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ABSTRACT

A dependent theory is a (first order complete theory) T which does not

have the independence property. A major result here is: if we expand a

model of T by the traces on it of sets definable in a bigger model then

we preserve its being dependent. Another one justifies the cofinality re-

striction in the theorem (from a previous work) saying that pairwise per-

pendicular indiscernible sequences, can have arbitrary dual-cofinalities in

some models containing them. We introduce “strongly dependent” and

look at definable groups; and also at dividing, forking and relatives.
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2 SAHARON SHELAH Isr. J. Math.

Annotated Content

Recall: Dependent T = T without the independence property.

§0 Introduction, p. 2

§1 Expanding by making a type definable, p. 4

Suppose we expand M ≺ C by a relation for each set of the form

{b̄ : b̄ ∈ mM and |= ϕ[b̄, ā]}, where ā ∈ ω>C, ϕ(x̄, ȳ) ∈ L(τT ) and

m = `g(x̄). We prove that the theory of this model is dependent

and has elimination of quantifiers.

§2 More on indiscernible sequences, p. 16

This is complimentary to [Sh:715, §5]. Dedekind cuts with cofinal-

ity from both sides ≤ κ+ |T | = κ inside κ-saturated models (of a

dependent theory T ) tend to be filled together.

§3 Strongly dependent theories, p. 24

Being strongly dependent is related to being superstable; however,

strongly dependent theories which are stable (called strongly sta-

ble) are not necessarily superstable. We start the investigation of

this class of first order theories. In particular, for such a theory

there is no non-algebraic types p, q with definable functions essen-

tially from q(C) onto ω(p(C)). Also there is no equivalence relation

on p(x̄) with infinitely many equivalence classes, each class has

essentially one to one definable correspondence with the whole.

§4 Definable groups, p. 32

We start to investigate definable groups for dependent and strongly

dependent theories, in particular, with the size of the commutator

of most members.

§5 Non-forking, p. 40

We try to see what does non-forking satisfy for dependent theories.

0. Introduction

The work in [Sh:715] tries to deal with the investigation of (first order com-

plete) theories T which have the dependence property, i.e., do not have the

independence property.

If T is stable, we expand a model M of T by p � ϕ(x̄, ȳ), for p ∈ Sm(M).

That is expanding M by the relation R
ϕ(x̄,ȳ)
p,M = {ā ∈ `g(ȳ)M : ϕ(x̄, ā) ∈ p} is an
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inessential one, i.e., by a relation on M definable in M with parameters. This

fails for unstable theories but in §1 we prove a weak relative: if T is a dependent

theory then so is the expansion above, i.e., Th(M,R
ϕ(x̄,ȳ)
p,M )p,ϕ(x̄,ȳ).

In [Sh:715, §5] it is shown that for any modelN of a dependent unstable T , we

can find a κ-saturated modelM extending N , such that the following set is quite

arbitrary. Pairs of cofinalities of a cut in M , for some definable partial order in

N (so not fulfilled in M), or even the set of pairs (κ1, κ2) of regular cardinals

for which there is an indiscernible sequence 〈aα : α < κ1〉_〈bβ : β < κ∗2〉 such

that the (κ1, κ2)-cut is respected in M . That is, we cannot find an element in

M which can be added after the aα’s but before the bβ’s linearly ordered by a

partial order some ϕ(x, y; c̄). However, there were restrictions on the cofinalities

being not too small. In §2 we show that, to a large extent, these restrictions

are necessary.

The family of dependent theories is parallel to the family of stable theories.

But actually a better balance than for stable of the “size” of the family of

such theories and what we can tell about them is obtained by the family of

superstable ones. In §3 a related family of strongly dependent theories, are

defined. Now, every superstable T is strongly stable (defined as stable, strongly

dependent), but the inverse fails (see also [Sh:839], [Sh:F660]). We then observe

some basic properties. This is continued in [Sh:863].

In §4 we look at groups definable in models of dependent theories, and also

in strongly dependent theories. In §5 we try to look systematically at a parallel

to non-forking.

This work is continued in [Sh:876], [Sh:863], [Sh:886], [FiSh:E50], [CoSh:919],

[Sh:F705], [Sh:877], [Sh:900] and [Sh:F906]. More specifically, on a parallel to

uni-dimensionality for the theory of the real field see a hopefully forthcoming

work of E. Firstenberg–S. Shelah [FiSh:E50]. For continuation of §2 see [Sh:950].

We try to investigate strongly dependent theories (see Section 3) in [Sh:863].

We should add to the history in [Sh:715] that Keisler [Ke87] connects dependent

theories and measures on the set of definable subsets of a model. Also, [Sh:715,

3.2], is 5.2 of Baldwin–Benedikt [BlBn00]; we should also add Poizat [Po81]

(and then [Sh:93, p. 202, 3] positively answering a question of Poizat). Poizat,

dealing with the number of complete types in S(N) finitely satisfied in M ≺ N ,

proves that the number is ≤ 2‖M‖ (when |T | ≤ ‖M‖) and asks whether it is

≤ (Ded(‖M‖|T |)) so by [Sh:93], it is. In 5.26 we follow [Sh:93] proving that we

can replace finitely satisfiable but does not split.
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Note that Baisalov and Poizat [BaPo98] proved a theorem concerning an

o-minimal T , which is a consequence of §1.

We thank Eyal Firstenberg, Aviv Tatarsky and the referee for many help-

ful corrections, and more recently, Itay Kaplan and friends for pointing out

deficiencies in §5.

Notation. As in [Sh:715] and, in addition

0.1. Definition: 1) For b̄ = 〈b̄t : t ∈ I〉 an infinite indiscernible sequence,

let tp′(b̄) = 〈 tp(b̄tn0 ˆ . . . ˆb̄tn
n−1

, ∅,C) : n < ω〉 where tn` <I tn`,k for

` < k < n < ω; the choice of the tn` ’s is immaterial.

2) Let “M is n-saturated” mean “M is ℵ0-saturated” for n < ω.

3) Let A/B mean tp(A,B), inside C or Ceq.

1. Expanding by making a type definable

What, in short, do we show here? We say that A is full over M , if every

p ∈ S<ω(M) is realized in A, (Definition 1.5). We let BA,M be the expansion

of M , for each ϕ(x̄, ā), ā ∈ ω>A, by the following `g(x̄)-place relation: all

realizations of ϕ(−, ā), i.e., by ϕ(M, ā) (see Definition 1.10(2)). We prove here

that if A is full over M , then Th(BM,A) has elimination of quantifiers (see

Claim 1.12(1), its proof depends only on 1.2, 1.7(2)). By this we prove that

Th(BM,A) is dependent (in 1.13 depending on 1.19(4), 1.12(1), (5) only), so for

this conclusion “A is full over M” is not needed.

1.1. Context: 1) T is a (first order complete) dependent theory in the

language L(τT ).

2) C = CT is a monster model for T .

1.2. Claim: Assume

(a) M a model

(b) D an ultrafilter on M , i.e. on the Boolean Algebra P(M).

Then for any c̄ ∈ ω>C and formula ϕ(x, y, c̄) we have: if the set {a ∈ M :

(∃y ∈ M)(C |= ϕ[a, y, c̄])} belongs to D, then it belongs to def2(D), see defini-

tion below.

1.3. Definition: 1) When D is an ultrafilter on a set B ⊆ C let

def2(D) = {A ∈ D: some member of def1(D) is included in A}, where
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def1(D) = {A ∈ D: for some c̄ ∈ ω>C and formula ψ(x, c̄) the set

ψ(M, c̄) = {a ∈M : C |= ψ(a, c̄)} belongs to D and is equal to A}.

2) Similarly, when D is an ultrafilter on mB,m < ω.

1.4. Remark: Note the following easy comments.

1) Of course, Claim 1.2 holds also for ϕ = ϕ(x̄, ȳ, c̄) when D an ultrafilter

on mM and m = `g(ȳ) because, e.g. just work in Ceq.

2) T is dependent if and only if T eq = Th(Ceq) is; this justifies the

statement above (in part (1)); and Th(C) is dependent if and only

if Th(C, c)c∈C is (for any C ⊆ C) and T dependent ⇒ Th(C � τ ′) is

dependent when τ ′ ⊆ τT .

3) def2 (D) is a filter on A.

4) In the proof of 1.2 the hypothesis “T dependent” is used only for de-

ducing that “ϕ(x, y, c̄) is dependent” which is naturally defined.

5) Recall the following (which is used in the proof):

(a) ∆ ⊆ L(τT ), means ∆ is a set of objects of the form ϕ(x̄), ϕ a

(first order) formula from L(τT ), x̄ a sequence of variables with

no repetitions including the free variables of ϕ, but changing the

variables is allowed here, i.e., there is no difference between ϕ(x)

and ϕ(y); we may write ϕ(x̄, ȳ) instead of ϕ(x̄ˆȳ)

(b) tp∆(ā, A) = {ϕ(x̄, b̄) : x̄ = 〈x` : ` < `g(ā)〉, ϕ(x̄, ȳ) ∈ ∆ and

C |= ϕ[ā, b̄] and b ∈ ω>A}

(c) 〈b̄t : t ∈ I〉 is ∆-indiscernible over B means that: I is a linear

order and if ϕ(x̄1, . . . , x̄n, ȳ) ∈ ∆, `g(x̄`) = `g(b̄t) for ` = 1, . . . , n

and t ∈ I and c̄ ∈ `g(ȳ)B then for any s1 <I · · · <I sn and

t1 <I · · · <I tn we have C |= “ϕ[b̄t1 , . . . , b̄tn , c̄] ≡ ϕ[b̄s1 , . . . , b̄sn
, c̄]”.

6) In the proof of Claim 1.2 we do not need to close ∆1 to ∆2, i.e., we can

let ∆2 = ∆1 provided that we redefine tp∆1(a,A) as

tp(a,A) ∩ {ϕ(a0, . . . , am−1, x, am+1, . . . , an) :ϕ(x0, . . . , xm−1, xm,

xm+1, . . . , xn−1) ∈ ∆}

or, more specifically, in (∗)1 from �1, inside the proof of �1, we

replace “a` realizes tp∆2(aw, . . . )” by “a` realizes {ϕ(a`0 , . . . , a`m−1 ,

x, aω+1, . . . , aω+n−1+m, b̄) : ϕ(x0, . . . , xn−1, ȳ) ∈ ∆1 and b̄ ∈ `g(ȳ)B,

m < n, `0 < · · · < `m−1 < ` and C |= ϕ[a`0 , . . . , a`m−1 , aω, aω+n+1, . . . ,

aω+n−1−m, b̄)}”.
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6 SAHARON SHELAH Isr. J. Math.

Proof. We shall use “T is dependent” only in the last sentence of the proof

toward contradiction. Assume that c̄, ϕ(x, y, c̄) form a counterexample.

So

~0 (i) the set A∗ = {a ∈ M : for some b ∈ M we have |= ϕ[a, b, c̄]}

belongs to D,

(ii) A∗ /∈ def2(D), that is, no A′ ∈ def1(D) is included in A∗.

By the choice of A∗ we can, for each a ∈ A∗, choose ba ∈ M such that

|= ϕ[a, ba, c̄]. LetD1 = D and letD2 be the following ultrafilter on 2M : X ∈ D2

if and only if X ⊆ 2M and for some A ∈ D we have {(a, ba) : a ∈ A∩A∗} ⊆ X .

We can choose 〈(aω+n, bω+n) : n < ω〉 from C such that

~1 for n1 < n2 < ω the pair (aω+n1 , bω+n1) realizes the type Av(M ∪

{aω+`, bω+` : ` ∈ (n1, n2]}, D2).

It follows that aω+n1 realizes the type Av(M ∪ {aω+`, bω+` : ` ∈ (n1, n2]}, D1)

and

~2 for n1 < n2, the element aω+n1 realizes the type Av(M ∪ {aω+` : ` ∈

(n1, n2]}, D);

~3 for n1 < n2 the triple (a2n1 , a2n1+1, b2n1+1) realizes the type Av(M ∪

{aω+2`, aω+2`+1, bω+2`+1 : ` ∈ (n1, n2]}, D3) for some ultrafilter D3 on
3M , the set of triples of members of M .

(Why? We define D3 := {X ⊆ 3M : {a ∈ M : {(b, c) ∈ M ×M :

(a, b, c) ∈ X} ∈ D2} ∈ D1}.)

(We use mainly ~1).

Now, clearly,

�0 〈(aω+n, bω+n) : n < ω〉 is an indiscernible sequence over M

�1 if ∆1 ⊆ L(τT ) is finite, then we can find n(∗) < ω and finite ∆2 ⊆ L(T )

such that

(∗)1 if n1 < ω and B ⊆M is finite and for each ` < n1 the element a` ∈

M realizes the type tp∆2(aω, {a0, . . . , a`−1}∪{aω+1, . . . , aω+n(∗)}∪

B), then 〈a` : ` < n1〉ˆ〈aω+` : ` < ω〉 is a ∆1-indiscernible sequence

over B (and even ∆2-indiscernible).

Note that this is close to [Sh:715, 1.16]; note that it follows from the

result (that even for n1 = ω this holds).

(Why does �1 hold? Let n(∗) be arity(∆1), i.e., the maximal number of free

variables of a formula from ∆1, it is finite as ∆1 is finite, so without loss of
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generality each ϕ ∈ ∆1 is ϕ(x̄), Rang(x̄) ⊆ {x` : ` < n(∗)}. Let ∆2 be the

closure of ∆1 under identifying and permuting the variables and let ∆2,k be

defined as ∆2 but we allow to add dummy variables from {x0, . . . , xk} to each

formula (we can use below ∆2 =
⋃

{∆2,k : k < ω}). We have to prove that for

this choice of n(∗) and ∆2 the assertion (∗)1 holds.

So assume n1 < ω and B, a` (for ` < n1) are as required in the assumption

of (∗)1. Now we prove, by induction on k ≤ n1, that

(∗)1k the sequences 〈aω+` : ` < n1 + n(∗)〉 and 〈a` : ` < k〉ˆ〈aω+` : ` <

n1 + n(∗) − k〉 realize the same ∆2,n1+n(∗)-type over B which means

that: if m ≤ n(∗), d̄ ∈ mB and ϕ(ȳ1, ȳ2) ∈ ∆2,n1+n(∗)+m, `g(ȳ1) =

n1 + n(∗), `g(ȳ2) = m then C |= ϕ[〈aω+` : ` < n1 + n(∗)〉, d̄] if and only

if C |= ϕ[〈a` : ` < k〉ˆ〈aω+` : ` < n1 + n(∗) − k〉, d̄]; note that we can

allow m ≤ n(∗).

For k = 0, the two expressions give the same sequence. Assume this holds

for k and we shall prove it for k + 1. First 〈a` : ` < k + 1〉ˆ〈aω+` : ` < n1 +

n(∗)−(k+1)〉 realize the same type as 〈a0, . . . , ak, aω+1, . . . , aω+n1+n(∗)−(k+1)〉,

simply because 〈aω+` : ` < ω〉 is an indiscernible sequence over M , by �0. Now

by the assumption of (∗)1 we know that ak, aω realizes the same ∆2-type over

B ∪ {a0, . . . , ak−1} ∪ {aω+1, . . . , aω+n1+n(∗)−k}.

As n(∗) is the arity of ∆1 hence also of ∆2 and from the definition of

∆2,n1+n(∗) it follows that the sequence

〈a0, . . . , ak−1, ak, aω+1, . . . , aω+n1+n(∗)−k−1〉

realizes over B the same ∆2,n1+n(∗)-type as the sequence

〈a0, . . . , ak−1, aω, aω+1, . . . , aω+n1+n(∗)−k−1〉

but by the induction hypothesis on k the latter realizes over B the same

∆2,n1+n(∗)-type as the sequence 〈aω , aω+1, . . . , aω+n1+n(∗)−1〉, hence (∗)1k+1 holds,

so we have carried the induction on k ≤ n1. Now the desired conclusion follows

from (∗)1m by �0 as each formula in ∆1 and even ∆2 has ≤ n(∗) free variables.)

�2 if ∆1 ⊆ L(τT ) is finite, then we can find n(∗) < ω and finite ∆2 ⊆ L(τT )

such that

(∗)2 if n1 < ω,B ⊆M is finite and for each ` < n1, a2` ∈M realizes

tp∆2
(aω, {a2m, a2m+1, b2m+1 : m < `} ∪ {aω+`, bω+` : ` = 1, . . . , n(∗)} ∪B)
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8 SAHARON SHELAH Isr. J. Math.

and 〈a2`+1, b2`+1〉 realizes

tp∆2
((aω, bω), {a2m, a2m+1, b2m+1 : m < `} ∪ {a2`}

∪ {aω+`, bω+` : ` = 1, . . . , n(∗)} ∪B)}),

then

〈(a2`, a2`+1, b2`+1) : ` < n1〉ˆ〈aω+2`, aω+2`+1, bω+2`+1 : ` < ω〉)

is ∆1-indiscernible over B (and even ∆2-indiscernible).

(Why? The proof is similar to the proof of �1 mainly replacing the use

of ~1 by ~3.)

�3 if B ⊆ M is finite, n∗ < ω and ∆ ⊆ L(τT ) is finite, then we can find

a ∈ M realizing the finite type q = tp∆(aω , B ∪ {aω+`, bω+` : ` =

1, . . . , n∗}) such that |= ¬(∃y ∈M)ϕ(a, y, c̄).

(Why? The set A := {a ∈ M : a realizes q, equivalently satisfies

the formula ∧q ∈ Av(C, D)} belongs to D because q is finite and the

choice of 〈aω+`, bω+` : ` < ω〉; moreover, it belongs to def1(D) by the

definition of def1(D) as ∧q is a formula. But def1(D) ⊆ def2(D) hence

A ∈ def2(D).

So by the assumption towards a contradiction and choice of A∗, i.e.,

by (∗)0, we have ¬(A ⊆ A∗) so there is a ∈ A such that a /∈ A∗ which

means that ¬(∃y ∈M)ϕ(a, y, c̄), so we are done.)

By the above and compactness (or use an ultrapower)

�4 there are N, a2n, a2n+1, b2n+1 (for n < ω) such that

(a) N is |T |+-saturated;

(b) a2n, a2n+1, b2n+1 ∈ N ;

(c) 〈an : n < ω〉 is an indiscernible sequence;

(d) 〈(a2n, a2n+1, b2n+1) : n < ω〉ˆ〈(aω+2n, aω+2n+1, bω+2n+1) : n < ω〉

is an indiscernible sequence;

(e) C |= ϕ[a2n+1, b2n+1, c̄];

(f) for no n < ω and b ∈ N do we have C |= ϕ[a2n, b, c̄].

(Why? By compactness it is enough to prove the following: for every n1 < ω

and finite ∆1 ⊆ L(τT ) to which ϕ belongs there are a2n, a2n+1, b2n+1 ∈ M for

n < n1 such that clauses (a)–(f) hold when we restrict ourselves to n < n1 and

∆1-types and replace N by M . We first choose a finite ∆2 ⊆ L(τT ) as in �2,

and then choose (a2n, a2n+1, b2n+1) by induction on n such that the demand in
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(∗)2 of �2 hold. Arriving to n, choose a2n ∈ M such that in addition, clause

(f) holds, this is possible by �3, and then choose (a2n+1, b2n+1) ∈ 2M recalling

that (aω, bω) realizes Av(M ∪ {aω+n, bω+n : 1 ≤ n < ω}, D2). So we are done

proving �4.)

Next, by clause (d) of �4,

�5 there is an automorphism F of C such that n < ω implies

F ((aω+2n, aω+2n+1, bω+2n+1)) = (a2n, a2n+1, b2n+1).

Hence we can find b2n ∈ C for n < ω such that 〈(an, bn) : n < ω〉 is an indis-

cernible sequence (over ∅, not necessarily over c̄!) and as N is |T |+-saturated,

without loss of generality, b2n ∈ N for n < ω. But C |= ϕ[a2n+1, b2n+1, c̄]

for n < ω so as T is dependent for every large enough n < ω, we have

C |= ϕ[a2n, b2n, c̄]. But as b2n ∈ N clearly {an, bn : n < ω} ⊆ N hence

n < ω ⇒ C |= ϕ[a2n, b2n, c̄] contradicts clause (f) of �4. 1.2

Recall

1.5. Definition: For A ⊆ C(⊆ C), we say that C is full over A when: for every

m < ω and p ∈ Sm(A), there is c̄ ∈ mC which realizes p.

1.6. Observation: If

(a) D1, D2 are ultrafilters on mA,

(b) A ⊆ C,

(c) C is full over A,

(d) Av(C,D1) = Av(C,D2).

Then def`(D1) = def`(D2) for ` = 1, 2.

Proof. Easy.

1.7. Claim: 1) Assume

(a) M ⊆ C

(b) D0 is an ultrafilter on m0M

(c) b̄0 realizes Av(C,D0)

(d) tp(b̄0ˆb̄1, C) is f.s. in M and m1 = `g(b̄1)

(e) C is full over M .

Then for some ultrafilter D on m0+m1M we have

(α) Av(C,D) = tp(b̄0ˆb̄1, C)

(β) the projection of D on m0M is D0.
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10 SAHARON SHELAH Isr. J. Math.

2) Assume that clauses (a) and (e) of part (1) hold. Then for any c̄ ∈ ω>C

and formula ϕ(x̄, y, z̄) ∈ L(τT ), `g(z̄) = `g(c̄) there are ψ(x̄, z̄′) and d̄ of length

`g(z̄′) from C, (and even from C) such that {ā ∈M : (∃y ∈M)(|= ϕ[ā, y, c̄])} =

{ā ∈M :|= ψ(ā, d̄)}.

Proof. 1) Let

E0 =
{

{ā ∈ m0+m1M : ā � m0 ∈ X} : X ∈ D0

}

E1 =
{

{ā ∈ m0+m1M : C |= ϕ[ā; c̄]} : ϕ(x̄; ȳ) ∈ L(τT )

`g(x̄) = m0 +m1, `g(ȳ) = `g(c̄), c̄ ∈ ω>C and C |= ϕ[b̄0
_b̄1; c̄]

}

.

Clearly, it suffices to prove that there is an ultrafilter on m0+m1M extending

E0 ∪ E1. For this it suffices to show that any finite subfamily of E0 ∪ E1 has a

non-empty intersection. But E0 is closed under finite intersections as D0 is an

ultrafilter on m0M and E1 is closed under finite intersections as L(τT ) is closed

under conjunctions, so it suffices to prove that X0 ∩X1 6= ∅ when

(i) X0 = {ā ∈ m0+m1M : ā � m0 ∈ X} ∈ E0 for some X ∈ D0

(ii) X1 = {ā ∈ m0+m1M : C |= ϕ[b̄0
_b̄1; c̄]} ∈ E1, where ϕ(x̄, ȳ) and c̄ are

as in the definition of E1.

As tp(b̄0ˆb̄1, C) is finitely satisfiable in M (= assumption (d)), clearly there is

an ultrafilter D′
1 on m0+m1M such that Av(C,D′

1) = tp(b̄0ˆb̄1, C).

Let D′
0 be the projection of D′

1 to m0M , i.e., {Y ⊆ m0M : {ā ∈ m0+m1M :

ā � m0 ∈ Y } ∈ D′
1}. Clearly, D′

0 is an ultrafilter over m0M . We have C |=

ϕ[b̄0, b̄1; c̄], so X1 ∈ D′
1, hence X ′

0 = {ā � m0 : ā ∈ X1} ∈ D′
0; which implies

that the set X ′′
0 := {ā0 ∈ m0M : for some ā1 ∈ m1M we have ā0ˆā1 ∈ X1, i.e.,

|= ϕ[ā0, ā1; c̄]} belongs to D′
0.

By 1.2 (and 1.4(2)) it follows that X ′′
0 includes some Y ′′

0 ∈ def1(D
′
0). Now

Av(C,D0) = tp(b̄0, C) = Av(C,D′
0), because the first equality holds as by

assumption (b) the sequence b̄0 realizes Av(C,D0) and second equality holds

as b̄0ˆb̄1 realizes Av(C,D′
1) and the choice of D′

0. But by assumption (e) every

p ∈ S<ω(M) is realized by some sequence from C. Hence, by Observation 1.6

we have def2(D0) = def2(D
′
0). But Y ′′

0 ∈ def1(D
′
0) so Y ′′

0 ∈ def2(D0) hence

Y ′′
0 ∈ D0. By the choice of Y ′′

0 we have Y ′′
0 ⊆ X ′′

0 ⊆ m0M so by the previous

sentence X ′′
0 ∈ D0, but by clause (i) above also X ∈ D0 hence X ∩X ′′

0 ∈ D0, so

we can find ā0 ∈ X ∩X ′′
0 ⊆ m0M . By the definition of X ′′

0 there is ā1 ∈ m1M

such that C |= ϕ[ā0, ā1; c̄]. Now ā0ˆā1 ∈ X1, by the definition of X1 from clause
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(ii) and ā0ˆā1 ∈ X0, because ā0 ∈ X and X0’s definition from clause (i). So

ā0ˆā1 ∈ X0 ∩X1. Hence, X0 ∩X1 6= ∅ and we are done.

2) Let ϕ∗(x̄, y, z̄) ∈ L(τT ) and c̄∗ ∈ `g(z̄)C and we should find ψ(x̄, z̄′), d̄ as

required. Assume that c̄ ∈ `g(z̄)C realizes tp(c̄∗,M), for our purpose we may

assume, without loss of generality, that c̄∗ = c̄. For any formula ψ(x̄, z̄′) ∈ L(τT )

and d̄ ∈ `g(z̄′)
C let Yψ(x̄,d̄),M = {ā ∈ `g(x̄)M : C |= ψ[ā, d̄]} and let Xϕ(x̄,y,c̄),M =

{ā ∈ `g(x̄)M : C |= ϕ[ā, b, c̄] for some b ∈M}.

Lastly, let P = {Yψ(x̄,d̄),M : ψ(x̄, ȳ) ∈ L(τT ), d̄ ∈ `g(z̄)C and Yψ(x̄,d̄),M ⊆

Xϕ(x̄,y,c̄),M}. Clearly, P is closed under finite unions and is a family of subsets

of M . Also if Xϕ(x̄,y,c̄),M is equal to some member of P then we are done, so

assume toward contradiction that this fails. So as Xϕ(x̄,y,c̄) ⊆ M , there is an

ultrafilter D on M such that Xϕ(x̄,y,c̄),M ∈ D but D is disjoint to P which

contradicts 1.2. 1.7

1.8. Conclusion: Assume

(a) M ≺M1

(b) M1 is ‖M‖+-saturated.

Then {A : A/M1 is f.s. in M} has amalgamation and JEP (the joint embedding

property) by elementary maps from C to C which are the identity on M1.

Proof. The joint embedding property is trivial. For the amalgamation, by com-

pactness, we should consider finite sequence ā0, ā1, ā2 such that tp(ā0ˆā`,M1)

is f.s. in M for ` = 1, 2 and we should find sequences b̄0, b̄1, b̄2 such that

`g(b̄`) = `g(ā`) for ` = 0, 1, 2 and tp(ā0ˆā`,M1) = tp(b̄0ˆb̄`,M1) for ` = 1, 2

and tp(b̄0ˆb̄1ˆb̄2,M1) is f.s. in M .

Let m` = `g(a`), let D0 be an ultrafilter on m0M such that tp(ā0,M1) =

Av(M1, D0). By 1.7(1) for ` ∈ {1, 2} there is an ultrafilter D` on m0+m`M such

that

(∗)1 tp(ā0ˆā`,M1) is Av(M1, D`);

(∗)2 the projection of D` on m0M is D0.

Let m = m0 +m1 +m2 and let D′
1 be the filter on mM consisting of {Y ⊆ mM :

for some X ∈ D1 for every ā ∈ mM we have ā � (m0 + m1) ∈ X ⇒ ā ∈ Y }.

Let D′
2 be the filter on mM consisting of {Y ⊆ mM : for some X ∈ D2 for

every ā ∈ mM we have (ā � m0)ˆ(ā � [m0 + m1,m)) ∈ X ⇒ ā ∈ Y }. Easily,

Y1 ∈ D′
1 and Y2 ∈ D′

2 ⇒ Y1 ∩ Y2 6= ∅ because D1, D2 has the same projection

on m0M .
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Hence, we can find an ultrafilter D∗ on m0+m1+m2M which extends D′
1∪D

′
2.

Hence, if b̄0ˆb̄1ˆb̄2 realizes Av(M1, D
∗), then b̄0ˆb̄` realizes tp(ā0ˆā`,M1) for

` = 1, 2. This completes the proof. 1.8

1.9. Discussion: Next we shall deduce the promised results. If M+ is an

expansion of a model M ≺ C by the restriction of relations definable in C (with

parameters), then Th(M+) is still dependent. Moreover, if we do this for close

enough family of such relations then Th(M+) has elimination of quantifiers.

Toward formulating this result we define several extensions of T .

1.10. Definition: Let M ≺ C, A ⊆ C and for simplicity τT has predicate symbols

only.

1) We define a universal first order theory TM,A as follows

(a) the vocabulary is τM,A = {Pϕ(x̄,ā) : ϕ ∈ L(τT ) and ā ∈ `g(ȳ)A} ∪

{ca : a ∈M} with

(i) ca an individual constant

(ii) Pϕ(x̄,ā) being a predicate with arity `g(x̄); but we identify

PR(x̄) with R (where x̄ = 〈x` : ` < arity(R)〉) so τT ⊆ τM,A)

(b) TM,A is the set of universal (first order) sentences satisfied in

BM,M,A, see part (2).

2) Assume M ⊆ C ≺ C and tp(C,M ∪ A) is f.s. in M (e.g., C = M).

We define B = BC,M,A as the τM,A-model with universe C such that

PB

ϕ(x̄,ā) = {b̄ ∈ `g(x̄)C : C |= ϕ[b̄, ā]} for ϕ(x̄, ȳ) ∈ L(τT ), ā ∈ `g(ȳ)(A)

and such that cBa = a for a ∈M . If C = M we may omit C.

3) A model B of TM,A is called quasi-standard if cBa = a for a ∈M .

3A) A model B of TM,A is called standard if it is BC,M,A for some C,M ⊆

C ⊆ C satisfying tp(C,M ∪A) is finitely satisfiable in M .

4) Let T ∗
M,A be the model completion of TM,A (well defined only if it

exists!)

1.11. Observation: 1) If M ⊆ C and tp(C,M ∪ A) is finitely satisfiable

in M , then BC,M,A is a model of TM,A.

2) If B is a model of TM,A, then B is isomorphic to the standard model

B = BC,M,A of TM,A for some C.

3) Moreover, if B1 ⊆ B2 are models of TM,A and B1 is standard, then

B2 is (quasi standard and is) isomorphic over B1 to some standard B′
2

satisfying B1 ⊆ B
′
2.
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4) If A1 ⊆ A2,M ⊆ C and tp(C,M ∪ A2) is f.s. in M , then BC,M,A1 is a

reduct of BC,M,A2 .

5) If M ⊆ C1 ⊆ C2 and tp(C2,M ∪ A) is f.s. in M , then BC1,M,A is a

submodel of BC2,M,A (and tp(C1,M ∪ A) is finitely satisfiable in M ,

hence BC1,M,A is well-defined).

Proof. Easy.

1.12. Claim: Assume A is full over M .

1) BM,M,A is a model of TM,A with elimination of quantifiers; in fact,

every subset of m(BM,M,A), i.e., of m|M | definable in BM,M,A by some

first order formula with parameters, is definable by an atomic formula

R(x0, . . . , xm−1) in this model.

2) If tp(C,A) is f.s. in M , then we can find M+ such that

(a) M ∪ C ⊆M+ ≺ C

(b) tp(M+, A) is f.s. in M

(c) BM+,M,A is an elementary extension of BM,M,A.

3) TM,A has amalgamation and JEP.

4) Th(BM,M,A) is the model completion of TM,A so is equal to T ∗
M,A (which

is well-defined).

5) T ∗
M,A is a dependent (complete first order) theory.

Proof. 1) By Claim 1.7(2), Definition 1.10(1) and A being full over M .

2) E.g., use an ultrapower Cκ/D of C with κ ≥ |T | + |C| + |A|, D a regular

filter on κ and let j be the canonical embedding of C into Cκ/D. So we can

find f : C → Mκ/D such that f ∪ (j � A) is an elementary mapping, i.e., a

(C,Cκ/D)-elementary embedding, now it should be clear.

3) The JEP is trivial because of the individual constants ca(a ∈ M). The

amalgamation property holds by 1.8 as we can replace M1 there by any set full

over M .

4) By parts (1),(2),(3) we have already proved.

5) As BM,M,A is a model of it and reflects.

That is, assume ψ(x, ȳ) is a formula with the independence property in T ∗
M,A.

Then, by part (1), without loss of generality, ψ is an atomic relation hence for

some formula ϕ(x, ȳ, z̄) ∈ L(τT ) and c̄ ∈ `g(z̄)A, for every a, b̄ from M,C |=

ϕ[a, b̄, c̄] if and only if BM,M,A |= ψ(a, b̄).
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By the choice of ψ(x, ȳ), for every n < ω there are ān` ∈ `g(ȳ)(BM,M,A) =
`g(ȳ)(M) for ` < ω and bw ∈ BM,M,A, i.e., bnw ∈M for w ⊆ {0, . . . , n− 1} such

that, for every w ⊆ {0, . . . , n−1} and ` < n, we have BM,M,A |= ψ[bnw, a
n
` ]

if(`∈w).

Hence, C |= ϕ[bnw, ā
n
` , c̄]

if(`∈w). So ϕ(x; ȳ, z̄) has the independence property in

T . 1.12

1.13. Conclusion: Assume M ≺ C and A ⊆ C. Then Th(BM,M,A) is a depen-

dent (complete first order) theory.

Proof. By 1.11(4) and 1.12(5) it is the reduct of a dependent (complete first

order) theory. More fully, let A1 be full over M such that A ⊆ A1 and let

κ = |A1|+ |T |. Clearly if Th(BM,MA1 ) is dependent, then so is Th(BM,M,A) =

Th(B′). By 1.12(5) we are done. 1.13

1.14. Definition: 1) For any model B (not necessarily of T ) and A ⊆ B let

Bm[A,B] be the family of subsets of mA of the form {ā ∈ mA : ϕ(x̄, ā) ∈ p} for

some p ∈ Sm(A,B).

2) If B ≺ C we may omit B.

Remark: If B = C (or just if B is |A|+-saturated), then Bm[A,B] = {{ā : B |=

ϕ[b̄, ā]} : ϕ(x̄, ȳ) ∈ L(τB) and b̄ ∈ `g(ȳ)
B}.

1.15. Question: Assume M ⊆ A ⊆ C and B a standard model of TM,A and

N = B � τT . Then do we have

(∗)T,TM,A
for any ultrafilter D0 on B[N,N ], the number of ultra-

filters D1 on B[N,B] extending it is at most 2|T |+|A|?

1.16. Remark: 1) For complete (first order theories) T ⊆ T1, the condition

(∗)T,T1 of 1.15 has affinity to conditions like “any model of T has < 1 or

≤ ℵ0 or < ‖M‖ expansions to a model of T1”. What is the syntactical

characterization?

2) When is BN,M,A a model of T ∗
M,A? Assume T ∗

M,A has elimination of

quantifiers does the following condition implies it, i.e., implies BN,M,A |=

T ∗
M,A?

�N,M,A every formula over N ∪A which does not fork over N is

realized in N .
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1.17. Discussion: 1) Note that in the proof 1.2 we use “T is dependent”

just to deduce that the formula ϕ(x, y, z̄) is dependent, i.e., for some

n = nϕ(x,y,z̄)

~ C |= ¬(∃x0y0, . . . , xn−1yn−1)
∧

w⊆n

(∃z̄)
∧

`<n

ϕ(x`, y`, z̄)
if(`∈w).

In the proof we can use finite ∆1,∆2 large enough for ϕ(x, y, c̄), i.e.,

such that for a suitable n:

~2 ∆1 =

{

(∃z̄)

(

∧

`<n

ϕ(x0, y0, . . . , xn−1, yn−1, z̄)
if(`∈w)

)

: w ⊆ n

}

.

In particular we need

~3 there is ∆1-indiscernible sequence 〈(a`, b`) : ` < 2n〉 and c̄′ such

that C |= ϕ[a`, b`, c̄
′] if and only if ` is odd

~4 ∆2 ={(∃y0, y2, . . . , y2n−2)(∧q(x0, y0, . . . , x2n−1, y2n−1) : q is a com-

plete ∆1-type of a ∆1-indiscernible sequence of pairs of length 2n},

hence,

~5 there is no ∆2 indiscernible sequence

〈(a2`, a2`+1, b2`+1) : ` < n〉ˆ〈(aω+2`, aω+2`+1, bω+2`+1) : ` < n〉

such that C |= ϕ[a2`+1, b2`+1, c̄] for ` < n and {ā2`, a2`, b2`+1 : ` <

n} ⊆M and for each ` < n for no b′ ∈M do we have |= ϕ[a2`, b
′, c̄].

2) So, looking at the proof and 1.7(2)

~6 there is a finite set ∆ = ∆∗
ϕ of formulas of the form ψ(x, z̄) com-

putable from ϕ(x, y, z̄) (and nϕ) such that:

(a) if M, c̄,D are as in 1.2, then for some c̄′ the set ψ(M, c̄′)

belongs to D and is included in {a ∈ M : for no b ∈ M do

we have |= ϕ[a, b, c̄]}

(b) {a ∈ M : (∃b ∈ M)(ϕ(a, b, c̄)} is a finite union of sets from

{ψ(M, C̄) : c̄′ ∈ z̄′C and ψ(x, z̄′) ∈ ∆}.

If in ~6(b) there is a bound n on the size of the set not depending on

(M, c̄), let ∆∗
ϕ = {ψ`(x̄, z̄`) : ` < n∗} and let ψ∗(x̄, z̄) =

∧

`>n z
n =

z` → ψ`(x, z̄`) so in ~6, without loss of generality, ∆∗
ϕ = {ψ∗

ϕ(x̄, z̄∗)}.

3) We elaborate; we know that if I = {a ∈ mM : there is b ∈M such that

C |= ϕ[a, b, c̄]} where ϕ = ϕ(x, y, z̄) ∈ L(τT ), c̄ ∈ C,M ≺ C, then for

some ψ(x, z̄′) ∈ L(τT ) and c̄′ ∈ `g(z̄′)C we have I = ψ(M, c̄′). Can we

characterize ψ? Yes, but not so well. Toward proving this, first let n(∗)
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be minimal, such that there are no a`, b`, (` < n(∗), c̄η, (η ∈ η(∗)2) from

C such that M |= ϕ(a`, b`, c̄η) if and only if η(`) = 1.

Let ψn(x0, y0, . . . , xn(∗)−1ˆyn(∗)−1)=(∃z̄)
∧

`<n(∗) ϕ(x`, y`, z̄)
η(`) for η ∈ n(∗)2

and ∆1 = {ψη(x̄0, ȳ0, . . . , x̄n(∗), ȳn(∗)−1)}. Let ∆2 be the closure of ∆1 under

permuting the variables.

Let ∆3,k be the set of formulas of the form

ϑ(y2k(∗);

x0, y0, x1, y1, . . . , x2k−1, y2k−1 − y2k;

x2k+1, y2k+1, . . . , x2n(∗)−2, x2n(∗)−1, y2n(∗)−1) = (∃y2k+2) . . . (∃y2n(∗)2)ψ
∗

where ψ∗ is a conjunction or formula from ∆2 and their negation.

Now ψ belongs to ∆3,k for some k < n(∗). (In fact, we could be somewhat

more specific).

Why? We work with
⋃

∆3,` choose a2`, a2`+1, k2`+1 as in the proof for it.

Then we choose b2`+1 ∈ M by induction on ` < n(∗) such that 〈(a`, b`) : ` <

2n(∗)〉 is ∆1-indiscernible. So for every η ∈ (∗)2 we have

(∃z̄)
∧

`<n(∗)

ϕ(a`, b`, z̄)
η(`).

2. More on indiscernible sequences

2.1. Context: 1) T is a (first order complete) dependent theory.

2) C is the monster model of T .

This section is complimentary to [Sh:715, §5] so recall the definition.

2.2. Definition: Let ā` = 〈ā`t : t ∈ I`〉 be an indiscernible sequence which is

endless (i.e., I` having no last element) for ` = 1, 2.

1) We say that ā1, ā2 are perpendicular when:

(∗) if b̄`n realizes Av({b̄km: we have m < n and k ∈ {1, 2} or we have

m = n and k < `} ∪ ā1 ∪ ā2, ā`) for ` = 1, 2, then b̄1, b̄2 are

mutually indiscernible (i.e., each is indiscernible over the set of

elements appearing in the other) where b̄` = 〈b̄`n : n < ω〉 for

` = 1, 2.

We define “∆-perpendicular” in the obvious way.

2) We say ā1, ā2 are equivalent and write ≈ if for every A ⊆ C we have

Av(A, ā1) = Av(A, ā2).
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3) If ā1 ⊆ A, let dual-cf(ā1, A) = Min{|B| : B ⊆ A and no c̄ ∈ ω>A

realizes Av(B, ā1)}; we usually apply this when A = M .

2.3. Claim: Assume

(α) b̄ = 〈b̄t : t ∈ I0〉 is an infinite indiscernible sequence over A.

(β) B ⊆ C.

Then we can find I1, J and b̄t for t ∈ I1\I0 such that:

(a) I0 ⊆ I1, I1\I0 ⊆ J ⊆ I1 and |I1\I0| ≤ |J | ≤ |B| + |T |

(b) b̄′ = 〈b̄t : t ∈ I1〉 is an indiscernible sequence over A

(c) if I2 is a J-free extension of I1 (see below) and b̄t for t ∈ I2\I1 are such

that b̄′′ = 〈b̄t : t ∈ I2〉 is an indiscernible sequence over A, then

~ if n < ω, s̄, t̄ ∈ n(I2) and s̄ ∼J t̄ (see below), then b̄s̄, b̄t̄ realize the

same type over A ∪B where b̄〈t`:`<n〉 = b̄t0ˆb̄t1ˆ . . . ˆb̄tn−1.

2.4. Definition: 1) For linear orders J, I1, I2 we say that I2 is a J-free ex-

tension of I1 when: J ⊆ I1 ⊆ I2 and

~ if t ∈ I2\I1 and s ∈ J , then for some t′ ∈ I1 we have I2 |= s < t′ < t

or I2 |= t < t′ < s.

2) For linear orders J, I1, I2 we say that I2 is a strong J-free extension of

I1 when J ⊆ I1 ⊆ I2 and:

~ if t ∈ I2\I1, then for some s1, s2 ∈ I1 we have s1 <I2 t <I2 s2 and

[s1, s2]I1 ∩ J = ∅.

3) For linear orders J ⊆ I and s̄, t ∈ nI, let s̄ ∼J t̄ mean that (s` <I sk) ≡

(t` <I tk) and (s` <I r) ≡ (t` <I r) and (r <I s` ≡ r <I t`) whenever

`, k < n, r ∈ J). Similarly, for s̄, t̄ ∈ αI.

2.5. Remark: In 2.3 why do we need “J-free”? Let M = (R, <,QM ), QM =

Q, B = {0}, A = ∅, I0 the irrationals, bt = t for t ∈ I0.

Proof. We try to choose by induction on ζ < λ+ where λ = |T |+ |B| a sequence

b̄ζ = 〈b̄t : t ∈ Jζ〉 and together with b̄ζ+1 we choose nζ , s̄ζ , t̄ζ , J
′
ζ , ϕζ , c̄ζ , d̄ζ such

that

(a) Jζ is a linear order, increasing continuous with ζ;

(b) J0 = I0 (so b̄0 = b̄), Jε+1\Jε is finite so |Jε\I0| < |ε|+ + ℵ0;

(c) b̄ζ is an indiscernible sequence over A;

(d) J ′
ζ ⊆ Jζ , Jζ = I0 ∪ J ′

ζ , J
′
ζ is increasing continuous with ζ and |J ′

ζ | <

|ζ|+ + ℵ0;
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(e) if ζ = ε+ 1, then

nε < ω, s̄ε ∈
nε(J ′

ζ), t̄ε ∈
nε(J ′

ζ), ϕε = ϕε(x̄0, . . . , x̄nε−1,

c̄ε, d̄ε), c̄ε ⊆ B, d̄ε ⊆ A and J ′
ζ = J ′

ε ∪ (s̄εˆt̄ε);

(f) s̄ε ∼J′
ε
t̄ε∧ |= ϕε[b̄s̄ε

, c̄ε, d̄ε] ∧ ¬ϕε[b̄t̄ε , c̄ε, d̄ε];

(g) Jζ+1 is a J ′
ζ-free extension of Jζ .

If we succeed, for some unbounded w ⊆ λ+ and n∗, ϕξ, c̄
∗ and u for every ε ∈ w

we have nε = n∗, ϕε = ϕ∗, c̄ε = c̄∗ and u = {` < n∗ : sε,` ∈ J ′
ζ}. Now let

J∗ =
⋃

{J ′
ζ : ζ < λ+}, so every J ′ ⊆ J∗ of cardinality ≤ λ is included in J ′

ζ for

some ζ < λ+ and we get contradiction to clause (b) of [Sh:715, 3.2], hence we

fail, i.e., we cannot choose for some ζ. But we can choose b̄ζ = 〈bt : t ∈ Jζ〉, if

ζ = 0 by clause (b) and if ζ is a limit ordinal by clause (a). So ζ = ε+1, we have

chosen b̄ = 〈b̄t : t ∈ Jζ〉 but we cannot choose Jζ+1, b̄
ζ+1, nζ , s̄ζ , t̄ζ , J

′
ζ , ϕζ , c̄ζ , d̄ζ

as required. Then b̄ε is as required. 2.3

The aim of 2.6 and 2.9 below is to show a complement of [Sh:715, §5]; that

is, in the case of small cofinality, what occurs in one cut is the “same” as what

occurs in others.

2.6. Claim: Assume

(a) µ ≥ |T |;

(b) I` for ` < 4 are pairwise disjoint linear orders;

(c) I` = ∪β<µ+Iβ` , I
β
` (strictly) increasing with β and |Iβ` | ≤ µ for ` < 4;

(d) ` ∈ {0, 2} ⇒ Iβ` an end segment of I`;

(e) ` ∈ {1, 3} ⇒ Iβ` is an initial segment of I`;

(f) I = I0 + I1 + I2 + I3 and Iβ = Iβ0 + Iβ1 + Iβ2 + Iβ3 ;

(g) 〈b̄t : t ∈ I〉 is an indiscernible sequence.

Then we can find a limit ordinal β(∗) < µ+ and 〈b̄∗t : t ∈ I〉 such that:

(A) b̄∗t = b̄t if t ∈ I\Iβ(∗);

(B)1 〈b̄∗t : t ∈ I\I
β(∗)
0 \I

β(∗)
1 〉 is an indiscernible sequence;

(B)2 〈b̄∗t : t ∈ I\I
β(∗)
2 \I

β(∗)
3 〉 is an indiscernible sequence;

(C)1 tp∗(〈b̄
∗
t : t ∈ I

β(∗)
0 ∪ I

β(∗)
1 〉,

∪ {b̄∗t : t ∈ (I\Iβ) ∪ I
β(∗)
2 ∪ I

β(∗)
3 ∪ (I

β(∗)+ω
0 \I

β(∗)
0 ) ∪ (I

β(∗)+ω
1 \I

β(∗)
1 )})

` tp∗(〈b̄
∗
t : t ∈ I

β(∗)
0 ∪ I

β(∗)
1 〉,∪{b̄∗t : t ∈ (I\Iβ(∗)) ∪ I

β(∗)
2 ∪ I

β(∗)
3 })

for any β ∈ [β(∗) + ω, µ+);
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(C)2 tp∗(〈b̄
∗
t : t ∈ I

β(∗)
2 ∪ I

β(∗)
3 〉,∪{b̄∗t : t ∈ (I\Iβ) ∪ I

β(∗)
0 ∪ I

β(∗)
1

∪ (I
β(∗)+ω
2 \I

β(∗)
2 ) ∪ (I

β(∗)+ω
3 \I

β(∗)
3 )}) `

tp(〈b∗t : t ∈ I
β(∗)
2 ∪ I

β(∗)
3 〉,∪{b̄∗t : t ∈ (I\Iβ(∗)) ∪ I

β(∗)
0 ∪ I

β(∗)
1 })

for any β ∈ [β(∗) + ω, µ+);

(D)1 〈b̄∗t : t ∈ I0\I
β(∗)
0 〉 is an indiscernible sequence over

∪{b̄∗t : t ∈ I
β(∗)
0 ∪ I1 ∪ I2 ∪ I3};

(D)2 〈b̄∗t : t ∈ (I1\I
β(∗)
1 ) + (I2\I

β(∗)
2 )〉 is an indiscernible sequence over

∪{b̄∗t : t ∈ I0 ∪ I
β(∗)
1 ∪ I

β(∗)
2 ∪ I3};

(D)3 〈b̄∗t : t ∈ I3\I
β(∗)
3 〉 is an indiscernible sequence over

∪{b̄∗t : t ∈ I0 ∪ I1 ∪ I2 ∪ I
β(∗)
3 }.

2.7. Remark: What occurs if T is stable (or just b̄ is)? We get something like

{b̄∗t : t ∈ I
β(∗)
0 ∪ I

β(∗)
1 } = {b̄∗t : t ∈ I

β(∗)
2 ∪ I

β(∗)
3 }.

Proof. For simplicity assume I0
` = ∅.

We choose by induction on n < ω an ordinal β(n) and 〈b̄nt : t ∈ I〉 such that:

(α) β(n) < µ+, β(0) = 0, β(n) + ω ≤ β(n+ 1);

(β) b̄nt = b̄t if t ∈ I\Iβ(n) or if n = 0;

(γ)1 〈b̄nt : t ∈ I\I
β(n)
0 \I

β(n)
1 〉 realizes the same type as 〈b̄t : t ∈I\I

β(n)
0 \I

β(n)
1 〉;

(γ)2 〈b̄nt : t ∈I\I
β(n)
2 \I

β(n)
3 〉 realizes the same type as 〈b̄t : t ∈I\I

β(n)
2 \I

β(n)
3 〉;

(δ)1 if n is even, then:

(1) b̄n+1
t = b̄nt for t ∈ I\I

β(n)
2 \I

β(n)
3 ;

(2) if β(n+1) < β < µ+ then the type which 〈b̄n+1
t : t ∈ I

β(n)
2 ∪ I

β(n)
3 〉

realizes over ∪{b̄nt : t ∈ (I0\I
β
0 ) ∪ I

β(n+1)
0 ∪ (I1\I

β
1 ) ∪I

β(n+1)
1 ∪

(I2\I
β
2 )∪ (I

β(n+1)
2 \I

β(n)
2 )∪ (I3\I

β
3 )∪ (I

β(n+1)
3 \I

β(n)
3 )} has a unique

extension over ∪{b̄nt : t ∈ I\I
β(n)
2 \I

β(n)
3 };

(3) b̄n+1
t = bnt if t ∈ I

β(k)
2 ∪ I

β(k)
3 , k < n

(δ)2 if n is odd like (δ1) inverting the roles of (I0, I1), (I2, I3);

(ε) 〈b̄nt : t ∈ I〉 satisfies clauses (D)1, (D)2, (D)3 of the claim with β(n)

instead of β(∗).

The induction step is as in the proof of 2.3 (though we use the finite character

for the middle clause (2) of clauses (δ)1, (δ)2).

Alternatively, letting n be even we try to choose βn(ε), b̄
n,ε = 〈b̄n,εt : t ∈

I
β(n)
2 + I

β(n)
3 〉 by induction on ε ≤ µ+ such that:

⊙

(a) βn(ε) < µ+;

(b) βn(0) = β(n);
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(c) βn(ε) is increasing and continuous;

(d) ζ < ε⇒ tp(b̄n,ε,∪{bnt : t ∈ (I\Iεβn(ε)) ∪ Iβn(ζ)}) `

tp(b̄n,ζ ,∪{b̄nt : t ∈ (I\Iβn(ε)) ∪ Iβn(ζ)});

(e) if ε = ζ + 1, then (δ)1(2) fails if we let

b̄n+1
t =







bnt if t ∈ I\I
β(n)
2 \I

β(n)
3

b̄n,ζt if t ∈ I
β(n)
2 ∪ I

β(n)
3

.

If we succeed to carry the induction, by [Sh:715], for some ε, the sequences

〈b̄nt : t ∈ I
βn(ε)
0 〉, 〈b̄nt : t ∈ I

βn(ε)
1 + I

βn(ε)
2 〉, 〈b̄nt : t ∈ I

βn(ε)
3 〉 are mutually

indiscernible over
⋃

{b̄n,µ
+

t : t ∈ I
β(n)
2 + I

β(n)
3 } ∪ {bnt : t ∈ (I\Iβn(ε))} (because

〈b̄t : t ∈ I0\I
βn(ε)
0 〉, 〈b̄t : t ∈ (I1\Iβn(ε)) + I2\I

βn(ε)
2 〉, 〈b̄t : t ∈ I3\I

βn(ε)
3 〉 are

mutually indiscernible, recalling (β).

This contradicts (e). So we cannot complete the induction. We certainly

succeed for ε = 0, and there is no problem for limit ε ≤ µ+. So for some

ε = ζ + 1 we have success for ζ and cannot choose for ε. We define b̄n+1
i as in

(e) of
⊙

above, and choose β(n+ 1) ∈ [βn(ε), µ
+) such that clauses (ε) holds.

Let β(∗) =
⋃

{β(n) : n < ω} < µ+, b̄∗t is b̄nt for every n large enough (exists

by clause (β) if t ∈ I\Iβ(∗) and by (δ)` (1) and (3) if t ∈ Iβ(∗)). Clearly, we are

done. 2.6

2.8. Claim: Assume

(a) I, Iβ , I`, I
β
` for ` < 4, β < µ+ are as in the assumption of claim 2.6;

(b) β(∗) and 〈b̄∗t : t ∈ I〉 are as in the conclusion of claim 2.6;

(c) J+ = J+
0 + J+

1 + J+
2 + J+

3 + J+
4 linear orders;

(d) J = J0 + J1 + J2 + J3 + J4 linear orders;

(e) J1 = J+
1 + I

β(∗)
0 + I

β(∗)
1 and J3 = I

β(∗)
2 + I

β(∗)
3 ;

(f) J0 ⊆ J+
0 and I0\I

β(∗)
0 ⊆ J+

0 ;

(g) J2 ⊆ J+
2 and (I1\I

β(∗)
1 ) + (I2\I

β(∗)
2 ) ⊆ J2;

(h) J4 ⊆ J+
4 and (I3\I

β(∗)
3 ) ⊆ J+

4 ;

(i) 〈b̄∗t : t ∈ J+〉 is an indiscernible sequence.

1) If J ′
0, J

′
2, J

′
4 are infinite initial segments of J0, J2, J4 respectively, then

(α) tp(〈b̄∗t : t ∈ J3〉,∪{b̄s : s ∈ J ′
0 ∪ J1 ∪ J ′

2 ∪ J ′
4) ` tp(〈b̄∗t : t ∈ J3〉,∪{b̄∗s :

s ∈ J0 ∪ J1 ∪ J2 ∪ J4})

(β) like (α) interchanging J3, J1.

Sh:783



Vol. 173, 2009 DEPENDENT FIRST ORDER THEORIES, CONTINUED 21

2) If J0 has no first element, J ′
0 ⊆ J0 is unbounded from below, J ′

2 ⊆ J2 is

infinite and J4 has no last element and J ′
4 ⊆ J4 is unbounded from above, then

the conclusions of (1) holds

(α) tp(〈b̄∗t : t ∈ J3〉,
⋃

{b̄s : s ∈ J ′
0 ∪ J1 ∪ J ′

2 ∪ J
′
4) ` tp(〈b̄∗t : t ∈ J3〉,∪{b̄∗s :

s ∈ J0 ∪ J1 ∪ J2 ∪ J4})

(β) tp(〈b̄∗t : t ∈ J1〉,
⋃

{b̄s : s ∈ J ′
0 ∪ J ′

2 ∪ J3 ∪ J
′
4) ` tp(〈b̄∗t : t ∈ J1〉,∪{b̄

∗
s :

s ∈ J0 ∪ J2 ∪ J3 ∪ J4}).

3) If J∗
0 , J

∗
2 , J

∗
4 has neither first element nor last element and J ′

0, J
′
2, J

′
4 are sub-

sets of J0, J2, J4 respectively unbounded from below and J ′′
0 , J

′′
2 , J

′′
4 are subsets

of J0, J2, J4 respectively unbounded from above, then the conclusion of part (1)

holds.

Proof. The result follows by the local character of ` and by the indiscernibility

demands in 2.6, i.e., clauses (D)1, (D)2, (D)3. 2.8

2.9. Conclusion: 1) If µ ≥ κ ≥ |T |, then for some linear order J∗ of cardinality

κ we have

�b̄∗,J∗ Assume

(a) J = J0 + J1 + J2 + J3 + J4;

(b) the cofinalities of J0, J2, J4 and their inverse are ≤ µ but are infi-

nite;

(c) J1
∼= J∗ and J3

∼= J∗ (hence J1, J3 have cardinality ≤ κ);

(d) 〈b̄t : t ∈ J\J3〉 is an indiscernible sequence (of m-tuples);

(e) M is a µ+-saturated model;

(f)
⋃

{b̄t : t ∈ J\J3} ⊆M .

Then we can find b̄t ∈ mM for t ∈ J3 such that 〈b̄t : t ∈ J\J1〉 is an

indiscernible sequence.

2) If we allow J∗ to depend on tp′(b̄∗), see Definition 0.1(1), then we can use

J∗ of the form δ∗ + δ, δ < κ+ (δ∗ – the inverse of δ).

Proof. Let b̄∗ be an infinite indiscernible sequence.

Let J0, J2, J4 be disjoint linear orders as in (b). Apply 2.6 with I1, I3 iso-

morphic to (µ+, <) and I0, I2 isomorphic to (µ+, >), say I` = {t`α : α < µ+}

with t`α increasing with α if ` ∈ {1, 3} and decreasing with α if ` ∈ {0, 2},

we get b̄∗ = 〈b∗t : t ∈
∑

`<4

I`〉, β(∗) as in 2.6 with tp′(b̄∗ � I0) = tp′(b̄~),

see Definition 0.1. Let J+
0 = J0 + (I0\I

β(∗)
0 ), J+

1 = J1 = I
β(∗)
0 + I

β(∗)
1 ,
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J+
2 = J2+(I1\I

β(∗)
1 )+(I2\I

β(∗)
2 ), J+

3 = I
β(∗)
2 +I

β(∗)
3 +J3 and J+

4 = J4+(I3\I
β(∗)
3 )

and J+ = J+
0 + J+

1 + J+
2 + J+

3 + J+
4 . All J` are infinite linear orders, choose

J∗ = J1, clearly J3
∼= J∗. Now

(∗) 〈b̄∗t : t ∈ J\J3〉 is an indiscernible sequence and

(∗∗) if M ⊇
⋃

{b̄∗t : t ∈ J\J3} is µ+-saturated then we can find b̄′t ∈
mM for

t ∈ J3 such that

〈b̄∗t : t ∈ J0〉ˆ〈b̄
′
t : t ∈ J3〉ˆ〈b̄

∗
t : t ∈ J4〉

is an indiscernible sequence.

(Why? Choose J ′
0 ⊆ J0 unbounded from below of cardinality

cf(J0, >J0) which is ≤ µ but ≥ ℵ0, and similarly J ′
2 ⊆ J2, J

′
4 ⊆ J4

and choose J ′′
0 ⊆ J0 unbounded from above of cardinality cf(J0) which

is ≤ µ and similarly J ′′
2 ⊆ J2, J

′′
4 ⊆ J4 (all O.K. by clause (b) of the

assumption).

Now p = tp(〈b∗t : t ∈ J3〉,
⋃

{b̄s : s ∈ J ′
0 ∪ J

′′
0 ∪ J ′

2 ∪ J
′′
2 ∪ J ′

4 ∪ J
′
4}) is

a type of cardinality ≤ |T | + |J ′
0| + |J ′′

0 | + |J ′
2| + |J ′′

2 | + |J ′
4| + |J ′′

4 | ≤ µ

hence is realized by some sequence 〈b̄′t : t ∈ J3〉 from M .

By Claim 2.8 the desired conclusion in (∗∗) holds.)

So we have gotten the desired conclusion for any 〈J` : ` ≤ 4〉 and indiscernible

sequence, b̄ = 〈b̄t : t ∈ J\J5〉 as long as tp′(b̄) = tp′(b̄∗) and the order type of

J1, J3 is as required for b̄∗. This is enough for part (2), we are left with (1).

Note that by the proof of 2.3, the set of β(∗) as required contains E ∩ {δ <

µ+ : cf(δ) = ℵ0} for some club E (in fact even contains E). So if µ ≥ 2|T |,

as {tp′(b̄) : b̄ an infinite indiscernible sequence} has cardinality ≤ 2|T | we are

done.

Otherwise, choose J∗ a linear order of cardinality µ isomorphic to its inverse,

to J∗ × ω and to J∗ × (γ + 1) ordered lexicographically for every γ ≤ µ hence

for every γ < µ+, (e.g. note if J∗∗ is dense with no first and last element and

saturated, or special, of cardinality > µ, then J∗∗ × ω satisfies this and use the

L.S. argument). So we can in 2.6 and hence in 2.8, use I`(` < 4), such that

Iβ+1
`

∼= J∗ for β < µ+, ` < 4. So I
β(∗)
0 + I

β(∗)
1

∼= J∗ ∼= I
β(∗)
2 + I

β(∗)
3 . 2.9

2.10. Conclusion: In 2.9:

(A) we can choose J∗ = µ∗ + µ i.e. {0} × (µ,>) + {1} × (µ,<);

(B) if J is a linear order (6= ∅) of cardinality≤ µ, we can use J∗ = (µ∗+µ)×J

ordered lexicographically;
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(C) we can change the conclusion of 2.9 to make it symmetrical between J3

and J1;

(D) we use only clause (E)2 of 2.6, or we could use only clause (E)1.

Proof. (A),(B) combine the proofs of 2.3 and 2.6 trying to contradict each

formula, by bookkeeping trying for it enough times. 2.10

We may look at it differently, part (2) is close in formulation to be a comple-

ment to [Sh:715, §5].

2.11. Conclusion: 1) Assume

(a) J = I × J∗ lexicographically, J∗, µ are as in 2.9, I infinite;

(b) 〈b̄t : t ∈ J〉 an indiscernible sequence, `g(b̄t) = m or just `g(b̄t) < µ+;

(c) for s ∈ I let c̄s be 〈b̄t : t ∈ {s} × J∗〉, more exactly the concatanation

of the sequences in b̄t for t ∈ {s} × J∗.

Then

(α) 〈c̄s : s ∈ I〉 is an infinite indiscernible sequence

(β) if s0 <I · · · <I s7 then there is c̄ realizing tp(c̄s2 ,
⋃

{c̄s`
: ` ≤ 7, ` 6= 2})

such that tp(c̄,
⋃

{c̄s`
: ` ≤ 7, ` 6= 2}) ` tp(c̄s2 ,

⋃

{c̄s : s0 ≤I s ≤I s1 or

s3 ≤I s ≤I s4 or s6 ≤I s ≤I s7})

(γ) similarly inverting the order (i.e. interchanging the roles of s2, s5 in

clause (β)).

2) Assume the sequence 〈c̄s : s ∈ I〉 from part (1) satisfies M ⊇
⋃

{c̄s : s ∈ I}

and (I1, I2), (I3, I4) are Dedekind cuts of I, each of I1, (I2)
∗, I3, (I4)

∗ is non-

empty of cofinality ≤ µ. Let I+ ⊇ I, t2, t5 ∈ I+
1 realize the cuts (I1, I2), (I3, I4),

respectively, and c̄t for t ∈ I+\I are such that 〈c̄t : t ∈ I+〉 is indiscernible (then

for notational simplicity), then

� there is a sequence in M realizing tp(c̄t2 ,
⋃

{c̄s : s ∈ I}) if and only if

there is a sequence in M realizing tp(c̄t5 ,
⋃

{c̄s : s ∈ I}).

Concluding Remark: There is a gap between [Sh:715, 5.11] and the results

in §2, some light is thrown by

2.12. Claim: In [Sh:715, 5.11]; we can omit the demand cf(Dom(āζ)) ≥ κ1 (=

clause (f) there) if we add ζ < ζ∗ ⇒ (θ1ζ)
+ = λ.

Proof. By the omitting type argument.
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2.13. Question: Assume:

(a) 〈(Ni,Mi) : i ≤ κ〉 is ≺-increasing (as pairs), Mi+1, Ni+1 are λ+
i -saturat-

ed, ‖Ni‖ ≤ λi, 〈λi : i < κ〉 increasing, κ < λ0;

(b) p(x̄) is a partial type over N0 ∪Mκ of cardinality ≤ λ0.

1) Does p(x̄) have a λ+
0 -isolated extension?

2) Does this help to clarify DOP?

3) Does this help to clarify “if any M is a benign set” (see [BBSh:815]).

2.14. Claim: Assume

(a) M is λ+-saturated;

(b) p(x̄) is a type of cardinality ≤ κ, `g(x̄) ≤ κ;

(c) Dom(p) ⊆ A ∪M, |A| ≤ κ ≤ λ;

(d) B ⊆M, |B| ≤ λ.

Then there is a type q(x̄) over A∪M of cardinality < κ and r(x̄) ∈ S`g(x̄)(A∪B)

such that

p(x̄) ⊆ q(x̄) q(x̄) ` r(x̄)

Remark: This defines a natural quasi order (type definable) is it directed?

3. Strongly dependent theories

3.1. Context: T complete first order, C a monster model of T .

3.2. Definition: 1) T is strongly1 dependent (we may omit the 1) if :

there are no ϕ̄ = 〈ϕn(x̄, ȳn) : n < ω〉 and 〈ānα : n < ω, α < λ〉 such

that

(∗) for every η ∈ ωλ the set pη = {ϕn(x̄, ānα)if(η(n)=α) : α < λ} is

consistent; so `g(ānα) = `g(ȳn).

2) T is strongly stable if it is stable and strongly dependent.

3) κict(T ) is the first κ such that there is no ϕ̄ = 〈ϕα(x̄, ȳα) : α < κ〉

satisfying the parallel of part (1), in this case we say that ϕ̄ witnesses

κ < κict(T ) and let m(ϕ̄) = `g(x̄).

3.3. Claim: 1) If T is superstable, then T is strongly dependent.

2) If T is strongly dependent, then T is dependent.

3) There are stable T which are not strongly dependent.

4) There are stable not superstable T which are strongly dependent.
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5) There are unstable strongly dependent theories.

6) The theory of real closed fields is strongly dependent; moreover every

o-minimal (complete first-order) T is strongly dependent.

7) If T is stable, then κict(T ) ≤ κ(T ).

8) If T is dependent, then we may add, in 3.2(1)

(∗∗) for each n < ω for some kn any kn of the formulas {ϕn(x̄, ā
n
α) :

α < λ} are contradictory.

Proof. 1), 2), 7) and 8) are easy.

3) E.g., T = Th(ωω,E1
n)n<ω where ηE1

nν ⇔ η(n) = ν(n) and use

ϕn(x, yn) = xE1
nyn for n < ω.

4) E.g., T = Th(ωω,E2
n)n<ω where (ηEnν) ≡ (η � n = ν � n).

5) E.g., T = Th(Q, <), the theory of dense linear orders with no first and no

last element.

6) For simplicity we use x̄ = 〈x〉, (justified in [Sh:863, Observation,1.7](1)).

Assume 〈ϕn(x, ȳn) : n < ω〉 and 〈ānα : α < λ〉 are as in Definition 3.2.

Clearly we can replace ϕn(x, ȳn), ānα by ϕ′(x, ȳ′n), b̄
n
α when ȳn E ȳ′n, ā

n
α E b̄nα and

ϕn(x, ānα) ≡ ϕ′
n(x, b̄

n
α). We can find b0 < b in C such that each pη∪{b0 < x < b1}

is realized in C, so without loss of generality ϕn(x, ānα) ` b0 < x < b1 and b1, b2

appears in ānα. Also we can restrict ourselves to 〈ānα : n < ω, α ∈ un〉 where

un ⊆ λ is infinite for n < ω. Hence, by the elimination of quantifiers and den-

sity of the linear order, without loss of generality, ϕn(x, ȳn) = (ϕ1,n(x, ȳn) ∨

ϕn,2(x, ȳn)) ∧ ϕn,3(ȳn) where (without loss of generality ȳn = 〈y` : ` = 0, . . . , 〉

but u(n, 1) ⊆ k(n), u(n, 2) ⊆ k(n))

ϕn,1(x, ȳn) =
∨

`∈u(n,1)

(yn,2` < x < yn,2`+1)

ϕn,2(x, ȳn) =
∨

`∈u(n,2)

x = yn,`

and

ϕn,3(ȳ) =
∧

`<k(n)

yn,` < yn,`+1.

For each η ∈ ωλ, pη is consistent (and η 6= ν ∈ ωλ ⇒ pη, pν are contradictory),

hence clearly each pη is not algebraic. From this it follows that (∗) of Def.

3.2(1) is true also if we replace 〈ϕn(x, ȳn) : n < ω〉 by 〈ϕn,1(x, ȳn) : n < ω〉.
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Also without loss of generality 〈ānα : α < λ〉 is indiscernible over
⋃

{amβ : m 6=

n,m < ω and β < λ}. Now for some 〈`n : n < ω〉 ∈
∏

n<ω

k(n), we can replace

ϕn(x, ȳ) by ϕ′
n(x, ȳ) = yn,`n < x < yn,`n+1. So without loss of generality

n < ω ⇒ k(n) = 1, `n = 0, ȳn = (yn,0, yn,1).

Now 〈ānα : α < λ〉 is an indiscernible sequence, and ϕn(C, ā
n
α) being the open

convex sets which ānα define. Checking by cases (they are anα,0 < anα,1 < anα+1,0 <

anα+1,1, a
n
α,0 < anα+1,0 < anα,1 < anα+1,1, a

n
α+1,0 < anα+1,1 < anα,0 < anα,1, a

n
α+1,0 <

anα,0 < anα+1,1 < anα,1. Note that anα,0 < anα+1,0 < anα+1,1 < anα,1 and anα+1,0 <

anα,0 < anα,1 < anα+1,1 are impossible. Letting pnβ(x) := {ϕ(x, ānα)if(α=β) : α < λ}

we note that it is a type such that pnβ(C) is a convex set; obviously it is disjoint

from pnγ (C) for γ ∈ λ\{β}.

Clearly, there are α 6= β < λ such that p0
α(C) < p0

β(C) and choose a∗ such

that p0
α(C) < a∗ < p0

β(C). Now for every γ < λ we have p1
γ(C)

⋂

p0
α(C) 6= ∅ and

p1
γ(C)

⋂

p0
β(C) 6= ∅, i.e., p1

0(C) is disjoint neither from p0
α(C) nor from p0

β(C) (by

the choice of ϕ̄, 〈ānα : n < ω, α < λ〉). As p1
γ(C) is convex, by the choice of a∗

necessarily a∗ ∈ p1
γ(C). As γ was any ordinal < λ it follows that a∗ ∈

⋂

{p1
γ(C) :

γ < λ}, clear contradiction. (In fact, we get contradiction even if we use only

n = 0, 1, see [Sh:863]). The o-minimal case holds by the same proof. 3.3

3.4. Definition: 1) We say a pair of types (p(x), q(ȳ)) is a (1 = ℵ0)-pair of types

(or (p(x̄), q(ȳ)) satisfies 1 = ℵ0), if there is a set A such that: for every countable

set B ⊆ p(C), there is an element ā ∈ q(C) satisfying B ⊆ acl({ā} ∪ A). We

say p(x) is a (1 = ℵ0)-type if this holds for some q(ȳ).

1A) If A = Dom(p) we add purely. We call A a witness to p(x) being a

(1 = ℵ0)-type.

2) We say that T is a local (1 = ℵ0)-theory if for some A (the witness) some

non-algebraic type p over A is a (1 = ℵ0)-type. If A = ∅ we say purely.

2A) We say T is a global (1 = ℵ0)-theory when the type x = x is a (1 = ℵ0)-

type.

3) We say that a pair (p(x), q(ȳ)) of types is a semi (1 = ℵ0)-pair of types if:

for some set A for every indiscernible sequence 〈an : n < ω〉 over A satisfying

n < ω ⇒ ān ∈ p(C) there is ā ∈ q(C) such that {ān : n < ω} ⊆ acl(ā ∪A). We

say p(x̄) is semi (ℵ0 = 1)-type if this holds for some q(ȳ).

4) We say that the pair (p(x), q(ȳ)) of types is a weakly (1 = ℵ0)-pair of types

if there are A ⊇ Dom(p) and an infinite indiscernible sequence 〈an : n < ω〉
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over A with each an realizing p such that for some c̄ ∈ q(C) we have {an : n <

ω} ⊆ acl(A ∪ c̄).

5) We say that p(x) is semi/weakly (ℵ0 = 1)-type if some pair (q, p) is

semi/weakly (ℵ0 = 1)-pair of types.

6) In (3),(4) we let “purely”, “witness” “local”; “global” be defined similarly.

7) Above we can allow p = p(x̄), `g(x̄) = m.

3.5. Observation: 1) Every algebraic type p(x) is a (1 = ℵ0)-type. If p ⊆ q

and p is a (1 = ℵ0)-type, then q is an (1 = ℵ0)-type.

2) If p(x) is a (1 = ℵ0)-type, then p(x) is a semi (1 = ℵ0)-type.

3) If p(x) is a semi (1,ℵ0)-type, then p(x) is a weakly (1 = ℵ0)-type.

4) If (p(x), q(ȳ)) is [semi][weakly]-(1 = ℵ0) type in C, then the same holds in

Ceq. If p(x) is [semi][weakly]-(1 = ℵ0)-type in Ceq such that p(Ceq) ⊆ C, then

so is the case in C. We can also keep track of the witness.

5) For some T, T is not locally (1 = ℵ0)-theory but T eq is.

Proof. Easy.

3.6. Claim: 1) If T is strongly dependent, then no non-algebraic type is

a (1 = ℵ0)-type.

2) Moreover, no non-algebraic type is a weakly (1 = ℵ0)-type.

Remark: We can weaken the assumption of 3.6 to: for some ω-sequence of non-

algebraic types 〈pn(x) : n < ω〉 over A, for every 〈bn : n < ω〉 ∈
∏

n<ω pn(C),

for some c̄ we have {bn : n < ω} ⊆ c`(A ∪ c̄).

Proof. Let λ > |T |+. Assume toward a contradiction that p(x) is a non-

algebraic (1 = ℵ0)-type and A a witness for it. As p(x) is not algebraic, we can

find b̄n = 〈bnα : α < λ〉 for n < ω such that

(∗)1 bnα realizes p;

(∗)2 bnα 6= bnβ for α < β < λ, n < ω;

(∗)3 〈bnα : (n, α) ∈ ω × λ〉 is an indiscernible sequence over A where ω × λ is

ordered lexicographically.

Let ā ∈ ω>(C) be such that {bn0 : n < ω} ⊆ acl(A ∪ ā) so for each n we can find

kn < ω, c̄n ∈ ω>A and a formula ϕn(x, ȳ, z̄) such that

C |= ϕ(bn0 , ā, c̄n) and (∃≤knx)ϕ(x, ā, c̄n).
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By omitting some bnα’s we have (n, α) ∈ ω × λ\{(m,ω) : m < ω} ⇒ C |=

¬ϕn[bnα, ā, c̄n].

Let ānα = 〈bnα〉ˆc̄n and ϕn have already been chosen.

Now check Definition 3.2. 3.6

3.7. Definition: 1) We say T is strongly2 (or strongly+) dependent when:

there is no sequence 〈ϕn(x̄, ȳ0, . . . , ȳn) : n < ω〉 and ānα ∈ `g(yn)C for

n < ω, α < λ (any infinite λ) such that for every η ∈ ωλ the set

{ϕn(x̄, ā0
η(0), . . . , a

n−1
η(n−1), a

n
α)if(α=η(n)) : n < ω, α < λ} is consistent.

2) Let ` ∈ {1, 2}. We say that T is strongly`,∗ dependent when: if

〈āt : t ∈ I〉 is an indiscernible sequence over A, t ∈ I ⇒ `g(āt) = α

(so constant but not necessarily finite) and m < ω and b̄n ∈ mC for

n < ω, 〈b̄n : n < ω〉 is an indiscernible sequence over A ∪ {āt : t ∈ I},

then we can divide I to finitely many convex sets 〈Im : m < k〉 such

that for each m < k, 〈āt : t ∈ Im〉 is an indiscernible sequence over

∪{b̄α : α < ω} ∪A ∪ {ās : s ∈ I\Im and ` = 2}.

3) T is strongly` stable (or strongly`,∗ stable) when it is strongly` depen-

dent (or strongly`,∗ dependent) and stable.

3.8. Claim: If T is strongly+ dependent then:

~1 for any A ⊆ C, infinite complete linear order I and indiscernible se-

quence 〈āt : t ∈ I〉 over A, `g(āt) possibly infinite, for any finite B ⊆ C,

there is a finite w ⊆ I such that: if J is a convex subset of I disjoint to

w then 〈āt : t ∈ J〉 is indiscernible over A ∪B ∪ {ās : s ∈ I\J}

~2 for any set A ⊆ C of cardinality λ and infinite linear orders Iα for α < λ

and āαt (t ∈ Iα, α < λ) such that 〈āαt : t ∈ Iα〉 is an indiscernible sequence

over A ∪ {āβs : β ∈ λ\{α}, s ∈ Iβ} and finite B ⊆ C there is a finite

u ⊆ λ and wα ∈ [Iα]<ℵ0 for α ∈ u such that: if J̄ = 〈Jα : α < λ〉, Jα is

a convex subset of Iα disjoint to wα when α ∈ u then 〈āαt : t ∈ Jα〉 is

indiscernible over A ∪B ∪ {āβs : β ∈ λ\{α}, s ∈ Jβ} for every α < λ.

Proof. See this (and more) [Sh:863, §2].

3.9. Definition: 1) We say that ϑ(x1, x2; c̄) is a finite-to-finite function from

ϕ1(C, ā1) onto ϕ2(C, ā2) when:

(a) if b2 ∈ ϕ2(C, a2) then the set {x : ϑ(x, b2, c̄) ∧ ϕ1(x, ā1)} satisfies:

(i) it is finite but
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(ii) it is not empty except for finitely many such b2’s

(b) if b1 ∈ ϕ1(C, ā1), then the set {x : ϑ(b1, x, c̄) ∧ ϕ2(x, ā2)} satisfies:

(i) it is finite but

(ii) it is not empty except for finitely many such b1’s.

2) If we place “onto ϕ2(C, ā2)” by “into ϕ2(C, ā1)” we mean that we require

above only clauses (a)(i), (b)(i), (ii).

3) We can replace ϕ1(x, ā1), ϕ2(x, ā2) above by types.

3.10. Claim: If T is strongly+ dependent, then the following are impossible:

(St)1 for some ϕ(x, ā)

(a) ϕ(x, ā) is not algebraic;

(b) E is a definable equivalence relation (in C by a first order formula

possibly with parameters) with domain ⊆ ϕ(C, ā) and infinitely

many equivalence classes;

(c) there is a formula ϑ(x, y, z̄) such that for every b ∈ Dom(E) for

some c̄, the formula ϑ(x, y; c̄) is a finite to finite map from ϕ(C, ā)

into b/E;

(St)2 for some formulas ϕ(x), xEy, ϑ(x, y, z̄) possibly with parameters we

have:

(a) ϕ(x) is non-algebraic;

(b) xEy → ϕ(x) ∧ ϕ(y);

(c) for uncountably many c ∈ ϕ(C) for some d̄ the formula ϑ(x, y; d̄) is

a finite to finite function from ϕ(x) into xEc;

(d) for some k < ω, if b1, . . . , bk ∈ ϕ(C) are pairwise distinct then
∧k
`=1 xEb` is algebraic.

(St)3 similarly with ϕ(x, ā) replaced by a type, as well as xEy (and x, y, z are

replaced by m-tuples and uncountable is replaced by κ̄).

Proof. The proof for (St)1 is a special case of the proof of (St)2 and the proof

for (St)3 is similar. So it is enough:

Proof of “(St)2 is impossible”.

Without loss of generality, in clause (c) of (St)2 we have 〈c〉 / d̄ and let

`g(d̄) = j, i.e., ϑ = ϑ(x, y, z̄), `g(z̄) = j; also let z̄n = 〈zn,0, . . . , zn,j−1〉.

Clearly, there is k∗ such that

�1 for some uncountable C ⊆ ϕ(C) for every c ∈ C for some d̄c ∈ jC,

without loss of generality, 〈c〉/ d̄c and θ(x, y, d̄c) is a finite to finite map
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from ϕ(C) into xEc and the size of the finite sets (see Definition 3.9) is

< k∗;

�2 moreover, C = r(C) for some non-algebraic r(x);

�3 k∗ can serve as k in clause (d) of (St)2.

Let z̄n = z̄0ˆ . . . ˆz̄n−1. We shall define now, by induction on n < ω, formulas

ϕn(x, z̄n) and ϑn(x1, x2, z̄n) also written as ϕnz̄n
(x), ϑnz̄n

(x1, x2).

Case 1: n = 0.

So (z̄n =<>, and) ϕn(x) = ϕ(x) and ϑn(x1, x2) = (x1 = x2).

Case 2: n = m+ 1.

Let ϕnz̄n
(x) := ϕmz̄m

(x) ∧ (∃x′)[x′Ezm ∧ ϑmz̄m
(x′, x)] ∧ ϑnz̄n

(x1, x2) := ϕmz̄m
(x2) ∧

ϕ(x1) ∧ (∃x′)[ϑ(x1, x
′, z̄m) ∧ ϑmz̄m

(x′, x2) ∧ x′Ezm].

We now prove, by induction on n, that:

(∗)n if c̄ = 〈c` : ` < n〉 and c` ∈ C\ac`{ck : k < `} for ` < n (so ϑ(x, y, d̄c`
)

is a finite to finite function from ϕ(x) into xEc` for ` < n) and d̄ =

d̄c0ˆd̄c1ˆ . . . ˆd̄cn−1 , then

(α) ϕn
d̄
(C) is an infinite subset of ϕ(C);

(β) ϑn
d̄
(x1, x2) is a finite to finite function from a co-finite subset of

ϕ(C) into a subset of ϕn
d̄
(C);

(γ) if n = m+ 1 and e ∈ ϕn
d̄
(C), then (∃c′ ∈ ac`(c̄ � m ∪ {e}))[c′Ecm];

(δ) m < n⇒ ϕm
d̄�jm

(C) ⊆ ϕn
d̄
(C).

This is straightforward. Let I be a linear order such that any interval has

< |T | members.

By �2,�3 there are ct ∈ C for t ∈ I pairwise distinct, let d̄t = d̄ct
so θ(x, y, d̄t)

is a finite to finite function from ϕ(x) into xEct such that 〈d̄t : t ∈ I〉 is an

indiscernible sequence (e.g. use � above).

Now for every <I -increasing sequence t̄ = 〈tn : n < ω〉 we consider c̄n
t̄

=

c̄n
t̄�n

= d̄t0ˆ . . . d̄tn−1 and pt̄ = {ϕnc̄n
t̄�n

(x) : n < ω}.

Now

~1 for t̄ as above pt̄ is consistent.

(Why? By (∗)n(α) there is an element e ∈ ϕnc̄n
t̄
(C), by (∗)n(δ) the element e

satisfies {ϕc̄m
t̄�m

(x) : m ≤ n}. As this holds for every n, the set pt̄ = {ϕn
d̄n

t̄�n

(x) :

n < ω} is finitely satisfiable as required.)
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~2 if e realizes pt̄, then for every n there is an element e′ algebraic over

{e, d̄t0 , . . . , d̄tn−1} such that e′Eb1tn .

(Why? By (∗)n(γ).)

~3 if e realizes pt̄ then for every n the set {s ∈ I: there is e′ algebraic over

{e, d̄1
t0
, . . . , d̄1

tn−1
} such that e′Ec1s} has ≤ |T | members.

(Why? There are ≤ |T | such e′ and for each e′ by clause (d) of (St)2 there are

only finitely many such s ∈ I (if we phrase it more carefully we get that there

are < kn(< ω) many members).)

This is more than enough to show T is not strongly+ dependent. 3.10

3.11. Discussion: : We may phrase 3.10 for ideals of small formulas.

3.12. Claim: If T is strongly1 dependent and ` = 1, 2, 3, 4, then the statement

~` below is impossible where:

~1 (a) 〈āα : α < λ〉 is an indiscernible sequence over A;

(b) un ⊆ λ is finite, (non-empty) with 〈un : n < ω〉 having pairwise disjoint

convex hull;

(c) b̄ ∈ ω>C

(d) for each n for some αn, k and tt
n(0) < · · · < tt

n(k−1) ∈ un for t ∈ { false,

truth} and c̄n ∈ ω>A and ϕ we have C |= ϕ(c̄, att
n(0)

, . . . , att
n(k−1)

, c̄n)
t

for both values of t;

~2 like ~1 but allows āα to be infinite;

~3(a) 〈ānα : α < λ〉 is an indiscernible sequence over A ∪ {āaβ : m < ω,m 6=

n, β < λ};

(b) ānα 6= ānα+1;

(c) some a ∈ C satisfies n < ω ⇒ acl(A ∪ {a}) ∩ {ānα : α < λ} 6= ∅;

~4 like ~3 but replace clause (c) by

(c)’ for some ā ∈ C for every n the sequence 〈ānα : α < λ〉 is not an indis-

cernible sequence over A ∪ ā.

Proof. Similar to the previous ones.

3.13. Discussion: 1) We have asked: show that the theory of the p-adic

field is strongly dependent.

Udi Hrushovski has noted that the criterion (St)2 from 3.10 applies

so T is not strongly2 dependent. Namely take the following equivalence

relation on Zp: val(x− y) ≥ val(c), where c is some fixed element with
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infinite valuation. Given x, the map y 7→ (x+cy) is a bijection between

Zp and the class.

2) By [Sh:863] this theory is strongly1 dependent.

3) Onshuus shows that the theory of the field of the reals too is not

strongly2 dependent (e.g. though Claim 3.10 does not apply, its proof

works, using pairwise not too near b̄’s, in general just an uncountable

set of b̄’s. In [Sh:863] we prove reasonable existence of indiscernibles for

strongly dependent T (and in 3.2 we can use the case `g(x̄) = 1).

3.14. Claim: 1) If x = 1, 2, 1∗, 2∗,M ≺ C, A ⊆ C, then (the complete first

order) theory Th(BM,MA) from 1.10(4) is strongly∗ dependent if and

only if T is strongly∗ dependent; if T is dependent then the theory is

equal to T ∗
M,A see 1.10(4), 1.12(4).

2) κict(T ) = κict(Th(BM,MA)) if M ≺ C, A ⊆ C;

3) If x = 1, 2, 1∗, 2∗ and T1 ⊆ T2 are complete first order theories (so

τ(T1) ⊆ τ(T2)), then

(a) if T2 is strongly∗ dependent then so is T1

(b) κict(T1) ≤ κict(T2).

4) If T1 ⊆ T2 are complete first order and τ(T2)\τ(T1) consist of individual

constants only, then

(α) T2 is strongly∗ dependent if and only if T1 is strongly∗ dependent;

(β) κict(T1) = κict(T2).

5) For ` = 1, 2, T is strongly` dependent if and only if T eq is strongly`

dependent; similarly for strongly`,∗.

6) κict(T ) = κict(T
eq).

Proof. Easy.

4. Definable groups

4.1. Context: (a) T is first order complete

(b) C is a monster model of T .

We try here to generalize the theorem on the existence of commutative infinite

subgroups for stable T to dependent T . Theorems on definable groups in a

monster C, Th(C) stable, are well-known.
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4.2. Definition: 1) We say that G is a type-definable group (in C) if G =

(p, ∗, inv) = (pG, ∗G, invG) where

(a) p = p(x) is a type.

(b) ∗ is a two-place function on C, possibly partial, definable (in C),

we normally write ab instead of a ∗ b or ∗(a, b).

(c) (p(C), ∗) is a group, we write x ∈ G for x ∈ p(C).

(d) invG is a (partial) unary function, definable (in C), which on p(C)

is the inverse, so if no confusion arises we shall write (x)−1 for

inv(x).

1A) We let BG2 be the set of parameters appearing in pG; let BG be the set

of parameters appearing in pG or in the definition of ∗ or of invG.

2) We say that G is a definable group if p(x) is a formula, i.e., a singleton.

3) We say that G is an almost type definable group if p(x) is replaced

by p̄ = 〈pi(x) : i < δ〉, pi(C) increasing with i and p̄(C) is defined as
⋃

{pi(C) : i < δ}.

Remark: Of course, we can use p(x̄) and/or work in Ceq.

4.3. Claim: Assume

(a) T is dependent;

(b) G is a definable group in C or just type-definable;

(c) A ⊆ G is a set of pairwise commuting elements, D a non-principal

ultrafilter on A or just

(c)− A ⊆ G,D a non-principal ultrafilter on A such that

(∀Da1)(∀
Da2)(a1a2 = a2a1),

where ∀Dxϕ(x, ā) means {b ∈ Dom(D) : C |= ϕ[b, ā]} ∈ D.

Then there is a formula ϕ(x, ā) such that:

(α) ϕ(x, ā) ∈ Av(ā, D);

(β) G ∩ ϕ(C, ā) is an abelian subgroup of G;

(γ) ā ⊆ A ∪BG ∪ {c : c realizes Av(A ∪BG2 , D)}.

4.4. Remark: 1) If D is a principal ultrafilter, say {a∗} ∈ D, then ϕ(x, ā) is

essentially CmG(CmG(a∗)) so no new point, (CmG(A) = {x ∈ A : x commutes

with every a ∈ A}).

2) If D is a non-principal ultrafilter, then necessarily ϕ(x, ā) is not algebraic

as it belongs to Av(ā, D).
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Proof. We try to choose an, bn by induction on n < ω such that:

(i) an, bn realizes pn(x) := Av(An, D) where An = A∪BG∪{ak, bk : k < n}

so as A ∈ D,A ⊆ G necessarily pG(x) ⊆ pn(x);

(ii) an, bn does not commute (in G, they are in G because pG(x) ⊆ pn).

Case 1: We succeed.

Assume n < m < ω, c′ ∈ {an, bn} and c′′ ∈ {am, bm} clearly c′, c′′ are in G.

Now we shall show that they commute because c′′ realizes Av(A∪BG∪{c′}, D)

and c′ realizes Av(A∪BG2 , D) recalling either assumption (c) about commuting

in A or assumption (c)−. Hence if k < ω, n0 < · · · < nk−1 < ω and n < ω then

c := bn0bn1 . . . bnk−1
satisfies: c, an commute if and only if n /∈ {n0, . . . , nk−1},

so ϕ(x, y) = [xy = yx] has the independence property contradicting assumption

(a). So c′, c′′ actually commute and we are done.

Case 2: We are stuck at n < ω.

So pn(x) ∪ pn(y) ` (xy = yx), hence there is a formula ψ(x, ā∗) ∈ Av(An, D)

such that

(∗)1 ψ(x, ā∗) ∧ ψ(y, ā∗) ` xy = yx (so both products are well-defined).

Let pG(x) = {ϑ(x, ā)} or just pG(x) ` ϑ(x, ā), ā ∈ BGi and ϑ(x, ā)∧ϑ(y, ā) →

(xy well defined). Without loss of generality ā E ā∗ and ψ(x, ā∗) ` ϑ(x, ā) and

let ϑ∗(x, ā∗) = (∀y)(ψ(y, ā∗) → yx = xy (so both well-defined)). So ψ(x, ā) `

ϑ∗(x, ā∗).

Let

ϕ(x) = ϕ(x, ā) = ϑ(x, ā∗) ∧ (∀y)[ϑ∗(y, ā∗) → xy = yx (both well-defined)].

So ψ(x, ā∗) ` ϕ(x, ā∗) ` ϑ∗(x, ā∗) hence the formula ϕ(x, ā∗) belongs to

the type pn(x) which is equal to Av(An, D) hence ϕ(x, ā) ∈ Av(ā∗, D) and

ā∗ ⊆ An ⊆ A ∪BG ∪ ∪{c : c realizes Av(A ∪BG, D)}.

We are done as ϕ(C, ā∗) ∩G is a subgroup and is abelian by the definition of

ϕ(x). 4.3

4.5. Claim: Assume

(a) G is a definable (infinite) group, (or just type-definable);

(b) every element of G\{eG} commutes with only finitely many others;

(c) G has infinitely many pairwise non-conjugate members.

Then T is not strongly+ dependent.
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Proof. Assume first pG = {ϕ(x)}.

Let xEy := [x, y are conjugates], clearly it is an equivalence relation, and let

ϑ(x1, x2, y) := (x1 = x2yx
−1
2 ).

Note that: if M |= ϑ(x1, z1, y) ∧ ϑ(x1, z2, y) then M |= z1yz
−1
1 = z2yz

−1
2

hence M |= (z−1
2 z1)y = y(z−1

2 z) so z−1
2 z1 ∈ CmG(y) so {z : ϑ(x1, z, y)} is finite.

Trivially {x1 : ϑ(x1, x2, y)} is finite.

We now get a contradiction by 3.10: ϕ(x), ϑ(x1 , x2, y) satisfies the demands

in (St)1 there, which is impossible if T is strongly+ dependent; so we are done.

If pG is a type use (St)3 of 3.10. 4.5

4.6. Definition: 1) A place p is a tuple

(p,B,D, ∗, inv) = (pp, Bp, Dp, ∗p, invp) = (p[p], B[p], D[p], ∗[p], inv[p])

such that:

(a) B is a set ⊆ C, D is an ultrafilter on B, p ⊆ Av(B,D);

(b) ∗ is a partial two-place function defined with parameters from B;

we shall write a ∗p b or, when clear from the context, a ∗ b or ab;

(c) inv is a partial unary function definable from parameters in B.

1A) p is non-trivial if for every A the type Av(A,D) is not algebraic.

2) We say p is weakly a place in a definable group G or type definable

group G if p is a place, pp ` pG, the set Bp includes Dom(pG) and the

operations agree on pp[C] when the place operations are defined.

2A) If those operations are the same, we say that p is strongly a place in G.

3) We say p1 ≤ p2 if both are places, Bp1 ⊆ Bp2 and pp2 ` pp1 and the

operations are same.

4) p ≤dir q if p ≤ q and Bq ⊆ A⇒ Av(A,Dp) = Av(A,Dq).

4.7. Definition: 1) A place p is σ-closed when:

(a) σ has the form σ(x̄1; . . . ; x̄n(∗)), a term in the vocabulary of groups;

(b) if ā` ∈ (`g(x̄`)C, for ` = 1, . . . , n(∗) andB ⊆ A, then σ(ā1, . . . , ān(∗))

is well-defined 1 and realizes Av(A,D) provided that

(∗) n ≤ n(∗) and ` < `g(ān) ⇒ an,` realizes

Av(A ∪ ā1ˆ . . . ˆān−1, D).

2) A place p is (σ1 = σ2)-good or satisfies (σ1 = σ2) when

1 So all the stages in the computation of σ(ā0; . . . ; ā
n(∗)) should be well-defined.
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(a) σ` = σ`(x̄1, . . . , x̄n(∗)) a term in the vocabulary of groups for ` =

1, 2 (so e.g. (x1x2)x3, x1(x2x3) are considered as different terms);

(b) if ā` ∈ (`g(x̄n)C for ` ≤ n then σ1(ā1; . . . ; ān(∗)) = σ2(ā1; . . . ; ān(∗))

whenever (∗) of part (1) holds for A = B; so both are well-defined.

3) We can replace σ in part (1) by a set of terms. Similarly in part (2) for

a set of pairs.

4) We may write x` instead of 〈x`〉. So if we write σ(x̄1; x̄2) = σ(x1;x2) =

x1x2 or σ = x1x2 we mean x1 = x1,0, x2 = x2,0, x̄1 = 〈x1,0〉, x̄2 = 〈x2,0〉.

We may use also σ(x̄; ȳ) instead of σ(x̄1; x̄2) and σ(x̄; ȳ; z̄) similarly.

4.8. Definition: 1) We say a place p is a poor semi-group if it is σ-closed

for σ = xy and satisfies (x1x2)x3 = x1(x2x3).

2) We say a place p is a poor group if it is a poor semi-group and is

σ-closed for σ = (x1)
−1x2.

3) We say a place p is a quasi semi group if for any semi group term

σ∗(x̄),p is σ-closed for σ(x̄; y) = σ∗(x̄)y.

4) We say a place p is a quasi group if for any semi-group terms σ1(x̄), σ2(x̄)

we place p is σ-closed for σ(x̄; y) = σ1(x̄)yσ2(x̄).

5) We say p is abelian (or is commutative) if it is (xy)-closed and satisfies

xy = yx.

6) We say p is affine if p is (xy−1z)-closed.

7) We say that a place p is a pseudo semi-group when: if the terms

σ1(x1, . . . , xn), σ2(x1, . . . , xn) are equal in semi-groups then p satisfies

σ1(x1, . . . , xn) = σ2(x1, . . . , xn).

8) We say that a place p is a pseudo group if any term σ1(x1, . . . , xn),

σ2(x1, . . . , xn) which are equal in groups, p satisfies σ1(x1, . . . , xn) =

σ2(x1, . . . , xn).

4.9. Definition: We say a place p is a group if G = Gp = (Av(Bp, D), ∗p,invp)

is a group. Similarly for a semi-group.

4.10. Claim: 1) The obvious implications hold.

2) If we use b̄ i.e. b̄ is an endless indiscernible sequence A = ∪{b̄t : t ∈

Dom(b̄)}, D the co-bounded filter on b̄, every b̄′ realizing the same type

has the same properties.

3) For a place p the assertion “p satisfies σ(̄x1,. . ., x̄n(∗))=σ(x̄1,. . ., x̄n(∗!))”

means just that in Definition 4.7 the term σ(a1, . . . , an) is well-defined.

Sh:783



Vol. 173, 2009 DEPENDENT FIRST ORDER THEORIES, CONTINUED 37

4.11. Claim: 1) Assume that G is a definable group and an ∈ pG[C] for n < ω.

We define a[u] ∈ pG[C] for any finite non-empty u ⊆ ω by induction on |u|, if

u = {n}, then a[u] = an, if |u| > 1, max(u) = n then a[u] = a[u\{n}] ∗
G an and

we are assuming they are all well-defined and a[u1] 6= a[u2] when u1 / u2. Then

we can find D∗,q such that:

(a) q is a place inside G;

(b) q is a poor semi-group and non-trivial;

(c) Bq = BG ∪
⋃

{a[u] : u ⊆ ω is finite};

(d) D∗ is an ultrafilter on [ω]<ℵ0 such that (∀n)([ω\n]<ℵ0 ∈ D∗) and for

every Y ∈ D∗ we can find Y ′ ⊆ Y from D∗ closed under convex union,

i.e., if u, v ∈ Y ′ and max(u) < min(v) then u ∪ v ∈ Y ′;

(e) Dq = {{a[u] : u ∈ Y } : Y ∈ D∗};

(f) if the an’s commute (i.e. anam = aman for n 6= m), then q is abelian.

Proof. By a well-known theorem of Glazer 2, relative of Hindman theorem say-

ing D∗ as in clause (d) exists, see Comfort [Cmf77]. 4.11

4.12. Remark: 1) This can be combined naturally with §1.

2) In 4.11, “u/v ⇒ a[u] 6= a[v]” holds if an is not in the subgroup generated

by {a` : ` < n} (even less).

3) Really in 4.11, G has to be just a type-definable group.

4.13. Claim: 1) Assume

(a) p is a place in a type-definable group (or much less);

(b) the place p is a semi-group;

(c) p is commutative (in the sense of Definition 4.7 + 4.8, so σ1(x; y) =

[x∗y = y∗x] but not necessarily σ2(x̄1) = [x1,0∗x1,1 = x1,1∗x1,0]);

(d) if A ⊇ Bp then for some b, c realizing Av(Dp, A), c ∗G b, b ∗G c are

(necessarily well-defined, and) distinct.

Then T has the independence property.

2) We can weaken clause (a) to

(a)′ p is a place such that for n < ω and 〈a1a
′
1〉, . . . , 〈ana

′
n〉 are

as in Definition 4.7 and a` 6= a′` ⇔ ` = m, then a1, . . . , am−1,

amam+1 . . . an 6= a1, . . . , am−1a
′
mam+1 . . . am.

2 His proof uses the operations from clause (d) of 4.16 and 4.17 below.
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Remark: This is related to the well-known theorems on stable theories (see

Zilber and Hrushovski’s works).

Proof. 1) We choose Ai, bi, ci by induction on i < ω. In stage i first let Ai =

Bp ∪ {bj, cj : j < i} and add BG if BG * Bp.

Second, choose bi, ci realizing Av(Ai, D
p) such that bi ∗ ci 6= ci ∗ bi.

Now, if i < j < ω and a′ ∈ {bi, ci}, a′′ ∈ {bj , cj} then a′ realizes Av(Ai, D
p)

and a′′ realizes Av(Aj , D
p) which include Av(Ai∪{a′}, Dp). So, by assumption

(c), the elements a′, a′′ commute in G.

So, as is well-known, for n < ω, i0 < i1 < · · · < in the element bi0 ∗ bi1 ∗ · · · ∗

bin−1 commute in G with aj if and only if j /∈ {i0, . . . , in−1}, hence T has the

independence property.

2) Similarly. 4.13

Note that 4.14 is interesting forG with a finite bound on the order of elements;

as if a ∈ G has infinite order, then CmG(GmG(a)) is as desired.

4.14. Conclusion: (T is dependent).

Assume G is a definable group.

1) If p is a commutative semi-group in G, non-trivial, then for some for-

mula ϕ(x, ā) such that ϕ(x̄) ` “x ∈ G” and ϕ(x, ā) ∈ Av(ā, Dp) and

G � ϕ(C) is a commutative place.

2) If G has an infinite abelian subgroup, then it has an infinite definable

commutative subgroup.

Proof. 1) By 4.13 for some A ⊇ Bp for every b, c realizing q := Av(A,Dp)

we have: the elements of q(C), which are all in G, pairwise commute. By

compactness there is a formula ϕ1(x) ∈ p[p] such that the elements of ϕ1(C) ∩

G pairwise commute and, without loss of generality, ϕ1(x) ` [x ∈ G]; note,

however, that this set is not necessarily a subgroup. Let ϕ2(x) := [x ∈ G] ∧

(∀y)(ϕ1(y) → x ∗ y = y ∗ x). Clearly, ϕ1(C) ⊆ ϕ2(C) ⊆ G and every member of

ϕ2(C) commutes with every member of ϕ1(C). So ϕ(z) := [z ∈ G]∧(∀y)[ϕ2(y) →

yz = zy] is first order and defines the center of G � ϕ2[C] which includes ϕ1(C),

so we are done.

2) Let G′ ⊆ G be infinite abelian. Choose by induction on n < ω, an ∈ G′ as

required in 4.13 and then apply it. 4.14
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4.15. Remark: So 4.14 tells us that having some commutativity implies having

a lot. If in 4.13 every a[u] is not in any “small” definable set defined with

parameters in Bp ∪ {an : n < max(u)}, then also ϕ(x, ā) is not small where

small means some reasonably definable ideal.

∗ ∗ ∗

4.16. Definition: Assume

(a) G is a type definable semi-group;

(b) M ⊇ BG is (|T | + |BG|)+-saturated;

(c) D is the set of ultrafilters D on M such that pG ⊆ Av(M,D);

(d) on D = DG,M we define an operation;

D1 ∗D2 = D3 if and only if for any A ⊇M and a realizing Av(A,D1)

and b realizing Av(A+ a,D2) the element a ∗ b realizes Av(A,D3).

(e) IDG,M = {D ∈ DG,M : D ∗D = D}

(f) H left
G,M = {a ∈ G: for everyD ∈ D, and A ⊇M if b realizes Av(A+a,D)

then a ∗ b realizes Av(A,D)}

(g) Hright
G,M similarly using b ∗ a

(h) HG,M = H left
G,M ∩Hright

G,M .

The following fact is as in 4.11.

4.17. Fact: D is a semi-group, i.e., associativity holds and the operation is

continuous in the second variable hence there is an idempotent (even every

non-empty subset closed under ∗ and topologically closed has an idempotent).

4.18. Fact: 1) If G is a group, then

(a) H left
G,M is a subgroup of G, with bounded index, is of the form

⋃

{q(C) :

q ∈ Sleft
G,M} for some Sleft

G,M ⊆ S(M)

(b) Similarly Hright
G,M , HG,M = Hright

G,M ∩H left
G,M with S

right
G,M ,SG,M .

2) If D ∈ D is non-principal and Av(M,D) ∈ S
right
G,M , then for any A ⊇ M and

element a realizing Av(A,D) and b realizing Av(A+ a,D) we have

(α) a ∗G b realizes Av(A,D)

(β) also a−1 ∗ b ∈ D.

3) Sleft
G,M ⊆ IDG,M .

4) Similarly for S
right
G,M ,SG,M .
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5) If D ∈ D, p = Av(M,D) ∈ SG,M then

(a) p = (M,D, ∗, inv) is a quasi group

(b) {a−1b : a, b ∈ p(M)} is a subgroup of G with bound index, in fact is

{a ∈ C : tp(a,M) ∈ SG,M}.

5. Non-forking

5.1. Hypothesis: T is dependent.

5.2. Definition ([Sh:93]): 1) An α-type p = p(x̄) divides over B if some sequence

b̄ and formula ϕ(x̄, ȳ) witness it which means

(a) b̄ = 〈b̄n : n < ω〉 is an indiscernible sequence over B;

(b) ϕ(x̄, ȳ) is a formula with `g(ȳ) = `g(b̄n);

(c) p ` ϕ(x̄, b̄0);

(d) {ϕ(x̄, b̄n) : n < ω} is contradictory.

1A) Above we say ϕ(x̄, b̄0) explicitly divide over B.

1B) An α-type p = p(x̄) splits strongly over B when for some sequence b̄ and

formula ϕ(x̄, ȳ) witness it which means:

(a),(b) as above;

(c) ϕ(x̄, b̄0),¬ϕ(x̄, b̄1) ∈ p.

2) An α-type p forks over B if for some 〈ϕ`(x̄, ā`) : ` < k〉 we have

p `
∨

`<k ϕ`(x̄, ā`) and {ϕ`(x̄, ā`)} divides over B for each ` < k (note: though

x̄ may be infinite, the formulas are finitary).

We say p(x̄) exactly forks (or ex-forks) over B when some ϕ(x̄, b̄) ∈ p does

exactly fork over B, which means that for some 〈ϕ`(x̄, b̄) : ` < k〉 we have:

ϕ(x̄, b̄) `
∨

`<k

ϕ`(x̄, b̄) and each ϕ`(x̄, b̄) explicitly divides over B.

3) We say C/A does not fork over B if letting c̄ list C, tp(c̄, A) does not fork

over B, or what is equivalent c̄ ∈ ω>C ⇒ tp(c̄, A) does not fork over B (so

below we may write claims for c̄ and use them for C).

4) The m-type p is f.s. (finitely satisfiable) in A if every finite q ⊆ p is realized

by some b̄ ⊆ A.

5) The ∆-multiplicity of p over B is Mult∆(p,B) = sup{|{q � ∆ : p ⊆ q ∈

Sm(M), q does not fork over B}| : M ⊇ B ∪ Dom(p)}.

Omitting ∆ means L(τT ), omitting B we mean Dom(p).
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5.3. Definition: 1) Let p = p(x̄) be an α-type and ∆ be a set of L(τT )-formulas

of the form ϕ(x̄, ȳ) and k ≤ ω. For a type p(x̄) we say that it (∆, k)-divides

over A if some b̄, ϕ(x̄, ȳ) witness it which means

(a) b̄ = 〈b̄n : n < 2k + 1〉 is ∆-indiscernible;

(b) ϕ(x̄, ȳ) ∈ L(τT );

(c) p ` ϕ(x̄, b̄0);

(d) {ϕ(x̄, b̄n) : n < 2k + 1} is k-contradictory.

2) For a type p(x̄) we say that it (∆, k)-forks over B if p `
∨

`<n ϕ`(x, ā`) for

some n, ϕ`(x̄, ȳ) and ā`, where each ϕ`(x̄, ā`) does (∆, k)-divide over B.

5.4. Observation: 0) In Definition 5.2(1), if p = {ϕ(x, b̄)} then without

loss of generality b̄ = b̄0. If p divides over B then p forks over B.

0A) Forking is preserved by permuting and repeating the variables. If

tp(b̄ˆc̄, A) does not fork over B then so does tp(b̄, A) and both do not

divide over B. Similarly for dividing and ex-forking and later versions.

1) If p ∈ Sm(A) is finitely satisfiable in B, then p does not fork over B;

hence every type over M does not fork over M .

2) If p ∈ Sm(A) does not fork or just does not divide over B ⊆ A, then p

does not split strongly over B. (Of course, if p divides over A, then p

forks over A).

The type p(x̄) divides over B iff for some k < ω and ϕ`(x̄, c̄`) ∈ p(x̄)

for ` < k, letting c̄ = c̄0ˆ . . . ˆc̄k−‘ the formula ϕ(x̄, c̄) =
∧

`<k

ϕ`(x̄, c̄`)

explicitly divides over B.

Assume the type p((x̄) is {ϕ(x̄, b̄)} or is complete, i.e. ∈ S(A) for

some set A or just is directed by `, (i.e. for every finite q(x̄) ⊆ p(x̄)

there is ψ(x̄, b̄) ∈ p(x̄) such that ψ(x̄, x̄) ` q(x̄)); then p(x̄) divides over

B iff ψ(x̄, b̄) explicitly divides over B for some ψ(x̄, b̄) ∈ p, and each of

them imply that in Definition 5.1(1), we can choose b̄0 = b̄ and that

{ϕ(x̄, b̄)} forks over B.

If p(x̄) ∈ Sm(A) or just p(x̄) is closed under conjunctions (or just is

directed by `), then p(x̄) forks over B iff some ϕ(x̄, ā) ∈ p(x̄) forks over

B.

The m-type p(x̄) forks over B iff there is ϕ(x̄, ā) which exactly forks

over B such that p(x̄) ` ϕ(x̄, ā).
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3) (Extension property) If an m-type p is over A and does not fork over

B, then some extension q ∈ S(A) of p does not fork over B.

4) (Few non-forking types) For B ⊆ A the set {p ∈ Sm(A) : p does not

fork over B (or just does not split strongly) over B} has cardinality

≤ 22|B|+|T |

. If p(x̄) does not fork over M , then it does not split over M .

5) (Monotonicity in the sets) If B1 ⊆ B2 ⊆ A2 ⊆ A1 and p ∈ S(A1) does

not fork over B1, then p � A2 does not fork over B2.

6) (Indiscernibility preservation) If b̄ is an infinite indiscernible sequence

over A1 and B ⊆ A1 ⊆ A2 and b̄ ⊆ A2 and tp(c̄, A2) does not fork over

B or just does not divide over B or just does not split strongly over B

then b̄ is an (infinite) indiscernible sequence over A1 ∪ c̄.

7) (Finite character) If p forks over B then some finite q ⊆ p does; if p is

closed under conjunction (up to equivalence suffices) then we can choose

q = {ϕ}. Similarly for divides and the type p(x̄) strongly split over A

iff some subtype with exactly two members strongly split over A.

8) (Monotonicity in the type) If p(x̄) ⊆ q(x̄) or just q(x̄) ` p(x̄) and p(x̄)

forks over B then q(x̄) forks over B; similarly for divides and for split

strongly.

9) An m-type p is finitely satisfiable in A if and only if for some ultrafilter

D on mA we have p ⊆ Av(Dom(p), D).

Remark: 1) Only parts (2), (4), (6) of 5.4 use “T is dependent”.

2) If T is unstable then for every κ there are some A and p ∈ S(A) such that

p divides over every B ⊆ A of cardinality < κ (use a Dedekind cut with both

cofinalities ≥ κ).

Proof. 0), 0A), 1) Easy. The proof of part (1) is included in the proof of part

(2).

2) Assume toward contradiction that p splits strongly, then for some in-

finite indiscernible sequence 〈b̄n : n < ω〉 over B and n < m we 3 have

[ϕ(x̄, b̄n) ≡ ¬ϕ(x, b̄m)] ∈ p (really p ` [ϕ(x̄, b̄n) ≡ ¬ϕ(x̄, b̄m)] suffices). By re-

naming, without loss of generality n = 0,m = 1. Let c̄n = b̄2nˆb̄2n+1, ψ(x̄, c̄n) =

[ϕ(x̄, b̄2n) ≡ ¬ϕ(x̄, b̄2n+1)]. Clearly 〈c̄n : n < ω〉 is an indiscernible sequence over

B, p ` ψ(x̄, c̄0) and {ψ(x̄, c̄n) : n < ω} is contradictory as T is dependent. This

proves the first sentence. The second is by the definitions and the third sentence.

3 Recalling [ϕ1 ≡ ϕ2] is the formula (ϕ1 ∧ ϕ2) ∨ (¬ϕ1 ∧ ¬ϕ2).
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For the third, the “if” part is obvious, hence let us prove the “only if”, so as-

sume that p(x̄) divides over B, we can find ϕ(x̄, b̄0), 〈b̄n : n < ω〉 as in Definition

5.2(1), i.e. satisfies clauses (a)-(d) there. As p(x̄) ` ϕ(x̄, b̄0), necessarily there

is a finite subset p′(x̄) of p(x̄) such that p′(x̄) ` ϕ(x̄, b̄0). Let 〈ϕ`(x̄, c̄`) : ` < k〉

list p′(x) and as p(x̄) is directed by ` we can find a formula ψ(x̄, c̄) ∈ p(x̄)

such that ψ(x̄, c̄) ` ϕ`(x̄, c̄`) for every ` < k hence ψ(x̄, c̄) ` ϕ(x̄, b̄0). Now for

each n < ω, the sequences b̄n, b̄0 realize the same type over B, hence there is a

sequence c̄n ∈ `g(c̄)C such that the sequences b̄0ˆc̄, b̄nˆc̄
n realize the same type

over B By Ramsey theorem and compactness we can find 〈d̄n : n < ω〉 such

that b̄nˆd̄n realizes the same type as b̄0ˆc̄ over B and 〈b̄nˆd̄n : n < ω〉 is an

indiscernible sequence over B. So let F be an automorphism of C over B which

maps b̄0ˆd̄0 to b̄0ˆc̄. So 〈F (d̄n) : n < ω〉 is an indiscernible sequence over B and

F (d̄0) = c̄ so ψ(x̄, d̄0) = ψ(x̄, c̄) `
∧

`<k

ϕ`(x̄, c̄`) ` ϕ(x̄, b̄0) = ϕ(x̄, F (b̄0)).

Necessarily also n < ω ⇒ ψ(x̄, d̄n) ` ϕ(x, b̄n) and as {ϕ(x̄, b̄n) : n < ω} is

contradictory, so is {ψ(x̄, d̄n) : n < ω}. So 〈F (d̄n) : n < ω〉 examplifies that

ψ(x̄, d̄0) = ψ(x̄, c̄) explicitly divides over B as promised.

The fourth and fifth sentences are obvious.

3) By the definitions (or see [Sh:93]).

4) Easy or see [Sh:3]; e.g. by part (3) without loss of generality B = M ,

A = |N | is ‖M‖+-saturated. Now if ā` ∈
mN realizes the same type over M for

` = 1, 2 then for some c̄n ∈ mN for n = 1, 2, . . . , 〈ā`〉ˆ〈c̄1, c̄2, . . . 〉 is indiscernible

over M .

5) Easy.

6) By part (2) and transitivity of “equality of types” and Fact 5.5 below.

7), 8), 9) Easy. 5.4

We implicitly use the trivial.

5.5. Fact: 1) If I is a linear order, s̄0, s̄1 are increasing n-tuples from I then

~ω there is a linear order J ⊇ I such that for ` ∈ {0, 1} there is an indis-

cernible sequence 〈t̄`k : k < ω〉 of increasing n-tuples from J such that

t̄0k+1 = t̄1k+1 for k < ω and ` = 0, 1 ⇒ s̄` = t̄`0; indiscernible means for

quantifier free formulas in the order language, i.e., in the vocabulary

{<} is satisfaction in J . If I has no last element or no first element

then we can take I = J .

2) Similarly, for 〈b̄t : t ∈ I〉 an infinite indiscernible sequence over A in C.
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Proof. 1) Let J ⊇ I be with no last element. Choose for k = 1, 2, . . . an

increasing sequence t̄k of length n from J such that 2 ≤ k < ω ⇒ Rang(s̄0ˆs̄1) <

Rang(t̄k) < Rang(t̄k+1). So 〈s̄`〉ˆ〈t̄1, t̄2, . . . 〉 is an indiscernible sequence in J

for ` = 0, 1.

2) Easy. 5.5

5.6. Definition: 1) Let p be an m-type, p � B2 ∈ Sm(B2). We say that p strictly

does not divide over (B1, B2), (when B1 = B2 = B we may write “over B”) if :

(a) p does not divide over B1;

(b) if 〈c̄n : n < ω〉 is an indiscernible sequence over B2 such that c̄0 real-

izes p and A is any set satisfying Dom(p) ∪ B2 ⊆ A, then there is an

indiscernible sequence 〈c̄′n : n < ω〉 over A such that c̄′0 realizes p and

tp(〈c̄n : n < ω〉, B2) = tp(〈c̄′n : n < ω〉, B2).

1A) “Strictly divide” is the negation.

2) We say that p strictly forks over (B1, B2) if and only if p `
∨

`<n ϕ` for

some 〈ϕ` : ` < n〉 such that (p � B2) ∪ {ϕ`} strictly divides over (B1, B2) for

each ` < n.

3) An m-type p(x̄) strictly does not fork over (B1, B2) when: the type p(x̄)

does not fork over B1 and p(x̄) � B2 ∈ SM (B2) and if 〈c̄n : n < ω〉 is an indis-

cernible sequence over B2 of sequences realizing p(x̄) and C ⊇ B1 ∪ Dom(p(x̄))

and q(x̄) ∈ Sm(C) extend p(x̄) and does not fork over B1 then there is an

indiscernible sequence 〈c̄′n : n < ω〉 over C realizing tp(〈c̄n : n < ω〉, B2) such

that c̄′0 realizes q(x̄); note that “strictly does not fork” is not defined as “does

not strictly forks”; to stress we may write “strictly∗ does not fork”.

We shall need some statements concerning “strictly does not fork” parallel to

those on “does not fork”.

5.7. Observation: 0) In clause (b) of Definition 5.6(1) we can weaken the

assumption “c̄0 realizes p” to “c̄0 realizes p � B2”.

1) “Strictly does not divide/fork over (B1, B2)” is preserved by permuting

the variables, repeating variables and by automorphisms of C and if it

holds for tp(b̄ˆc̄, A), then it holds for tp(b̄, A). Similarly for does not

strictly fork.

1A) The m-type p(x̄) strictly does not divide over (B1, B2) iff p(x̄) �

B2 ∈ Sm(B2) and (p(x̄) � B2) ∪ q(x̄) strictly does not divide over

(B1, B2) for every finite q(x̄) ⊆ p(x̄).
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2) If p strictly does not fork over (B1, B2) then p does not strictly fork

over B which implies p strictly does not divide over (B1, B2).

3) If p strictly does not divide over B, then p does not divide over B.

4) If p does not strictly fork over B, then p does not fork over B.

5) If p is anm-type which strictly does not fork over (B1, B2) and Dom(p)⊆

A, then there is q ∈ Sm(A) extending p which strictly does not fork over

(B1, B2). If p1(x̄) ⊆ p2(x̄) and p1(x̄) strictly does not fork over (B1, B2)

and p2(x̄) does not fork over B1 then p2(x̄) does not strictly fork over

(B1, B2).

6) If B1 ⊆ B′
1 ⊆ B′

2 = B2 and p(x̄) ` p′(x̄) and p(x̄) strictly does not

divide/fork over (B1, B2) and p′ � B2 is complete then p′(x̄) strictly

does not divide/fork over (B′
1, B

′
2).

7) In Definition 5.6, clause (b) the case A = Dom(p) ∪B2 suffices.

8) If p strictly forks over (B1, B2), then for some finite q ⊆ p the type

q ∪ (p � B2) strictly forks over (B1, B2). Moreover, for some finite

B′
2 ⊆ B2, (p is an m-type), if B1 ∪ B′

2 ⊆ B′′
2 and p′ is an m-type

extension of q and p′ � B2 ∈ Sm(B2), then p′ strictly forks over (B1, B
′′
2 ).

Similarly for strictly divide.

9) If M ⊆ A, p = tp(b̄, A) and tp(A,M + b̄) is finitely satisfiable in M ,

then p strictly does not fork over M .

Proof. Easy, e.g.,

0) The new version is stronger hence it implies the one from the definition.

So assume that p is an m-type, p � B2 ∈ Sm(B2) and p strictly does not

divide over (B1, B2) and we shall prove the new version of clause (b). I.e., we

have 〈c̄n : n < ω〉 is an indiscernible sequence over B2 and c̄0 realizes p � B2.

Let c̄′′0 ∈ mC realizes p hence it realizes p � B2, but p � B2 ∈ Sm(B2) so

tp(c̄0, B2) = tp(c̄′′0 , B2). We can deduce that there is an automorphism F of C

over B2 which maps c̄0 to c̄′′0 , and define c̄′′n = F (c̄n).

Now 〈F (c̄n) : n < ω〉 satisfies the assumption of clause (b) from Definition

5.6(1) hence there is an indiscernible sequence 〈c̄′n : n < ω〉 over A such that

tp(〈c̄′n : n < ω〉, B2) = tp(〈F (c̄′n) : n < ω〉, B2), but the latter is equal to

tp(〈cn : n < ω〉, B2) so we are done.

6) Without loss of generality Dom(p) ∪ B′
2 ⊆ A. Recall that by part (0) in

Claim 5.5, clause (b) we can demand only “c̄0 realizes p � B2” and for any such

〈c̄n : n < ω〉 there is c̄′′0 realizing p hence c̄0 and c̄′′0 realizes the same type over
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B2 hence there is automorphism F of C over B2 mapping c̄0 to c̄′′0 and use the

definition for 〈F (c̄n) : n < ω〉.

7) By Ramsey theorem and compactness.

9) Use an ultrafilter D. 5.7

The next claim is a parallel of: every type over A does not fork over some

“small” B ⊆ A. If we have “p is over A implies p does not fork over A” we

could have improvement.

More elaborately, note that if M is a dense linear order and p ∈ S(M), then

p actually corresponds to a Dedekind cut of M . So though in general p is not

definable, p � {c ∈ M : c /∈ (a, b)} is definable whenever (a, b) is an interval of

M which includes the cut. So p is definable in large pieces. The following (as

well as 5.20) realizes the hope that something in this direction holds for every

dependent theory.

5.8. Claim: If p ∈ Sm(A) and B ⊆ A, then we can find C ⊆ A of cardinality

≤ |T | such that:

~ if 〈ān : n < ω〉 is an indiscernible sequence over B∪C such that ā0 ⊆ A

and tp(ā0, B ∪ C) strictly does not fork over B and {ϕ(x̄, ān) : n < ω}

is contradictory or just ϕ(x̄, ā0) ex-forks over B∪C, then ¬ϕ(x, ā0) ∈ p.

5.9. Conclusion: 1) For every p ∈ Sm(A) and B ⊆ A, we can find C ⊆

A, |C| ≤ |T | such that:

~ if 〈ān : n < ω〉 is an indiscernible sequence overB∪C satisfying ā0∪ā1 ⊆

A and tp(ā0ˆā1, B ∪ C) strictly does not fork over B, then for any ϕ

(∗) ϕ(x, ā0) ∈ p if and only if ϕ(x, ā1) ∈ p.

2) For every x̄ = 〈x` : ` < m〉 and formula ϕ = ϕ(x̄; ȳ) for some finite

∆ ⊆ L(T ) we have:

if p ∈ Sm(A), B ⊆ A, then for some finite C ⊆ A (in fact

|C| < f(m,ϕ, T ) for some function f), we have:

if 〈ā` : ` < k〉 is ∆-indiscernible sequence over B ∪ C and

tp∆(ā0ˆā1, B∪C) strictly does not fork over A, then ϕ(x, ā0) ∈

p⇔ ϕ(x, ā1) ∈ p.

3) The local version of 5.8 holds with a priori finite bound on C.

Proof of 5.8. By induction on α < |T |+ we try to choose Cα, āα, kα and 〈ākα,n :

n < ω〉 and ϕα(x̄, ȳα), ϕα,k(x̄, ȳα,k) such that:
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(a) Cα =
⋃

{āβ : β < α} ∪B;

(b) 〈ākα,n : n < ω〉 is an indiscernible sequence over Cα for k < kα;

(c) āα ⊆ A and āα = ākα,0 for k ≤ kα;

(d) ϕα(x̄, āα) ∈ p;

(e) {ϕα,k(x̄, ākα,n) : n < ω} is contradictory;

(f) tp(āα, B ∪ Cα) strictly does not fork over B;

(g) ϕα(x̄, āα) `
∨

k<kα
ϕα,k(x̄, ā

k
α,0).

If for some α < |T |+ we are stuck, C = Cα\B is as required. So assume that

we have carried the induction and we shall eventually get a contradiction.

By induction on α < |T |+ we choose Dα, Fα, b̄β , 〈b̄kβ,n : n < ω〉 for β < α such

that (but b̄kα,n are defined in the (α + 1)-th stage):

(α) Fα is an elementary mapping, increasing continuous with α;

(β) Dom(Fα) = Cα, Rang(Fα) ⊆ Dα;

(γ) Dα = Rang(Fα) ∪
⋃

{b̄kβ,n : β < α, k < kα and n < ω} so Dα ⊆ C is

increasing continuous;

(δ) 〈b̄kα,n : n < ω〉 is an indiscernible sequence over Dα ⊇ Fα(Cα) and

b̄kα,0 = b̄α;

(ε) Fα+1(āα) = b̄α and tp(b̄α, Dα) does not fork over Fα(B) ;

(ζ) Some automorphism F kα+1 ⊇ Fα+1 of C maps ākα,n to b̄kα,n for n < ω, k <

kα.

For α = 0, α limit this is trivial. For α = β+1, clearly Fα(tp(āα, Cα)) is a type

in S<ω(F (Cα)) which strictly does not fork over Fα(B) = F0(B) hence has an

extension qα ∈ S<ω(Dα) which does not fork over F0(B) and let b̄α realize it.

Let Fα+1 ⊇ Fα be the elementary mapping extending Fα with domain Cα+1

mapping āα to b̄α. Let F kα+1 ⊇ Fα + 1 be an automorphism of C as required by

clauses (δ)+(ζ);F ka+1 exists as tp(āα, B∪Cα) strictly∗ does not fork overB; and

let b̄kα,n = F kα+1(ā
k
α,n) for n < ω, k < kα. So Dα+1 and Fα+1 are well-defined.

Having carried the induction let F ⊇
⋃

{Fα : α < |T |+} be an automorphism

of C. We claim that for each α < |T |+ and k < kα, for every β ∈ [α, |T |+] we

have

(∗)α,β 〈b̄kα,n : n < ω〉 is an indiscernible sequence over Dα ∪
⋃

{b̄γ : γ ∈

[α+ 1, β)}.

We prove this by induction on β. For β = α this holds by clause (δ), for

β ≡ α + 1 this is the same as for β = α. For β limit use the definition of

indiscernibility. For β = ζ + 1 use the fact that tp(b̄ζ , Dζ) does not fork over
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F0(B) hence over Dα ∪ {Fγ+1(b̄γ) : α < γ < ζ} by 5.4(5); so by the induction

hypothesis and 5.4(6) clearly (∗)α,β holds.

¿From α < |T |+ ⇒ (∗)α,|T |+ we can conclude

(∗∗) for any n < ω and α0 < · · · < αn−1 < |T |+ and ν ∈
∏

`<n kα`
and

η ∈ n2 the sequences

b̄
ν(0)
α0,0

ˆb̄
ν(1)
α1,0

ˆ . . . ˆb̄
ν(n−1)
αn−1,0

and b̄νη := b̄
ν(0)
α0,η(0)

ˆb̄
ν(1)
α1,η(1)

ˆ . . . ˆb̄
ν(n−1)
αn−1,η(n−1)

realize the same type over B.

(Why? By induction on max{` : η(`) = 1 or ` = −1}. If `(∗) = −1

then the two sequences are the same so (∗∗) holds trivially. Let ρ ∈ n2

is defined by: ρ(`) is 0 if ` = `(∗) and is η(`) otherwise. So the induction

hypothesis applied to ρ, hence it suffice to prove that the sequences b̄νρ, b̄
ν
η

realize the same type over B . Now assume `(∗) ∈ {0, . . . , n−1} and use

(∗)α`(∗),|T |+ for k = ν(`(∗)), it says that the sequence 〈b̄
ν(`(∗))
α`(∗),n

: n < ω〉

is an indiscernible sequence over Dα`(∗)
∪ {b̄γ : γ ∈ [α`(∗)+1, |T |

+)}.

The second part in the union includes

{b̄
ν(`(∗)−1)
α`(∗)+1,0

, . . . , b̄
ν(n−1)
αn−1,0

} = {b̄
ν(`(∗))
α`(∗)+1,η(`(∗)+1), . . . , b̄

ν(n−1)
αn−1,η(n−1)}

by the choice of `(∗), and the first part of the union includes the

rest. So it suffice to show that b̄
ν(`(∗))
α`(∗)

= b̄
ν(`(∗))
α`(∗),0

= b̄
ν(`(∗)))
α`(∗),ρ(`(∗))

and

b̄
ν(`(∗))
α`(∗),1

= b̄
ν(`(∗))
α`(∗),η(`(∗))

realize the same type over Dα`(∗)
∪ {b̄γ : γ =

α`(∗)+1, . . . , αn−1} which has been proved above.)

Let c̄ realize p. For each α < |T |+, ϕα(x, āα) ∈ p, hence ϕα(x, b̄α) ∈ F (p). Also

ϕα(x, āα) `
∨

k<kα
ϕα,k(x, a

k
α,0), hence by clause (ζ)

ϕα(x, b̄α) `
∨

k<kα

ϕα,k(x, a
k
α,0),

hence we can choose k(α) < kα such that C |= ϕ[c̄, ā
k(α)
α,0 ].

Now as {ϕα,k(α)(x, b̄
k(α)
α,n ) : n < ω} is contradictory there is n = n[α] < ω such

that C |= ¬ϕα,k(α)(c̄, b̄
k(α)
α,n ), whereas C |= ϕα,k(α)[c̄, b̄

k(α)
α,0 ]; by renaming without

loss of generality C |= ¬ϕα,k(α)[c, b̄
k(α)
α,n ] for α < |T |+, n ∈ [1, ω). Now if n < ω,

α0< · · ·<αn−1 < |T |+ and η ∈ n2, then C |=
∧

`<m ϕα`,k(α`)(c̄, b̄
k(α`)
α`,η(`)

)if(η(`)=0)

hence C |= (∃x̄)[
∧

`<n ϕα`,k(α`)(x̄, b̄α`,η(`))
if(η(`)=0)] hence by (∗∗) we have

C |= (∃x̄)[
∧

`<n ϕα`,k(α`)(x̄, b̄
k(α`)
α`,0

)if(η(`)=0)].

Hence the independence property holds, contradiction. 5.8
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Proof of 5.9. 1) Follows from 5.8 by 5.4(2).

2) By 5.8 and compactness or repeating the proof.

3) Similarly. 5.9

5.10. Claim: 1) Assume p is a type, B ⊆ M,Dom(p) ⊆ M and M is

|B|+-saturated. Then

(A) p does not fork over B if and only if p has a complete extension

over M which does not fork over B if and only if p has a complete

extension over M which does not divide over B if and only if p has

a complete extension over M which does not split strongly over B;

(B) if p = tp(c̄,M) and ϕ(x̄, ā) ∈ p forks over B, then for some

〈ān : n < ω〉 indiscernible over B, {ān : n < ω} ⊆ M, ā0 = a

and ¬ϕ(x̄, ā1) ∈ p, and of course, ϕ(x̄, ā0) ∈ p.

2) Assume tp(C1/A) does not fork over B ⊆ A and tp(C2, (A ∪ C1)) does

not fork over B ∪ C1. Then tp(C1 ∪ C2), A) does not fork over B.

Proof. 1) Read the definitions.

Clause (A):

First implies second by 5.4(3), second implies third by Definition 5.2 or 5.4(2),

third implies fourth by 5.4(2). If the first fails, then p `
∨

`<k ϕ`(x̄, ā`) for some

k where each ϕ`(x̄, ā`) divides over B; let 〈ā`,n : n < ω〉 witness this hence by

5.4(2) without loss of generality ā` = ā`,0. As M is |B|+-saturated, without

loss of generality ā`,n ⊆ M . So for every q ∈ Sm(M) extending p, for some

` < k, ϕ`(x̄, ā`) ∈ q but for every large enough n,¬ϕ`(x̄, ā`,n) ∈ q, so q splits

strongly, i.e., fourth fails. So fourth implies first, “closing the circle”.

Clause (B): Similar.

2) Let M be |B|+-saturated model such that A ⊆ M . By 5.4(3) there is an

elementary mapping f1 such that f1 � A = idA and Dom(f1) = C1 ∪ A and

f1(C1)/M does not fork over B. Similarly we can find an elementary mapping

f ⊇ f1 such that Dom(f) = C1 ∪C2 ∪A and f(C2)/(M ∪ f(C1)) does not fork

over A ∪ f(C1). By 5.4(2), f1(C1)/M does not split strongly over B. Again by

5.4(2), f(C2)/(M ∪ f1(C1)) does not split strongly over B ∪ f1(C1). Together

they imply that if b̄ ⊆M is an infinite indiscernible sequence overB then it is an

indiscernible sequence over f(C1)∪B and even over f(C2)∪(f(C1)∪B) (use the

two previous sentences and 5.4(6)). But this means that f(C1)∪f(C2)/M does

not split strongly over B, (here the exact version of strong splitting we choose is

immaterial as M is |B|+-saturated). So by 5.10(1) we get that f(C1)∪f(C2)/M
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does not fork over B hence f(C1 ∪C2)/A does not fork over B but f ⊇ idA so

also C1 ∪ C2/A does not split strongly over B. 5.10

5.11. Conclusion: 1) If M is |B|+-saturated and B ⊆M and p ∈ Sn(M) then

p does not fork over B if and only if p does not strongly split over B.

2) If A = |M |, then in Conclusion 5.9(1) we can replace strong splitting by

dividing.

Proof. 1) By 5.10. 2) By part (1). 5.11

5.12. Definition: 1) We say 〈āt : t ∈ J〉 is a non-forking sequence over

(B,A) when B ⊆ A and for every t ∈ J we have

tp(āt, A ∪
⋃

{ās : s <J t})

does not fork over B.

2) We say that 〈āt : t ∈ J〉 is a strict non-forking sequence over (B1, B2, A)

if B1 ⊆ B2 ⊆ A and for every t ∈ J the type tp(āt, A ∪
⋃

{ās : s <J t})

strictly does not fork over (B1, B2), see Definition 5.6. If B1 = B2 we

may write (B1, A) instead of (B1, B1, A).

3) We say A = (A, 〈(āα, Bα) : α < α∗〉) is an Ffκ-construction or 〈(̄aα, Bα) :

α < α∗〉 an Ffκ-construction over A if Bα ⊆ Aα := A ∪
⋃

{āβ : β < α}

has cardinality < κ and tp(āα, Aα) does not fork over Bα.

4) We can above replace āt by At meaning for some/every āt listing At

the demand holds.

5.13. Claim: 1) Assume

(a) 〈āt : t ∈ J〉 is a strictly non-forking sequence over (B,B,A);

(b) 〈b̄t,n : n < ω〉 is an indiscernible sequence over B each b̄t,n realizing

tp(āt, B) for each t ∈ J .

Then we can find āt,n for t ∈ J, n < ω such that

(α) 〈āt,n : n < ω〉 is an indiscernible sequence over A ∪ {ās,n : n <

ω, s ∈ J\{t}};

(β) tp(〈b̄t,n : n < ω〉, B) = tp(〈āt,n : n < ω〉, B);

(γ) āt,0 = āt.

Proof. We prove by induction on |J |.

Case 1: J is finite.

Sh:783



Vol. 173, 2009 DEPENDENT FIRST ORDER THEORIES, CONTINUED 51

We prove this by induction on n, for n = 0, 1 this is trivial; assume we have

proved for n and we shall prove for n+ 1. Let λ = (|A| + |T |)+.

So let J = {t` : ` ≤ n} t` increasing with `. First we can find an indiscernible

sequence 〈āt0,α : α < λ〉 overA such that āt0,0 = āt0 and for some automorphism

F of C over B we have k < ω ⇒ F (b̄t0,k) = āt0,k. Let A′ := A∪{āt0,α : α < λ}.

(This is possible by Definition 5.6.)

Second, we can choose ā′t` , by induction on `, such that ā′t0 = āt0 and if

` > 0 then tp(ā′t` , A
′ ∪

⋃

{ā′tm : m = 1, . . . , ` − 1}) strictly does not fork over

B and the two sequences āt0ˆ . . . ˆāt` , ā
′
t0

ˆ . . . ˆā′t` realizes the same type over

A. We can do it by 5.6(5) and “strictly does not fork” being preserved by

elementary mapping. By 5.10(2) the type tp(ā′t1ˆ . . . ˆā
′
tn
, A′}) does not fork

over B hence by 5.4(6) the sequence 〈āt0,α : α < λ〉 is an indiscernible sequence

over A∪ (ā′t1ˆ . . . ˆā
′
tn

). As tp(āt` , A∪{ātm : m < i}) strictly does not fork over

(B,A) without loss of generality 〈b̄t`,m : m < ω〉 is an indiscernible sequence

over A′ such that each b̄t`,m realizes tp(ā′t` , A).

Now we use the induction hypothesis with B,A′, 〈ā′t` : ` = 1, . . . , n〉, 〈b̄t`,m :

m < ω〉 for ` = 1, . . . , n and let 〈ā′t`,n : n < ω〉 for ` = 1, . . . , n be as in the

claim.

By [Sh:715] for some α∗ < λ the sequence 〈ā′t0,α : α ∈ [α∗, α∗ + ω)〉 is

an indiscernible sequence over A ∪
⋃

{ā′t`,m : m < ω, ` = 1, . . . , n} and as

A′ = A ∪ {ā′t0,α : α < λ} clearly for ` = 1, . . . , n the sequence 〈ā′t`,m : m < ω〉

is indiscernible over A∪
⋃

{ā′tk,m : k ∈ {1, . . . , n}\{`} and m < ω}∪
⋃

{ā′α∗+m :

m < ω}. But we know that 〈ā′t0,α : α < α∗ + ω〉 is an indiscernible sequence

over A∪{ā′t` : ` = 1, . . . , n}, hence the sequence ā′tα,α∗ˆā′t1ˆ . . . ˆā
′
tn

realizes over

A the same type as ā′t0,0ˆā
′
t1

ˆ . . . ˆā′tn hence it realizes over A the same type

as āt0ˆ . . . ˆātn over A. So for some automorphism F of C, F � A = idA, ` =

1, . . . , n ⇒ āt` = F (ā′t`,0) and āt0 = F (ā′t0,α∗) and let āt`,m = F (ā′t`,m) for

` = 1, . . . , n and m < ω and āt0,m = F (ā′t0,α∗+m).

So we are done.

Case 2: J infinite.

By Case 1 + compactness. 5.13

Remark: Can we use just no dividing?
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5.14. Claim: 1) Assume 〈At : t ∈ J〉 is a non-forking sequence over (B,A)

and Ct ⊆ C for t ∈ J . Then we can find 〈ft : t ∈ J〉 such that

(a) ft is an elementary mapping with domain

A ∪At ∪ Ct;

(b) ft � (A ∪At) is the identity;

(c) tp(At, A ∪
⋃

{As ∪ fs(Cs) : s < t} does not fork over B.

2) If, in addition, tp(Ct, A ∪ At) does not fork over A ∪ At, then we can

add

(c)+ 〈At ∪ ft(Ct) : t ∈ J〉 is a non-forking sequence over (B,A).

5.15. Remark: 1) We may consider Ff -construction, i.e., A = (A, 〈aBi
α :

α < α∗〉) is an Ff -construction, when

(a) Bi ⊆ Ai := A ∪ {aj : j < i};

(b) tp(ai, Ai) does not fork over Bi;

(c) |Bi| < κ.

1A) We may replace α above by a linear order I, not necessarily well-

founded.

2) In 5.14(2) we may weaken the assumption to: for every A′ ⊇ A,

At ∪ Ct/A can be embedded to a complete non-forking type over A′.

Proof. 1) As in the proof of 5.8.

2) Similarly.

5.16. Claim: 1) Assume

(a) 〈At : t ∈ J〉 is a non-forking sequence over (B,A).

Then for any initial segment I of J, tp(
⋃

{At : t ∈ J\I}, A ∪
⋃

{At : t ∈

I}) does not fork over B.

2) Assume (a) and

(b) 〈āt,n : n < ω〉 is an indiscernible sequence over A;

(c) āt,n ∈ ω>(At);

(d) 〈āt,n : n < ω〉 is an indiscernible sequence over A∪
⋃

{As : s <J t}.

Then 〈〈āt,n : n < ω〉 : t ∈ J〉 are mutually indiscernible over A. Also

for any non-zero k < ω and t0 < · · · < tk−1 in J the sequences 〈āt`,n :

n < ω〉 for all ` < k are mutually indiscernible over A ∪
⋃

{As : ¬(t0 ≤

s ≤ tk−1)}.
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5.17. Question: If n` < ω for ` < n do the sequences

〈āt0,n0ˆāt1,n1ˆ . . . ˆātk−1,nk−1
〉 and 〈āt0,0ˆāt1,0ˆ . . . ˆātk−1,0〉

realize the same type over A ∪
⋃

{As : s <J t0 or sJ > tk−1}. Need less?

Remark: A statement similar to 5.16(1) for Ffκ-construction holds.

Proof. 1) If J\I is finite, we prove this by induction on |J\I| using 5.10(2). The

general case follows by 5.4(7).

2) It is enough to prove the second sentence. For k = 1 this follows by 5.4(6)

and 5.10(2) using part (1) with A ∪
⋃

{As : s < t}, 〈Ar : r ∈ J, r > t〉 instead

A, 〈Ar : r ∈ J〉.

For k + 1 > 1, let t0 <J · · · <J tk be given. Use the case k = 1 for each t`

and combine. 5.16

Recall by 5.10

5.18. Remark: 1) Recall that by 5.10 if p ∈ Sm(M),M is quite saturated, then

dividing is the same as forking for the type p.

5.19. Claim: Assume that for every set B, if p(x̄) ∈ Sm(B) then p does not

fork over B. Assume that 〈āt : t ∈ J〉 is a non-forking sequence over (B,A) and

A = |M |.

1) For every (finite sequence) b̄ the set {t : b̄/(A ∪ āt) forks over
⋃

s<t as ∪A

or if A is a model over A} has cardinality ≤ |T |.

2) For each ϕ(x̄, ȳ, z̄) and k < ω for some n = nϕ(x̄,ȳ),k the set Wϕ

b̄
:=

{t : tpϕ(b̄, A∪ āt) has a subset with ≤ k members which forks over ∪s<τ ās ∪A}

has ≤ n members.

Proof. 1) By (2).

2) Fix k. Assume toward contradiction that this fails for n. We can find

t0 <I t1 <J · · · <J tn−1 from Wϕ

b̄
.

Now, for every u ⊆ {0, . . . , n− 1} there is b̄u realizing tp(b̄, A∪ {āt` : ` ∈ u})

such that tp(b̄u,A ∪ {āt` : ` < n}) does not fork over A ∪ {b̄t` : ` ∈ u}.

For each ` < n we can find q` ⊆ tpϕ(b̄, A ∪ āt`) and with ≤ k members

which forks over A. Let A` = A ∪ āt0 ∪ · · · ∪ āt`−1
. Clearly, ` ∈ u ⇒ q` ⊆

tp(b̄u, A ∪ {ātm : m < n}). If ` ∈ n\u, let i`,0 < · · · < i`,m(`)−1 < n list u\` so

tp(āi`,m
, A` ∪ āt` ∪ āti`,0

· · · ∪ āti`,m−1
) does not fork over A for m < m(`) and

tp(b̄u, A` ∪ āt` ∪ āti`,0
∪ · · · ∪ āti`,m(`)−1

) does not fork over A ∪ {ātk : k ∈ u} ⊆
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A` ∪{āti`,0
,··· ,āti`,m(`)−1

} hence by 5.10(2) + 5.4(0) tp(b̄u,A∪ āt`) does not fork

over A`, hence ¬∧ q` belongs to it. As for our fixed k this holds for every n, we

get that T has the independence property contradiction. 5.19

5.20. Claim: Assume that p(x̄) is a type of cardinality < κ which does not fork

over A. then for some B ⊆ A of cardinality < κ + |T |+, the type p does not

fork over B.

Proof. Without loss of generality p is closed under conjunction.

For any finite sequence ϕ̄ = 〈(ϕ`(x̄, ȳ`), n`) : ` < n〉 and formula ψ(x, c̄) ∈ p

and set B ⊆ A we define

ΓB,ϕ̄,ψ(x̄,c̄) = {(∀x)(ψ(x, c̄) →
∨

`<n

ϕ`(x̄, ȳ`,0))}

∪ {¬(∃x̄)
∧

n∈w

ϕ`(x̄, y`,n) : ` < n and w ∈ [ω]n`}

∪ {ϑ(y`,m1, . . . , y`,mk
, b̄) = ϑ(y`,0, . . . , y`,k, b̄) :

b̄ ⊆ B, ϑ ∈ L(τT ),m1 < · · · < mk < ω}.

Now as p does not fork over A, clearly for any ϕ̄ as above and ψ(x̄, c̄) ∈ p the

set ΓA,ϕ̄,ψ(x̄,c̄) is inconsistent. Hence for some finite set B = Bϕ̄,ψ(x,c̄) ⊆ A the

set ΓB,ϕ̄,ψ(x,c̄) is inconsistent. Now B∗ =
⋃

{Bϕ̄,ψ(x̄,c̄) : ψ(x̄, c̄) ∈ p and ϕ̄ is as

above} is as required. 5.20

The following is another substitute for “every type p does not fork over a

small subset of Dom(p)”.

5.21. Claim: Assume that for every set B, if p ∈ S<ω(B) then p does not fork

over B. Assume p ∈ Sm(M) and B ⊆M . Then we can find C such that

(∗)1 C ⊆M and |C| ≤ |T | and

(∗)pM,B,C if D ⊆ M and tp(D/B ∪ C) does not fork over B, then p � (B ∪D)

does not fork over B ∪ C.

Proof. Follows by 5.19.

∗ ∗ ∗

5.22. Definition: Assume that C = |M |,M is κ-saturated A ⊆ M, |A| < κ and

p ∈ Sm(M) does not split over A. For any set B(⊆ C) let p[A,B ] be q � B, where

q ∈ Sm(M ∪B) is the unique type in Sm(M ∪B) which does not split over A.
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5.23. Observation: 1) In Definition 5.22, p[A,B ] is well-defined.

2) In 5.22 instead “C is κ+-saturated; |A| < κ” it suffices to assume that

every q ∈ S<ω(B) is realized in C.

3) p[A,B1] ⊆ p[A,B2] if B1 ⊆ B2.

5.24. Claim: 1) If the triple (A,C, p) is as in 5.23(2), A ⊆ A0 and ān ∈ mC

realizes p[A,An] for n < ω where An = A0 ∪
⋃

{ā` : ` < n}, then 〈ān : n < ω〉 is

an indiscernible sequence over A0. Also tp(〈ān : n < ω〉, A0) is determined by

(A,C, p,A0) and we call it p[A,Ao,ω].

Proof. See [Sh:c, II,§1] or [Sh:3].

5.25. Claim: Assume that

(a) (C,A) is as in 5.23(2)

(b) p0, p1 ∈ Sm(C) does not split over A

(c) p
[A,A,ω]
0 = p

[A,A,ω]
1 .

Then p0 = p1.

Proof. Let 〈ā`n : n < ω〉 realize p
[A,A,ω]
` so by clause (c) of the assumption

(∗)1 ā0
0, . . . , ā

0
n−1 and ā1

0ˆ . . . ˆā
1
n−1 realizes the same type over A.

If the conclusion fails, we can find c̄ and ϕ(x̄, ȳ) ∈ L(τT ) such that

(∗)2 ¬ϕ(x̄, c̄) ∈ p0 and ϕ(x̄, c̄) ∈ p1 so c̄ ∈ `g(ȳ)C.

Now we choose by induction on n a sequence ān such that

(∗)3 if ` < 2 and n = ` mod 2 and we let An = A ∪
⋃

{ān, . . . , ān−1} then

tp(ān, Ak,n ∪ c̄) = p
[A,An∪c̄]
` .

Now we can prove by induction on n < ω that

(∗)4 the sequences ā0
0ˆ . . . ˆa

0
n−1, ā

1
0ˆ . . . ˆā

1
n−1 and ā0ˆ . . . ˆān−1 realizes the

same type over A.

(Why? The first two sequences realizes the same type by (∗)1. For the induction

step, if n = ` mod 2, by the definition 5.22, we have ā`0ˆ . . . ˆā
`
n−1ˆā

`
n and

ā0ˆ . . . ˆān−1ˆān realizes the same type over A.)

So 〈ān : n < ω〉 is an indiscernible sequence and C |= ϕ[ān, c̄] if and only if n

is odd, contradiction to “T dependent”. 5.25

5.26. Conclusion: 1) If A ⊆ C and every p ∈ S<ω(A) is realized in C then

{p ∈ Sm(C) : p does not split over A} has cardinality ≤ |Sω(A)| which is
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≤ (Dedr(|A| + |T |)|T | ≤ 2|A|+|T | recalling Dedr(µ) = Min{λ : λ is regular and

every linear order of density ≤ µ has cardinality ≤ λ}.

2) Also, for any finite ∆ ⊆ L(τT ), the set {p � ∆ : p ∈ Sm(C) does not split

over A} has cardinality ≤ Dedr(C).

3) If p ∈ Sm(C) is finitely satisfiable in A ⊆ C then p does not split over A.

Proof. Should be clear.

∗ ∗ ∗

5.27. Definition: For ` ∈ {1, 2}, we say {āα : α < α∗} is `-independent over A

if we can find āα,n (for α < α∗, n < ω〉 such that:

(a) āα = āα,0;

(b) 〈āα,n : n < ω〉 is an indiscernible sequence overA∪
⋃

{āβ,m : β ∈ α∗\{α}

and m < ω};

(c) (α) if ` = 1, then for some b̄n ∈ A (n < ω) for every α < α∗ we have

〈b̄n : n < ω〉ˆ〈āα,n : n < ω〉 is an indiscernible sequence;

(β) if ` = 2, then for some b̄α,n ⊆ A (for α < α∗, n < ω),

〈b̄α,n : n < ω〉ˆ〈āα,n : n < ω〉

is an indiscernible sequence.

We now show that even a very weak version of independence has limitations.

5.28. Claim: 1) For every finite ∆ ⊆ L(τT ) there is n∗ < ω such that we cannot

find ϕ̄ = 〈ϕn(x̄, ān) : n < n∗〉 for which

(∗)ϕ̄ for each n < n∗ there are mn < ω and 〈b̄nm,` : ` < ω,m < mn〉 and

〈ψnm(x̄, ȳn) : m < mn〉 such that

(α) 〈b̄nm,` : ` < ω〉 is an indiscernible sequence over ∪{āk : k < n∗, k 6=

n};

(β) b̄nm,0 = ān;

(γ) {ψnm(x, b̄nm,`) : ` < ω} is contradictory for each n and m < mn;

(δ) ψnm(x̄, ȳn) ∈ ∆;

(ε) ϕn(x̄, ān) `
∨

m<mn
ψnm(x̄, ān);

(ζ) |= (∃x̄)
∧

n<n∗ ϕn(x̄, ān).

2) We weaken (α) above to tp(b̄nm,`,
⋃

{āk : k < n∗, k 6= n}) = tp(ān,
⋃

{āk :

k < n∗, k 6= n}).
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3) For some finite ∆+ ⊆ L(τT ), we can in (α) demand only ∆+-indiscernible;

also without loss of generality ϕn(x̄, ȳn) =
∨

m<mn
ψnm(x̄, ȳn).

Proof. 1) [Close to 5.8.] Note

~ if c̄ ∈ `g(x̄)(C) and n < n∗ and |= ϕn(c̄, ān) then for some c̄′ ∈ `g(x̄)(C)

we have

(i) tp(c̄′,
⋃

{āk : k < n∗, k 6= n}) = tp(c̄,
⋃

{āk : k < n∗, k 6= n});

(ii) tp∆(c̄, ān) 6= tp∆(c̄′, ān).

(Why ~ holds? Clearly it is enough to find b̄′n such that

(i) b̄n, b̄
′
n realize the same type over

⋃

{āk : k < n∗, k 6= n}

(ii) for some m < mn we have ψnm(b̄n, ān) ∧ ¬ψnm(b̄′n, ān).

Why does b̄′n exist? As |= ϕn[c̄, ān] by (ε) for some m < mn, |= ψnn [c̄, ān] and

by (α) + (γ), for some ` < ω, b′n = b̄nm,` is as required.)

By repeated use of ~ we get m∗
` < m` such that 〈ψnm∗

`
(x̄, ān) : n < n∗〉 is

independent but ψnm∗
`
(x̄, ȳn) ∈ ∆ is finite, so n∗ as required exists.

2),3) Similarly. 5.28

5.29. Claim: Assume

(a) 〈b̄n : n < ω〉 is indiscernible over M ;

(b) {ϕ(x̄, b̄n) : n < ω} is contradictory;

(c) M ≺ N, p ∈ S(N), ϕ(x̄, b̄0) ∈ p and ¬ϕ(x, b̄n) ∈ p for n > 0;

(d) N is ‖M‖+-saturated.

then for some 〈b′n : n < ω〉 we have

(α) 〈b̄′n : n < ω〉 is indiscernible over M based on M , b̄′n ⊆ N ;

(β) b̄′0 ∈ {b̄0, b̄1};

(γ) ϕ(x̄, b̄′0) ≡ ¬ϕ(x̄, b̄′1) belongs to p.

5.30. Definition: 1) For p ∈ Sm(M) let E (p) be the set of pairs (ϕ(x̄, ȳ), e) such

that

(a) e is a definable equivalence relation on `g(ȳ)M in M

(b) if b̄1eb̄2 then ϕ(x̄, b̄1) ∈ p⇔ ϕ(x̄, b̄2) ∈ p.

2) E ′
tp(p) is defined similarly by e is definable by types.

5.31. Claim: Assume ϕ = ϕ(x, y),M ≺ N,N is ‖M‖+-saturated and p ∈ S(N).

Then we cannot find {Di : i < nϕ}, a set of ultrafilters over (N) pairwise
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orthogonal (as below) with pi = Av(M,Di) such that p(x) ∪ pi(ȳ0) ∪ pi(ȳ1) ∪

{ϕ(x, ȳ1),¬ϕ(x, ȳ0)} is consistent for i < nϕ.

Now we deal with orthogonality.

5.32. Definition: Definition 1) Two complete types p(x̄), q(ȳ) over A are weakly

orthogonal if p(x̄) ∪ q(ȳ) is a complete type over A.

2) Assume b̄1, b̄2 are endless indiscernible sequences. We say b̄1, b̄2 are

orthogonal and write b̄1 ⊥ b̄2 if:

for every set A which includes b̄1 ∪ b̄2, Av(A, b̄1), Av(A, b̄2)

are weakly orthogonal

3) b̄1 is strongly orthogonal to b̄2,b1 ⊥
st

b2 if it is orthogonal to every endless

indiscernible sequence b̄′
2 of finite distance from b̄2 (see [Sh:715, 1.11](2).

4) An endless indiscernible sequence b̄1 is orthogonal to ϕ(x, ā) if it is or-

thogonal to every endless indiscernible sequence b̄2 = 〈b2,α : α < δ〉 such that

b2,α ∈ ϕ(C, ā) for every α < δ.

5) b̄ is based on A if b̄ is an indiscernible sequence and CA(b̄) (see [Sh:715]

or [Sh:93]) has boundedly many conjugations over A.

6) If b̄1
st

→⊥ b̄2 and b̄′
` is a neighbour (see [Sh:715, 1.11=np1.4B]) to b̄`

then b̄′
1 is strongly orthogonal to b̄′

2.

5.33. Claim: 1) Orthogonality is symmetric relation.

2) If b1,b2 are orthogonal, then they are perpendicular (see Definition 2.2).

5.34. Example: In Th(R, <), different initial segments are orthogonal, even two

disjoint intervals. For (R, 0, 1,+,×) the situation is different: any two non

trivial intervals are “the same”.

5.35. Claim: 1) Assume λ = λ<λ, I is a dense linear order with neither first

nor last element and b̄ = 〈b̄t : t ∈ I〉 an indiscernible sequence. If |I| = λ, then

there is M ⊇ b̄ which is λ-saturated and λ-atomic over b̄.

2) If p ∈ Sm(b̄) is λ-isolated then it is |T |+-isolated.

5.36. Question: If Av(M, b̄1), Av(M, b̄2) (or with D’s) are weakly orthogonal

and are perpendicular, then they are orthogonal.
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5.37. Question: On Av(b̄1, b̄), b̄ endless indiscernible sequence, can we define

a dependence relation exhausting the amount of indiscernible sets like depen-

dence?

5.38. Question: For each of the following conditions can we characterize the

dependent theories which satisfy it?

(a) for any two non-trivial indiscernible sequences b̄1, b̄2, we can find b̄′
` of

finite distance from b̄` (see [Sh:715], for ` = 1, 2) such that b̄′
1, b̄

′
2 are

not orthogonal

(b) any two non-trivial indiscernible sequences of singletons have finite dis-

tance?

(c) T is Th(F),F a field (so this class includes the p-adics various reasonable

fields with valuations and closed under finite extensions).
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