}\right): n<\omega\right\}$ is contradictory;
(c) $M \prec N, p \in \mathbf{S}(N), \varphi\left(\bar{x}, \bar{b}_{0}\right) \in p$ and $\neg \varphi\left(x, \bar{b}_{n}\right) \in p$ for $n>0$;
(d) N is $\|M\|^{+}$-saturated.
then for some $\left\langle b_{n}^{\prime}: n<\omega\right\rangle$ we have
(α) $\left\langle\bar{b}_{n}^{\prime}: n<\omega\right\rangle$ is indiscernible over M based on $M, \bar{b}_{n}^{\prime} \subseteq N$;
(β) $\bar{b}_{0}^{\prime} \in\left\{\bar{b}_{0}, \bar{b}_{1}\right\}$;
$(\gamma) \varphi\left(\bar{x}, \bar{b}_{0}^{\prime}\right) \equiv \neg \varphi\left(\bar{x}, \bar{b}_{1}^{\prime}\right)$ belongs to p.
5.30. Definition: 1) For $p \in \mathbf{S}^{m}(M)$ let $\mathscr{E}(p)$ be the set of pairs $(\varphi(\bar{x}, \bar{y}), \mathbf{e})$ such that
(a) \mathbf{e} is a definable equivalence relation on ${ }^{\ell g(\bar{y})} M$ in M
(b) if $\bar{b}_{1} \mathbf{e} \bar{b}_{2}$ then $\varphi\left(\bar{x}, \bar{b}_{1}\right) \in p \Leftrightarrow \varphi\left(\bar{x}, \bar{b}_{2}\right) \in p$.
2) $\mathscr{E}_{\mathrm{tp}}^{\prime}(p)$ is defined similarly by \mathbf{e} is definable by types.
5.31. Claim: Assume $\varphi=\varphi(x, y), M \prec N, N$ is $\|M\|^{+}$-saturated and $p \in \mathbf{S}(N)$. Then we cannot find $\left\{D_{i}: i<n_{\varphi}\right\}$, a set of ultrafilters over (N) pairwise
orthogonal (as below) with $p_{i}=\operatorname{Av}\left(M, D_{i}\right)$ such that $p(x) \cup p_{i}\left(\bar{y}_{0}\right) \cup p_{i}\left(\bar{y}_{1}\right) \cup$ $\left\{\varphi\left(x, \bar{y}_{1}\right), \neg \varphi\left(x, \bar{y}_{0}\right)\right\}$ is consistent for $i<n_{\varphi}$.

Now we deal with orthogonality.
5.32. Definition: Definition 1) Two complete types $p(\bar{x}), q(\bar{y})$ over A are weakly orthogonal if $p(\bar{x}) \cup q(\bar{y})$ is a complete type over A.
2) Assume $\overline{\mathbf{b}}_{1}, \overline{\mathbf{b}}_{2}$ are endless indiscernible sequences. We say $\overline{\mathbf{b}}_{1}, \overline{\mathbf{b}}_{2}$ are orthogonal and write $\overline{\mathbf{b}}_{1} \perp \overline{\mathbf{b}}_{2}$ if:
for every set A which includes $\overline{\mathbf{b}}_{1} \cup \overline{\mathbf{b}}_{2}, \operatorname{Av}\left(A, \overline{\mathbf{b}}_{1}\right), \operatorname{Av}\left(A, \overline{\mathbf{b}}_{2}\right)$ are weakly orthogonal
3) $\overline{\mathbf{b}}_{1}$ is strongly orthogonal to $\overline{\mathbf{b}}_{2}, \mathbf{b}_{1} \frac{\perp}{\text { st }} \mathbf{b}_{2}$ if it is orthogonal to every endless indiscernible sequence $\overline{\mathbf{b}}_{2}^{\prime}$ of finite distance from $\overline{\mathbf{b}}_{2}$ (see [Sh:715, 1.11](2).
4) An endless indiscernible sequence $\overline{\mathbf{b}}_{1}$ is orthogonal to $\varphi(x, \bar{a})$ if it is orthogonal to every endless indiscernible sequence $\overline{\mathbf{b}}_{2}=\left\langle b_{2, \alpha}: \alpha<\delta\right\rangle$ such that $b_{2, \alpha} \in \varphi(\mathfrak{C}, \bar{a})$ for every $\alpha<\delta$.
5) $\overline{\mathbf{b}}$ is based on A if $\overline{\mathbf{b}}$ is an indiscernible sequence and $C_{A}(\overline{\mathbf{b}})$ (see [Sh:715] or [Sh:93]) has boundedly many conjugations over A.
6) If $\overline{\mathbf{b}}_{1} \rightarrow \perp \overline{\mathbf{b}}_{2}$ and $\overline{\mathbf{b}}_{\ell}^{\prime}$ is a neighbour (see $[\mathrm{Sh}: 715,1.11=\mathrm{np} 1.4 \mathrm{~B}]$) to $\overline{\mathbf{b}}_{\ell}$ then $\overline{\mathbf{b}}_{1}^{\prime}$ is strongly orthogonal to $\overline{\mathbf{b}}_{2}^{\prime}$.
5.33. Claim: 1) Orthogonality is symmetric relation.
2) If $\mathbf{b}_{1}, \mathbf{b}_{2}$ are orthogonal, then they are perpendicular (see Definition 2.2).
5.34. Example: $\operatorname{In} \operatorname{Th}(\mathbb{R},<)$, different initial segments are orthogonal, even two disjoint intervals. For $(\mathbb{R}, 0,1,+, \times)$ the situation is different: any two non trivial intervals are "the same".
5.35. Claim: 1) Assume $\lambda=\lambda^{<\lambda}, I$ is a dense linear order with neither first nor last element and $\overline{\mathbf{b}}=\left\langle\bar{b}_{t}: t \in I\right\rangle$ an indiscernible sequence. If $|I|=\lambda$, then there is $M \supseteq \overline{\mathbf{b}}$ which is λ-saturated and λ-atomic over $\overline{\mathbf{b}}$.
2) If $p \in \mathbf{S}^{m}(\overline{\mathbf{b}})$ is λ-isolated then it is $|T|^{+}$-isolated.
5.36. Question: If $\operatorname{Av}\left(M, \overline{\mathbf{b}}_{1}\right), \operatorname{Av}\left(M, \overline{\mathbf{b}}_{2}\right)$ (or with D 's) are weakly orthogonal and are perpendicular, then they are orthogonal.
5.37. Question: On $\operatorname{Av}\left(\overline{\mathbf{b}}_{1}, \overline{\mathbf{b}}\right), \overline{\mathbf{b}}$ endless indiscernible sequence, can we define a dependence relation exhausting the amount of indiscernible sets like dependence?
5.38. Question: For each of the following conditions can we characterize the dependent theories which satisfy it?
(a) for any two non-trivial indiscernible sequences $\overline{\mathbf{b}}_{1}, \overline{\mathbf{b}}_{2}$, we can find $\overline{\mathbf{b}}_{\ell}^{\prime}$ of finite distance from $\overline{\mathbf{b}}_{\ell}$ (see $\left[\right.$ Sh:715], for $\ell=1,2$) such that $\overline{\mathbf{b}}_{1}^{\prime}, \overline{\mathbf{b}}_{2}^{\prime}$ are not orthogonal
(b) any two non-trivial indiscernible sequences of singletons have finite distance?
(c) T is $\operatorname{Th}(\mathbb{F}), \mathbb{F}$ a field (so this class includes the p-adics various reasonable fields with valuations and closed under finite extensions).

References

[BaPo98] Y. Baisalov and B. Poizat, Paires de structures o-minimales, Journal of Symbolic Logic 63 (1998), 570-578.
[BBSh:815] B. Baizhanov, J. Baldwin and S. Shelah, Subsets of superstable structures are weakly benign, Journal of Symbolic Logic 70 (2005), 142-150, math.LO/0303324.
[BlBn00] J. T. Baldwin and M. Benedikt, Stability theory, permutations of indiscernibles, and embedded finite model theory, Transactions of the American Mathematical Society 352 (2000), 4937-4969.
[CoSh:919] M. Cohen and S. Shelah, Stable theories and representation over sets, preprint.
[Cmf77] W. W. Comfort, Ultrafilters: some old and some new results, Bulletin of the American Mathematical Society 83 (1977), 417-455.
[FiSh:E50] E. Firstenberg and S. Shelah, Pseudo unidimensional dependent theories. For more information please contact the author.
[Ke87] J. H. Keisler, Measures and forking, Annals of Pure and Applied Logic 34 (1987), 119-169.
[Po81] B. Poizat, Théories instables, Journal of Symbolic Logic 46 (1981), 513-522.
[Sh:3] S. Shelah, Finite diagrams stable in power, Annals of Mathematical Logic 2 (1970), 69-118.
[Sh:93] S. Shelah, Simple unstable theories, Annals of Mathematical Logic 19 (1980), 177-203.
[Sh:c] S. Shelah, Classification theory and the number of nonisomorphic models, in Studies in Logic and the Foundations of Mathematics, vol. 92, North-Holland Publishing Co., Amsterdam, xxxiv+705 pp., 1990.
[Sh:715] S. Shelah, Classification theory for elementary classes with the dependence property - a modest beginning, Scientiae Mathematicae Japonicae 59, No. 2; (special issue: e9, 503-544) (2004), 265-316, math.LO/0009056.
[Sh:876] S. Shelah, Minimal bounded index subgroup for dependent theories, Proceedings of the American Mathematical Society 136 (2008), 1087-1091.
[Sh:839] S. Shelah, Stable frames and weight.
[Sh:863] S. Shelah, Strongly dependent theories, submitted.
[Sh:877] S. Shelah, Dependent T and Existence of limit models, preprint, math. LO/0609636.
[Sh:886] S. Shelah, Definable groups for dependent and 2-dependent theories, submitted.
[Sh:900] S. Shelah, Dependent theories and the generic pair conjecture, Communications in Contemporary Mathematics, submitted, math.LO/0702292
[Sh:950] S. Shelah, A dependent dream and recounting types, preprint.
[Sh:F660] S. Shelah, Toward the main gap by fatness, a modest beginning.
[Sh:F705] S. Shelah, Representation over orders of elementary classes.
[Sh:F906] S. Shelah, On incompctness in singulars (for Ext, consistently incompact).

[^0]: * The author would like to thank the Israel Science Foundation for partial support of this research (Grant No. 242/03). Publication 783.
 ** I would like to thank Alice Leonhardt for the beautiful typing. Received June 18, 2004 and in revised form October 5, 2006

[^1]: ${ }^{1}$ So all the stages in the computation of $\sigma\left(\bar{a}_{0} ; \ldots ; \bar{a}_{n(*)}\right)$ should be well-defined.

[^2]: ${ }^{2}$ His proof uses the operations from clause (d) of 4.16 and 4.17 below.

[^3]: ${ }^{3}$ Recalling $\left[\varphi_{1} \equiv \varphi_{2}\right.$] is the formula $\left(\varphi_{1} \wedge \varphi_{2}\right) \vee\left(\neg \varphi_{1} \wedge \neg \varphi_{2}\right)$.

