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It is proved that there is a certain degree of independence between stationary reflection phenomena
at different cofinalities.

1. Introduction

Recall that a stationary subset S of a regular cardinal κ is said to reflect at α!κ

if cf(α)"ω and Sfα is stationary in α. Stationary reflection phenomena have been

extensively studied by set theorists ; see for example [7].

D 1.1. Let κ¯ cf(κ)!λ¯ cf(λ). Tλ
κ ¯

def
²α!λ r cf(α)¯κ´. If m!n!ω

then Sn

m
¯

def
²α!b

n
r cf(α)¯b

m
´.

Baumgartner proved in [1] that if κ is weakly compact, The Generalised

Continuum Hypothesis (GCH) holds, and ω! δ¯ cf(δ)!κ, then forcing with the

Levy collapse Coll(δ,!κ) gives a model where for all ρ! δ and all stationary

TXTκ
ρ the stationarity of T reflects to some α `Tκ

δ . In this last result all the cofinalities

ρ! δ are on the same footing; we will build models where reflection holds for some

cofinalities but fails badly for others.

We introduce a more compact terminology for talking about reflection.

D 1.2. Let κ¯ cf(κ)! λ¯ cf(λ)!µ¯ cf(µ).

(1) Ref(µ, λ,κ) holds if and only if for every stationary SXTµ
κ there is an α `Tµ

λ

with Sfα stationary in α.

(2) Dnr(µ, λ,κ) (dense non-reflection) holds if and only if for every stationary

SXTµ
κ there is a stationary TXS such that for no α `Tµ

λ is Tfα stationary

in α.

We will use a variation on an idea from Dzamonja and Shelah’s paper [4].

D 1.3. Let κ¯ cf(κ)! λ¯ cf(λ)!µ¯ cf(µ). Snr(µ, λ,κ) (strong

non-reflection) holds if and only if there is F :Tµ
κ ! λ such that for all α `Tµ

λ there is

CXα closed and unbounded in α with F QCfTµ
κ strictly increasing.
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As the name suggests, Snr(µ, λ,κ) is a strong failure of reflection. It is easy to see

that if Jensen’s global * principle holds then Snr(µ, λ,κ) holds for all κ! λ!µ ; in

some sense the strong non-reflection principle captures exactly that part of * which

is useful for building non-reflecting stationary sets.

L 1.4. Snr(µ, λ,κ)3Dnr(µ, λ,κ).

Proof. Let SXTµ
κ be stationary, and let F :Tµ

κ MN λ witness the strong non-

reflection. Let TXS be stationary such that F QT is constant. Let α `Tµ
λ and let C be

a club in α on which F is strictly increasing, then C meets T at most once and hence

T is non-stationary in α.

We will prove the following results in the course of this paper.

(1) Theorem 3.5: If the existence of a weakly compact cardinal is consistent, then

Ref(b
$
,b

#
,b

!
)­Snr(b

$
,b

#
,b

"
) is consistent.

(2) Theorem 3.6: If the existence of a measurable cardinal is consistent, then

Ref(b
$
,b

#
,b

!
)­Snr(b

$
,b

#
,b

"
)­Snr(b

$
,b

"
,b

!
) is consistent.

(3) Theorem 3.7: If the existence of a supercompact cardinal with a measurable

above is consistent, then Ref(b
$
,b

#
,b

!
)­Snr(b

$
,b

#
,b

"
)­Ref(b

$
,b

"
,b

!
) is con-

sistent.

(4) Theorem 4.1: If Snr(µ, λ,κ) and κ!κ*! λ then Snr(µ, λ,κ*).

(5) Theorem 4.2: Let κ! λ!µ! ν. Then Ref(ν,µ, λ)­Ref(ν, λ,κ)3Ref(ν,µ,κ)

and Ref(ν,µ,κ)­Ref(µ, λ,κ)3Ref(ν, λ,κ).

(6) Theorem 5.10: If the existence of a weakly compact cardinal is consistent,

then Ref(b
$
,b

#
,b

"
)­Dnr(b

$
,b

#
,b

!
) is consistent.

Theorems 3.5, 3.6 and 3.7 were proved by the first author. Theorems 4.1 and 5.10

were proved by the second author, answering questions put to him by the first author.

Theorem 4.2 was noticed by the first author (but has probably been observed many

times).

2. Preliminaries

We will use the idea of strategic closure of a partial ordering (introduced by Gray

in [5]).

D 2.1. Let 0 be a partial ordering, and let η be an ordinal.

(1) The game G(0, η) is played by two players I and II, who take turns to play

elements pα of 0 for 0!α! η, with player I playing at odd stages and player II at

even stages (NB limit ordinals are even). The rules of the game are that the sequence

that is played must be decreasing (not necessarily strictly decreasing), the first player

who cannot make a move loses, and player II wins if play proceeds for η stages.

(2) 0 is η-strategically closed if and only if player II has a winning strategy in

G(0, η).

(3) 0 is ! η-strategically closed if and only if for all ζ! η 0 is ζ-strategically

closed.

Strategic closure has some of the nice features of the standard notion of closure.

For example a (δ­1)-strategically closed partial ordering will add no δ-sequences,
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and the property of being (δ­1)-strategically closed is preserved by forcing with

% δ-support (see [3] for more information on this subject). We will need to know

that under some circumstances we can preserve a stationary set by forcing with a

poset that has a sufficient degree of strategic closure.

The following is well known.

L 2.2. Let GCH hold, and let λ¯ cf(λ) and κ¯ λ+. Let δ¯ cf(δ)% λ, and

suppose that 0 is (δ­1)-strategically closed and S is a stationary subset of Tκ
δ . Then S

is still stationary in V0.

Proof. Let pt ‘C is club in κ ’. Build ©Xα :α!κª a continuous increasing chain

of elementary substructures of some large Hθ such that everything relevant is in X
!
,

rXαr¯ λ, ! λXα XXα+"
. We make the remark here that this would not be possible for

λ singular, and indeed the theorem can fail in that case (see [8] for details).

Now find some limit γ such that Xγfκ `S, clearly cf(γ)¯ δ and so ! δXγ XXγ. Let

β¯
def

Xγfκ and fix ©β
i
: i! δª cofinal in β. Since 0, δ `X

!
XXγ we can find in Xγ a

winning strategy σ for the game G(0, δ­1).

Now we build a sequence ©pα :α% δª such that the following hold:

(1) For each even β, pβ ¯σ(pa Q β).

(2) For β! δ, pβ `0fXγ.

(3) For each i! δ, there is η such that β
i
! η! β and p

#i+"
t η# `Cd .

We can keep going because Xγ AHθ,
! δXγ XXγ and σ is a winning strategy. At the

end of the construction pδ is a refinement of p
!
which forces that β is a limit point of

Cd , and we are done.

3. Some consistency results

In this section we prove (starting from a weakly compact cardinal) the consistency

of ZFC­Ref(b
$
,b

#
,b

!
)­Snr(b

$
,b

#
,b

"
). We also show that together with this we

can have either Ref(b
$
,b

"
,b

!
) or Snr(b

$
,b

"
,b

!
).

We begin by defining a forcing 0
Snr

to enforce Snr(b
$
,b

#
,b

"
).

D 3.1. p is a condition in 0
Snr

if and only if p is a function from a

bounded subset of S$

"
to b

#
, and for every γ `S$

#
with γ% sup(dom(p)) there is C club

in γ such that p QCfS$

"
is strictly increasing. 0

Snr
is ordered by extension.

It is easy to see that 0
Snr

is ω
#
-closed, and in fact that it is ω

#
-directed closed.

L 3.2. 0
Snr

is (ω
#
­1)-strategically closed.

Proof. We describe a winning strategy for player II in G(0
Snr

,ω
#
­1). Suppose

that pα is the condition played at move α. Let β be an even ordinal ; then at stage β,

II will play as follows.

Define qβ ¯def
Vα! β pα, ρβ ¯def

dom(qβ), and then let II play as follows: pβ ¯ qβ

unless β is a limit and cf(β)¯b
"
, in which case pβ ¯ qβe²(ρβ, β)´.
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The strategy succeeds because when play reaches stage ω
#
, ²ρβ r β!ω

#
´ is a club

witnessing that pω
#

is a condition.

This shows that 0
Snr

preserves cardinals and cofinalities up to b
$
, from which it

follows that V0
Snr zSnr(b

$
,b

#
,b

"
). If GCH holds then r0

Snr
r¯b

$
, so 0

Snr
has the b

%

chain condition (b
%
-c.c.) and all cardinals are preserved.

Now we define in V0
Snr a forcing 1. This will enable us to embed 0

Snr
into the

Levy collapse Coll(ω
#
,ω

$
) in a particularly nice way.

D 3.3. In V0
Snr let F :S$

"
!b

#
be the function added by 0

Snr
. Then

q `1 if and only if q is a closed bounded subset of b
$
, the order type of q is less

than b
#
, and F Q lim(q)fS$

"
is strictly increasing.

The aim of 1 is to add a club of order type ω
#
on which F is increasing. It is clear

that 1 is countably closed and collapses ω
$
.

L 3.4. If GCH holds, then 0
Snr

n10 is equi�alent to Coll(b
#
,b

$
).

Proof. Since 0
Snr

n10 has cardinality b
$
and collapses b

$
, it will suffice to show

that it has an b
#
-closed dense subset. To see this look at those conditions (p, c) where

c `V, and max(c)¯ sup(dom(p)). It is easy to see that this set is dense and b
#
-closed.

T 3.5. Let κ be weakly compact, and let GCH hold. Define a two-

step iteration by 0
!
¯

def
Coll(ω

#
,!κ) and 0

"
¯

def
(0

Snr
)
V

0
!
. Then V0

!
n0

" z
Ref(b

$
,b

#
,b

!
)­Snr(b

$
,b

#
,b

"
).

Proof. We will first give the proof for the case when κ is measurable and then

show how to modify it for the case when κ is just weakly compact. Assuming that κ

ismeasurable, let j :VMNMbe an elementary embedding into a transitive inner model

with critical point κ, where κMXM. Notice that by elementarity and the closure of

M, j(0
!
)¯Coll(ω

#
,! j(κ))

M
¯Coll(ω

#
,! j(κ))

V
.

Let G be 0
!
-generic over V and let H be 0

"
-generic over V[G]. We already know

that V[G nH ]zSnr(b
$
,b

#
,b

"
), so let us assume that in V[G nH ] we have S a

stationary subset of S$

!
. To prove that S reflects we will build a generic embedding

with domain V[G nH ] extending j. Notice that since r0
!
n0

"
r¯κ we can prove (by

looking at canonical names) that V[G nH ]z κM[G nH ]XM[G nH ], so in particular

we have S `M[G nH ].

We start by forcing with 1 over V[G nH ] to get a generic object I. Now H n I is

generic over V[G] for (0 n1)
V[G]

which is equivalent to Coll(ω
#
,κ), so we can regard

G nH n I as being generic for Coll(ω
#
,%κ). Now let J be Coll(ω

#
, [κ, j(κ)))-generic

over V[G nH n I ], then G nH n I n J is j(0
!
)-generic over V (so a fortiori over M ) and

j‘‘GXG nH n I n J so that we can lift to get j :V[G]MNM[G nH n I n J ].

It remains to lift j onto V[G nH ], for which we need to force a generic K for j(0
"
)

with the property that j‘‘HXK. We will get K by constructing a master condition in

j(0
!
) (that is, a condition refining all the conditions in j‘‘H ) and forcing below that

master condition. A natural candidate for a master condition is F¯
def

V j‘‘H, where

it is easily seen (since crit( j)¯κ and j Q0
"
¯ id) that F is the generic function from

κ to b
#
added by H. The models V[G] and M[G nH n I n J ] agree in their computations

of Tκ
b
"

and Tκ
b
#

, so F is increasing on a club at all the relevant points below κ. Now
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κ¯ (b
$
)
V[G]

is an ordinal of cofinality b
#
in M[G nH n I n J ], but there is no problem

here because I has introduced a club in κ on which F is increasing. Hence F is a

condition in j(0
"
) and we can force to get KY j‘‘H as desired.

We claim that S is still stationary in M[G nH n I n J nK ]. I is generic for countably

closed forcing, J is generic for b
#
-closed forcing and K is generic for b

#
-closed forcing

so that S (being a set of cofinality ω ordinals) remains stationary. Now we argue as

usual that since j(S )fκ¯S and cf(κ)¯ω
#

in M[G nH n I n J nK ], there must exist

α!κ in V[G nH ] such that cf(α)¯ω
#

and Sfα is stationary in α.

We promised at the start of this proof that we would show how to weaken the

assumptions on κ from measurability to weak compactness. We will actually sketch

two arguments, based on two well-known characterisations of weak compactness. See

Hauser’s paper [6] for detailed accounts of some similar arguments.

(1) κ is weakly compact if and only if for every AXVκ and every Π"

"
formula φ,

Vκ zφ(A)3 there exists αVα zφ(AfVα).

(2) κ is weakly compact if and only if κ is strongly inaccessible and for every

transitive M such that rM r¯κ, !κMXM and M models enough set theory, there is

a transitive set N and an elementary embedding j :MMNN with crit( j)¯κ.

Argument 1: 0
!
n0

"
XVκ, and so if Sd is a name for a stationary subset of κ we

can represent it by S*¯²(p,α) r ptα# `Sd ´XVκ. The fact that S is forced to be

stationary can be written as a Π"

"
sentence (the universal second-order quantification

is over names for clubs). Using the first characterisation given above we can find

inaccessible α!κ such that S*fVα is a Coll(ω
#
,!α) n (0

Snr
)
V

Coll(ω
#
,!α) name for a

stationary set.

Now the argument is just like the one from a measurable, only with α playing the

role of κ and κ replacing j(κ). We see that S has an initial segment Sfα which is

stationary in a certain intermediate generic extension, and we just need to check that

Sfα remains stationary and that α becomes a point of cofinality b
#
. This is routine.

Argument 2: Given a name S for a stationary subset of S$

!
, build S and 0

!
n0

"

into an appropriate model M of size κ. Get j as in the second characterisation as

above. Repeat (mutatis mutandis) the argument from a measurable.

Having proved Theorem 3.5, it is natural to ask whether there is any connection

between reflection to points of cofinality ω
#
and reflection to points of cofinality ω

"
.

The following results provide a partial (negative) answer.

T 3.6. Con(Ref(b
$
,b

#
,b

!
)­Snr(b

$
,b

#
,b

"
)­Snr(b

$
,b

"
,b

!
)) follows

from the consistency of a measurable cardinal.

Proof. Let κ be measurable. Without loss of generality GCH holds (as we can

move to the inner model L[µ]). We will sketch a proof that we can force to get

Snr(κ,b
"
,b

!
) without destroying the measurability of κ. A more detailed argument for

a very similar result is given in [3] (alternatively one can argue that because * holds in

L[µ], Snr(κ,b
"
,b

!
) is already true in that model). Let j :VMNM be the ultrapower

map associated with some normal measure U on M.

We will do a reverse Easton iteration of length κ­2, forcing at every regular

cardinal α%κ+ with 1α, where 1α is the natural forcing to add a witness to
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Snr(α,b
"
,b

!
) by initial segments. An easy induction shows that 1α is ! α-

strategically closed, the point being that the witnesses added below α can be used to

produce strategies in the game played on 1α. The argument is exactly parallel to the

proof of Lemma 6 in [3].

Let us break up the generic as G n g n h, where G is 0κ-generic, g is 1κ-generic and

h is 1κ+-generic. The key point is that j(0κ)}G n g n h is κ+-strategically closed in

V[G n g n h], so that by GCH we can build H `V[G n g n h] which is j(0κ)}G n g n h-

generic over M[Gngnh]. Since j‘‘GXGngnhnH, we can lift j to get j :V[G]MN
M[GngnhnH ]. It is easy to see that V j‘‘g(¯V g) will serve as a master condition, so

using GCH again we may find g+ `V[G n g n h] such that j‘‘gX g+ and g+ is j(0κ)-generic

over M[G n g n h nH ]. Finally we claim that j‘‘h generates a j(0κ+)-generic filter over

M[G n g n h nH n g+], because 0κ+ is distributive enough and M[G n g n h nH n g+]¯
² j(F ) (κ) rdom(F )¯κ, F `V[G n g]´. Hence in V[G n g n h] we can lift j onto

V[G n g n h], so the measurability of κ is preserved.

Now we just repeat the construction (from a measurable) of Theorem 3.5, and

claim that in the final model Snr(b
$
,b

"
,b

!
) holds. The point is that if F :Tκ

b
!

MNω
"

witnesses the truth of Snr(κ,b
"
,b

!
), then in the final model F witnesses

Snr(b
$
,b

"
,b

!
) because the forcing from Theorem 3.5 does not change Tκ

b
!

or Tκ
b
"

.

We can also go to the opposite extreme.

T 3.7. Let κ be λ-supercompact, where λ"κ and λ is measurable. Let

GCH hold. Then Ref(b
$
,b

#
,b

!
)­Snr(b

$
,b

#
,b

"
)­Ref(b

$
,b

"
,b

!
) holds in some

forcing extension.

Proof. We will start by forcing with 0¯
def

Coll(ω
"
,!κ), after which κ is ω

#
and

λ is still measurable. Then we will do the construction of Theorem 3.5, that is we force

with (Coll(κ,! λ) n0
Snr

)
V

0. Let 0
!
¯Coll(κ,! λ)

V
0 and 0

"
¯ (0

Snr
)
V

0 n0
!
.

We need to check that Ref(b
$
,b

"
,b

!
) holds in the final model. To see this fix

j :VMNM such that crit( j)¯κ, j(κ)" λ and λMXM. Let G, H and I be the generics

for 0, 0
!

and 0
"

respectively.

Since 0
!
n0

"
is countably closed and has size λ, we may find an embedding

i :0 n0
!
n0

"
MN j(0) such that i Q0¯ id and j(0)}i‘‘(0 n0

!
n0

"
) is countably closed.

Let J be j(0)}i‘‘(0 n0
!
n0

"
)-generic, then we can lift j in the usual way to get

j :V[G]MNM[G nH n I n J ]. Since 0
!
n0

"
is a κ-directed-closed forcing notion of size

λ, we may find a lower bound for j‘‘(H n I ) in j(0
!
n0

"
) and use it as a master

condition, forcing K such that j‘‘(H n I )XK and lifting j to j :V[G nH n I ]MN
M[G nH n I n J nK ].

Now suppose that in V[G nH n I ] we have TXS$

!
a stationary set. If µ¯V j‘‘λ

then we may argue as usual that T `M[G nH n I ] and that M[G nH n I ]z j(T )fµ is

stationary in µ. Since J nK is generic for countably closed forcing and j(T )fµXTµ
b
!

this will still be true in M[G nH n I n J nK ], and since cf(µ)¯b
"
in this last model we

have by elementarity that T reflects to some point in S$

"
.

4. Some ZFC results

In the light of the results from the last section it is natural to ask about the

consistency of Ref(b
$
,b

#
,b

"
)­Snr(b

$
,b

#
,b

!
). The first author showed by a rather

indirect proof that this is impossible, and the second author observed that there is a

simple reason for this.
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T 4.1. If Snr(µ, λ,κ) and κ!κ*¯ cf(κ*)! λ then Snr(µ, λ,κ*).

Proof. Let F :Tµ
κ MN λ witness Snr(µ, λ,κ). Define F*:Tµ

κ* MN λ by

F*:σPNmin ( 5
α `CfT

µ
κ

F(α) rC club in σ* .
We claim that F* witnesses Snr(µ, λ,κ*). To see this, let δ `Tµ

λ and fix D club

in δ such that F QDfTµ
κ is strictly increasing. Let σ ` lim(D)fTµ

κ*, and observe that

F*(σ)¯Vα `DfT
µ
κ
F(α), because for any club C in σ we have

5
α `CfT

µ
κ

F(α)& 5
α `CfDfT

µ
κ

F(α)¯ 5
α `DfT

µ
κ

F(α).

It follows that F* Q lim(D)fTµ
κ* is strictly increasing, because if σ

!
,σ

"
` lim(D)fTµ

κ*

with σ
!
!σ

"
and β is any point in lim(D)fTµ

κ f(σ
!
,σ

"
) then F*(σ

!
)%F(β)!F*(σ

"
).

We also take the opportunity to record some other easy remarks, which put limits

on the extent of the independence between different forms of reflection.

T 4.2. Let κ! λ!µ! ν be regular. Then

(1) Ref(ν,µ, λ)­Ref(ν, λ,κ) 3̄Ref(ν,µ,κ) ;

(2) Ref(ν,µ,κ)­Ref(µ, λ,κ) 3̄Ref(ν, λ,κ).

Proof. For the first claim, let SXTν
κ be stationary, and let us define T¯²α `Tν

λ r
Sfα is stationary´. We claim that T is stationary in ν. To see this suppose C is club

in ν and disjoint from T, and consider CfS ; this set must reflect at some γ `Tν
λ , but

then on the one hand Sfγ is stationary (so γ is in T ) while on the other hand C is

unbounded in γ (so γ `C ), contradicting the assumption that C and T are disjoint.

Now let δ `Tν
µ be such that Tfδ is stationary in δ. We claim that S reflects at δ.

For if D is club in δ then there is γ `Tflim(D) by the stationarity of Tfδ, and now

since Dfγ is club in γ and Sfγ is stationary in γ there is β `DfS. This proves the

first claim.

For the second claim, let SXTν
κ be stationary, and let δ `Tν

µ be such that Sfδ is

stationary in δ. Let f :µMN δ be continuous increasing and cofinal in δ, and let S*¯
²α!µ r f(α) `S ´. Then S* is stationary in µ, and we can find β `Tµ

λ such that S*fβ

is stationary in β. Now f(β) `Tν
λ and Sff(β) is stationary in f(β). This proves the

second claim.

5. More consistency results

From the results in the previous section we saw in particular that we cannot have

Ref(b
$
,b

#
,b

"
)­Snr(b

$
,b

#
,b

!
). In this section we will see that Ref(b

$
,b

#
,b

"
)

­Dnr(b
$
,b

#
,b

!
) is consistent.

We will need some technical definitions and facts before we can start the main

proof.

D 5.1. Let S be a stationary subset of b
$
. We define notions of forcing

0(S ), 1(S ) and 2(S ).

(1) c is a condition in 0(S ) if and only if c is a closed bounded subset of b
$
such

that cfS¯W.
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(2) d is a condition in 1(S ) if and only if d is a function with dom(d )!b
$
,

d :dom(d )MN 2, d(γ)¯ 1 3̄ γ `S, and for all α%dom(d ) if cf(α)"ω then there is

CXα closed unbounded in α such that γ `C3 d(γ)¯ 0.

(3) e is a condition in 2(S ) if and only if e is a closed bounded subset of b
$
such

that for every point α ` lim(e) with cf(α)"ω the set Sfα is non-stationary in α.

In each case the conditions are ordered by end-extension.

The aims of these various forcings are respectively to kill the stationarity of S

(0(S )), to add a non-reflecting stationary subset of S (1(S )), and to make S non-

reflecting on a closed unbounded set of points (2(S )). Notice that for some choices

of S the definitions of 0(S ) and 2(S ) may not behave very well, for example if S¯
ω

$
then 0(S ) is empty and 2(S ) only contains conditions of countable order type.

Notice also that 1(S ) and 2(S ) are countably closed.

L 5.2. Let GCH hold. Let SXS$

!
and suppose that there is a club C of ω

$
such

that Sfα is non-stationary for all α `C with cf(α)"ω. Let T be a stationary subset

of S$

"
. Then 0(S ) adds no ω

#
-sequences of ordinals, and also preser�es the stationarity

of T.

Proof. First we prove that 0(S ) is ω
#
-distributive. Let ©Dα :α!ω

#
ª be a

sequence of dense sets in 0(S ), and let c `0(S ) be a condition. Fix some large regular

cardinal θ and let c,C,Da ,S `XAHθ where rX r¯ω
#
, ω

"XXX. Let γ be the ordinal

Xfω
$
; then cf(γ)¯ω

#
by the closure of X. By elementarity it follows that C is

unbounded in γ, so that γ `C and Sfγ is non-stationary.

Fix BX γ closed unbounded in γ such that BfS¯W and B has order type ω
#
.

Now we build a chain of conditions cα `0(S )fX for α!ω
#

such that c
!
% c, c

#
β+"

`Dβ and max(c
#
β) `B ; we can continue at each limit stage because B is disjoint from

S and X is sufficiently closed. Finally we let d¯
def

Vα!ω
#

cαe²γ´ ; then d% c and d `
Dβ for all β!ω

#
. This shows that 0(S ) is ω

#
-distributive.

The argument for the preservation of stationarity is similar. Let Ed be a 0(S )-name

for a closed unbounded subset of ω
$
and let c `0(S ) be a condition. This time build

X such that c,C,Ed ,S `XAHθ where rX r¯ω
"
, ωXXX and δ¯

def
sup(Xfω

$
) `T.

Again δ `C, so Sfδ is non-stationary. Choose BX δ closed unbounded of order type

ω
"

with BfS¯W and build a chain of conditions cα `0(S )fX such that c
!
% c,

max(c
#
β) `B and c

#
β+"

forces that Ed f(max(c
#
β), max(c

#
β+"

))1W. Finally if d¯
def

Vα!ω
"

cαe²δ´ then d% c and dt δ# `TW fEd .

Now we describe a certain kind of forcing iteration. It will transpire that all

iterations of this type are ω
%
-c.c. and (ω

#
­1)-strategically closed, so that in particular

all cardinalities and cofinalities are preserved.

D 5.3. Fix F :ω
%
¬ω

$
MNω

%
such that for all β!ω

%
the map i*F(β, i)

is a surjection from ω
$

onto β.

0β is a nice iteration if and only if the following hold:

(1) β%ω
%
.

(2) 0β is an iteration of length β with %ω
#
-supports.

(3) 1
!
¯²0´.

(4) 1
#
γ+"

is 1(Sd γ)VP
#
γ+"

where Sd γ is some 0
#
γ+"

-name for a stationary subset of S$

!
.

Let S$γ be the non-reflecting stationary subset of Sγ which is added by 1
#
γ+"

.
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(5) 1
#
γ is 2(Rd

γ) where Rγ is the diagonal union of ©S$
F(γ,i)

: i!ω
$
ª. That is Rγ ¯

²δ `S$

!
r d i! δ, δ `S$

F(γ,i)
´.

It is clear that an initial segment of a nice iteration is nice. Also every final segment

of a nice iteration is countably closed, so that all the sets S$γ remain stationary

throughout the iteration. The following remark will be useful later.

L 5.4. Let γ! δ!ω
%
. Then Rγ®Rδ is non-stationary.

Proof. Let C be the closed and unbounded set of i!ω
$

such that

²F(γ, j) r j! i´¯ ²F(δ, j) r j! i´fγ.

Let i `CfRγ. Then for some j! i we have i `S$
F(γ,j)

, and by the definition of C there

is k! i such that F(γ, j)¯F(δ,k). So i `S$
F(δ,k)

, i `Rδ, and we have proved that CfRγ

XRδ.

We define a certain subset of 0β, which we call 0$β .

D 5.5. If 0β is a nice iteration then 0$β is the set of conditions p `0β such

that the following hold:

(1) p(γ) `VW (that is, p(γ) is a canonical name for an object in V ) for all γ `dom(p).

(2) There is an ordinal ρ(p) such that

(i) 2δ `dom(p)3max(p(2δ))¯ ρ(p) ;

(ii) 2δ­1 `dom(p)3dom(p(2δ­1))¯ ρ(p)­1;

(iii) 2δ­1 `dom(p)3 p(2δ­1) (ρ(p))¯ 0.

(3) If 2δ `dom(p) then for all i! ρ(p), 2F(δ, i)­1 `dom(p).

(4) If 2δ­1 `dom(p) then p Q 2δ­1 decides Sδfρ(p).

L 5.6. If p `0$β and 2δ `dom(p) then p Q 2δ forces that ρ(p) aRδ.

Proof. Let ρ¯ ρ(p). By the definition of 0$β , we see that 2F(δ, i)­1 `dom(p) and

p(2F(δ, i)­1) (ρ)¯ 0 for all i! ρ. This means that pt ρ aSd $
F(δ,i)

for all i! ρ, which is

precisely to say p Q 2δt ρ aRd
δ.

L 5.7. Let 0β be a nice iteration. Let δ%ω
#
be a limit ordinal and let ©pγ :

γ! δª be a decreasing sequence of conditions from 0$β such that ©ρ(pγ) :γ! δª is

continuous and increasing. Define q by setting dom(q)¯Vγ! δ dom(pγ), ρ¯
Vγ! δ ρ(qγ), q(2ε)¯V²pγ(2ε) r 2ε `dom(pγ)´e²ρ´, q(2ε­1)¯V²pγ(2ε­1) r 2ε­1 `
dom(pγ)´e²(ρ, 0)´.

Then q `0$β and ρ(q)¯ ρ.

Proof. Clearly it is enough to show that q `0β. Most of this is routine ; the key

points are that q Q 2ε forces that Rεfρ is non-stationary, and that q Q 2ε­1 forces that

S$ε fρ is non-stationary.

For the first point, observe that for all sufficiently large γ! δ we have 2ε `
dom(pγ), so that by Lemma 5.6, pγ Q 2εt ρ(pγ) aRε ; since ©ρ(pγ) :γ! δª is continuous

and q Q 2ε refines pγ Q 2ε, this implies that q Q 2ε forces that Rε is not stationary in ρ.

Similarly, 2ε­1 `dom(pγ) for all large γ, so that pγ(2ε­1) (ρ(pγ))¯ 0 for all large

γ. It follows immediately that q Q (2ε­1) forces that S$ε fρ is non-stationary.
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L 5.8. 0$β is dense in 0β, and 0β is (ω
#
­1)-strategically closed.

Proof. The proof is by induction on β. We prove first that 0$β is dense.

When β¯ 0 there is nothing to do.

When β¯ 2α­2, fix p `0β. Since 0
#
α+"

is strategically closed and 0$

#
α+"

is dense we

may find q
"
`0$

#
α+"

such that q
"
% p Q (2α­1), q

"
decides p(2α­1), and ρ(q

"
)"

dom(p(2α­1)).

Now we build a decreasing ω-sequence qa of elements of 0$

#
α+"

such that ρ(q
n
) is

increasing and q
n+"

decides Sd αfρ(q
n
) ; at each stage we use the strategic closure of

0
#
α+"

and the fact that 0$

#
α+"

is a dense subset. After ω steps we define q as follows:

let ρ¯V ρ(q
n
), dom(q)¯V

n
dom(q

n
)e²2α­1´, and

(1) for γ!α, q(2γ­1)¯V
n
q
n
(2γ­1)e²(ρ, 0)´ ;

(2) for γ%α, q(2γ)¯V
n
q
n
(2γ)e²ρ´ ;

(3) q(2α­1) (i)¯ p(2α­1) (i) if i `dom(p(2α­1)), and 0 otherwise.

By Lemma 5.7, q Q 2α­1 `0$

#
α+"

. It is routine to check that q `0$

#
α+#

and

ρ(q)¯ ρ.

When β¯ 2α­1 this is exactly like the last case, except that now we demand that

for all i! ρ(q
n
), 2F(α, i)­1 `dom(q

n+"
).

When β is a limit, cf(β)¯ω
"
; fix ©β

i
: i!ω

"
ª which is continuous increasing and

cofinal in β. Let p `0β. Find q
!
`0$β

!

such that q
!
% p Q β

!
and set p

!
¯ q

!
< p Q [β

!
, β).

Now we define q
i
and p

i
by induction for i%ω

"
.

(1) Choose q
i+"

% p
i
Q β

i+"
with q

i+"
`0$β

i+"

, and then define p
i+"

¯ q
i+"

<
p Q [β

i+"
, β).

(2) For i a limit let ρ
i
¯V

j! i
ρ(q

j
), q

i
(2γ­1)¯V

j! i
q
j
(2γ­1)e²(ρ

i
, 0)´, q

i
(2γ)

¯V
j! i

q
j
(2γ)e²ρ

i
´. Then let p

i
¯ q

i
< p Q [β

i
, β

i+"
).

For i!ω
"
it is easy to see that p

i
, q

i
are conditions. We claim that q¯ qω

"

`0$β .

The only subtle point is to see that q `0β. Let 2δ­1 `dom(q). Then for all large i we

know 2δ­1! β
i
, 2δ­1 `dom(q

i
), so that in particular q

i
(2δ­1) (ρ

i
)¯ 0 for all large

i. This means that q(2δ­1) is the characteristic function of a set which does not reflect

at ρ, and so is a legitimate condition in 1
#
δ+"

. Similarly if 2δ `dom(q) then for all large

i we see that q
i
Q 2δt ρ

i
aRδ, so that q Q 2δ forces that the stationarity of Rδ does not

reflect at ρ.

When β is a limit, cf(β)¯ω or ω
#
; this is similar to the cofinality ω

"
case.

When cf(β)¯ω
$

the proof is easy because 0β is the direct limit of the sequence

©0γ :γ! βª.

This concludes the proof that 0$β is dense. It is now easy to see that 0β is (ω
#
­1)-

strategically closed; the strategy for player II is simply to play into the dense set 0$β

at every successor stage, and to play a lower bound constructed as in Lemma 5.7 at

each limit stage.

L 5.9. Let 0
#
γ be a nice iteration of length less than ω

%
. Then 0

#
γ n0(Rd

γ) is

(ω
#
­1)-strategically closed.

Proof. This is just like the last lemma.

Notice that the effect of forcing with 0(Rγ) is to destroy the stationarity of all the

sets S$δ for δ! γ. We are now ready to prove the main result of this section.
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T 5.10. If the existence of a weakly compact cardinal is consistent, then

Ref(b
$
,b

#
,b

"
)­Dnr(b

$
,b

#
,b

!
) is consistent.

Proof. As in the proof of Theorem 3.5, we will first give a proof assuming the

consistency of a measurable cardinal and then show how to weaken the assumption

to the consistency of a weakly compact cardinal. We will need a form of ‘diamond’

principle.

L 5.11. If κ is measurable and GCH holds, then in some forcing extension

(1) κ is measurable ;

(2) there exists a sequence ©Sα :α!κª such that Sα Xα for all α, and for all

SXκ there is a normal measure U on κ such that if j
U
:VMNM

U
DUlt(V,U ) is the

associated elementary embedding then j
U
(Sa )κ ¯S (or equi�alently, ²α rSfα¯Sα´ `U ).

Proof. The proof is quite standard. For a similar construction given in more

detail see [2].

Fix j :VMNM the ultrapower map associated with some normal measure on κ.

Let 1α be the forcing whose conditions are sequences ©Tβ :β! γª where γ!α and Tβ X
β for all β, ordered by end-extension. (This is really the same as the Cohen forcing

Add(α, 1)). Let 0κ+"
be a reverse Easton iteration of length κ­1, where we force with

(1α)V
0

α at each inaccessible α%κ.

Let Gκ be 0κ-generic over V and let g be 1κ-generic over V[Gκ]. We will prove that

the sequence given by Sα ¯ g(α) will work, by producing an appropriate U for each

S `V[Gκ] [g] with SXκ. Let us fix such an S.

By GCH and the fact that j(0κ)}Gκ n g is κ+-closed in V[Gκ] [g], we may build H

`V[Gκ] [g] which is j(0κ)}Gκ n g-generic over M[Gκ] [g]. Now for the key point : we

define a condition q `1
j(κ)

by setting q(α)¯ g(α) for α!κ and q(κ)¯S. Then we

build h ¢ q which is 1
j(κ)

-generic over M[Gκ] [g] [H ], using GCH and the κ+-closure of

1
j(κ)

in V[Gκ] [g].

To finish we define j :V[Gκ] [g]MNM[Gκ] [g] [H ] [h] by j :τdGκ ngPN j(τd )Gκ ng nH nh,

where this map is well-defined and elementary because j‘‘(Gκ n g)XGκ n g nH n h. The

extended j is still an ultrapower by a normal measure (U say) because M[Gκ] [g] [H ] [h]

¯² j(F ) (κ) rF `V[Gκ] [g]´. It is clear from the definition of this map j that j(g) (κ)¯
h(κ)¯ q(κ)¯S, so the model V[Gκ] [g] is as required.

This concludes the proof of Lemma 5.11.

Fixing some reasonable coding of members of Hα+ by subsets of α, we may write

the diamond property in the following equivalent form: there is a sequence ©xα :

α!κª such that for every x `Hκ+ there exists U such that j
U
(xa )κ ¯x. Henceforth we

will assume that we have fixed a sequence xa with this property.

Now we describe a certain reverse Easton forcing iteration of length κ­1. It will

be clear after the iteration is defined that it is b
#
-strategically closed, so that in

particular b
"

and b
#

are preserved. At stage α!κ we will force with 1α, where 1α

is trivial forcing unless

(1) α is inaccessible ;

(2) V0α zα¯b
$

and α+

V
¯b

%
;

(3) xα is a 0α-name for a nice iteration 0α

#
δ+"

of some length 2δ­1!α+.
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In this last case 1α is defined to be 0α

#
δ+"

n0(Rα
δ) nColl(b

#
,α).

At stage κ (which will be (b
$
)
V

0
κ), we will do a nice iteration 1κ of length κ+, with

some book-keeping designed to guarantee that for every stationary SXS$

!
in the final

model there exists TXS a non-reflecting stationary subset. So by design

Dnr(b
$
,b

#
,b

!
) holds in the finalmodel (and in fact so doesDnr(b

$
,b

"
,b

!
)). It remains

to be seen that Ref(b
$
,b

#
,b

"
) is true.

Let TXS$

"
be a stationary subset of S$

"
in the final model. Since 1κ has the

κ+-c.c. we may assume that T is the generic extension by 0κ n (1κ Q (2δ­1)) for some

δ!κ+. Let 1- ¯1κ Q (2δ­1). Using the diamond property of xa and the definition of

the forcing iteration we may find U such that

j
U
(0κ)¯0κ n1- n0(Rδ) n2κ+",jU(κ)

where 2κ+",jU(κ)
is the iteration above κ. To save on notation, denote j

U
by j.

Now if MDUlt(V,U ) is the target model of j, then we may assume by the usual

arguments that T `M0κ n1- . Notice that the last step in the iteration 1- was to force

with 2(Rδ), that is to add a club of points at which the stationarity of Rδ fails to

reflect. Applying Lemma 5.2 we see that T is still stationary in the extension by

0κ n1- n0(Rδ). Since 2κ+",j(
κ)

is b
#
-strategically closed, T will remain stationary in

the extension by j(0κ) (although of course κ will collapse to become some ordinal of

cofinality b
#
).

To finish the proof we will build a generic embedding from V0κ n1- to M j(0κ n1- ). It

is easy to get j :V0κ MNM j(0κ) ; what is needed is a master condition for 1- and j.

Since κ is b
$
in V0κ and 1κ is an iteration with at most b

#
-supports, it is clear what

the condition should be; we just need to check that it works.

D 5.12. Define q by setting dom(q)¯ j‘‘(2δ­1), q( j(2γ­1))¯ fγe
²(κ, 0)´, q(2γ)¯Cγe²κ´, where fγ :κMN 2 is the function added by 1- at stage 2γ­1

and Cγ is the club added at stage 2γ.

We claim that q is a condition in j(1- ). To see this we should first check that fγ is

the characteristic function of a non-stationary subset of κ ; this holds because at stage

κ in the forcing of j(0κ) we forced with 0(Rδ) and made S$γ non-stationary for all γ

! δ. We should also check that Rγ is non-stationary in γ, and again this is easy by

Lemma 5.4 and the fact that Rδ has been made non-stationary.

Forcing with j(1- ) adds no bounded subsets of j(κ), so that clearly T is still

stationary and cf(κ) is still b
#

in the model M j(0κ n1- ). By the familiar reflection

argument, there exists α `S$

#
such that Tfα is stationary in the model V0κ n1- . Then

Tfα will still be stationary in V0κ n1κ, because the rest of the iteration 1κ does not add

any bounded subsets of b
$
. We have proved that Ref(b

$
,b

#
,b

"
) holds in V0κ n1κ,

which finishes the proof of Theorem 5.10 using a measurable cardinal.

It remains to be seen that we can replace the measurable cardinal by a weakly

compact cardinal. To do this we will use the following unpublished result by Jensen,

which is proved in a very similar way to Vκ-using the fact that weakly compact

cardinals are Π"

"
-indescribable.

F 5.13. Let V¯L and let κ be weakly compact. Then there exists a sequence

©Sα :α!κª with Sα Xα for all α, such that for all SXκ and all Π"

"
formulae φ(X )

with one free second-order variable.
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Vκ zφ(S ) 3̄ (dα!κSα ¯SfVα, Vα zφ(Sα)).

Using this fact we can argue exactly as in Argument 1 at the end of the proof of

Theorem 3.5. This concludes the proof of Theorem 5.10.

Acknowledgements. We would like to thank the anonymous referee for his or

her very thorough reading of the first version of this paper.

References

1. J. E. B, ‘A new class of order types’, Ann. of Mathematical Logic 9 (1976) 187–222.
2. J. C, ‘Possible behaviours for the Mitchell ordering’, Ann. Pure Appl. Logic 65 (1993)

107–123.
3. J. C, M. D and S. S, ‘A consistency result on weak reflection’, Fund. Math.

148 (1995) 91–100.
4. M. D and S. S, ‘Saturated filters at successors of singulars, weak reflection and yet

another weak club principle ’, Ann. Pure Appl. Logic 79 (1996) 289–316.
5. C. G, ‘ Iterated forcing from the strategic point of view’, Ph.D. Thesis, University of California,

Berkeley, 1980.
6. K. H, ‘The indescribability of the order of the indescribable cardinals ’, Ann. Pure Appl. Logic

57 (1992) 45–91.
7. M. M, ‘Reflecting stationary sets ’, J. Symbolic Logic 47 (1982) 755–771.
8. S. S, ‘On successors of singular cardinals ’, Logic Colloquium ’78 (ed. M. Boffa, D. van Dalen

and K. McAloon; North-Holland, Amsterdam, 1978) 357–380.

Department of Mathematical Sciences Institute of Mathematics
Carnegie Mellon University Hebrew University of Jerusalem
Pittsburgh Givat Ram
PA 15213-3890 Jerusalem
USA Israel

E-mail : jcumming!andrew.cmu.edu E-mail : shelah!math.huji.ac.il

Sh:596


