Sh:171

CLASSIFYING GENERALIZED QUANTIFIERS

Abstract : Finding a universe ] we prove that any quantifier ranging on a
family of n-place relations over [/ is bi-expressible with a quantifier ranging
over a family of equivalence relations, provided that V=/[. Most of the analysis
is carried assuming ZFC only and for a stronger equivalence relation, also we

find independence results in the other direction.

Notation :

1) b~4¢ means 6_=< bi:i<'n,> ,6=< ci:i<n>, and: a) b;€4 iff c;€4, b) b€A
implies b;=c;, c) b;=b, iff ¢;=c;.
2) For a set A of ¢(Z) ( ¢ a formula, T a finite sequence of variables including
all variables occurring freely in ¢),

tpalb A M)={p(Z.a): (x.¥)€A, aCA and M E¢[b.a]}
We omit M when its identity is clear, and when M =(]{R) write R instead of M.
Replacing A by bs means A={g(Z):¢ atomic or negation of atomic formulaj. We
write ¢ instead {¢}, and A will be always finite.
3) ST (A, M)={tp (5, A, M):b CH,L(b)=m]

Introeduction
In [Sh3] we gave a complete classification of a class of second order

quantifiers: those which are first-order definable (see below an exact
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definition). We find that for infinite models up to a very strong notion of
equivalence, biinterpretability, there are only four such quantifiers: first

order, monadic, one-to-one partial functions, and second-order.

Our aim here is to see what occurs if we remove the restriction that
the quanlifier is first order definable. As we do not want to replace this by a
specific J[-definable ([-some logic) we restrict ourselves to a fix infinite
universe 1/ If we then want to restrict ourselves to J{-definable quantifiers, we

will be able to remove the restriction to a fix universe 7/

Let us now make some conventions and definitions.

0.1 convention : 1) {/will be a fix infinite universe

2) K will denote a family of n-place relation over If, (for a
natural number n =n (X)), closed under isomorphism, i.e. if Ry, Kz are n-
place relations on {f, (If R,) = (I R;) then R, € K iff By € K.

3) Let K denote a finite sequence of such K's.

R= kgl <e(B)), K =K, 1 <UE))

4) Dom E = yia: FR(a)} , n=n{k) il R is an n-place relation
{or predicate; we shall not strictly distinguish).

0.2 Definition : For any K 3g {or @) denote a second order quantifier,
intended to vary on members of K. More exactly, L(3g,, - -, 3 ) is defined
like the first order logic but we have for each I = 1, m (infinitely many) vari-
ables R which serve as n(K;)-place predicates, and we can form (IgR)¢ for a
formula ¢. Defining satisfaction, we look only at models with universe I/ and
F(y, R)e(R, - - ) iff for some R%eKy, (RO, - ).

Remark : Note that quantifiers depending on parameters are not allowed. e.g.
on automorphisms; on such quantifiers see {Sh4], {Sh5], [Sh8].
0.3 Definition : We say that K (or Q) is /- definable { [-a logic) if there is a
formula @(R)eL, R the only free variable of ¢, and is appropriate, i.e. an
n (K)-place predicate, such that for any n-place relation R on {f

(U R Ee(R) iff ReK

0.4 Definition : We say that 3y, <;,,3x, (Jg, is interpretable in 3y, ) iff for
some first-order formula ¥ (Z, S)=0 (zq, " ', Tp(x,)-1» S0~ > Sp—1) » { €ach

5; an n{Ky)-place predicate) the following holds:
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(*) for every R,€K; there are Sg ---,S,_;€K; such that
U So. -+ Sm—t) E(VE)NRU(Z)=0(Z, S, -+, Smi)]

Remark : We can define EKiég,{,; I, similarly, by letting ¢ € L. but we have no
need.
A weaker notion is
0.5 Definition : 1) We say that 3g<,,, 3g, (I, is expressible by 3, ) if there is
a formula 9(Z, Sy, - - - ,5p1) in the logic L{dg,) such that:
(*) for every R;€K,, there are Sy - -,Sp-1€K; such that
U So, -+, Sp—y) E(VE)R(Z)=8(z, So. - -+, Spp_y)] -

R) We say that 3y, <g,.,3,, (g, is invariantly expressible by Zg,) if there is
a formula ¥(Z,Sg, -+, Spp—1) in the logic L(3g,) such that:

(*) for every R, € K, there are Sg, . ..,Sp_; € K such that for every K3
which extends K, letting ¥ is  when we replace dg, by AK3:

USe ... Sp-y) EVZ)R(Z) =9 (Z,Sg, ..., Sp-1)]
0.6 Definition : 1) We say 3y, =,,3g, (dg,, 3, are biinterpratable) if Jg<;,dg,
and Jg, <i0; A, -
R) We say dg, Zexpdk, ( Ig, Ix, are biexpressible) if g <., Ax and xS ik,
Similarly for =g.; : Ig,=ipesdg, ( 3g,dk, are invariantly biexpressible) if

EK,Sinez?‘Kz and ngsinezaK s

k&

3) We can define 3y, Spufdg,, - -, dg J as in Def. 0.4, but Sp, -, €U K , we
i=1

let 3z stand for § Jg, - ,dg ] where K=<Ko, - ',Kk_1> ; we define

Ipt Sypfpe i Tpa<ydp2 for each 1 ) we also define expressible , invariantly

expressible, biinterpratable and (invariantly) biexpressible similarly.

0.7 Notation : 1) It R is an  7ny-place relation  let

n=1

E Ri = idoﬁ T Ad—-n__._l:dl(zﬁl;.
1=0

n—1 n—1 ]
2)Let 2K =1{ ) R K€k, forl<n}.
1=0 1=0

3) 3 stand for 3 where K={R,: (If B2 R - - -)}.
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08 Lemma : 1) < ,.=<. . and <, p are partial guasi orders, hence =,;, =.....
exp @re equivalence relations.

2) Ap g g, implies Ig <., Ip which impliesdg <., 3p

3) dp , and dg are biinterpratable if K=} K; or K:UIQ (n(K;) constant in the
i i

second case).
0.9 Lemma : 1) If K, , K, are [ -definable (i.e. each K ; is) and Ig, Zexp Ig,

then we can recursively attach to every formula in I(JKl) an equivalent for-
mula in .,l'(:{]—{).

2) If K, , K, are [ definable, 1y dg, then the set of valid S “dg)-

R Sexp
sentences in recursive in the set of valid I(BKZ) -seniences.

Remark : The need of " J[-definable " is clearly necessary. Though at first
glance the conclusions of 0.9 may seem the natural definition of interprat-
able, I think reflection will lead us to see it isn't.

0.10 Definition : 1) We say that 3 <;,, 3¢ for a family of pairs (K,, K3), uni-
formly, if the formulas 9, (L<I(K})) depend on the
n(Ky,), n(Ky;), (i<L{K}), j<L(Kz)) only. (Clearly if we have only finitely many
candidates for ¥; , it does not matter).

2) We use similar notions for Sy, <inez +Zint: Zexpr Zinez-

§1 On some specific quantifiers.

1.1 Definition : 1) Let A" = {Aclf |4 |=x<|lf~4 |}

2) but we write @F*°" for 3 g, and similarly for the other quantifiers defined

below,

3) Kx™! = {f: f is a partial one-to-one function.
[Dom (f )| =A< |lf~Dom (f )—Rang (f)}.

4) K33, = {£:F is an equivalence relation on some Aclf with A equivalence
classes, each of power u, and |I/—4] = ||}

5) For At=u, we let

K;‘f » ={F:E is an equivalence relation, every equivalence class of & has
power <u , for each k<u, EF has exactly A equivalence classes of
power k, and |1/~Dom (£)|= ||}
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6) K32, ={E'F is an equivalence relation, with A equivalence classes, each of
power <u and |I/~Dom E|=|1f1}.
7) KE™ = UK, KZ'= UKy and K&<u = UK u and
<A

<A friey
*eq — *e
K Alp T U K x.g,u.
X<A
xXt=a

of course, KQ , = U K. K3 = KX, KB, = K4 o
XA
Remark : Of course, always |Dom £ |<!1f].
1.2 Claim : Let A=y. All results are uniform.
1) Q0" =4y QP and QW™ < Q™ . QP is dp for some R ; and
1<n£n =int Q??qu
R) 7! =iy Q4G QLT =iny Q2" L and @F™ =iy Q45 @A77 is3p for some R
cand QL =g @8,

1.3 Claim : Let A=y, u=«, all results are uniform.

1) @55, <int Q%% =int 9L <o+ and @B ¢y <int 9% <«

RYIEA2p , 3%, =it @B <u -

3) Ix=imu@B if (VReK) |Dom R|<A] (when A is infinite, for A finite
[Dom R|™®) < (A—1)? is needed).
4) Q8 <u St 19, <, 1<k} U for some I , A=), /\ uK; or A<Rorx; >1ru<k;
or u<NgAA=x;ak;>1 or A <N¥g A <¥g {but in the last three cases the interpre-
tation is not uniform.)

Proof : Left to the reader.

1.4 Lemma : The following holds uniformly:

1) Q% <inex Q%% if A=x , p=8, and x<H

2) 953 \ Sinex Q%%, if A=2*, and u=8,

3) Qéil Zinex Qeg\,ﬁo Zinez Q?)\,Z for )‘>sa

4) Qéil Sinez Qg,()\ Zinex Qe&,z for A:sa

Remark : 1) Clearly in (1) we get biinterpretability.

2) Because of the uniformity e.g. (2) implies QZ?‘,Q Zines @A if AD2H, =R, .
Proof : Repeat the proofs in [Sh1], [Sh2].

1.5 Lemma : 1) For any K consisting of equivalence relations for some
n A, l<n), 3 =4 (0B, <, L<n ]
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2) For any mn, A, u(l<n) for some equivalence relation £,

Ip Sint iQi‘{l’m cl<nd.

Remark : This lemma enables us to concentrate on analyzing quantifiers of

the form 35 .

1.6 Lemma: For infinite cardinals Au.x.60 @%% Sines 3% W ik Sexp on 7

XEAAKSpor xte<AaAx+ g =2#

Proof: The first condition implies the second trivially the third implies the
first by 1.3(1) (if x<Aarc=p) 1.4010), ((f x + = A28 1.4(2) (if 2= X, k=< A
and x < 2¥). Now we assume the second is exemplified by Sy, . .. ,Sp—1 € K33,
and suppose E € K39 is definable by an L(Q%%,)-formula (with Sq, ..., Spn1
the only non logical symbols, w.l.o.g. the elements were absorbed). The first

case will be A= u. Let E* be the transitive closure of l\/z Sy {with domain
<m

U Dom ;). Then £” is an equivalence relation with < A equivalence classes,
lL<m

each of power =g, hence {J can be represented as the disjoint union of
14

A;(i < a = A) such that 5§, = (5,1 4;). Hence a permutation f is an auto-
i<a

morphism of (I{So,....S,-1) iff for some permutation h of a for each

i ,f 14 is an isomorphism from (4;, Sot4;, ..., Sp-114;) onto

(Aniiy Sot Apgy - - - Sm—1 1 Ari)).

Let 4; = {e;; : j <j; = u} and define E*: a; ;,E%a;,;, iff j1=jz and for
some automorphism f of (USo, ..., Sn-1), F(a4,;) = @4, Clearly E* is an

equivalence relation on {J 4; with = 2¥ equivalence classes, and if B is an
i

E*-equivalence class then every permutation of it can be extended to an
automorphism of ({{Sq, . .., Sm—1). Let B; (1 <y = 2¥) list the E*-equivalence

classes.
Soif @z # y € B;) zFy then (Vz,y € B;) zFy.

Let B' = yih;  (3r #y € B)xFyl, B" =B, B¢ B',|B|>2],
B =yiB,: |B|<=2]. So on B' (Yzy € B*)(zE*y » zBy) i.e. E* refine

E,and so E has < 2% equivalence classes, each of power < |B*| < |U4; | <A
i
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Next on B*" , E* refine E: for suppose zFy but -zE'y, let i <y be such that

y € B;, as y € B"" clearly there is ¥y € B,, ~z£"y ,-yFy by a suitable auto-

morphism necessarily zFy but £ is transitive and symmetric contradiction

to the definition of B”. So £t B has =< A equivalence classes each of power

< u. Thirdly on B

(as |B™ | <=2¢ Llastlyonlf—B" ( B” U B™ =1/- U4, E is the equality.
i

ey

,E1 B”™ has <2 equivalence classes each of power =< 2#
By 1.3(4) we finish.

§2 Monadic analysis of dp

Our aim is to interpret @™ in 3, for a maximal A and show that except on A
elements K is trivial. So continuing later the analysis of I, we can instead
analyze {@{*" dp ] where |Dom R;|<A. This is made exact below.
2.1 Definition : For any relation E let
Ao =Ag (R) = Min{{Al: ACl{, and for every sequences
b,celf (of length n(R)) . b™,c implies R[b]=R[c]].
where bA,T iff tpye(b,4,=)=tpys(b,4,=).
Note that A,(E)<|Dom R].

2.2 Theorem : 1) Uniformly Q7% <Sins 3.

R) Uniformly 3 p=:{3 g, @V7%) } for some B;, |Dom R|=A(R), n{R)=n(R).
Proof : 1)

Case I : Ay(R) is an infinite regular cardinal.

Let BR™ =:< R[":L<'m> denote a sequence of n{R)-place predicates or relations,
(UR)=(E) , and A=A(R™) denote a set of formulas of the form @{(Z,F™)
closed under permuting the variables and identifying them. Let k =k (A(E), )
be the minimal natural number such that:

(*) there is a formula ¢=¢@(Z 7 ,F)eA with L(Z)=L(F) =k, and sequence
a,l(@)=L(g) such that for every AClf |A|<A,(R) there are sequences b,c of
length k , such that ¢(b,&)r~@(€,a@,F) but b=,¢.

Let £ (A{F™)) be the minimal £ (A(R™ )E™)
By the definition of A,(R), k=n{k), ¢=R(Z) satisfies (*) for & the empty

sequence. By the minimality of £ we can assume that ,¢ are disjoint to 4 ,
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and with no repetitions. Clearly as [4|<A,(R)<|lf] , If infinite, for any such
Ab,c we can find &, (l=0,2k) such that b,=b,by =¢ and b;,b,,, differ at
exactly one coordinate each b; disjoint to 4 and without repetition. So
w.l.o.g. in (*) b=<b>~d,c=<c>~d (and d~<b,c> is disjoint to 4 and with no
repetition, and let F=<z>"Z, so ¢={z,2,7}.) Possibly Z is emply ( i.e. k=1)
and then our conclusion is immediate as {b:Fel[b,Z]] and {c:E-¢(c,a)] has
power =X, (R).

By the choice of k=k (AR) for every e€lf there is A, Clf |4, |<X,(R).e€4,
such that for every d &, dp (d,,d; of length k—1) p(e ,d,@.F)=¢(e,dp,a k).
Now we define by induction on I, for 1=0,n(R)—1 a set of formulas A;=4;(£})
where R :< Ry i <2£> :

A,(R,)= the closure of {R, ,(z,, " - ,x,-1)} under permuting and identifying
the variables.

A, (R, ;)= the closure of
{V2)e(z.2. R 10 - Byyyot)=0(2 2 By g, 0 Bygpotygtg)]:

P(2.2,Ry o - By )EM(R)ULP(Z Ry 00 )T Ry JEA ()
under permuting and identifying the variables.
Now we shall prove by induction on [ that
(**)k (A (B))sn—L.
For 1=0, as we have mentioned above, this follows from the definition of
A, (R).
So we assume {**); and prove (**);,;. As (*); holds there are relations
Rt (i<2h), (YRH)2(R) and k(8 (R))=k(8,(R,).F) , where E= R*:i<2!y, and
let @, ¢(%.7.R) exemplify (*) for k=k(4A,,,(E,)). If k=1 we finish of course,
otherwise we shall prove that k >k (A;4,(R,4,)) ; this suffices of course.
Now for every y=v(w,v,R)eA,(R), L (@)<k, and @€lf there is a set AW,C?// of
power  <Ayg(R) such that: if ENA”E 1(B)=l{e)=l(mw)—l(a) then
Ev¥ib.a R, ]=¥[c.@,K]. We can assume aACA, -
Now we-define by induction on a < Ag{F) &4 b, ¢, as follows. First let

A2=FU Jﬂ’*<bﬁ,cp> ya  , and AaZU{AW’d:ECAg, 1{a)<k and yeA,(F)]. Now
<a

by the discussion after (*) there is Ea"<ba,ca> disjoint to A4, and without
repetitions, such that Fg[bg.dgsa@ |A~¢[cady, @ ]
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What are the truth values t, g of gp[ba,gﬁ,d”} and s, g of qa{ca,cfﬂ,d'} ? Clearly
if a=g then t,g is truth s,z is false. If a>B, then we should remember that
A%a’-d'gAa, hence ba,caQ‘Aw‘g’,\a-. Hence t.aﬁ:tg' =sa)ﬁ=s§'. If a<f then let
Wz z.7,.R)=¢(z,Z,7,F), and remembering that Ay <o >ma"CApAs co>g” and
d, is disjoint to A, it is clear that t, g=ts, 54 =54

As we can replace <§a’“<ﬁa,ca>:a<?\g(}?)> by any subsequence of length
Ao(R) wlo.g. tr=t* t7=t~ and s;=s for every a<Aq(R) we can assume t* is
truth (otherwise interchange ¢ and -~¢ , b, and ¢, in the rest).

Now let A be the following permutation of If : h{C3q4+1)=C3a42: 1 (€ 3042)7C30+1
and h{c)=c for any other element. Next, let for 2'=i<2!*! Rri=h (E”;"zl) and
let B =X Rii<z!*1y, B'=C By i <2 ). Now

() ¥(2.9. R .)=(Vz)[p(z 2.9 R)=¢(z,2,5,E")] belong to A ,((F ).

(b) f:w(igﬂ‘(i',}?“l) for B<Aq(E). This is equivalent to saying that A maps
feclf ’=<p[eﬂgﬂ,d'.}_?]i into itself ( as hA~!=h ). i.e. we should prove
Eele ,533,5',]—?] implies ¢[h (e),czwﬁ',f?l]. If e=h{e) this is trivial. Otherwise,.
e=Cga4qs, 1€41,2) ; and h(e)=cggyz4) : If F=a this follows from
S3a+i,38=S3a+(3—i),g=t" (as 3a+i, 3a+{3—1)>38) ; if B<a this follows from
S3a+4,38=S3a+(3—1),3=S { as Sa+i, 3a+(3—1)<3H).

(¢) }=—-'¢{<§3p+1,6',]_?] for B<Ay(R) Just substitute z=cgg4p for the (Vz) in ¢'s
definition.

(d) The sequences {dg:B<Ag(R)} are pairwise disjoint. This is because for
7<8, ESQAEQAG.

Now {a), (b), (c), {(d) together show that k{A{F ;). F,1)<k Hence
k(A (B ))<k=n—1 (or k=1 and then h (A, ((F )=k {(A)(E])). So we have
done the induction step in proving (**).

Now (*#),(g)-1 show that for a', B ((Ur)=IR)) and ¢(z,¥.R) , the powers
of {celf Eglc.&" F]} and of {celf E-¢[c.a’ E]} are at least Ag(R) , and we get

the required interpretation.

Case Il : Ao(R)<|Y| ( and in particular Ag(R) finite )

Let Aclf be a set of power Ay(R), such that b~,¢ implies R[b]=R[c]. Asf is
infinite, we can find distinct d,€lf~A4 (i<n(R)?). Define (i=< d;i<n (}?)2>,
¢ (z.d,R)=/\ {3y, . . .. Yp—1) [ the elements yg, . .., Yp—1.2 are pairwise dis-

tinct and if the elements ygq, ... . Yg—1, @m, £ are pairwise distinet then
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ez, Yo - - - »Z/k—ﬂﬁﬁo(dm’yev RN T p=p{zg, - . .. 2 .R)

is an atomic formula in L(R)(so k+1=n(R))and m<n(R)? m .k are natural
numbers J. By the <choice of A4,z¢4A=> -¢'(z,d), hence
B={zelf U’ [z,d]} is a subset of A. Clearly @T¥7 <Az (uniformly) hence it
suffices to prove | B|=As(R) which follows from

(*) if b2pge then R[b]=R[c]

for this it suffices to prove:

(*+) if p(z,R)eL(R) is atomic, b,€ are sequences of length ¢ (% )=n (F) without
repetition then b2yz¢ implies (b, R)=¢(c¢.R).

Let b~¢4,b~C, be sequences from {f, without repetition, b CB,64,6; disjoint to

B ; by the transitivity of = , wlo.g. €; is disjoint to d, so for some
i, <d¢,d,;+1, c ,d¢+k,,1> {(where k=Ll{€gy)) is disjoint to &4 {and obviously to
€4)-

Now we shall prove that for every atomic
o(Z.9.0),1(z)=k, L{g)=L(B) }:¢(6L,§,r}zga{<di ,,,,, >,5,R) thus finishing. For

this we define ¢ ,, (m=k) such that each ¢, ,, is with no repetitions, disjoint
to B, b,¢; o=Cy, Crk =< di, ... 1di+k—1>v Ty m+1 € m are distinct in one place
only. By the definition of B ( and ¢ ) for every atomic
¢(Z.7.R), Fe(C) . b, R)=¢(C} 1 41,8 ,F) so we finish easily.

Case II. Ay( /) a singular cardinal.

We fix the relation R; now for every atomic formula ¢(Z,7,R) € L(KX) and
b €lf ¢(z,b,R) define an L(F)-place relation on I let Ay(¢(Z,6),R)) be as
defined as in Def. 2.1. Clearly the number of atomic @{(&,7,F) (with no
dummy variable, £ ~ ¥ C {z; : 1 <m(R)}) is finite, and we can find ¢ and b
such that Ag(¢(Z,b,R)) = Ay(R) and (under this restriction) I(£) is minimal.
Clearly L{Z) > 0 (as 4 = ¢ would serve), if n=1 we finish trivially. So assume

L{EY>1, let ZE=%~<zx> By the choice of ¢,b, for every
¢ Ao{@(Z,6,b,R)) < Ag(R) and let 4, € Ifbe such that

(i) 14| = Aole(Z.c.,b,R)) =< [U|

(ii) d1~y, dzimplies g(d.c,b,R) = ¢(d3.c .0 R)
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iR

So |4, | = Aole(z.c,6,R)) < A(R) = |-

For each ¢, by case II there are an atomic ¥,(z,¥,.R) and d, € {f such
that |{a : Fy.(a.d,.B)}] = Ae(Z.c,b,R)) =4, | ; note there are only
finitely many possible %,’s

Subcase I a: SuE% 14, ] = 2(R).
c

Let Ag(R) = 3] p¢ where £ =cf (A(R)), and each p; is regular < A(H). So
é<c

assume |A; | =pu,;, so by Case II applied to ¢(Z.c;,K) we can interprete
unformly QT and even @Yg) and moreover in this case, we have @; (&<x)
such that u.<|{e€lf [rgle, @; F1}| <Ao(R) (agis dg~a’ for some a ). In par-

ticular we can interprete @QF°". let R=|)d; and £ be the following
¢<c

equivalence relation on I bEc iff for every @cP, ¢[b.@ El=¢l[c.@,F]. Let
<A¢:'i<x> be a list of the equivalence classes of E . If {i:|4;|=2] has power
2Aq(E), we get our conclusion easily; this holds also if there are at least two
A; of power 2Ay(R), or even if %’l{lg)l.A.,;]:KO(R) . By the choice of P the only
case left is [{i: |4 1=11|=M(R). So let az{a<Ay(R)) be pairwise non E-
equivalent a,¢ P. Define a permutation :h(@3a4i)=Q3a4g— for 1=1,2 and
h(e)=e otherwise. Define R, K+ as in case 1 and ¢ (z, P, B)=(V
Tg " Tip) {{(\kPi(z,;)—»gp(x,xo, s Tpp B)=g(z, 2o, Tp_p BY)] Now we
finish: ¢"[ag, P,R]ifl B is divisible by 3 ( for B<Ag(R).

Subcase Il b: | | (4, —{c}| = Ag(R) but not II a.
celY

By case 1l we know A4, is definable (uniformly) from b~<c>. Hence we can
choose for i < Ao(R) c;.e; such that e; € 4,, e; # ¢;, and c;.e; € fcj.e; 1 j <2}

By Hajnal free subset theorem (See [H]) w.l.o.g.
e; € A, iffi =7, and e;,c; do not appear in b.

Let g be the following permutation of {f

glesiv1) = €3i42
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g(esiva) = €4
gle)=e e €lf-fesspesz:i <Ag(R)}
Let By = K, By = g{R), then
¥(z,b,Ro.Ry) ' (VY)[e(7.2.0,Ry)]
is as required.
Case Il ¢ : not I1I a,b.
So for some Bcl |B|<r(R), [c€lf~-B=>4A,-fc}cCB];, wlog.
[c € B=> A, ¢ B].

Let d clf~B, 1(d)=L(Z); now for every set D Clf |D| < Ay(R) there are

di~<c > dy~,<cg> disjoint to DyuBuUd without repetition,

pldy,cq,b,R) = - ¢p(dycpb,R) (by the choice of 9,b). As 4., — {c,} € B,
p(d;c1,b k) = ¢(d.cy,b.R).

and similarly

¢{dscyb R) = ¢(d,cpb,R)
hence

¢(E,C1,5,H) E= (p(&,cz,f;,fe)

We can conclude that ¢(d,z,b,R) divide {f to two subsets each of cardinality
= N R).

Remark: In case III the only wuse of "A{F) singular” Iis

[sug 4. ] < Ay = s%g |4 1 < Ap(R)], but with a little more work we can
€€ C

bound the numbers of copies of & used independently of A.

Proof of 2.2(2) :

If Xo{R)=|U| we choose R;=R and have nothing new to prove. If Ag(R)<|l/], let
¢:i(Z; ¥, B) (i<m)  list  all atomic formulas in L{R), L(Z;)=k; >0,
Hz;) + L(y;)=n(R), and w.l.o.g. k;=n{R)=2>1=0. Let d,;(0<i<2n{R)) be distinct
element of {/~B, B from case 1l above. Of course, we can concentrate on the
case n{k)>1. Let

R1=§<a, . ,a>:aEBgui<a1, . ,an(R)>: ERla,, ... .¢pmla1, ... 8n(r)
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are distinct members of BguK d;ay, ..., ag, dy, - > l=i<m, @y, ...,0;

4

distinet members of ., and for all distinct b, {I<l{z;)) from

B
U-B. Fo a0 L bg ..., 0. R]}

Easily {3, @5 ()} ™" }<indg, and by case Il above Ip < ;4 dp.

§3 The one-to-one function analysis
The aim of this section is similar to the previous one, going one step further,
i.e. we want to analyse 3p, interpreting in it @1~ for a maximal A, hoping that
" the remainder” has domain <A.

3.1 Definition : Let A, = A{®) be Sup {|{tp,s(a.A.R):aclf-A]|: ACIf

3.2 Fact : A (R)=Ay(R)

8.3 Claim : @)} <;,dp uniformly, if the sup is obtained.

Proof : Suppose h is a one-to-one, one place 'partial’ function from {{to ¥/,
with |Dom h |=A,(R). Let AClf be such that {ip,.(a,4,R):a€lf~4} has cardi-
nality A A (R). So we can find a,€l/~4(i<A) such that tpys(a;,4,R) are pair-
wise distinct and wlo.g [Uf{a;i<x}|=|1]. Let h=§< bi,ci> i<A} , wlog.
b;,c; A and we can find F,,F; permutation of Jf which are the identity on 4
such that Fy(a;)=b;, Fy(a;)=c;. (they exist - see Def. 1.1(3).) Let F=F(R),
and Ey=Fo(R) and define the monadic relations
Po=A4, Py={b;:i <A}, Po={e; i <A} (all of power  =Ay(K)) Let
o(z.y Py P, Py, R, Rs) "say” that for every atomic ¢{z,Z,R)eL(R) and
Z€Py, p(z,2,R)=¢(y ,Z,R) and P(x),Pyly) -

3.4 Lemma : There is a set 4 such that
1) A |=5{n(R)+2)n(RK)N(R), furthermore, if the sup is not obtained in the
definition of Ay then |A<A;.

2) Let £4 be the equivalence relation:
tpps(a.4,.R)=tpps (b ,4,R)
If 5=4C and b; Eyc; for all i<l(b) then R(b)=R(€).

Proof : We define by induction on I=n(R)+2 sets 4; such that
[m<l-4,,c4 ] |4 |s5n{R)A(R), and if the sup is not obtained, |4; | <A (R} ;
we shall show that A,,(R)+2 satisfies the requirements of the lemma.

Let Ag=¢
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If 4, is given, we define by induction on i af, 4} such that
1) Ah=4¢
2) Al is increasing, continuous(in 7).
3) afg Al for any i,j.
4) | Al —AlI=R(n(R)-1)
5) If a,B<i, a#p, then tpy(al Al R)#tpys (ah AL R) hence aly #ak.
For some i=i(l) (which is necessarily <A;{R)*) we cannot continue, i.e. A} is
defined but not a} Al,,. Define 4,4, ¥4,y U 4}
i<i(l)

A TA L, Ulati<i(l)} yib: the basic type realized over
AU U Alyufal i<i(l)} by b is realized by <3n(R) elements § .

i<i{l)

So |44 1= 14 ] + 2 (R)-1) ()] + [1Q)] = [A4 [+2n(R)A(R),
and 441 = |4 ] + 2n(B)A(R) + 3n(R)A(R) <5n(R)(L+1)A(R) if the sup
in Deflnition 3.1 is not obtaine the inequality is strict. We prove A=A, (gys2
satisfies the requirements of the lemma. It is easy to see |4 ] is as required
{in demand (1) of 3.4).
Suppose E(b), ~R(¢) and by, Eyc,, for m<n(R) and b=,¢. There are at most
n(R) U's such that b MA4;,,#b N 4; so we choose [ such that b N4;,1C4; and
hence € 4;+1¢4;. Hence we may for simplicity assume:

T N4 +1=b N4, =¢ and b, ¢ are without repetitions.

Let B=4, Uy U Afso /\ by Egc, and |b,,/ Eg|=23n(R). Now we can define

i<il) m<n(R)
de (k=0,...,n(R)), each of length n(R), b=dg, €=d,(g), d; with no repeti-
tions, /\ b, Fpdg,, and |{m:d; ,#drr1mi|<1l. So, as in proof of the
m<n{k) ! ! ’

monadic case, we may assume R(b)a-R(€), b,6 without repetitions,
5=<e>"&, c“=<f>"a.

Notice there is j<i(l) such that e ,a,f- realize the same basic type over 1:SE;)(”A,%
(as, if not, we could let A.f(L)H:A,f([) and a,f(l)=e. ) w.l.o.g. assume R(a},d).
(otherwise use -/ ) and R[e},d] , (otherwise interchange e and f).

3.4 A Claim : We can let A,f(l).,.l:A.,f(i) ua, ailu):f and hence get a contradic-
tion to the definition of i (1).

Proof : Suppose tpys (f Afuye1)=tPos (2. Ak 1) +1)
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%) Py (f Akuy41) 2tPas (F Abu) )=tPos (¢ . ALy ) =tDes (], 4i1)) #tPps (0 Alg))
contr.
fi=j use R{z.,d@).
So we have proved 3.4A, hence 3.4,
3.4B Claim : The sup is obtained in the definition of A;(R)
Proof : Suppose not, by the lemma, we can find A such that |4 |<A;(R) and
(vh.,0)[ i({;‘zg)biEACiAEE({t‘T_)R(S)ER(a)]' Clearly {a/ E, : a € {f~A} has power
< A, then for all B
| {tpys (@, B):a €lf—B}|<|A | +|{tpps (@, B U4 ):a€lf~B}| < A, contradiction.
3.5 Conclusion : {Tp, @™} is bi-interpretable with {QT". @\ 3p, 3z} , where
|Dom R,|<5(n(R)+2)?A,(R), £ an equivalence relation. This is done uni-
formly (i.e., the formulas depend on n () only).
Proof . We've shown  Qlihy<umldp @k} (see  3.3). Let
AlnA=¢, |AY|=]A|=r(R),A as in the lemma 3.4,F;=R{4AA b, Ayatl
includes =Min{3n(R)},|a/ E, |} elements of each E, equivalence class a/ £y.
Now

Rz, . .. 2 iff

(Fyy) - (%(R))(1SQL(R)%EA%’\R1(?))
Sodp=ingd @a; 1 QX" 3R, 35,3
Now 3R,$mti31?»@inum§ by the definition of Ry, g, S {3, Q%" directly, and
Qi1 < {3, Q7°") by 3.3, 3.4B. So {@\1 Q%" Ak, 5] Simldr Q5] and we
finish.

3.5A Remark: Note the @pl, g,| is uniformly interpretable (for fixed n(R))

in @17 including the case A, is finite, so 3.5 holds for it too.

§4 Above the local stability cardinal

We continue our analysis of 3. For notational simplicity we make

4.1 Hypothesis : |Dom R|=A(R) (or, when A(R) is (finite,
|Dom R|=5(n(R)+2)A(R). (and see 3.54).

Also in this section ( as well as in § 5, § 6) we shall not prove the theorems
"uniformly”. This can be done, however we feel it will obscure the understand-

ing by making us to deal with too many parameters. We also delay the
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treatment of the finite cases.

4.2 Definition : An m-type p is called {(=A) -big if it is realized by A pairwise
disjoint sequences; let A-big mean ( =A%)-big. For this section big means
Az = Ag(R)-big ( Az is defined below ).
Let (3®*%)¢(Z,b) mean {g(Z,d@)} is (=A)-big. We define 3*z), (3**%) similarly
[ as -(3=*g), ~(3>*F), respectively.] Let "small” mean just the negation of big.
4.3 Remark : 1) Since we have monadic relations predicates and 1—1 permu-
tations of power |Dom R | available, we can use one F {copies can be achieved
easily).
2) Also, we can code any set of pairwise disjoint n-tuples, or any set of n
-tuples forming a A-system (of power <A;(R)).

4.4 Definition : 1) M is an admissible model if it is an expansion of (I{R) by
countably many monadics relations and permutations of power =A,;{F).

4.5 Definition : A;=X,(/)= least A such that:
1} If M is admissible, A is a {finite) set of formulas, ACH, |4 =X and m<w.
then | ST (4,M)]=A.
2) Qi?xﬁmtjze

4.6 Remark : the case As=A, is uninteresting as we want to prove now that it
suffices to analyze E', |[Dom R'|=A, i.e. for some such R’ and some
equivalence relation #

(R, @3 A dpe) = i dp for some R°, [Dom R'| = Ay(R) So we assume
A2<1Yf]. (but this is not essential).

4.7 Lemma : If M is admissible then there is 4”,|A" {<A; such that:
a) for any @, @ NA”=¢ and finite A the type g=tp,(@,A") is big.
b) For any such q, g is minimal; i.e., there is no @{Z,¥)€A and b such that
both ¢ (£)Ui+e(Z,b)} are big.
¢) For any A,m, the number of such g's is <Ag.

Remark : From c) we shall use only the "sAy".

Proof : We define, by induction on i<Ag, 4;Clf |4; |<Xs, 4; increasing, con-

tinuous, such that for all finite A

0) for every @ € {fand i < A, some @ C 4;,, realizes tp (&, 4;).
1) If gy=tp (@, 4;) is not minimal, then some rpqi(f,gqi) witnesses it for some

¢Q1€A7 EQ1(;'A1+1
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2) If q;, = tpA(&.4;) is not big, then for some By € A;4q, no sequence b realiz-
ing it is disjoint to B.

Let A=4,, £'Ul4; 1 < Ag}. Now 4.7 will follow from 4.8, 4.9.

4.8 Claim : If 4,,N@=¢ then for any (finite) A for some i<Ay, q;=tp(T,4;) is
minimal and big.

Proof : Clearly gq; is big (for every i < A5, by (R)). If g; is not minimal, take
Pq.€A, by CA; .y witnessing this (by (1)). Wlo.g, ¢4(Z.by)€g,, and
q: Ut —-<pq‘(f,5q‘_)i is realized by the sequences <Ei,£3f<)‘2+> which are pairwise
disjoint.

w.Lo.g. tpA(@; ¢, 4,,) does not depend on £, and call it 7y; clearly 7; is Ag-big.
Also, my#1; for i<j, since ¢g,(%,by)€q14;,,CqrtA;=q,Cry

but -gg(x,by) is satisfied by &, Wlo.g. &,&; , are disjoint when
(i) #(5.¢).

Now we can interpret @37, : we add a predicate 4,, and let zEy iff # codes Z ,
Yy codes ¥ (remember 4.3(2)), and £ and y realize the same A-type over Ay,
F has =\; equivalence classes of power =A,, a contradiction.

4.9 claim : 4,, satisfies a), b) and ¢) of the lemma (4.7).

Proof : Let ¢ = tpa(a@,4%), @ A" = ¢. We know that for some <A, q;=ql4;
is big and minimal, hence is realized by pairwise disjoint ¢ &<AZ.

For every ¢(Z.b)eq, g; Ulp(Z,b)} is big [as g, Ule(z.b)}€q; , for some large
enough j<Ag], hence q; Uf{-¢(Z,b)} is not big. There are <A, such ¢(z,b), so
omitting any tuple realizing any of them from our sequence <EE:§<)\2+> still
leaves Af many, so each realizes ¢ hence q is big.

If g is not minimal, then g; is not minimal, contradiction. If 4.7(c) fails, we
can interpret @37,, by taking A witnessing the fact that c¢) fails and defining £
as before. This finishes lemma 4.7.

4.10 The Symmetry Lemma : There are no ¢(Z,7,2), &,@4,b4g(a,B<A) such
that:

1) for every a,8 < AF, |=go(5a,5,da,(f) and these three sequences are disjoint.
2) For fixed a, b, g(B<AZ) are disjoint.

3) The @,'s are disjoint.

4) ¢(b 4 5.%.d) is not big.

Proof : We can throw away many @,'s , bag's, as long as their number
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remains so w.l.o.g. all the sequence b, g(a,f <AF) are pairwise disjoint. Let
A={g}.

We may assume that for each «, all 5‘,,5 realize the same A-type over
{@,7<aj Ud ( use part (1) of Def. 4.5 to thin the set {&, g:B<AF}). Similarly,

we may assume that @ Tq, realize the same A-type over

ap
{@,y<agnazl Ulb, 7<a;Nay, i<iziyd (use 4.7).

What is the truth value of (p(l;a’ﬂ,d.,,c’f) for o,B,7<A5?

True, if y=a.

False when 7>a (note that we have assumed «,8,7<A; and not «,8,7<AJ ; note
that (b, .%.d) is not big, so only few @, realize it, so no @, realizes it for i>a
(as then all such &;’s realize it).)

If y<« , the answer dees not depend on B.

Let a, code @,, b, g code Ea,ﬂ' For notational simplicity we ignore the coding.
Let P=fa ga<Ayi.

Let zby iff (Vz€P)o(z,2,d)=ply,z.d)).

4.11 Fact : For ay,0g,81,82<Az, bg, gL bg,p, iff a1=ag.

Proof : We have just shown {<=).

Conversely, say o ;<as

#(b g, p,0a,d) is false but @(b g, g,04,d) is true, so (=) is clear.

So we have interpreted Qﬁ‘g’,\a, contradiction, hence we have proven 4.10.

4.12 Lemma : For any admissible ¥ , and any ¢{(z.7), there is an admissible
expansion M* of M, and %(7) such that ¥° E@z)e(z.7) = %(7).

Proof : We define 4;CM i<AJ increasing, continuous, {4;|<As. Take 4g to
witness lemma 4.7.

A; 44 realizes all A-lypes over 4; for all finite A, and <A.,;+1; Ag, . ... A,,> is an
elementary substructure of <M;A o - - - ,A¢> even allowing the quantifier 3=he,
Let E be the equivalence relation on If~4q: =,z iff (VT CAg)(@{z.7)=p(z2.7).
Clearly, every £- equivalence class is represented in each 4;,.1—4;.

We say that (i,7) is a good pair if 1<j and for any @ such that @ M\(4; —4;)=9,
and ¢ €4;—4;, ¢(c,@8)=(3""z }(zFic rp(z,a@)).

4.13 Claim : If there are 14<jo<i1<J 1<« - €Iy <Jn, n>L(F), (4.5;) good, then

n
the lemma holds with M"=(M ,4; A;. ... 4 A;) and 1;:(37)=L/_\o [ if 7 is disjoint
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from A4; —4; then there is no ¢ €4, -4, such that ¢(c.y). ]

Proof : Suppose M’ E¥{%). Then for some [, 7 is disjoint to Aj;—4;,, hence
M" | "there is no ¢ €4;,—4; such that ¢(c.7)".

By the definition of a good pair, and as every F-equivalence class is
represented in A_?-z—Aﬁ, and there are =A; E-equivalence classes, clearly
' EEz)p(z 7).

For the converse, suppose M' E(@**z)g(z,7) , and suppose ¥ is disjoint to
Aj;—A; but (Ac€d; —A;)p(c, 7). This contradicts the definition of a good pair.
So we have proved 4.13.

Now we assurmne there are few good pairs (£,j) i.e. there are no i,,,j,, asin 4.13

and get a contradiction, thus finishing the proof of 4.12.
For a club set CcAZ, the following holds:

(*) 6€C,i1<d implies 6>supfj (i,7) is a good pair } if the sup is <A
By the choice of the 4;’s (and see [Sh4], beginning of §2 (or guarantee this in
the 4;’s definition) also e.g. 4.15 is a repetition of this):

(= it{c)~b,CAs banAs=¢. M" Foi(c.b7by)  but M
(@2z)(zEcngy (2,0 ,~8 ), @, is gotten from ¢ by permuting the variables then
for every 8>6 (but B<A$) there is such a b, with 52(\Aﬁzz¢.

Let K be the set of <c>"51 such that ¢(c.b,2) is big {when <c>"51€uA£
this is equivalent to: for arbitrarily large § there is b, as in the antecedent
(above), b;NA4p=9.)

So again by the A4;'s choice, if §€C, 51§A5,0€A5,c€ U A,;=de12+, <c>"51€§(
1<Ad

then (Vﬂ<?\§“)(acl€Axé,)(<c1> ~b,€K nc'e Ag). (This is by a similar hand-
over-hand construction.)

Now if §;<6,€C, (6,,65) not good, we can contradict lemma 4.7, 4.10.

4.14 Lemma : For M" rich enough, for every @(x,,...,Z,4;) there are
¥; ; (i=n, j<k) such that:

n k
DI EY)g(s 7 y) A9 TnEna), then N\ By (onar ).
2) Vzﬁs"zyﬂ,;,j (y.z).
Proof: : It suffices to find ﬂi'j such that
=Ag <Ay

T ey, .. TaY) A p(Ty ’xn+1)"’\i§ (B, (Tner®) AT Y0y 5 (y.2;)], as
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then the formulas @i'j(xn_,_l,:z:.;)A:is"ay'z?i'j(y,x,;) witness the lemma (using
4.12).

We prove by induction on n.

For n=0,1 trivial.

Assume for n, and we shall prove for n+1. We assume M’ is rich enough to
contain the unary predicate A° as in lemma 4.7 and the formulas ¥ as in
lemma 4.12. We shall define n*" =4 and (latter) a sequence of finite sets of for-
mulas

Ay (i=n™), AjCAyyy , pEA,.

Remark : The n*' =4 is somewhat misleading: in a sense it is large com-
pared to n (R) but this is absorbed by some w.l.o.g. below. What is the point in
having those A;? Lemma 4.10 gives us a kind of symmetry (if a depends on b
then b depends on a ). But this is not true if we restrict ourselves to depen-
dency witnessed by a formula from a finite A;. but if we have long enough
increasing sequence of A; for some 1, A;-dependency is equivalent to Ay -
dependency {for those sequences).

So suppose ¢g{a,, ..., 04,0 )AESAaxgo(a 4o« @p41, ) . We want to prove that
some ¥€A,, ~ satisifles 8{c ,a,;)/\:{s"zx@(x,ai) , for some i . Wl.o.g., there are no
repetitions in <a1, Y B s > (If e;=a;, use induction hypothesis on n; if
c=a;, we are done because we could have chosen to have =y €A, ). Wlo.g.,
no a; satisfies any 9(z)€A, ~ such that 3z 9(z)

Similarly for next observation, as then we use the induction hypothesis with

the formuladz (@, ..., @ _1,2 .50, - - -, Qp4q1,C) A
A
(@) elay, . 8 T8y, o B YY)
A
AB(@y, G Z Gy, o Ggg) A2y, L B, 2,8t Bpa) ]

W.lo.g. for no 9€A, ~

(- T U PPN Y PN w0 SIS DU - PO S N
Let@=Cay, ... ,an) %= X(Zy.2)x€h FxX@ ansro ]},
We know that Iskax'q{/i(&',anﬂ,x)A’;&vi(a,anﬂ,c) for i=n'"; we say a, . i-depends
on @ if (@ )(3z)(¥;(& ¥ &)z Y (T, 0p41.2)).
We can assume that for i<n*’, @,,; does not i-depend on @ by putting
¥,(@,y,z) into A;,,. Similarly, [i<n"*=>c¢ does not i-depend on &].

Now by 4.10 (and the assumption, as A, is large enough and the uniformity of
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4.10):
(* for some 9" €A, M ES [ay, ..., Uy 41,C ] and
M EEM 2, 2 ) )9 (Te . ZpaqiC).
If M i=(3>xaf)'¢1(§f,an+1,c) then by (*) the formula

82 (y,2)=(3"22)y,(Z,y 2 ) €A, necessarily satisfied H* | 9% (ap4q.¢) and M° E
(Z{sp‘zy)ﬂ"’ {y.c) hence for some ¥€A3,8(a, .1,C) A (35)‘32 Y9{a,41,2) contradic-
tion. So assume M' F -9%(an..c). Also we can assume that
M EGEE) @y VWalZ,y,c) (otherwise use 4.10 and then the induction
hypothesis on n ) hence

o t:{HﬂZE)(Hy N (Fy.c)r-9%(y.c)], hence there are pairwise disjoint

Ad distinet b,’s, we easily contradict (*); so w.l.o.g. by=b for every a. But
then M'Ey,(@,b.c) (a<r?) implies M E@E™z)y,(£,b,c) contradicting
M E-9%(b,c).

This proves lemma 4.14.
* & %
4.15 Lemma : For any ¢(Z,7) there are 1¥;(z,¥) such that:
1) If 327 (a7 )ap(a,b) then \/ ¥, (b; @)
1

2) :{S&zﬂj(z,d) for every @

Proof : By induction on the length of ¥ and of .

Instead of one ¥ we can produce a finite set. We shall define A;{(i<n*") be
finite, increasing. ¢(Z,7)€l,

Assume Fog[@,b], ¢(@.7) small.

We can make similar assumptions as in the proof of the previous lemma and
define 9, similarly.

Let 5=c~{d)

By the induction hypothesis, for i<n”" there are pairwise disjoint £%(a<i3)
such that 3z, (@ ,6%z).

Say ¥, (@,e%,d%)

if there are AJ distinct d%'s, we get a contradiction because (stzg)gp(d,y_). So

w.log.d®=dP® all a<r}

So (szgw)y’/i_l(d,'w,d) is one of the conjuncis of 9,
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It (Jzkgw)wi(i,w,x) is not small we first define distinct d; (i<AJ) such that
(Hahgw)qbi(i,w,di), so (Hzxgw)wi_l(i,w,d,;) then define ¢*®,d* pairwise dis-
joint for a<Ad such that ¥, _,(@,c%* d;). This shows (3”5 )y,_,(a,7). Contrad-
iction.

I (Hax'gw)'l,bi(d,‘w,:t:) is small, we get the desired conclusion.

4.16 Lemma : Every formula is equivalent to a Boolean combination of for-

mulas of the form:
n
{=\1’l’i(yi,yo) ANYWYor - Y FiYo - Yn) Fe(Yo, - - - ¥Yn)) such that :

Vy:{sxzzﬂi(z Y )AVZHSAEy'ﬂ,; {z,y) and for some ¥#! we have

(Vxg, - - )191(Fj(xo, <)) A (@z)¥l(z) and the F;'s are definable func-
tions.
Proof : Let ¢(zq,....z,), <a1, . ,an> be given. We define n*'<w, a
sequence, increasing, of finite sets of formulas A;{(i=n*"). Let

L={l : a; realizes a non-big formula in A;}.

Ti:{<l,m> 8(ay, 8, )~ 3502 9(z ,a,, ), for some BEA;}.
n™ is chosen big enough so that for some i<j—8-2n(R), j<n™, L=l T,=T;.
Note that T; is an equivalence relation on {l:1=<l<n l¢ ;] when the appropri-
ate 9¥'s from the conclusion of lemmma 4.10 and 4.12 are included in A; 1+1 for
each l;
Since T;=T7;, j>i+8, the necessary witnesses already appear in A;. So T; is an
equivalence relation, as claimed.
Let @=ay~b,~ - - ~b,, where a‘0:< a;:l Eli> and such that @; and a;: appear in
the same Ej iff a;,a,,€@ and <L,ll> eT;
We may assume that for each A there is a predicate 4; as in lemma 4.7and
Ag(x) € Apyq, 50 |AL|=<A; and every complete A, -type over 4; is minimal.
Also, using a few permutations, we have in some admissible expansion of M
the predicates RF such that Ef codes {5{%:&%{1 <A} ., pairwise disjoint
sequences of length L=l(5,’°) such that R¥ contains exactly one code for a
sequence from each complete big type in S}, (4¢), and 8f,€4;,, and it real-

izes a big Ap-type over AU U Elk’{. So we may assume
£<E
RE(z)eAL,q (L=1,...,m). Similarly, we may assume for the functions ¥, map-
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ping sequences of the appropriate length which realize some big type in
n

Sa(4r) satisfying ,Alﬂ'(b,;,bj) [for " (z,y)=\/ {8(z.y)eA, Vaatys(z y)
%,3=

and Yya*%y9(zx,y )} which is in Ag+1] to the unique sequence in RF realizing
the same Ag- type over Ag}, (i.e. (F(Z,) =y) € Bpyq)

This proves lemma 4.186.

4.17 Theorem : @ is bi-interpretable with {@7¥", Q)1 @p @p+] with £ an
equivalence relation, and [Dom R*|=A,.

Proof : By what we already know, we may assume |Dom RE|=X;. We know
R(zy, ..., %y (g)) is equivalent to some Boolean combination of formulas as in
the statement of the previous lemma. There appear there formulas
P9, (x),9;(x,y). Without loss of generality, ang‘gy'éll {y ,x)AVyas)"“xﬂl (y.x).
Let BOZix;\L/ 9 (z)}. Let ﬂl(y,x)=\L/ (% (y .z v, (z,y)]vz=y (so ¥! is sym-

metric but not necessarily transitive.)

On 7/~B° we have the equivalence relation £°= the transitive closure of
3y ,x).

By our assumption, each equivalence class of £° has power <X,

Let  B'=B°Ufz:(3=*y)(|y/ E°|=|x/ E°|)} and let B={zelf~-B!
(3Y) (Y E 2 3™ 2)[91(z 2 vo' (. 2) )}

E'=E%DB?

We want to interpret £' and analyze EX(I{~B°B'). Note that if we want to
"express” our life will be much easier. For each equivalence class C of E! we
do the following:

Casel : There is bo€C such that |{z€lf~B%9(z,b)}|=|C].

Let Do={z €C:x #b,, 9 z,b,)].

Case Il : Not 1, so |C] is singular.

Choose a regular Ap<|C| in such a way that { Vushgu singular ) { VA<u,A
regular ) [ [{C:|Cl=u,C an E'-equivalence class }| ={{C:|Cl=u, A=A, C
an El-equivalence class }].]

This is possible as

M<{C:1Cl=u)] (else CCBY; and choose bpoeC, Do={zxelC:z b9z ,be)}
such that | De|=A,.

Let P={bo:C an E!equivalence class }
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Q=P C an E! equivalence class {.

Wlo.g., Pand @ are predicates of #, as | P|=Ag [ @]sAg

Let yE z iff

Qy) r Q(z) A (V) (P(z)»8Yy ,x)=0z,z)). The E” equivalence classes are
the sets Dg.

E” will serve as the £ mentioned in 4.17, so we have proved Qp <;,; @r. Now
we shall start to prove the other direction (we still have to define K*).
We shall now interpret El.
Take some isomorphic copies of E*, say Ej, £1, such that for each E!-
equivalence class C satisfying |C|=u is singular, £; decomposes C into cf p
equivalence classes, each of power <u; and some EI equivalence class
includes exactly one element from each and is disjoint from all other C’s, and
E§.E] refine E;.
For |C| regular, C is an Ea equivalence class and an E; equivalence class. So
we have interpreted £,
(If A=]1|, it may happen that such a choice of £} and E] is not possible, but
then split {{/into two parts closed under £! and do this on each part.)
Let A={y;. 0, {(z) % (zy) : L}
Let 5=" sk (B, i)

k=1
For each p €5,choose z,, torealize p.

pesS

Let R =RtB,.
Suppose |Cl=u, C an E'-equivalence class. Then E! has =2J equivalence
classes of power u, else € would be contained in B'. So we can use several
copies of E! to code whatever we want on C{for all C’s simultaneously). In par-
ticular, we can have elements of C code sequences from C. We can also inter-
pret the equivalence relation zFy %z and y code sequences realizing the
same A-type over BL."

Use another few copies of FE! together with 1—1 functions of power
A=|Dom R| to interpret the functions F; { for coding F; it is enough to have
Rang (F}) and Er

1

v(@z)[(y code z) ny € Ban (z = Fi(y)vy=F(z)vF (z)=F(y))])

czhRy iff z =y
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Def. 5.1. So AJ satisfies 5.3A below. So from 5.10, 5.12 it follows that
[A] = A => |ST(4)]| = AF. So AJ satisfies the demands of Ag, hence Ag=<ig.

So there are only two possibilities: Ap=Az or Ag=AF . For this section:
5.3 Hypothesis : Az=AF. Let A=A,
We shall eventually prove that {3z, @7, @31} ( |Dom E|=A ) is bi-
interpretable with %7 = { well orderings of A4 of order type
A lA|=A<!|l/~A|}]. Together with the preceding theorems, this completely
analyzes the case Ay#Ag.
However we want to do this in a sommewhat more general case, so for the rest
of this section:
5.3A Hypothesis : A is regular , A=A and for finite A,m and admissible #, if
ACl{]A|<X, then |ST(4,M)] <A (hence as in 5.2's proof, @i\ & s @r)-
5.4 Definition : We say ¢ is a pure extension of p {(both are m-types) if
T, =c € =>x;=c €p; we write p C,.q. We call p pure if ¢Cp.p.
5.5 Definition : For every admissible M, |4 |<A, p € ST (4,M) we define rank
Rk(p)=< a,ﬁ) (a,B may be «) ( really we should write FkF):

Rlc(p)z( 0,0> if p is realized by some &.

Rlc(p)a( a,7> (0<y<=) if for every B<y, and 4124 such that |[A'|<A, p has
an extension q€ST (41, M) such that Rlc(q)z.-"’:<a,ﬂ> and if a>0,q is a

pure extension of p.

Rk(p)2< a,m> if Ric(p)2< a,7> for every 7.

}?k(p)2<a,0> when a > 0, if for every B<a there are A!DA4, |Al|<A, and

{9125, and gz2,,plorfa=1,9;2p, 92 2p] such that

91.926SF (A1 M), g1#gz, Re(q)2{B.=). Rk(gz)2Bo=).

Now Rlc(p)=<a,,8> iff Rk(p)2<a,ﬁ> and Ji’lc(p)af<a,ﬁ+1>‘
Re(p)= a, =) ifl Bk(p)={ a.B) all B, Rk(p)*{ a+1,0).

Rk (p) =K oo,m) if Rk(p) = a,B) for all a,B.
5.6 Remark : We can show that if Rfc(p)=<a,ﬁ> then ge€{0,=]. Note that
there is no connection between ranks for different A’s.
5.7 Claim: : Fix A m, p,g will be complete A—~m —types.
0) p Cprq =Rk (p)=Rk(q)
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It is easy to interpret K.

The analysis is complete, getting the biinterpretability except that we have
forgotten B3=Dom R—B!\yB2 On B® , E° may have countable equivalence
classes but (Vz 683)(3‘@*"3./ Y@y ,x). We shall deal with the new points only.
First we can define a partition of B® to B3(1=0,1,2,3) such that 94=z,y), z€57
implies y €52, UB2UB+; ( where 1—1,1+1 is computed mod 4 ) [ e.g. choose
zc€C from each E%-equivalence class C (CB% ) and let y€C be in BJ if
d(y.z)=l mod 4 where d{y.z)=Mnlk: there are
Zgo, Zp, Y=2,,2=2, 9(2;,2,4,) for each 1}].

Next for zeB? let A =]y 9 (y.z)}| and w(A)=|{zeB%A,2A} ( for A<Ry. ) We
can assume each wu(A) is 0 or =8;, (and even = AJ ) and note p(A) is decreas-
ing in A, hence eventually constant, say for k<A<R;.

Now we can interprate 3, £ an equivalence relation which for x=k has
exactly pu(A) classes.

For the converse, lel us e.g. interprate ¥;(z,y). It suffices to code for
1<4, S=§<x,y>:61(x,y)/\(x€8;3 ] Note that [|B3| =|B3]>x (by the
definition of B1).

Let F be a one-to-one function from S into Bf’;g, and let £, E; be equivalence
relations. The F-equivalence classes are ia:;UiF(<x,y>):<x,y>ESi, for
z€B73, and the E, equivalence classes are {y{u§F(<x,y>):<x,y>€S§. (we
can assume 55, has the right cardinality as we are dealing with =AJ
equivalence classes hence could have chosen it suitably). Together with

monadic predicates the reconstruction is easy; as well as dealing with the 9¥'s.

§5 In the first stability cardinal

5.1 Definition :

Let Ag=A3{R) be the least A such that
(VACIN(JA |2~ | ST(A, M) |=A

A finite, M admissible,

5.2 Fact @ Agis Agor A

Proof : Clearly Ag=sX;.
Suppose Ag#A;. We cannot interpret Qi},)‘; because otherwise for some admis-

sible M, finite A, ACM, |A|=A5 we would have |Sy{4,M)|=AF, contradiction to
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1) Rk (p)=€0,0) iff Bk (p)={0,0).

2) If p is realized by no A pairwise disjoint m-tuples outside Dom p then
R (p)={1,0) <{ 1,00

3) If p is realized by =A pairwise disjoint outside Dom p m-tuples then
Re(p)={1,=).

Proof : 0) is obvious.

1) Let @ realize p. Suppose ﬁ’k(p)2< O,ﬁ> all B<a. Suppose AlD4 is given,
|A1]<A. then g =tp (@ ,Al) extends p, so Rk (p )2( O,cx>.

2) If p is realized by no A pairwise disjoint m-tuples, let 4! be such any no
sequence disjoint to A'~Dom p realize p, Dom p<A?, and |A'|<A. There is no
92,,P, ¢EST(ALH), hence Rk(q)¥{1.1). So Rk (p)=Rk(g)=<{1,0).

3) Suppose p is realized by =A pairwise disjoint outside Dom p sequences,
pairwise disjoint outside Dom p. We prove Rk(p)2< 1,7) by induction on 7.
7=0: Let @#b realize p. Let A'=Aya b and let q,=tps(@,A!) g,=tpA(b.4Y).
Kasily {q,92} witnesses Fk(p )2( 1,0> .

7>0: Let A1DA4, |AY| <A, B<y. We know | ST (AL, M) | <A

So by Hypothesis 5.3A p has <A extensions in ST (4!,M). Since p is realized by
A pairwise disjoint cutside Dom p sequences, some extension ¢ of p in
ST{A!, M) is realized by A pairwise disjoint sequences, by regularity of A.

By the induction hypothesis, R’Ic(q)z< 1,ﬁ>, as required. This proves the
claim.

5.8 Claim : Assume p €SP (4, M), Rk (p)={ &, ), 0<a<wo, ACB,|B|<\. Then p

has one and only one pure extension g €S (B, M) of the same rank.

: Proof : Take y" so large that

Rk(p1)2<a,7'>=>1{’k(p1)2< a,m> (possible, as there are only set-many
types). We know Rlc(p)2<a,7'+1> so p has a pure extension qeST(B.M)
with Rk(q)a< a,7'>. Hence Hk(q)2<a,w>. If there are two such g, then
Rk {p )2( a+1 ,O> , contradiction.

5.9 Claim : 1) If A>N,, then for any 4 of cardinality less than A, and finite
Am, there is BDA, | B| <A, such that

p €ST(B,M)=> [Fk(p)={ a,=) for some a<e or Fk (pt4)={ =) ]
2) We can do (1) simultaneously for all A.
Proof : 1) Define 4, (n€w) by induction:
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A(}:A.
Suppose A4, has been defined. For each peSP(4,.M) such that
Re{p) <a 7> 7<=, take B DA, |B,|<A such that p has no extension in

(B, . M) of rank <a 7> (ie B, W}tnesses Rk(p)?’<cx,‘r+l> ).

LetAﬂH—Anuui p: P € SE(By. M)}
Let peST (U4, . M). Since Rk(pitdy)=Fkk(pt4d)=Fk{pltdy)= - -, we can find N
n

such that Rl (ptAy)=Fk(ptAye)=""". Suppose n>N and
R (pray)= a7y, y#m.  Be(plA,)=Rk (0Mn_1).An-1CAn_1UBpra, ,=Bpta, ,Chn
SO plByry, , is an extension of pt4,_; of the same rank, contradicting the
definition of B, . So n>N->[RIc(prAn)=< a,m> Jor some a.

Let A* =4,

n
If Rk(prAN);é< oo,oo>, take a<e= such that Rk(prAn)=<(x,m> for every large
enough 7n. pldy has a unique extension qe&ST(4",M) such that
Rk(q)=< a,w>. Also pldy has a unigue extension in ST (4, . M) of rank <a,m>,
but gr4, . p I 4, are such extension for large n.
So pt4, =qt4, for large n, so p=g, so Rk{p)=< cx,co>.

2) Same proof.
5.10 Fact : If sz(p)<< oo,oo> for every peST(4,M), | 4| <A, then Az=<A (hence
w.l.o.g. |Dom R |=A.

Proof : Easy noting A ¢ B => |ST(4)| = | ST(B)].
5.11 Lemma : Suppose for some large enough finite A, for each A-typep inm
variables Fk(p )<< 2,m> . Then,

1) {35, Q0" @47} can be analyzed as before (in §4, with A for AF), and
{3, Q0™ N = @™, @171 35,3 5] for some equivalence relation E, and
relation B, {Dom R'| <A
or 2) {3z, @47 is bi-interpretable with {Q¥°™, Q%% §, some k.
or 3) fER,Q,}I‘li is bi-interpretable with {3535, £ an equivalence relation
[Dom B | <A=NR,.

Proof : Notice that if p€Si{(4,M) has rank < l,M>, then p is minimal big.
We shall determine A later.

Let A® be as in the previous (of 5.9), so the rank of any A-type in one variable
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over A’ is either <O,m> or <1,oo>. (It A=8; we can still get this by Konig
Lemma and 5.7(1).

Let P ={p €SAm(A',M):RIc(p)=< 1,w> J, K = |Prm | and & = Kpy(+) where m(*)
is large enough with respect to A let /9: U pm. We can interpret @¢Z » -

m=m(*)
in fact, for m=1, the equivalence relation of realizing the same A-type over
A® with domain {a:a realizes some p€f,, , a€Dom (R)}, is an equivalence
relation of this form. For m>1, remember we can code sets of <A pairwise dis-
joint sequences so we can interpret g% .
Define 4;(i<A) continuous, increasing, such that:
1) Ag=4". _
R) 4;4+124; YU B, where B, is defined as before.
P

3) [4; <A for i<
4) Dom (R)= 4; (see 5.10).

A<A
We know that every p €l9m has a unique pure extension p[’:]ESZ" (4;,M) of the
same rank. We shall show that every pure p €S (4;.M) is of this form, pro-
vided that Rank (p}=< l,oo) .
if prace P, then it has rank <O,w> , so
Rk (p)<Rk (prAg)= 0,m» < 1,m» =Rk (p), contradiction.
If prtdg=q Q/Qm but p #g[*, then for some geql*l, ~pep. But by Def. 5.5, p qlt
exemplify Fk(g)=(2,0), contradiction.
This proves every p of rank < 1,oo> in ST (4;,M) is gl*] for some gef,,.
We assume for a while:
Hypothesis A :(Vi)(3j>i)(@m = m(*))(3p, € ST(4;.M)) [ Rk (_p,;)2< 1,oo> and p;

A -splits over 4; | ( A;2A to be determined.)

where we define: p €ST(4,M) A;-splits over BCA if there are b,6CA real-
izing the same A;-type over B and there is €A such that
p(z.b)ep, ~p(Z,0)ep.
Clearly for all 1, p,;=qi£f} for some j = j;, and some qiep {(when we restrict
ourselves to A-types in one variable.) As I/Qm(.)|<)\, we may assume all g, are
the same, g=q,, and q is pure. For notational simplicity, let j;=i+1.
For each 1, let @;CA;,,—A; realize ql*) and b;,0;C4;,; be such that
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@ (z.,b;), ~¢;(x,c;)eqli*1] We may assume all the ¢;(Z,9) are the same,
@ =¢. Now (@, bg)r-9(T,bg) holds whenever a>f (as &, realizes
q[“lzq[5+1322¢(f,58), -9(Z,05)}) and @(T4.bg)n-9(T,4Cp) fails if a<f when we
choose A, appropriately, namely, when we ensure 55 and €p realize the same
{9(7:z)}-type over Ag where ¥(7.Z)=¢(Z.7)..

So some formula well-orders {@,~b,~Cq:a<A}. There is a subset of power A
which is a A-system, {as A is regular = 8;) so we can code the elements of that
subset (with a few permutations) by elements of # and thus interpret @y°™¢
50 [QEh, QYT =i @R, @1 7S

To see Qr<iyf %%, Q¥ 4, for simplicity we show that this holds when R is
binary. { |Dom F|=A, of course ). With a well-order and a set we code an
equivalence relation F whose equivalence classes are 4;,,—4;. Recall
le/ﬁm(,):. On each E-equivalence class C, we can code {by more well order-
ings) E1 C and for every qﬁp and a € C we have to say whether g realizes g
and whether R(z,a)eql**!]  We can do this with §%% and @¥°™. So we have
proved the desired conclusion {(5.11(2)).

So we finish the case Hypothesis A holds, so assume
Hypothesis B : Hypothesis A is false.
By relabelling and taking 4; for some large i as our 4, we can assume no
ql*] A -splits over 4. (for every g € D).
Now we ask:
If AgCACAj are as above, &,CA,, b,CA,, asClf-45, boclf—Az,
P2=tpa(@2,A3)2p 1=tpp(@1,41)
92=tpa,(b2,42)2q1=tpa(b.4,).
Rip(p1)=Fks(p2), Fkalg)=Fkys(g2).
Must tpa(@;~b 3 4,)=tp (@270 1,4,)?
(Caution: Unlike first order types, the answer may depend on the specific &;,b;
used and not just the types they realize.)
If the answer is yes, (for every A, for some Aq for every 4,,4;5), then we can
essentially copy the analysis { in § 4 ) of reducing from |Dom R|=A; to

|[Dom F|=A; and get the desired conclusion (5.11(1) if AN, or 5.11(3) if
A=8),
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If the answer is no {for some A, for every Ag), then by inductively choosing
counter- examples, thinning to a A-system, and coding via permutations, we
can interpret @%°™ and, as before, we get {Qp, Qi1 }=4s{ Q5% @¥°"*}. This

proves lemma 5.11.

Now we are reduced to the case that Rlc(p)=< m,w> for some p or
Kk (p)2< 2,0> for some A-type p in one variable.

5.12 Lemma : For no p €S (4,M) is Bk (p)=C w0y ,(|4|<A).

Proof : We assume Rk(p)=< m,m> and reach a contradiction by interpreting
o5

5.13 Definition : Suppose (by adding dummy variable) that A is a (finite) set
of formulas of the form ¢(Z,§) (with a fixed §¥) and p is a A-type in the
sequence of variables . Let A° be the set of formulas obtained by reversing
the role of £ and 7; i.e. a A®-type would consist of formulas ¢{a@.7).

5.13A Fact I p=tppl@,A), Re(p )=< oo,eo> , then for some
B2A, |B|<A, q=tpA(61,B)2p,_p, Rk (q)=< oo,oo> and g A%-splits over 4.

Proof : Choose Bg2A4,| Byl <A such that every A°-type over A realized in ¥ is
realized in By.

We take po€ST(Bo, M) , Po2prP, Rk(po)=< oo,m>. So there exists ¢(Z,b) such
that both pgUfe(Z,b)] and poU{~9(Z,6)} can be completed to A-types of rank
().

So there is €CBg, tp e (€,4)=tp pe(b ,A).

Without loss of generality, ¢(Z,C)ep,.

So poUle(z,0)-@(z,b)} can be completed to a A -type rank <°°,°°> which A°-
splits over 4 (and is a pure extension of pg ).

5.13B Fact : We can interpret %%, .

Proof : Take 4;,(i<A) as in lemma the proof of 5.11.

For each i, take p;=tp(@;,.4;) to have rank <w,m> and w.l.o.g. is pure. By fact
5.13A we can take b;,¢ such that tpae(b;.4;)=tps(;.4;) and
P, Ulp:(.5;), -9, (%,¢;)} has a pure completion of rank < m,m>.

So for some ¥;(Z,d;) both p; Ulw;:(Z,b;), ~9;(Z,6;),+¥;(X.d;)} have completions
of rank <m,m> .

Let @, be pairwise disjoint, a},N4;=¢ (a<i, 1=0,1) , a), realize

P Utei(Z,5;), -9 (Z,5,)} and y; (@l ,,d;) iff L=0.
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Without loss of generality, tf,;"!;i*f:‘i*&ia Ch;yq. for a < |4;,4]; wlog.,
@;=¢. ¥;=% do not depend on i. W.l.o.g., b,~¢;~d; M4; is constant, {if A>8;, by
applying Fodor’s theorem Lo F(i)= at least j such that 4; ﬂ(l;i"éi"@}céj; and
then using that there are A-many 1 but less than A-many finite sequences
from 4;; if A=N;, by the A-system lemma and renaming.) W.log. , &f,a is dis-
joint to b, ~g; ~d;.

We can interpret P={b,~¢;~d;; i<A} since we have arranged that they form a
A-system.

Let f be the permutation

(@ )=a;]'7" , f is the identity elsewhere.

When does ¢(d‘f,a,5j)/\-.gp(d,f.a,t:“j)/\['oll(a'f’a,c—fj)s-'n//(f (Ef,a),gj)] hold? For i=j,
the formula is true by inspection.

For i<j, the answer is no, as B-j,ch realize the same A°-type over 4; Dc‘i,f,a.

For i>j, the answer is no; since Et_jg:Ai, and Ef,a,f (E,f,a) realize p; which is a
complete A-type over 4;, contrary to the third conjunct.

So we can interpret F with domain idi?a: a<i<Al, di?,ﬁlE d.i‘:,aa =4711=1z.
(using P and f to do so, remember 4.3(2)).

But Fisin @§% .

5.13C Fact : We can interpret ¥°™¢.

Proof : By Fact 5.13B we can interprete an equivalence relation F with
equivalence classes A4;,1—4;.

Let E; be the equivalence relation on finite sequences of suitable length m
from A; 4

@, &, iff @,,@, realize the same A°-type over 4;.

We can code {J E;=E' by fact 5.13B, since |4;41—4; |<A.

i<
Let zed; =4 y€4;1—4;.
If j<i,
Bz, y)E " I by, ... b€y, ..., Cp,2} are in the same E-equivalence class
and bE'c then (VZ such that zlEy),,/,;);(“’(f'b e bm)=e(Z,cq, .. Ep))
holds."”

Obviously if j < 1, ¥(z,y) holds.
If j>i, py Ulw;(Z.5;), ~¢;(Z.¢;)] has a completion of rank <m,m>, so w.l.o.g. it

is realized in 4;4,—4;, so ¥(z,y) fails.



Sh:171

33

This proves Fact 5.13C.

5.13D Fact : We can interpret €5%.

Proof : We can find  Z; ;,F; jCA; 014, (i<3) such  that
tp A% 5. A) =D A5 5. 4i), tP ATy 5, Aia 1) #ED A(F 5. Aiey) for all 1< <A

(we can take them to realize p; \J{+¥;(Z,.d;)} from the proof of 5.134).
In fact there are |4;| such pairwise disjoini pairs.

So, w.l.o.g., T ;. %, 7, Ui, 5 Fing. are all disjoint for (i1, 1)#(iz.j2). Since we can
interpret @¥°"¢, we can interpret the equivalence relation %;, ; B%;, ;, iff 1,=1.
S50 we have proved 5.13D, hence 5.12.

5.14 Lemma : Fornop (and A) Rk(p)>< 2,m> ).

Proof : We know (Vp)(]?lc(’p)<< oo,oo>). If the lemma fails we shall interpret
R%Y getting a contradiction. By Def. 5.5 we can findp Fk(p) = <2,00>.

We can define A4 (i<A), 4; increasing continucus as in 5.11's prooi,
|4; 1 <A, po€ ST (Aq), Rk (po)=X2.%): p=pi ST (4) Po Cpsv Rk (ps) = <Rio>,
PiCpr G EST (A 41), FE (g)=C 1=, 8; ;CAje1 — 4, 1Pl 5,4;)2prq; has rank
< 1,m>, and ¢;(Z,b;)€q;, ~9;,(Z,b;)€p;4;. Wlo.g. the <5,;:i<)\> form a A-
system. And even @, ;, b, are pairwise disjoint outside some 5"

If for every i for some j, p&j] A°-split over A;, we can easily interpret @¥°r¢.
Otherwise we can easily interpret first @3%,, with which we can code
{A; 114 1 <A} and relation over the A4;,,—4;; so we can again code Qwora,
{really the first case occurs as for every 1 €A, there are 1 <j; <ja <A,
tp ac(b; . 4;) = tp e (b, 4;) In both cases we finish as in 5.13D.

Now 5.11, 5.12, 5.14 give a complete analysis of the case Ay#Aj

* & *

During our investigations, we came across the following quantifier:

5.14A Definition : Let K¥°"¢={R:R a two place relation, { Dom 7,k ) is a well
ordering of order-type «].

5.15 Claim : 1) If a<g then Q¥ <Q¥°™.

2) Q%% <|a| <mt@2°® for infinite a (hence @1 =Q¥™).

3) Q% < Q¥ ( A>k2Hy are cardinals).

4) For A singular Q¥ =,,,0%% .

5) If @ = A® then Q5% < Q¥ord.

Proof : Easy (for (4) use 6.4).
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5.16 Lemma : 1) If X is regular, ©<u<A, u<2%, then §%, <., (¥, g3}

R) If A is regular k<p<X, u<3, () then Q% <., {QY"? Q2% }

3) Assume a <A Aa =B < A(at+l), A regular, lal = x. Then
QF =it (Y%, Q)

Proof : 1) Let S={6<A:d divisible by &}, and let F be an equivalence relation
on S with =u equivalence classes each of power A (we shall define and inter-
pret him). As the number of models (k,<,P) is 2%, we can find PCA such that:

(*) for 8,,6,€5,6,E 0, if for every i<k, 6 +1€P<>0,+1€P.
Now let Eq be i( 61+'L,62+'i>: 8,€5, 6,65, 1<k}. Easily we can interpret £ by
<,P and F, all interpretable by {QY¢, @99, 3.
2) By induction on n.
3) Easy.

5.17 Lemma : 1) @y ¥ in:@¥°™ for A regular.
R) QU F it O, Q2% § for A,k regular, A=k>8g and u=3,(k).

n
Proof : 1) We can prove that if l/\l(Q?WdR)(Vf)[R(f)ERL ()], then the model

n
M=(yDom R, By, ..., ,R,) can be represented as », ¥; where:
=1 i<A

(A) each #; is a model of power <A.

{B) the | M;} are pairwise disjoint

(C) the meaning of M=} M; is that if @ CM;()i(1)< - <i(k), we can com-
i<A

pute the basic type of &~ - - - ~&, in ¥ from the basic types of &; in M) {not

depending on the particular i(l)’s.)

Now by Feferman-Vaught theorem the conclusion follows.

2) Like {1); but for formulas to depth n, we use the F.V. theorem for formulas

of L of (quantifier) depth =n.

5.18 Lemma : @Y=, Q%%

Proof : Clearly @™%=, Q%% (in fact Q§°"¢<;,:95% ). Ordinal addition on A

gives a pairing function, and on a subset of cardinality A, and we can define

addition as we can quantify over one-to-one functions.
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§6 Below the first Stability cardinal

Hypolhesis : We now assume A=A;=Ag.
We try to approach A from below. Wlo.g |Dom R|=A, and we analyze
{3z.@x7 1.
6.1 Construction : Let ¥ be admissible, rich enough, A finite large enough.
We define by induction on i;
dzlaﬁfa (1=0,1 a<i), @;(Z,4.2.,b;), ¥;(z,c;) such that, for
A, =1d) 5.8} 5.8, .6 ak <d L <2
a) ¢; Y €A.
b) ¢;(Z£,7,2,b;) is not realized in A; or at least by no a "a’l ”E[j,a (i>7>a).
c) %(-’5 Z,0;) > (¥, (2.8 -9, (9 .5,)).
d) @ dtla realize the same A-type over 4;.
e) go,;(a,; « Tia Gy q by) for all a<i.
f) all the sequences §d3 a’ﬂﬁa aly: a<j=i} are pairwise disjoint.

Continue until 1", when the process breaks down.
Let x= card (i"), 4%=4;- so |A%}=x if x is infinite |4%] <22 if x is finite.
6.2 Claim 1) We can interpret @3, if x is infinite.
2) We can interpret Q5 ¢, if x is ﬁmte, x;=x/ 2"
Proof : 1) If y is regular, we can make the parameters (b;~&;) into a A-system
and proceed as in fact 5.13B previously.

So suppose £=cf x<x= 3, X;. £<x; all;

i<e
We can find a subsequence of <5f‘6,;:i <'L°> of length « which is a A-system,
and with it interpret an equivalence relation £ with k equivalence classes of
arbitrarily large powers less than y.
For each i, there is a set S;Cx;¥, of cardinality x* such that <5j"63-: jES?;) is
a A-system. Let &; be the heart of this A-system.
There is TCk, | 7'|=x, such that <§i: i€T> is a A-system with heart 2.
Let 7, €85; for each 1.
By hand over hand thinning of each S; we may assume b "€, Mb g ~C1CE if
acS,ales;,i#j.
We may assume S;\S;=¢ for i#j,1,7€T. Let i(a) be the unique %, such that
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a€S;. By permutations, we can code {&;: 1€T] and {b,"Cy—8;(q) ' ®€S; } and
{6, ~c, €Ty

We need to code the equivalence relation E'. b,°C, ;) E' bg~Cg e iff
i(a)=t(g).

By our reduction, this can be accomplished if we can do it for singletons
rather than sequences. This we can do, with the equivalence relation F.

2) Left to the reader (really we need just that x; as a function of x diverge to
8o)

6.3 Conclusion : ysA.

6.4 Claim : 1) If x is singular, @2 =;,,@%%, .

R) Q5% =mt @37y if A>x, x singular.

3) If x is finite then QF 2xs 2 Sint ey Sint 933

Proof : 1) Now we know @¥c, <in; @%% . Let us do the other inequality. Say &
is the following equivalence relation on f(i,j>: i<j<x}:

iy E kLY ifi j=L; clearly E€Qed,, .

Let <X¢3 ?L<1c> be as before, and let E1€Q§?<x be an equivalence relation on
§< G,j): 0<j <x} with x equivalence classes each equivalence class unbounded
in x of power less than x.

2B y=3z'ay Y z'Ex n y'RBy »r 2'E,y') is an equivalence relation with x classes
of power x.

2) Similarly.

3) Easy.

6.5 Claim : At least one of the following occurs (if x finite, we should use
3n(R) x) (4% etc are from 6.1):

(1) For no m<m (A),l(z)=m p(Z,7)eA,@ (finite) and pure p e SPT(A% M), are
both p Yi+e(Z.8)] realized by x pairwise disjoint sequences.

(2) For no ¢(z,g)eA and @ is ¢(%£,8) realized by no bc4% but
@z)[¢(Z,€) A 2 NA=9).

Proof : Suppose @{Z,0)peST(4°% M) exemplify (1) fail, i.e. there are
&k (1<2,a<i") realizing p, pairwise disjoint and disjoint to 4° (as p is pure)
such that Ee(al,b) iff 1=0.

Suppose further that %(%.¢) exemplify (2) fail i.e. there are d (a<3n{R)i"),
pairwise disjoint and disjoint to 4° such that Fy[d,.¢] and -(3ZCA)Y(Z.C).
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We now can, by thinning, have Ela ,d {a <1%) which are pairwise disjoint.
However ~we could have chosen al,=al, ( I<2a<i® ),
bi»=b, ¢;»=p(Z.b), d; o=d 4, ¥;-=9¥(2.C;), €;-=C, contradicting the choice of i".
6.6 Lemma : Suppose that 6.5(1) holds, and let Al={a¢ A*: tp(a,4y) is real-
ized by exactly one element }.

AR=f-A% AL

Then

1) If A°CB, p=tp,(a@,A% M) then the number of ¢ €SP (B, M) extending p is at
most |B| {or = x |B|™®)|A| when x is finite).

2) 1S B (B M) |<|SEHAOM) | +|B]| (or =S} (A% M) x|A| | B|™D if x is finite).

3) A<2X and A=|SF™®) (40 |M|)| for x infinite.

Proof : 1) Immediate from 6.5(1): let B be infinite (24% and suppose,
tp p(@,, B) (a < | B|*) are distinct and

(*) 2, {a < | B|*) realizes p.

Wlog @ga=8} ~a', where @ C B, @} N B =¢, and the @ (a < |B}")

are pairwise disjcint. As 6.5(1) holds, for every €. one of the sets {a < {B|™:
E¥(a,c)], la<|B|l*: E -~ ¥(@,8)] has cardinality < . Now we get contrad-
iction to (*).

2) Follows from (1), as w.l.0.g. we can count pure types only.

3) Clearly |SF™&) (B, M)|<2X for B of power =2X. This is closely related to the
definition of A3=A but there is a difference: # and A are here fixed. Bul we
could have repeat §4 , §5 for a fix larged enough A M {with A depending on
n{R) and not on R). If A is regular use §5 with hypothesis 5.3A, for A singular
8.2, 6.4. (alternatively repeat this section for any A).

6.7 Lemma : Suppose 6.5(2), and that A is closed under permuting the vari-
ables.

(1) There is A1,A4% AL |At|<|SF™B) (49, )| m(A) , such that for every B
extending A!, and b disjoint to B, {of length = m(A)) tp(b,B) does not A-split
over A°.

2) A< | SEMB) (41 1) |

3) A=RX when y is infinite.

Proof : 1) Immediate.

2) Follows from (1), as in 6.6 (as by (1) every pure p € SF™@®)(B) is
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determined by p t 4%)
3) By (1), (2) it suffices to prove that if A%CEH, |B|=2X, m=m(A) then
|ST(B,M)|<2X. Suppose B,m form a counterexample. Then for some
gCB.p(Z,7,8)€A, ISf(p(f;g’E);(B,M)|>2X , and we choose an example with
minimal [(Z~F) and so there are b; disjoint te B, for i<(29* with
ip W(i;ﬂ.é)}(g’;’B'M) distinet, L(b;)=L(Z), and w.l.o.g. tp(b;,A%)=p for a fixed p.
If for some i#j, there are @,{(a<x) pairwise disjoint, disjoint to 4° such that
@(b;, @, )n~9(b;.a,), we get contradiction to 6.5(2).

So for every j>0 there is B;CB,|B;| < x such that if @aCB-h; UA® then
¢(Z,@)epo<=>p(z.d)€p;. The number of possible B; is <|B|<X so wlo.g.
B;=B; for j>0. But now let {gu(Z,¥4.€4):a<x} be the formulas we get from
@(Z.7,€) by substituting one member of ¥ by a member of 4°B,. Clearly
0<i<j implies ></xtp B, M)#tp

(Ej,B,M). Hence for some

$a(Z ;yméu)'(&i ?a(Z:9 .Ba)

a |S éu)(B’M) [>2X, contradicting the minimality of L{(Z~F).

$alZ Ja,
6.8 Theorem : There is a function f:w-w, diverging to infinity such that:

if x=x(®) is finite, then for some R’ and equivalence relation FE,
{3r, @x " =mildp-3g), n=|Dom R"| finite, and Q§fn) 7 (n)<indr-

Proof : Combine the previous lemmas.

By 6.8 or 8.7 there is A1, with |A!| not too large than x, such that every pure
peSF™B (41 M) has no two explictely contradicting x-big extensions. Now as
in §5, we can apply §4 to get dp=,,{3p-dz} with |Dom R*| not too large than
| 42].

As for @8%,) 7 (n)Smndd g, use 6.2(2).

6.9 Claim : We can interpret 7% if x is infinite.

Proof : We are done if x is singular by 6.2, 8.4. So we assume x is regular. If
| S§™(8) (4, M) | <x whenever |4 |<x, we repeat the case A;=A$ with A, replaced
by x everywhere.

So we assume «=|A|<x, | S} (4™ M) |=x. Now |SE(AY, M) |=yx, for some A! of
cardinality <x, and some admissible M! [ as if tpA(@;,4)€ST(4,M) are distinct
(i<x), then w.lo.g. {@;} form a A-system. We can expand 4 to include its
heart and use permutations to get distinct elements of S (41, M) ]

Since A is finite, there is ¢(z,¥) such that |S¢, (4%, #)|=x.

Let m= length (7).
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Let /=f{@cAl:p(z.@) belongs to at least x types p€S{, (4" M), and ~¢(z,a)
belongs to at least x types peS{, (41, M)}

Let Sy(N)=tp Nite(z,.a@) : @elfpeS (AL M)}

Note that |S,(/)|=x, as follows:

Let F:5,(4%M')>5,(]) be the obvious projection.

It |Sg(I)|<x, we take g€S5,(I) with >x pre-images p; (i<x), p;#p;, so each,
except possibility one contains a formula which belongs to fewer than x of the
p;. But there are fewer that x-many formulas in all, contradiction.

Also note that for every @€l: |{p €S, (I):¢(z.@)€p}|=x and

[P eS,(D): ~p(z.@)ep ] |2x.

(otherwise the pre-image under F of a set of size <x would have cardinality
=x, but we just showed any q€5,(/) can have only <x elements in its pre-
image).

On 7, define the following equivalence relation E:

abb iff |{peS,(I):p(z.@)ep=p(z,6)gp}|<x.

Let JC7 be a set of representatives and G:S,(/)»S,(J/) the natural map.

6.10 Fact : |G"Yg)]|<xfor any q.

Proof : Suppose G(p;)=g and p;#p; for i<j<x. For each i, take b,€l, such
that (¢(z,0,)€p;) <> (9(z,b;) € Dy41)-

Let @;eJ, @; Eb;.

Since |J|=|I|=|A!|<x, there are @', and & , such that § = {i:@;=a@  and
b;=b"} has cardinality =y, so @ £b". W.lo.g., p(z,a")€q.

For all i <x,¢(z,@ )ep; and @ Eb  so for all but fewer than x ordinals
i€S, o(xz,b )ep;. Similarly, for all but < y ordinals i € S, @(£,6") € py4y. S0
for some i € S, p(x,b") € p, and @(Z,6") € p;4,, but b° =b; contradiction.
So 6.10 holds.

Thus | S¢,(J) |2x.
We define B; (i<x) by induction; such that
1) B; is disjoint from 41y U ;.
i<t
2) |B; | =k < x (remember |J| < || < |A}|™ = k).
3) No two elements of U B; realize the same S;,(J,Ml) type. (Possible, as
j<i

FuB; I<x=|Sg(N)1).
j<i
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4) If @#b and a@,beJ, then for some admissible c €5;, ¢(c,a)=-¢{c,b) (possi-
ble, as | J|<«=|5; | and the choice of J).

Since @3% <@k, We can interpret an equivalence relation £ ! relation with
equivalence classes the B;’s. Also, since |J|<=k, we can code sequences from J
by single elements.

Let <C«;,a5 a<m> enumerate B;, and {&, : a < £} enumerate J.

With equivalence relations from @%%, we can code pairs from B; by elements
of B;, so with a monadic predicate we can interpret

Q=§< Ci,a»ci,ﬂ>5 p(c; 0.8g)}. Now we can interpret S=§< ci,a,d,,): i<y, a<k} by

the formula 0(z,7)= zc YB;, ageda (Vz)(zE'z>{p(z,7)=Q(z,x))).
[ 2.9

Suppose R=2<d€1 ,d§>: £<x} is a binary relation on (B. Let
i<x
Pl={cg o p(dL,a,) €<x, a<k} for1=1,2.
2
Now <b1,bz> eR iff @zrcyUB;)(Vy EI/El)L/_\l

(yeP' iff @zel)({y.z)ecSnp(bl 2))).

(We are coding b’ by the {p}-type it realizes over J. Even though b! might
be in some other 5, ,the code is on level B£ for bt in the £th pair of R).
So @3 <int@r-
6.10 Remark : So we have proved that if in (IfR) for some
A.p=|S (A, M)|>]|A|=k=8; (k minimal) then @5, >,.{3p. Q7. ]
8.11 Theorem : Suppose x is infinite. Then
1) 2p=ins{ 5% 25 3p )
Where Z is an equivalence relation, {Dom A, |=2X
2) Also for some M and (finite) A, there are 49,41, |A%|=x, | ST (40, M) |=|41].
| SEM (AL M) |=|Dom R,].

Proof : Combine the previous proofs.

§7 Summing Positive Results.

7.1 Theorem : If V=L, then any R is uniformly invariantly bi-expressible with
Qg, where E is some equivalence relation, or with {@§*¥™ 3p §, Dom P, finite.
Proof : Clearly Az=A,<2X is the only remaining case. We can find 4 such that
[4]=x. | S (A1M)i=x+,Q§?xémﬂR. ( A={ atomic and negated atomic formulas
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in the language of #} {and is finite).

We shall show that we can express Q;‘i"’d.

On A we can interpret the structure <LX,€> . For every a, tps(e.A,M) can be
viewed as a subset of L.
We express an ordering

a=b if (3 well-founded f) [ LE "I am an L, for some a" and [ extends

(as <Lx' €>
already interpreted) and the subsets of L, which a and b represent
appear in
|o£L| and the subset representing a occurs earlier].

=< is a well-founded linear quasi-ordering.

Use a monadic predicate to pick out one element from each of the induced
equivalence classes, This gives us a well-ordering of order-type x*. By 5.18 we
finish. Q.E.D.

7.2 Conclusion : {(V=L) for every K either for some family E of equivalence
relation, dg,dg are uniformly invariantly bi-expressible or for some finite fam-
ily Ky of finite relations and A, 34 {@%" 3k, ] are uniformly invariantly bi-
expressible (if we omit uniformly we can omit the second case.)

Remark : On analysing E see 1.5.

x x o

For some x we can close the gap (x,A) more easily, so such x are impossible.
7.3 Lemma : Suppose M is admissible. And for some finite Am and
A JA|=x, | ST(A)I=p>x

and BCA , [|B|<x => |ST(B)|=«k], x < £ < p and x is singular,

Then 1) {35, Q%% . @5cr x 1St Q5du

) If 8g<cf x , 27 X<y, pregular, then {3, @28, }<;,, QW™

Remark : For (1) note that if cf x=8;, then Q% <., @,

Proof : We can interpret in (an admissible expansion of) #, a tree T of power
x, with ¢f x levels, and u branches {5;:i<u} (of order type cf x).

If g is regular, we can assume that z€B; => |{j:x€8;}|=p so each B; can be
coded by a set #W; of length c¢fy branches, as its limit, with
[1 #j = B, N B; = ¢] and (1) follows.

If u is singular, we can similarly code @, «, and finish (1) by 6.4.
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For (2) we can consider {5;:1<uj as a set of function in «% X, which are pair-
wise eventually distinct. By [Sh 7] for some ultrafilier D over ¢f x and /Cu,
{B;:iel} is well ordered by <.

§8 Complementary Independence Results

8.1 Lemma : Suppose A=AM>8,, u>A, and P is the forcing for adding u func-

tions Fj:A-2 (i<u) (equivalently a function F:uxA-2, F(i,a)=F;(a) by condi-

tions of power <A) . Let for Sq¢u, B be the following partial order <g on
~g

A2US:z<y iff (Ta<A)(y€%2ny =zta) v (a<A)(z€®2ny €Saz cFy) (so RS is

defined in V¥ ). We let for z€8 and a<h, xl‘a=d’efF,;ra ; for x an ordinal € 5,

let zra=< —l> .

Then Q¥+ ,.,@p (we assume {a| *>2=]/for some ordinal a such that SC a).

Prool : Suppose not, then for some p € P and first order ¢(z v ,¢,H Rs),

pllp " € a finite sequence of elements of U,P=< H: L<n'> a finite
~ ~
sequence of permutations of {{ and {(m,y> :ga(x,y,c,ﬁ,}?s)} is a well ordering
of order-type A* and w.l.o.g. {_H'l'”l:l <ni={Hl<n"}"
~ ~

As P satisfies the A*-chain condition, there is Sy € V, Soclf.|Sg|=<A such that

plFp "“*2US,is closed under H for i<n® "

~

Let ¥=({{ R, H, ... ,H _ ). For notational simplicity let {{=*>2yS. Let
~ ~s ™o ~Tn

K={I.] a model of the form ([/|,.f,....fL-_,), each f, a permutation of
7}, and I has no proper {non empty) submodel }.
Clearly, K€V, and each [/ € K as cardinalily = 8g.
We let K'CK be a set of representatives of the isomorphism types, and
IeK! => |I|<¥; hence K'eV. In V¥ we define, for each /€K
(a) we call (xt:t €[> a component if H(2,)=2 zy).
(b) A[=f< 7t €[>: 7, €2 for every t€], and there are function G;:/-Ifi <A¥)
with pairwise disjoint ranges, such that =n; = G({)rl(n:) and 4}+(V
teDI/N G KEN=H (G
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Note that J{=*>2S) is partitioned into components. { z,y are in the same

components iff z=z,, y=2, and A v 2,,.,=H(2,,) for some k and

m<k L<n
(zm 0<m <Ic>).

So in V¥ there is S, |S;1=A, ¥2¢S, and for every z€lf—S,, its component
<:z:t: t€f> is disjoint to {f~S;, and for every a<A, <xtm: t€]> €A,
So again as P satisfies the A*- chain condition, we can assume S,€V, and that
forcing  of <F;:i€,5‘1> also  determines <A1:1€K1> . So let
V1=V[<F;:i€81>}, P2  the quotient forcing (which 1is just forcing
<f’ : 'i,ey,—Sl> by approximations of power <A.)

!
Notice that in order to know in V[ G?] that Fe¢[z.y] (which holds), (z,y€S) it
is not enough to know <xra,yra> for large enough a, though it is enough to
know p,€G for some large enough p,;€P? which force it! VI[G?]). A simple
example is Y{zy)=[Hy{z)=y]. But something similar and more general
holds.
Fact : 1) If ¥ is a formula from L, o, <xtf:t E[£> for € < ¢, distinct com-
ponents disjoint to S5,, and ¥ is a countable sequence from Sl,(IEe:K‘)
Evl - zf . Gl e fort €1 £ < &

then for some a<A:

(%) if zfelf-5,, <ztf:t €f£> distinct components and zfla=zfta then
Fyl 28 vg]gqo,te[;'
2) We could also have assumed that for any such ¥, [E(E<€0) and 7, the P-

name

Ty <Ipt<to> = i(nf)t €Iy, € < & for AY pairwise distinct components,
{ooogti t€;€>,

Byl xtf'i, C -?7]£<£o.t€fe

and for some 7, z£1y=nf for every t €/ ¢<&,,i <A™}
depend only on < Fi ESI>
~

Proof: For 2) close S; A or just§¥, times, and if <n§ tt el < €o> is not in
Tylp:-e<g) but Eyl---zf .. g) of 1y =nf for every t € [€ < § then
fzf tel, e<&lnsS #¢



Sh:171

44

Now we can prove by induction on the depth of % (in V') that the fact is forced

(ie. “‘pg}

From the fact, and the Tarski-Vaught criterion we can conclude (in V¥) that if

Siclhclf. U, closed under H(i<n’), then Mt is an L, ,,- elementary sub-

model of M. By increasing S, further we get that this holds for any f,cl/

extending S, and closed under H{I<n").

Now if @¥"¢=,,Qp then we can find I€K Y€L, ,FCS;, and distinct com-

ponents < Xkt §[> disjoint to Sy such  that for £,E<AT,

MEY( - zé..xf 7)) iff £<¢.

Now, for some &<A™, for every £€(£0,A%) and a<A for arbitrarily large ¢<At,
frcx =z o Using the fact, the contradiction is easy.

8.2 Lemma : 1) In 8.1if §,S'CH, [S—S![>A, then3p o g .

R) If k<A, in 8.1 we can get QW fa, , Qff) o} and even

Irs=intlR . Qi )

3) If k<A, in 8.1 we get Q5% .+ mfz_&,Q"?g/‘ .

Proof : 1) Similar.

2) We use L .+ instead L, ,,, and & permutations H;(i<k) (instead n"), and

repeal the previous proofs - but any EEK‘@M can be defined by an L+ g+

formula using suitable k& permutations.

3) Similar proof.

8.3 Lemma : (G.CH.}) If A>N, is regular u=A* we can build <F;:?J<,u,> as

required in 8.1, 8.2 without forcing.

Proof : See [3h 6], 2.1.

The following lemma shows that we cannot prove 8.2 without some set-

theoretic hypothesis.

8.4 Lemma : Suppose VEx=x<Xa x<iacf A=A , then for some y-complete
forcing notion P of power A%X, satisfying the x*— c.c., |Fp"" 2%= X", and

1) lbp "if SR, cf |S|#A, Ks as in 8.1, then 7% 5| Sint{dr, @55 3"

2) in VP, x(R)=x;<A5(R) implies A3(R)=x*=A.

Proof : We let P be the limit of the x-support iteration <Pi’-€£:i<)\> where

Q €V™ is defined as follows:
~Y
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let (A2)" ={f% a<(2)7"} and

g, ={F,A):F a function from a subset of ¥*2 of power <Y, into x, AC(X) VF‘,
|A|<x, and for B,y€A & < x, if fhla=f%ta, then fhla€Dom Fi,

(F,A)=(Fa,A2) YF F{CFs,A1CA, and if v are in 4; and
[BEA ny€A ) A a<x A fta S LtanB<y
~f Stag Dom F1=>Fa(f jra)<Fa(fira)].
8.6 Conjecture : It is consistent with Z F C that every Iy is biinterpratable

with some 3g, E a family of equivalence classes.

8.7 Question: Prove it is consistent with ZFC that some 3g is not bi-

expressible with any 3y I a family of equivalence classes.
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