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The temporal propositional logic of linear time is generalized to an uncertain 
world, in which random events may occur. The formulas do not mention 
probabilities explicitly, i.e., the only probability appearing explicitly in formulas is 
probability one. This logic is claimed to be useful for stating and proving properties 
of probabilistic programs. It is convenient for proving those properties that do not 
depend on the specific distribution of probabilities used in the program's random 
draws. The formulas describe properties of execution sequences. The models are 
stochastic systems, with state transition probabilities. Three different axiomatic 
systems are proposed and shown complete for general models, finite models, and 
models with bounded transition probabilities, respectively. All three systems are 
decidable, by the results of Rabin (Trans. Amer. Math. So¢. 141 (1969), 1-35). 

l .  INTRODUCTION 

Probabilistic algorithms have recently been advocated for solving 
problems in different areas, and especially for enforcing efficient cooperation 
between asynchronous parts of a large system. Some of those algorithms 
exhibit efficiency, elegance, and robustness but proofs of correctness were 
often delicate. This had not been considered surprising since such proofs 
must combine the difficulties of both parallel programming and probability 
theory. 

Since the framework of temporal logic has proved itself useful to analyze 
parallel programs, we extend it to deal with chance on top of time and 
present a decidable logic in which a great many interesting properties of 
probabilistic parallel programs can be expressed. We hope that this work will 
lead to automatic or semi-automatic proof systems that will help the designer 
of simple probabilistic algorithms for distributed systems. 

Our logic is a strict extension of the temporal logic of linear time 
advocated and described in Pnueli (1981): all formulas of the temporal logic 
of linear time are formulas of our system, they describe the same sets of 
execution sequences in both systems and such a formula is valid in our 
system if and only if it is valid in the logic of linear time. Therefore a user of 
our system may use all he knows about classical temporal logic without any 
change; all he has to do is to express the aspects of his program that depend 

165 
001%9958/82 $2.00 

Copyright © 1982 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 

Sh:193



166 LEHMANN AND SHELAH 

on chance. It is a fundamental and striking feature of our system that it deals 
with probabilistic programs in the framework of linear time. In this respect 
our work differs from recent efforts to use branching time (see, for example, 
Lamport, 1980; Ben-Aft, Manna, and Pnueli, 1981; Clarke and Emerson, 
1982; and Emerson and Halpern, 1982). We think that, for probabilistic 
processes, s o m e t i m e s  should be no t  n e v e r  (Lamport, 1980). A finer analysis 
of the relation between linear and branching time logics may be found in 
Section 14. 

This work also differs from previous attempts to tackle probabilistic 
programs by quantitative methods, for example, Kozen (1981), Reif (1980), 
Hart, Sharir, and Pnueli (1982), Feldman and Harel (1982), and Makowski 
and Tiomkin (1982). Our basic claim is that there is a large family of useful 
probabilistic algorithms that may be analyzed by purely qualitative methods. 
Clearly, some sophisticated probabilistic algorithms require a quantitative 
analysis. A similar effort to develop qualitative and not quantitative 
techniques, for a different class of problems, has been pursued by Halpern 
and Rabin (1983). 

2. PROBABILISTIC ALGORITHMS 

The analysis of asynchronous systems of programs (parallel programs) is 
known to be more difficult than that of sequential programs by one order of 
magnitude. The analysis of probabilistic asynchronous systems has, so far, 
been considered as another order of magnitude harder (see, in particular 
Lehmann and Rabin, 1981). We think that this first evaluation could have 
been too pessimistic, and that the problems encountered arose more from the 
novelty of the tool than from some intrinsic complexity. Together with the 
effort towards clarifying the concepts that can be found, for example, in Hart 
et  al. (1982), the framework proposed here should prove that, for at least a 
class of asynchronous systems, probabilistic systems are not much harder 
than deterministic systems. 

The authors of Lehmann and Rabin (1981) and Cohen, Lehmann, and 
Pnueli (1983) quickly realized two things: 

(1) the properties they wanted to prove about their algorithms did not 
explicitly involve numeric probabilities, except probability one, and 

(2) the algorithms studied satisfied those properties independently of 
the exact numeric distribution used to implement the random draws. 

A case in point is Lehmann and Rabin (1981) where the basic claim is 
that the system is, with probability one, free of deadlock, and this is true 
whatever the positive probabilities a and fl, with which the two sides are 
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REASONING WITH TIME AND CHANCE 167 

chosen, may be. The algorithms of Cohen et al. (1983), Rabin (1982a, 
1982b) exhibit similar properties. 

Noticeable exceptions are the algorithms for testing primality of Solovay 
and Strassen (1977), Rabin (1976), and Lehmann (1982) for which the 
interesting properties to be shown are of the type: if n is composite, then a 
witness to that fact will be found with a probability greater thanf(n) .  Some 
finer properties of the solution described in Rabin (1982a) also demand 
explicit mention of numeric probabilities. 

If one divides the probabilistic algorithms in two broad classes: 

(1) algorithms that are guaranteed to give correct results with 
probability one, and 

(2) algorithms that may make mistakes with a probability smaller 
than any e fixed in advance, 

one may say that the method proposed here is suited to prove the correctness 
of algorithms of the first class and not of the second. 

Since so many interesting properties could be expressed without explicit 
mention of probabilities, and did not depend on the exact probability 
distribution used, we set to ourselves to provide a logical system for the 
analysis of those properties. In our system numerical probabilities cannot be 
expressed at all. Chance appears as a modality qualifying those assertions 
that are certainly true, i.e., true whatever the results of the random draws 
could be. The modality expressing that an assertion is possibly true, i.e., that 
it holds with a strictly positive probability, is the dual of the previous one. 

Our system is therefore very rudimentary and well in line with the feelings 
of those who have dealt with the algorithms mentioned above, that only very 
basic facts about probability theory are required to prove the properties 
needed. Essentially one does not need anything more than: "if I throw a coin 
an infinite number of times then it will fall an infinite number of times on 
heads." The completeness result below gives a precise meaning to this claim. 

3. THE MODELS 

We begin by describing the models we shall be dealing with. We suppose 
that a set Pvar of propositional variables is given. If one wants to study the 
truth of propositions that say something about the passing of time, it is 
natural to consider, as models, linear sequences of "instantaneous states of 
affairs" (in short states), where a state is (or is labelled by) a subset of Pvar. 
This is the class of models proposed in Pnueli (1981). Since we want to 
study the truth of propositions that describe the passing of time in an 
uncertain universe, i.e., a universe in which the moves from one state to the 
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next one are probabilistic in nature, we shall consider models that are essen- 
tially Markov chains. 

In the case of  deterministic parallel programs, each possible execution of  
the program defines a model. A program, therefore, defines a set of  models. 
This set may be characterized by a formula. To prove that a given program 
enjoys a property, one shows that each one of  the models corresponding to a 
possible execution-satisfies the formula expressing the desired property. 
Similarly, in the case of  probabilistic parallel programs, a program defines a 
set of  models. This set is definable by a formula and to prove that a given 
program enjoys a property, one shows that all models of  the set satisfy the 
formula corresponding to the property of  interest. 

We shall now define three classes of  models and, later on, the notion of  
validity of  a formula in those models. In a word, our models are Markov 
systems, i.e., states and transition probabilities (see Kemeny et al., 1966, for 
example, for a reference on Markov chains). Similar models for different, 
richer, languages have been proposed in Feldman and Harel (1982), Kozen 
(1981), Makowski and Tiomkin (1982) and Reif (1980). 

A word on notation first. If  A is a set, A N is the set of  all infinite 
sequences over A. If  a C A N and n C IN, we denote a(n) by a ,  and we shall 

n use a n to denote the sequence defined by: t7 m = tTm+ n for all m C N. 

DEFINITION 1. A g-model (where g stands for general) is a quadruple 
(S, u, l ,p) ,  where the following hold: 

(1) S is an arbitrary (nonempty) denumerable set. Elements of  S are 
called states and denoted by: s, t,..., 

(2) u ~ S is called the initial state, 

(3) l: S ~ 2 e~ar is a labelling function, associating to every state the set 
of  propositional variables that hold in that state (2 Pwr denotes the set of  all 
subsets of  Pvar), 

(4) p : S X S - ~  [0, 1] associates with every possible transition a 
probability, in such a way that for every s ~ S, we have ~t~sp(S ,  t) = 1. The 
sum is finite or infinite. We use here real probabilities but could as well, 
without affecting theorems or proofs, have used rational probabilities. 

i 

DEFINITION 2. A g-model U is said to be a b-model (bounded), if there 
is an a E fiR, a > 0 such that for every s, t C S, i fp(s,  t) > 0, then p(s, t) > a. 

DEFINITION 3. A g-model U is said to be an f -model  (finite), if its state 
set S is finite. 

An f-model  is clearly a b-model. As in the theory of  Markov chains (see 
[KSK] or any text on the subject for a formal definition), in a model U, the 
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transition function p yields, for any state s, a probability distribution on the 
set Ps of all sequences e of S N that begin at s, i.e., such that e 0 = s. We shall 
denote this probability distribution by/~,.  It suffices to know that the set Q 
of all sequences ~ of S N, satisfying e0 = So, cr~ = Sl ..... a n = s n (0 ~ n), is 
measurable and such that 

/~s0(Q) =p(s0 ,  sl) x p(s, ,  s2) x ... × p(s ,_ l ,  so). 

4. THE LANGUAGE 

Our formulas are built-out of propositional variables, classical 
connectives, temporal connectives, and modal connectives. 

As we define formally the set of all formulas F, we shall also define the 
size (#)  and the depth (12) of a formula. By depth we mean the depth in the 
connective O. We shall denote propositional variables by p, q ..... Formulas 
will be denote by a, b ..... They are defined by the following rules: 

(1) A propositional variable p E P v a r  is a formula and # ( p ) =  1, 
12(p) = 0. A propositional variable denotes a basic proposition, that does not 
mention time. 

(2) If a and b are formulas, then: 

(a) ~ a  is a formula and # ( ~ a )  = # (a )  + 1, 12(~a) = 12(a). The 
symbol -~ denotes logical negation and is read not. 

(b) a V b  is a formula and # ( a  V b) = # (a )  + # (b)  + l, 
sg(a V b) = maximum(12(a),12(b)). The symbol V denotes logical 
disjunction and is read o r .  

(c) ©a is a formula and # ( © a ) =  # ( a ) +  1, 12(©a)= 12(a)+ 1. 
The symbol O is read next and denotes the next instant of time. 

(d) Da is a formula and # ( D a ) =  # ( a ) +  1, 12(Da)= 12(a). The 
symbol [] is read always and denotes all the instants of times from the 
present (included) and on. 

(e) aUnfilb is a formula and #(aUntilb) = # (a )  + #(b)  + 3 (we 
need #(aUntilb) > # (D(a  V b))), 12(aUntilb) = maximum(12(a), 12(b)). The 
symbol Until is read until. It was introduced in [GPSS]. The formula aUntilb 
denotes the fact that, there is a instant of time in the future when b is true 
and until the first such instant of time, say t, a stays continuously true at all 
intermediate instants of time (t not necessarily included). 

(f) Va is a formula and # ( V a ) =  # ( a ) +  1, 12(Va)= 12(a). The 
symbol ~7 is read certainly and denotes a probability of one. It has been 
chosen for its typographical proximity to the universal quantifier symbol V. 
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One may look at our language as a generalization of  the one proposed by 
[EH], if one identifies our modal connective c e r t a i n l y  (V) and their for all 
(V). Our language is an extension of  theirs since we allow the application of  
any connective to any formula, where they make a distinction between state 
and path formulas and enforce certain restrictions in the way one may build 
formulas related to that distinction. Their semantics is different from ours, 
though. More on the relation between the system presented here and that of  
[EH] is to be found in Section 14. 

We shall use the classical abbreviations: a A b for ~ ( -~a  V~b) ,  t rue  for 
p V ~p ,  f a l s e  for  -~ true ,  a ~ b for ~ a  V b and a ~ b for (a ~ b) A (b ~ a). 
We shall also use two other abbreviations: ~ a  is read sometime a and stands 
for ~l-q~a,  Aa is read possibly a and stands for ~ V ~ a .  The usual rules of  
precedence are assumed. We assume also that ~ associates to the right. We 
shall denote the set of  all formulas of  size less or equal to n b y / ' , .  

5. THE SEMANTICS 

We shall now attach a truth-value true or false, to every formula and every 
sequence of  states of  a model. All formulas are path formulas, in the 
terminology of  Emerson and Halpern (1982). 

DEFINITION 4. Let U be a g-model (S, u, l,p), e E S N a sequence of  
states and a E F a formula: 

P I~: = true  <=>p ~ I (eo) .  

Notice that the truth value of  a propositional variable, relative to a sequence 
e, depends only on the first state of  the sequence: e 0. 

- ~ a  : t rue  

a V b I~ : t rue  

o a  I~: : true  

EJa [5 = true  

a U n t i l b  - -  t rue  

va  I~-- t rue  

<=> a ]~: : fa l se ,  

a : t rue  or  b I~: = true  

<=> a ] ~  = true ,  

<> Vn E rN a ]~° = true ,  

a n  <=> 3n ~ rN such that b Iv = t rue  and Vk < n, a k =- true ,  

<=>/~,o({z [ z E P - o '  a ]~ -- t r u e } )  = 1. 

One may readily check that the set of  paths considered above is indeed 
measurable. Notice now that the truth of  a formula of  the type Va  at a 
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sequence a in a model U depends only on the state a 0 and the model /_7, i.e., 
Va is really a state formula. 

With the assumptions above, we shall denote fis({r ! r C P, ,  a j;. = t r u e t )  

by fis(a). 

6. SATISFACTION AND VALIDITY 

We shall now propose a notion of  satisfiability that, in essence, says that a 
model satisfies a formula a if a holds for almost all paths beginning at the 
initial state. Our choice of  definition expresses our view that there is no prac- 
tical difference between satisfaction and satisfaction with probability one. 
This definition expresses our belief that a formula that holds with probability 
one does, really, holds. Anybody  who does not share this belief will find an 
alternative approach in Section 12. 

DEFINITION 5. Let U be a g-model (S, u, l,p) and a C F a formula. We 
say that U satisfies a and write U ~ a ,  iffiu({r ] r C P  u, a I~--true})= 1. 

One immediately sees that U ~ a .¢> U ~ Va. One should also notice that 
it may happen that Ug=a and U ~ a .  

In the next definition, and from now on, 7 may be any one of  t g, b , f  }. 

DEFINITION 6. If  a ~ F, we say that a is 7-valid if every 7-model U 
satisfies a. We shall denote 7-validity by ~y. 

7. THE LOGICAL SYSTEM 

Three different logical systems: TCg, TCb, and TCf  will be proposed now, 
each one of  them corresponding to one of  the notions of  7-validity defined 
above. The logical systems we propose contain schemata for axioms and 
rules of  inference. An axiom schema denotes all formulas obtained from it by 
consistent substitution of  arbitrary formulas for the formula variables 
(a, b, c) appearing in it, and consistent substitution of  arbitrary propositional 
variables for the variables (p, q,...) that stand up for propositional variables. 
We do not allow the replacement of  a propositional variable by an arbitrary 
formula. The symbol ~-7. denotes provability in the system corresponding to 
7. Most of  the axioms and all of  the inference rules are common to all three 
systems. When something is claimed to hold in any one of  our three systems 
we use ~-. In other words ~ may be replaced consistently by any one of  our 
three deducibility symbols. 

Our systems are best viewed as composed of  a number of levels. 

643/53/3-3 
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172 LEHMANN AND SHELAH 

The first 

(AO) 

(RO) 

level concerns propositional calculus. 

A suitable axiomatization of the propositional calculus. 

(Modus Ponens) If ~-a and ~-a-* b, then ~-b. 

The second level concerns the temporal logic of linear time, as found in 
Gabbay, Pnueli, Shelah, and Stavi (1980). The axiomatization presented here 
is not the most economical. 

(A1) 

(A2) 

(A3) 
(A4) 

(AS) 
(A6) 

(a7)  

(R1) 

O(a -~ b) ~ Oa -~ Oh, 

~ O a  ~ O~a ,  

[2(a --, b) ~ n a  ~ Db, 

a Untilb -~ Ob, 

r-la ~ a A Oma A ©a, 

aUntilb ~ b V a A O(aUntllb ), 

n (a  ~ Oa) ~ a ~ []a, 

(F1 generalization) If ~a,  then F-r-la. 

The third level concerns general truths about certainty. 

(A8) V(a ~ b) -~ Va - ,  Vb, 

(A9) A V a ~ V a ,  

(A10) V a ~ a ,  

(R2) (V generalization) If ~-a, then ~-Va. 

This third level amounts to the model system ($5), that is well known and 
well suited for the notion of certainty if we accept that there is no difference 
between satisfaction and satisfaction with probability one. 

The fourth level expresses the fact that propositional variables denote state 
propositions, i.e., propositions that do not mention future instants of time. 
For this reason, if the propositional variable p is true for some path a it is 
true for all paths r of P~0: 

( A l l )  p ~ V p .  

In (AI 1) p stands for a propositional variable and cannot be replaced by an 
arbitrary formula. Because of (Al l ) ,  our system does not enjoy the 
substitution property. 

The last and most interesting level describes the interrelation between time 
and chance. The following axiom expresses a general property, and is part of 
all three systems we propose: 

(A12) VOa-~ OVa. 
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Axiom (A12) expresses the fact that the passing of time can only reduce the 
span of the possible, as can be seen on its contrapositive: 

OAa ~ AOa. (1) 

The schema we shall consider next is suitable for b-models, i.e., models in 
which the probabilities of the basic transitions that are not zero are bounded 
from below, by some positive number. Since the final formulation of the 
axiom for this case is slightly intricate, let us introduce first some special 
cases of the axiom. In a system with bounded probabilities, any transition 
that is possible an infinite number of times will eventually be taken (with 
probability one). We may express the above remark by the following 
schema. 

r-]©AOVa ~ Oa. (2) 

Notice that we need the V in the hypothesis to ensure that the formula a has, 
an infinite number of times, a probability at least a (a is the number that 
bounds from below the probabilities of the basic transitions) to be true at the 
next instant of time. Notice also that the schema above implies both 

• OAOVa --, mOVa (3) 

(hint: D-generalize (2), use (A3) and (T1) below, next section) and 

[] OAOa ~ [] OAa (4) 

(hint: replace a by Aa in (3), use the contrapositive of (A9) in the hypothesis 
to get rid of V and the contrapositive of (A10) to get rid of the inner A). 

Schema (2) is not strong enough, since it does not allow to speak about a 
specific subset of instants of time at which A©Va holds. Formula (5) 
remedies this defect: 

v1O(Va A AOVb) - ,  O(a A Ob). (5) 

The reader is now ready for the final form of the axiom. It really should be 
considered as a sequence of schemata. It is a k-steps unfolding of the 
previous schema and expresses the fact that successive random draws are 
independent: 

(A13) E]©(Vao A AO(Va~ A AO(Vaz A AO(.. .  A AOVak))) ) 

©(a o A Oa I A OOa 2 A ... A O(k)a~). 

Schema (6), is equivalent to (A13) and more concise 

E]OA [,=f~o O'"Va, ] ~ O [ ,~o O(')Va,]. (6) 
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To see the equivalence, notice first that one may as well precede each a i of 
the conclusion of (A13) by V, and then use 

] [Va 0 A AO(Va 1 A AO( . . .  AOVak))] ~ A o"~va, . 

One may not do with Axiom (A13) restricted to a finite subset of indexes k. 
It is indeed possible, for any k, to build a model (unbounded) that satisfies 
(A13) for k but does not satisfies it for k +  1. The construction is too 
lengthy to be included here. It is, however, possible that one (other) single 
schema may imply the whole sequence (A13). 

The algorithm presented in Section 5 of [Ra4] is a good example of a 
system with bounded transition probabilities but an infinite state set. It will 
be shown in Section 9 that most real life systems should be treated as having 
an infinite state set, even when they seem to be "finite." 

Our last axiom is suitable only for finite systems, is stronger than (A13) 
and expresses the fact that, in a finite system, if something has, an infinite 
number of times, a positive chance of happening, it certainly happens 
sometime: 

(A14) [3OAa ~ Oa. 

It is useful to record also the contrapositive of (A14) 

[3a --, OU]Va. (7) 

We define three different systems, from the weakest to the strongest: 

(1) TCg: (A0)-(A12) and (R0)-(R2), 

(2) TCb: (A0)-(A13) and (R0)-(R2), 

(3) TCf: (A0)-(A12), (A14) and (R0)-(R2). 

8. SOME THEOREMS 

We list, with minimal justification, theorems that will be of use later, 

~-[3Vla ~ ~a,  (T1) 

RVVa ~ Va. (T2) 

Proof. The implication from left to right follows from (AI0). Let us 
prove the opposite implication. Va ~ AVa by (A9). AV-,Va ~ V~Va, by 
(A9). AVa~VAUa, is the contrapositive of the previous formula. But 
UAVa ~ VVa, by (A9), (R2), and (A8). 
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REASONING WITH TIME AND CHANCE 175 

F-Oa +-+ a V OOa,  

t--Ol~(a A b) +-+ O D a  A ©Vlb, 

F-O(a A b) ~ Oa A Oh, 

~ V ( a  A b) ~ Va A Vb, 

~-~(aVnt i lb  ) ~ E]-~b V [ ~ b U n t i l ( ~ a  A -~b)]. 

(T3) 

(T4) 

(T5) 

(T6) 

(T7) 

Theorems (T1), (T3)-(T5), and (T7) are theorems of the logic of linear time 
and their proofs may be found in Gabbay et al. (1980). Theorems (T2) and 
(T6) are theorems of ($5) and their proofs may be found in Hughes and 
Cresswell (1972) or Chellas (1980). 

9. AN EXAMPLE 

We shall use the system above to express and prove an interesting 
property on a toy program. For reasons of space economy, we satisfy 
ourselves with a very simple example. Nevertheless we expect that our 
example is telling enough to suggest how our system can be used to prove 
properties about parallel probabilistic programs. But, for sure, much 
additional work is needed before the feasibility of using our system can be 
assessed. 

Suppose we consider a system of two processes P~ and Pz. The system has 
three states s;, for i = 1,..., 3. The initial state is s l. If  process P~ is activated 
while the system is in Sm, it leaves it in Sl. If  it is activated while the system 
is in s 2, with probability ½ it leaves it in the same state and with the same 
probability it moves it to s 3. If process P2 is activated in state s~, with 
probability ½ it leaves it in sl and with the same probability it moves the 
system to s z. If it is activated in s2, then with probability @0, it moves the 
system to s 3 and with probability ~90 it moves it to s 1. The diagrams of Fig. 1 
are an equivalent description of the system. 

We claim that, with probability one, the system will, sometime, enter state 
s 3, under the hypothesis of fairness (all three notions of impartiality, justice, 
and fairness of Lehmann et al., 1981 are equivalent here). 

The basic assertions we shall use are at s i. The claim we want to make 
about the system may be formalized in the following proposition: 

(C) at s~ ~ O at  s3. 

Notice that the proposition does not mention probabilities explicitly, though 
we expect (C) to be correct only with probability one. 

The following propositions will describe our system. Our first formula (E) 
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~ 9/10 

FIGURE 1 

has only a technical role. It expresses the fact that the system cannot be at 
the same time in two different states: 

at s i ~ ~ a t  sj ] 
(E) [] i,j--/~1,3 

Our next formula (M1) will describe the possible moves from state s 1 . It 
says that, when at state s 1, one of two things must occur: either P~ operates 
and then the next state is s 1, or P2 operates and then the next state is either 
s~ or s2, but both states have a strictly positive probability of occurring: 

(M1) [2[at s 1 ~ Oats  1 V O(at sl V at s2) A AOat s 1 A AOat s2]. 

Similarly (M2) describes the possible moves from s2: 

(M2) O[ats  2 ~ O ( a t s  2 V atsa) A AOat s  2A AOat s  3 

V O(ats~ V ats3) A &©ats~ A AOats3]. 

Two more propositions are needed, that express the assumption of impar- 
tiality: each one of the processes operates an infinite number of times: 

(B1) I-q~[ats~ A Oats  1 V a t s  2A A O a t s  2A AOat s  3Vats3] ,  

(B2) D ~ [ a t S l A / ~ O a t s ~ A / ~ O a t s 2 V a t s 2 A / ~ O a t s l A A O a t s 3 V a t s 3 ] .  

In general, a formula expressing that the execution sequence is a possible 
execution in which process i is activated an infinite number of times may 
always be built by writing that, in the execution sequence, there is an infinite 
number of states in which all possible results of activating process i are 
indeed possible tomorrow. The careful reader noticed that we do not care to 
insist that process i has been activated an infinite number of times, but only 
that the execution sequence is identical with one in which it has been 
executed an infinite number of times (the execution sequence must not reveal, 
in general, which process has been activated at every step, though the name 
of the process activated last could be made part of the state). 
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REASONING WITH TIME AND CHANCE 177 

Our claim about the system is that the proposition 

E A M 1 A M 2 A B 1 A B 2 - - + C  (9) 

is valid in any b-model. Our proof proceeds the following way. First, 
classical temporal logic shows that proposition (10) is g-valid: 

M 1 A M 2  -+ a t  s 1 --+ OlZ la t  s l  V E ] O a t  s 2 V <)at % .  (10) 

Indeed, if the system is in state sl and never attains s 3, it must stay forever 
in %, for i = 1, 2, since it cannot move to any other state unless it passes 
through s 3. Then it either ends up continuously in s I, after some time, or is 
an infinite number of times in s z. 

Then, again classical temporal logic would show proposition (11) is g- 
valid: 

E A B 2  A O V l a t s  1 --+ [ ~ < ) A O a t s  2. (11) 

Now, we should notice that (12) is b-valid: 

N O A O a t  s 2--+ D O O a t  s 2. (12) 

To prove (12), use ( A l l )  to prove a t s 2 ~ V a t s 2 ,  and then (A13) to prove 
that N<)AOVat s 2 -~ O a t  s 2. Now, putting all together, we see that (13) is b- 
valid: 

E A M 1  A M 2 A B 2 A a t s l ~ N O a t s  e V O a t s  3. (13) 

But clearly (14) is g-valid: 

M 2  A D O a t  s z -+ N O A O a t  s 3. (14) 

Notice that the conclusion does not depend on the assumption of impar- 
tiality. Now, by a reasoning similar to the one that lead us to (12), we see 
that (15) is b-valid: 

N < ) ~ O a t  s 3 -+ O O a t  s 3 . (15) 

We conclude that (9) is b-valid. 
Is it enough to convince us that the system enjoys the desired property? 

The answer is yes, since any possible (fair) execution of our program must 
result in a b-model that satisfies (E), (M1), (M2), (B1), and (B2). It would 
have been slightly simpler to show that (9) is f-valid. Would that be enough 
to convince us that the system enjoys the desired property? The answer is 
no. In spite of the fact that the system can be in only a finite number of 
states, it is possible that some of its possible executions cannot be described 
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as a finite model, since the schedule may  be inherently "infinite", e.g., 
remember  an amount  of  the past history of the system that cannot  be 
bounded a priori and base its decision as to which process to schedule on 
that history. To be fully satisfied we must show that formula (9) is b-valid. 

10. SOUNDNESS 

We shall now prove the soundness of  the three logical systems TCg,  TCb,  
and TCf. 

THEOREM 1. For any y C { g, b , f  } and for  any a E 1", i f  ~-~a, then ~ ya. 

Proof. The proof  is almost  obvious. Indeed, we claim that, if ~-~a, then 
for any y-model U and any state s,/~s(a) = 1. 

Axioms (A0) - (A7)  clearly hold for all sequences of  states in all models. 
Axiom (A8) holds for all sequences (i.e., at all states) in all models, because 
~6s(b ))~ffs(a A (a -4b ) )  and if both /~ , (c)= 1 and ~s (d )=  1, then 
/7~(c A d) = 1. Notice, now, that /~s(Va) a n d / ~ ( A a )  may  only be 0 or 1, and 
also t h a t / ~ ( V a )  = 1 <=~/~(a)= 1. Axiom (Ag), then, holds for all-sequences 
in all models, since /~s(AVa) = 1 ~=~/~s(V~Va) = 0 ~=~/~(~Va) 4= 1 <=~ 
/~s(Va) 4= 0 ~=~/~(Va) = 1. Axiom (A10) need not hold for all sequences. But 
let us show that /~s(Va -4 a ) =  1. We see that  15s(~Va V a)>~/~,(~Va) and 
/ ~ ( ~ V a  V a)/>/~s(a).  I f  /~s(~Va) = 1, we are through. Otherwise, 
/~s(~Va) = 0 and , 6 , ( a ) =  1. Axiom ( A l l )  clearly holds for every sequence. 
Axiom (A12) does not hold for every sequence, but only for those sequences 
whose first transition has a positive probabili ty,  but those sequences have 
measure one. Indeed let a be such that  p(o'0, O'l))~0, ]~a0(Oa)= 
~ t e s  p(ao, t) X/~t(a). Therefore,/~,0(Oa ) = 1 ~ / ~ , ( a )  = l. 

Let now U be a b-model, with transition probabilities bounded by a. 
Axiom (A13) need not hold for all sequences. Let a denote the formula  

a = Va  o A AO(Va ,  A AO(Va2 A AO( . . .  A AOVak))).  

Notice that  a is a state formula,  i.e., its truth value depends only on the first 
state of  the path at which it is evaluated. Consider, now, a state s at which a 
holds. There are states So,Sa,..., s k such that s o = s ,  at si the formula Va  i 
holds, for any i ~< k and p(s i, si+l)  > 0, for any i < k. But since our model is 
bounded, the set of  sequences, out of  s, that begin by s o, sl ..... s k has a 
weight of  at least a k. A sequence a that  does not satisfy (A13) must 
therefore visit an infinite number  of  such states (possibly all different) but 
never takes the corresponding sequence So,...,s n, that has a bounded 
probability.  The set of  those sequences has weight zero. 
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Now let U be an f-model and let us show that U satisfies (A14). We shall 
show that the set Q of sequences o f P  u that do not satisfy (A14) has measure 
zero. Let T =  def {s ~ S I/Ts(a) > 0}. Since S is finite, for any sequence a C Q 
there is a state s C T that appears in a an infinite number of times. For 
s ~ T, let Qs be the set of sequences of Pu that visit s an infinite number of 
times but no tail of which satisfy a. We have Q = Us~T Qs. It is therefore 
enough to show that /~u(Qs)=0, for any s C T. Elementary measure 
theory (without relying on the finiteness of S or the language F) shows that 
for all s C T and fl < 1, there exists n E N and to,..., t n ~ S such that t o = s ,  
p(ti, t i+l)>O, for all i < n  and lSto(a[[t o ..... G ] ) > f l ,  where this last 
probability is a conditional probability and denotes the weight of all those 
sequences of Pro that satisfy a and begin by t 0,..., t,  relative to the weight of 
all the sequences that begin in this way. But almost all sequences of Qs 
contain the sequence [to,..., G] at least once (as a subsequence) and therefore 
the probability of a tail that satisfies a is at least ft. We conclude that, for 
s C T, 15~(Qs ) < e for any ~ > 0. Therefore fiu(Qs) = 0. 

The three inference rules (R0)-(R2)  are obviously sound. 

11. COMPLETENESS 

THEOREM 2. For any y C {g, b , f  } and for any ct E F, i f~./a,  then ~ya. 

Theorem 2 is the main technical result of this paper and the remainder of 
this section is devoted to its proof. The proof proceeds by the method known 
as selective filtration. Our proof may also be used as a write-up and an 
extension of the completeness proof of Gabbay et al. (1980). The reader 
should notice the uniform treatment of all modalities. This uniformity 
guarantees that similar completeness proofs may be obtained for similar 
logics. We consider selective filtration to be more elegant and clearer than 
the tableau method that essentially amounts to brute force. 

11.1. Theories 

Since the basic results of this subsection are standard, they will not be 
proved. We define a theory to be any subset of F. 

DEFINITION 7. A theory T is said to be 7-inconsistent if there is a n E 
and formulas a0, al ..... a n C T such that 

a 1 A . . .  A a  n - ~ - ~ a  o. 
7 

If  T is not 7-inconsistent, it is said to be y-consistent. 
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DEFINITION 8, A theory T is said to be complete, if for any formula 
a E F ,  either a E T or ~ a  E T. 

LEMMA 1. I f  T is a 7-consistent and complete theory, then 

(a) i f  a C T and ~-~ a -~ b, then b E T, 

(b) a E T c c , ~ a q ~ T ,  

(c) a V b E T e > a C T o r b E T ,  

(d) if  T' is a y-consistent theory (not necessarily complete), then there 
is a 7-consistent and complete theory T such that T' c_ T, 

(e) ~Cra ¢> there is a 7-consistent and complete theory T such that 
- ~ a ~ T .  

11.2. Relations Among Theories 

We pursue our study of  consistent and complete theories, by defining 
relations among such theories. We define one relation per nonclassical 
connective, and prove some simple results about them. 

11.2.1. The Successor Relation 

DEFINITION 9. Let T 1 and T 2 be two theories, we say that T 2 is a 
successor of  T~ and write TlpT  2 if Va E F such that Oa E TI, we have 
a~T2. 

LEMMA 2. I f  T is a 7-consistent and complete theory, there is a unique 7- 
consistent and complete theory T + such that TpT +. It  is characterized by 
a@T + ~ O a C T .  

11.2.2. The Future Relation 

DEFINITION 10. We say that T 2 is a future of  T 1 and write T1 ~< T 2 if 
ga  ~ F such that Vla E T 1 , we have a ~ T 2. 

LEMMA 3. Among y-consistent and complete theories the relation ~ is 
reflexive and transitive, it contains the relation p. 

Notice that ~ contains the reflexive and transitive closure of  p. Indeed the 
inclusion is strict. Hint: consider a consistent theory that contains Otk)a for 
all k's, but contains also -~Da, and use Lemma 4. 

LEMMA 4. Let T be a 7-consistent and complete theory and a C F a 
formula with ~E]a E T. There is a ),-consistent and complete theory T', such 
that T ~ T' and -~a C T'. 
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11.2.3. The Alternative Relation 

DEFINITION 11. We say that T 2 is an alternative for T~ and write 
T ~ -  T 2 if Va C F such that Va C T~, we have a E T 2. 

LEMMA 5. Among  y-consistent and complete theories the relation -= is an 

equivalence relation. 

Proo f  The relation -- is reflexive by Axiom (A10). It is transitive by 
(T2). Let us show that it is symmetric. Suppose T-= T'  and Va ~ T'  and 
a ~ T. Then ~ a  E T, &-~a C T by (A10)'s contrapositive, V & ~ a  C T by 
(A9)'s contrapositive and & = a  ~ T'.  But Va ~ T' ,  & ~ a  ~ T' and T'  is 7- 
consistent. A contradiction. Q.E.D. 

A consequence is that, if T -  T',  then Va C T i f f  Va E T'.  

LEMMA 6. Le t  T be a y-consistent and complete theory and a E F a 
formula with -~Va C T. There is a 7-consistent and complete theory T',  such 
that T =  T'  and ~ a  C T'. 

Proo f  If the theory R =def {b i V  b ~ T} U {~a  / is y-consistent, then it 
may be completed to a satisfactory T'  by Lemma l(d). Suppose that R is Y- 
inconsistent. Then there are formulas b i ,  i = 1,..., n such that Vb i C T for 
i =  1 ..... n and F~ , b  1 A b 2 A ... A b , , ~ a .  It follows that ~-~V[b I A ... A 
bn-~a], by (R2). Then ~ - y [ b ~ A . . . A b n ] - ~ V a ,  by (A8). ~ V b l A . . .  A 
Vb n -~ Va, by (T6). Therefore Va E T, a contradiction. Q.E.D. 

The next lemma exactly translates Axiom (A12) in terms of theories. 

LEMMA 7. Le t  T 1 , T 2, and T 3 be 7-consistent and complete theories, such 
that T l p T  2 and T 2 = T 3, then there is a 7-consistent and complete theory T'  
such that T 1 -- T '  and T ' p T  3. 

Proo f  Consider R =def { a l V a  C T1} U {Ob I C T3}. If  the theory R is 
y-consistent, take T'  to be any y-consistent complete extension of R 
(there exists one by Lemma l(d)). Suppose R is not y-consistent. 
There are formulas a ~ , i =  1 ..... m and bj, j =  1 ..... n, such that Va~C T 1, 
b j C T  3 and t--y a ~ A . . . A a m ~ [ O b i A . . . A O b , ] .  Then, by (R2), 
(T5), and (18),  ~-~V[a 1 A ... A a m l - - ' V ~ O [ b ,  A ... A b,]. Therefore, by 
(T6), (12), (18),  and (A12) ~-~Va~ A ... A V a m ~ O V ~ [ b ~ A  ... A b,]. 
Then O V - ~ [ b ~ A . . . A b n ] 6 T ~  and V ~ [ b ~ A . . - A b , ] E T  2. Therefore 
~[b~ A ..- A bn] C T 3. A contradiction. Q.E.D. 

Whenever R 1 and R 2 are relations, we shall use R I R  2 to denote the 
composition of the two relations (R 1 first, and then R2). With this notation, 
Lemma 7 states that, for y-consistent and complete theories, 6o- = )  c_ (-=p). 
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The next lemma is an easy consequence of the previous one, but it is, with 
its variations for the bounded and the finite case, of central importance. 

LEMMA 8. Let k >/0 and T 0, T 1 ..... T~ be y-consistent and complete 
theories such that Vi, O~ i < k, Ti=--PTi+ 1. There are y-consistent and 
complete theories S i , for  i = 0 ..... k, such that 

(1) Si-=T~,Vi, O<~i<~k, 

(2) SipSi+I, Vi, 0 <~ i < k. 

Proof By induction on k. For k = 0 ,  take S 0 = T  O . For k > 0 ,  use the 
induction hypothesis to find Si, for 1 ~< i~< k. Now T o -pT~ - S ~ .  There is a 
7-consistent and complete theory U, such that T o -= U, and Up =S 1. By 
Lemma 7, then there is an S 0, with U=-- S o and SopS 1 . Q.E.D. 

11.3. Terminal Theories and Terminal Relations 

11.3.1. Terminal Theories 

The relations described above are fine for studying the system TCg. For 
studying TCb and TCf  we also need a refinement of some of the notions 
above. First, since Axioms (A13) and (A14) express the fact that certain 
propositions are only true after a certain time, we need to capture the notion 
of a theory that is far enough in the future for anything that must become 
true from a certain time on to have already become true. Our notion of a 
terminal theory is a technical innovation of this work. It exemplifies the 
advantage that may be taken of consistent theories that have no model. 

DEFINITION 12. A g-consistent and complete theory T is said to be 
terminal iff it satisfies any one of the two equivalent properties: 

(1) Va, a ~ F  ~ [ 3 a C T = ~ a C T ,  

(2) Va, a C F  Oa C T=~ Vq~a C T. 

The proof of the equivalence of the two propositions above is the 
following: 

Proof Suppose (1) and ~ a  E T. If [3~a  ~ T, then ~VT~a E T and 
~vlU]~a C T. Then V]~a C T. A contradiction. Suppose (2) and ~Vqa C T. 
Then f f ] ~ a  ~ T and ~ a  ~ T, Vla C T and a C T. Q.E.D. 

The interest of terminal theories is contained in Lemmas 9 and 10. 

LEMMA 9. (1) Let T and T' be y-consistent and complete theories, such 
that T <~ T', then, i f  T is terminal, so is T'. 
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(2) Let T be a 7-consistent, complete and terminal theory, then 
T + <~T. 

LEMMA 10. Let T be a 7-consistent and complete theory, then there is a 
7-consistent and complete terminal theory T', such that T <~ T'. 

Proof. Consider {a I O D a e  T}, which is y-consistent by (T4), and 
complete it to obtain T'. Let IS]a C T, then Ol--la C T and by construction 
a E T'. Therefore T~< T'. Let now OU]aE T', then OIS]a~ T, by the 
previous remark, and therefore a ~ T'. We conclude that T' is terminal. 

Q.E.D. 

11.3.2. Terminal Relations 

We also need a refinement of the alternative relation. 

DEFINITION 13. Let T~ and T 2 be g-consistent and complete, we say that 
T 2 is a terminal alternative for T~ and write T~ ~ T 2 iff 

(1) r,~_ r2, 

(2) TI <, T 2, 

(3) T2 ~.~ T 1 . 

Conditions (2) and (3) (together) are equivalent to: Va CF,  Da C T~ 
E]a C T2. 

LEMMA 11. Among g-cons&tent and complete theories, the relation ~ is 
an equivalence relation: it is contained in the relation =. 

11.4. Basic Lemmas for the Bounded Case 

LEMMA 12. Let k ~  0 and T o, T 1 ..... T k be b-consistent and complete 
theories such that Vi, O<~ i < k, Ti~pT~+ 1. I f  T o is terminal, there are b- 
consistent and complete theories S~, for i = 0 ..... k such that 

(1) 
(2) 
(3) 

Proof. 

So~,~ To~ 

Si-~ T i, Vi, 0 < i <~ k, 

SiPSi+ l, Vi, 0 ~ i < k. 

Let R be the following theory: 

{a o ]Vao C To} U {DblDb E To} U {Oc ]Oe ~ To} U {©a, I Val ~ Tit 

U {©©a2 I r a2  E T 2 / U . . .  U {©(k)ak]Vak ~ T~t. 

First we want to show that R is b-consistent. Suppose not. By using (T5) and 
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(T6), one may group together formulas of  the same summand of  R and may 
find formulas, as above, such that 

F- [ ] b  1 A ~ b  2 A . . .  A rob t A O c  I A . . .  A O C  m ~ ~ ( a  o A O a  1 A . . .  A O ( k ) a k ) .  
b 

By (R1) and some obvious manipulations, 

F- Flb 1 A F-lb 2 A • A rob I A r]©c 1 A . . .  A E]©c m 
b 

- *  I - l - n ( a  o A O a  I A " "  A o(k)ak) .  

Therefore, since T o is terminal, [ ] ~ ( a  o A O a  I A . - .  A ©(k)ak) must be in T o. 
But V a  k E T k, and therefore A O V a  k E T k_ 1. Then Va  k_ 1 A A O V a  k E T k_ 1. 

In this way we can see that Vao A A©(Va~ A (..- A AOVa k . . . ))  is in T o. 
But T o is terminal and the antecedent of  Axiom (13) is in T O . Therefore 
0 ( %  A ©a I A ...  A ©(k)ak) must be in T o. Contradiction. We showed that R 
is b-consistent. By Lemma l(d), there is a b-consistent and complete theory 

+ (i) 
S o that contains R. Clearly S o ~ T o. Take Si to be So , for i = 1 ..... k. We 
are left to show that, Vi, 1 ~ i ~< k, we have Si =- T~. Suppose Ve 6 T~, by 
construction O(k)e E S o and e E Si. Q.E.D. 

The next lemma is a corollary of  Lemma 12. 

LEMMA 13. Let  k >~ 0, S and T be b-cons&tent and complete theories, 

and suppose that T is terminal and that T - -  S. There are b-consistent and 

complete theories T O , T 1 .... , T k and S O , S t  ..... S k such that T i -  S i, 

V i = 0  ..... k, T 0 = T ,  S o = S ,  T i ~ p T i +  1 and S i P S i + l ,  V i = O  ..... k -  1. 

Proo f  By induction on k. For  k = 0, the result is clear. Suppose k > 0. 
By the induction hypothesis, we build T i and S i for i = 0 ..... k -  1. Now we 

1 =PSk-1 .  By Lemma 12 (with k = 1), there is a theory U such that have T k - + 
U ~  Tk_ 1 and U + - S +~k~. Take T k = U +. Q.E.D. 

11.5. Basic  L e m m a s  f o r  the Finite Case 

The first basic 1emma for the finite case is fundamental. 

LEMMA 14. Le t  T and S be f-cons&tent and complete theories, such that 

T =_ S. I f  T is terminal, then T..~ S. 

Proo f  Let us show that T~< S. Suppose [5]a ~ T. By (7) then, ©[SIVa is 
in T. Since T is terminal, Va 6 T and a C S. Let us show now that S ~< T. 
We show that Oa ~ T ~  Oa ~ S. Suppose that Oa E T. Since T is terminal 
IS]Oa E T. By (7) then, Ov1VOa C T. Since T is terminal, VOa C T and 
Oa ~ S. Q.E.D. 
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From Lemma 6, now follows: 

LEMMA 15. Le t  T be an f-consistent complete terminal theory and a C F 
a formula  with - ,Va  E 7". There is an f-consistent and complete theory T',  
such that T ~ T'  and ~ a  C T'. The theory T'  is terminal. 

Lemmas 7 and 8 have similar refinements that the reader may easily find. 

11.6. Traces and Relations Among  Them 

Since not every consistent theory has a model, we need to restrict 
ourselves to a finite set of formulas. The first thing to do, then, is to restrict 
our attention to those propositional variables that appear in the formulas of 
interest. Without loss of generality, we shall, from now on, suppose that Pvar 
is a finite set. Therefore, for any n, F, is finite. For the remainder of the 
proof, let n C N be a fixed number. We are interested only in the formulas of 
Fn, but since we need to consider, for the proof, also some slightly larger 
formulas, we define n'  to be slightly larger than n. For example, we may take 
n'  =aef n + 7. We shall define traces of theories over F,, ,  but we shall claim 
only about formulas of F, .  

DEFINITION 14. A y-trace D of size n (we shall not mention n any more) 
is the intersection of some 7-consistent and complete theory T with Fn,. 

Notice we use n'  not n. There is only a finite number of traces of size n. 
Let ~ ,  be the set of all traces of size n (the y in question will be clear from 
the context). A trace is a finite set of formulas and may therefore be charac- 
tecterized by a formula. 

DEFINITION 15. If D ~ @~ is a y-trace of size n, we define the charac- 
teristic formula of D by ;go = d e f  AaeD a A AaeF,,_ v ~a.  

The characteristic formula )6D is not in general in D. The next lemma 
summarizes the properties of characteristic formulas. 

LEMMA 16. Le t  D be a y-trace and T a y-theory, then D = T ~ F n, ¢> 

;gD ~ T. 

We define between traces all the relations that have been defined between 
theories: p, ~<, --, --p, ~p, and ~, in the following way: D R D ' ~  there are 
theories T and T' such that D = T ~ F n , ,  D '  = T' ~ F , ,  and T R  T'. Notice 
that =-p and ~p are the projections of the composition of relations, not the 
composition of the projections. 

Similarly, terminal traces are traces of terminal theories. A word of 
caution is in order here: the relations defined above among traces do not 
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enjoy all the nice properties that they enjoy over theories (e.g., ~> need not be 
transitive). We take care not to use any of those properties, by proving 
everything we need on the theories themselves, and only then project the 
property on the traces. 

We define p* to be the reflexive and transitive closure of the relation p on 
the 7-traces. Notice that p* is the reflexive and transitive closure of the 
projection, not the projection of the reflexive and transitive closure. We offer 
the following explanation to the difference in our treatment between p* and 
the other relations. All other relations really live on the level of theories and 
everything concerning them should be done at this higher level and projected 
downwards on the level of traces only at the last instant. On the other hand 
the interest of p* lies only at the level of traces, i.e., we have no reason to 
consider this relation among theories since it does not correspond to any 
connective of our logic. 

Lemmas 17 and 18 explain the interest of considering traces, their proofs 
are as in Gabbay et al. (1980). 

LEMMA 17. Let D be a y-trace and E 1 . . . . .  E m the p-successors of  D, then 

~--y2"D -~ O(XE, V ... V 2"Era)" 

Proof Suppose not. There is a y-consistent and complete theory T that 
contains ZD and ~O(zE V ... Vxe,, ). By Lemma 16, T N F n , = D .  But T 
contains O~(xe~ V ... V ZEm), and therefore T + contains ~2,E~ for any 
i =  1,...,m. By Lemma 16, T + (3F, ,  is not one of the E~, i =  1 ..... m. 
Contradiction. Q.E.D. 

LEMMA 18. Let D and D' be y-traces. I f  D <~ D', then Dp*D'. 

Proof Let D ~< D' .  By definition of the relation ~< on traces, there are y- 
consistent and complete theories T and T'  such that T<~ T', D =  T ~ F , ,  
and D ' = T ' N F n , .  By L e m m a l 6 ,  we have z D E T  and XD,~T ' .  Let 
E 1 ..... E m be all the traces that are in the relation p* with D (D is one of 

def .  them). Let Z =  XE V ' " V z e  . By Lemma17,  k-~Zei-~Oz, for any 
i =  1,...,m, since all p-successors of E i are contained in the list: 
Ek, k = l  ..... m. Therefore k - ~ z ~ O  Z. By (R1): k-]-l(z-~O2, ). By (A7): 
~ - rZ~  rq Z. Therefore 02' C T and Z C T'.  By Lemma 16, D '  is one of the Ei, 
i = 1,..., m. Q.E.D. 

All three proofs of completeness begin the same way. Suppose that k/-ya, 
we shall build a y-model that does not satisfy a. First, by Lemma l(e), there 
is a y-consistent and complete theory Ta, that contains ~a .  Now take 
n = #(a) .  We shall look at 7-traces of size n. Let Da = def T~ • Fn,. It is a 7- 
trace of size n, that contains ~ a .  
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11.7. Completeness of  TCg 

The model U= (S, u, l,p), that does not satisfy a, is defined the following 
w ay: 

(1) 
(2) 
(3) 
(4) 

S = ~  X ~ , .  

u = (0, Da). 

l((i, D)) = {p IP ~ D}. 

Let us say, first, that the only transitions with nonzero probability 
are those that increase the first coordinate by one and use - p  to move along 
the second coordinate. In other terms, p((i, D), ( j ,  E))  4 :0  e:~j = i + 1 and 
D =pE. If DpE let us call the transition from (i, D)  to (i + 1, E)  a standard 
transition. A transition of positive probability that is not standard, will be 
called nonstandard. Our goal is to give increasing (with the first coordinate) 
weight to the standard transitions, and ensure that, with probability one, 
after a certain time, only standard transitions occur. Therefore we choose a 
sequence ai of real numbers between 0 and 1, such that I ~ 0  gi > 0. From 
state ( i ,D),  we give equal probability to all standard transitions, so as to 
give them total weight a~, and equal probability to all nonstandard tran- 
sitions, so as to give them total weight 1 - a , . .  

Our goal is to show that in U,/~,(~a) > 0 and therefore the model U does 
not satisfy a. We shall call a sequence of states standard if it is a sequence of 
standard transitions. A sequence of states is called ultimately standard, if it 
is a sequence of transitions of positive probability and some tail of it is a 
standard sequence (i.e., the sequence is standard after a certain point). First 
we notice 

LEMMA 19. Let s be a state of  U. The weight of  all standard sequences 
from s (under Ps) is strictly positive and the weight of  all ultimately standard 
sequences from s is 1. Formally, / T s ( { a l a C P , , a  is standard})> O, and 
/~s({a ] a C Ps, a is ultimately standard}) = 1. 

Proof. Let Q~ be the set of all sequences a of P~ that begin by k standard 
moves, i.e., such that aj.paj+l, for all j ,  0 ~ j  < k. By construction P~(Qk)~> 

k - 1  
Iqj=0 aj. Therefore/~,({a I a C Ps, a is standard}) >~ [I~_o aj > 0. Let R k be 
the set of all sequences a of P~ that are standard after index k, i.e., such that 
ajpaj+ 1, for all j, k ~<j. By construction /~(Rk) >~ ~°~  k aj. Therefore 
fis({a [a E P~, a is ultimately standard}) ~> lim k ~o~ I ~ - k  aj = 1. Q.E.D. 

DEFINITION 16. If  a = { ( k i ,  Di) } and v = { ( j i , E i )  } are sequences of 
states, we say that a and r are equivalent and write a = r i f f  for every i E ~, 
Di=--E i. 

Definition 17 captures the essential (for us, now) property of random 
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sequences, i.e., the property that almost all sequences satisfy. In the 
completeness proofs of  the other systems we shall need a stronger property. 

DEFINITION 17. Let ~ be a sequence of  states of  U, a is said to be 
generic iff for any trace D that appears an infinite number of  times (as a 
second component)  in ~r, any trace E such that DpE appears (as a second 
component)  in o an infinite number of  times. 

LEMMA 20. At  any state, the weight of  generic sequences is one, i.e.,for 
any state s,/~'~({r I r E Ps, r is generic}) = 1. 

Proof Suppose that DpE and that, on the whole, D has exactly n p- 
successors. Let Q~ be the set of  all sequences a of  Ps that contain D at least 
k times but do not contain E even once. Clear ly/~(Qk) ~< ~I~--0 ~ (1 - at). It 
follows that for any state s, /~ '~ ({ r l r~P~ , r  is not generic}) 

~< I-[~_-0 (1 - ak) = 0. Q.E.D. 

Notice that, if a sequence of  states a = {(k i, Di) } is generic and if a trace 
E appears an infinite number of  times in the sequence (as a second 
component) ,  then every trace F such that Ep*F also appears an infinite 
number of  times. Our basic result concerning U is 

LEMMA 21. Let b E F , ,  a a generic standard sequence of  states (of U), 
and r and r' two equivalent sequences of  states, then 

(a)  b [3 = true <:~ b E D o, where a i = ( k i ,  Di)  , 

(b) b i b = b i b ' .  

Proof The proof  is by induction on the size of  b, i.e., # (b) ,  at each 
induction step, we prove (a) first, and then (b). 

b = p .  (a)  p 1 3 = t r u e ~ p ~ l ( a o ) ~ p ~ D  O , 

(b) plb=true<z>p@E,  where V o = ( i , E ) < : ~ V p ~ E ,  by ( A l l )  and 
because n '  >/n + 1 <:> Vp C E ' ,  where r~ = (i, E ' ) ,  since E -- E '  <:>p E E '  <:> 
p [b' = true. 

b = -~c. Obvious. 

b = c V d .  Obvious. 

b = Oc. (a) Oc 13 --- true <:> c 131 = true <:~ c c D 1 ¢¢- Oc @ D O , since 
DoPD ~ (since o is a standard sequence). 

(b) Obvious. 

b = [ S c .  (a) [:3cCD o ~ V i E N ,  [ 3 c E D  i, (by induction on i, using 
o-i (A5)) since a is a standard sequence ::> Vi E N,  c ~ D i ~ V i  E N ,  c I~ =- true, 

by the induction hypothesis and since the end part of  a generic sequence is 
generic ~ [~c 13 = true. 
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Suppose now that Dcq~D o. Then O ~ c E D  o. It follows that 3 i E  IN, 
~ c  E D  i or ViC IN, © ~ e C  D i (by (T3)). We want to show that the first 
alternative is true. In the last case, there is a trace E, that appears an infinite 
number of  times, and ~ D e  C E. Since the sequence ~ is generic, all traces F 
such that E p * F  appear an infinite number of  times in the sequence. By 
Lemmas 4 and 18 then, there is an i C IN, for which ~ c  ~ D i. We conclude 
that ~i E N such that c ~ D; and by the induction hypothesis c [~/= false and 
De I~ = fa lse .  

(b) Obvious. 

b = cUntild. (a) Suppose eUntild C D o. Then, by (A4), [ ] ~ d  ~ D o and 
by the induction hypothesis there exists an index k, for which d E D k. Let i 
be the smallest such k. Now using (A6), one may show that for any j < i, 
e E Dj. Now by (A6) and the induction hypothesis part (a), one sees that 
c U n t i l d l ~  = true.  

Suppose now that eUntild q~ D o. Then, by (T7), either [ ] ~ d  C D 0, and we 
conclude by the induction hypothesis part (a), or, by (T7) and (A4), 
D(c V d) ~ D o. By the induction hypothesis part (a), there is an index k, for 
which c ~ D k and d ~ D~. Let i be the smallest such k. Now, by using (A6) 
and the induction hypothesis, one may show, by induction on i, that 
cUntild 1~: = fa lse .  

(b) Obvious. 

b = V e .  (a) Suppose Ve E D  O . We want to show that, for almost all 
sequences r ~ Po0, we have e [~:= true.  Since almost all sequences of  P~0 are 
generic (by Lemma 20), it is enough, by Lemma 19 to show that if r is 
generic and ultimately standard, then c 1~: = true. Let r be standard from 
index i on. By Lemma 8, there are g-consistent and complete theories: S m, 
0 ~< m < i such that S m =Dm, Vm 0 ~ m < i and StopS m+~, Vm, 

0 ~< m < i -- 1. Let us define the sequence r '  by:  r~ = {kin, Sin) Vm, 0 ~ m < i 
and v~ = rm, Vm, i ~< m. The sequence r '  is equivalent to v. Therefore, by the 
induction hypothesis, part (b), c Ib = e ]~'. It is generic since it is identical 
with r from index i on an since r is generic. It is also standard. Since ~' is 
standard and generic, we conclude, by the induction hypothesis part (a), that 
c [~:' = true <:> e C D ' ,  where r~ = (k, D ' ) .  But since r -= r ' ,  and Vc C D 0, we 
conclude that c E D ' .  

Suppose now that -~Ve C D o. We must find a set Q of sequences that 
begin at a o and do not satisfy c, such that Q has a positive measure. 
Remember that a o = {ko,Do). By Lemma 6, there is a trace E such that 
D O ---- E and c ~ E. Let E '  be any trace such that EpE'.  Lemma 2 ensures the 
existence of  such an E ' .  We have D o ~ p E ' ,  and by the definition of  our 
model p ( ( k o , D o ) , ( k o + l , E ' ) ) > O .  Let us define Q as the set of  all 
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sequences r such that: r o = o0, r 1 = (kl ,  E ' )  and the sequence r I is standard 
and generic. By Lemma 19, we have/~,o(Q) > 0. It is left to us to show that 
no sequence of  Q satisfies c. Let r be any sequence of Q. Let r '  be the 
sequence (ko,~V), r l ,  r 2 ..... It is a generic standard sequence. By the 
induction hypothesis, part (a) we have c Ib' = false. But since D O = E, r - v'. 
We conclude, by the induction hypothesis, part (b), that c lb = false. 

(b) Let a be any generic standard sequence starting at r 0. Since the 
truth value of  Vc depends only on the first state of  the sequence we have 
Velb=Vel~:. By the induction hypothesis, part ( a ) j u s t  above: Vcl~r= 
true ~ Vc C D, where r o = a o = (k0, D).  Similarly Vc Ib' = true ~ Vc E D ' ,  
where r~ = (ko, D ' ) .  But, since D = D ' ,  Vc C D ¢:> Ve ~ D ' .  Q.E.D. 

We may now conclude the proof  of  completeness. Since ~ a  E Da and D~ 
is the initial state of  our model U, we conclude from Lemmas 19 and 21 that 
/~u(~a) > 0 and therefore U ~  a. 

11.8. Completeness of TCb 

There are many ways to build a satisfactory model, we choose a model 
that may be described concisely. The model U - - ( S ,  u, l,p), that does not 
satisfy a, is defined the followed way: 

(1) S = N X ~ . .  
(2) u = (0, Da). 

(3) l((i,D)= {p]pED}. 
(4) Choose some number a:  ½ < a < 1. We distinguish here between 

the states of  first coordinate 0 and the other ones. For states whose first 
coordinate is zero, we give a positive probability to a move from (0, D)  to 
(0, D ' )  iff D =_pD'. We give a positive probability to a move from (0, D)  to 
(1, D ' )  iff D is terminal and D ~pD'. All other transitions from (0, D)  have 
probability zero. We give equal probabilities to all moves of  positive 
probability. For  states whose first coordinate is positive, we allow to increase 
or decrease by one the first coordinate. If  i >  0, we give a positive 
probability to a transition from (i,D) to ( r i D ' )  iff D~pD' and either 
j = i - -  1 or j = i + 1. Moreover, we give a combined weight of  a (a > ½) to 
those moves that increase the first coordinate. 

Notice that states (k, D)  with k > 0 and D not terminal cannot be reached 
from the initial state by transitions of  positive probability. We may as well 
exclude those states from our consideration. From now on, if ( k , D )  is a 
state such that k > 0, then D is terminal. 

L e t a  be a sequence and let a i = (k i, Di). Let m be a natural number. We 
define a to be m-standard iff there exists a j ,  such that Dj is terminal, for all i 
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such t h a t j  + m ~< i, we have D i ~pDi+ 1 and for all i such that, i ~<j + m -- 1 
we have DipDi+ ~ . Notice that in this case D i is terminal for any i >/j. 

A sequence is said to be m-ultimately standard if it has a tail that is m- 
standard. 

The definition of  equivalent sequences is unchanged. We shall now need a 
stronger definition of  generic sequences (it is needed in the © case below). 

DEFINITION 18. Let a be a sequence of  states of U, ~7 is said to be 
generic iff for any trace D O that appears an infinite number of  times (as a 
second component)  in a and for any finite sequence of  traces D o, D~ ..... D m 
such that DipDi+l,  for every such that 0 ~< i < m the sequence above 
appears (as second components in a (in this order) an infinite number of  
times. 

Lemma 20 stays true, since, in our model, p-transitions always have a 
positive bounded probability. 

Our next task is to prove a strengthened version of  Lemma 19. 

LEMMA 22. Le t  s be a state o f  U. The weight o f  all m-standard 
sequenees f r o m  s (under ~6s) is strictly positive and the weight o f  all 
ultimately m-standard sequences f rom s is i. 

Proof. A classical result of the theory of  Markov chains (see, for 
example, Proposition 5-18 of  Kemeny et al., 1966) ensures that, i f s  = (i, D)  
is a state such that i > 0, the set of sequences beginning at s that contain 
only states with a first coordinate k > i (except the first state of  the sequence, 
obviously) has a positive weight and that the set of  sequences beginning at s 
that contain an infinite number of  states with a first coordinate of i has 
weight zero. This property depends crucially on the fact that a > ½. Then, 
using also Lemmas 10 and 20, we see that, if s is any state, the set of  m- 
standard sequences beginning at s has a positive weight and the set of  m- 
ultimately standard sequences beginning at s has weight one. Q.E.D. 

Our basic result concerning U is 

LEMMA 23. Le t  b ~ F n, a a generic ~(b)-s tandard sequence o f  states (of  
U) and r and r' two equivalent sequences o f  states, then 

(a) b I~:= true ~ b E D O , where a i=  ( k i , D i )  , 

(b) b l ~ = b l b ' .  

Proof. The proof  is very similar to the proof  of  Lemma 21, and therefore 
we shall only highlight the changes to be made. 

b = ©c. (a) Oc I~: = true .~  e ]~:~ = true. The sequence a 1 is generic since 
a is. Since a is -(2(b)-standard, al  is ( ~ ( b ) -  1)-standard. But 
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~ ( b ) - 1  =.Q(c).  Therefore, by the induction hypothesis: c l ~ ' = t r u e ¢ >  
c E D 1 . Since f2(b)>/1 ,  the first transition of  cr is a p-transition and DoPD 1 . 
We conclude that c E D 1 ¢:, Oc ~ D 0. 

b = I-]c. (a) Suppose I-]c E D 0. Since a is standard, we have , Vi C IN, 
Di'~pDi+ ~. Therefore one can show, by induction on i, that W E N ,  
IS]c E Di. Our goal is to use the induction hypothesis on c. We notice that 
Vi C N, cr ~ is generic. Let i be given. In general a i is not .O(c)-standard. Let 
m = O(c). Now we have to distinguish between two cases following whether 
D~ is terminal or not. I f  D i is not terminal, then k t = 0 and we may essen- 
tially reason as in Lemma 21. More precisely, since cr is m-standard, there is 
an index j  such that Dj is terminal and for all n such t h a t j  + m ~< n, we have 
Dn~pDn+ 1 and for all n such that O<~n < j + m  we have DnPDn+ 1. If  D,- is 
not terminal it must be that i < j .  Therefore the sequence a ~ is m-standard 
and we may use the induction hypothesis part (a) to conclude: e I~/--true. 
On the other hand, suppose that D; is terminal. By Lemma 12 (and this is 
the only time we use the full force of  Axiom (A13)), we may find traces E , ,  
for n = i,...,j + m - 1, such that E~ ~ Dg, for all n such that i < n ~<j + m - 1 
we have E n - D ,  and for all n such that i ~< n < j  + m - 1 we have E , p E , +  1. 
Let the sequence r be defined by: r , = o , ,  V n , j +  m < . n  and r ,  = ( 0 , E , ) ,  
Vn, n ~<j + m -  1. By construction a" and r are equivalent and therefore by 
the induction hypothesis (b) e]~: '=elb.  But r is a generic m-standard 
sequence and by the induction hypothesis (a) e [ b =  true <:> c E E i. To 
conclude, notice that De C D i ~ De C E~ since D~ ~ E i. We conclude that 
[ ] c l ~  --- true.  

12c ~ D 0. Following the line of  reasoning used in Lemma 21 one may 
see that Ei C Nq such that c ~ D~. Now, as just above, we must distinguish 
two cases. If  D;  is not terminal, a ~ must be m-standard and one may use the 
induction hypothesis part(a). I f  D~ is terminal, the proof  is more delicate. I f  
D i is terminal and does not contain c, it must contain [] ~ t ic (here we need 
n ' > ~ n + 2 ) .  We may then show that for all indexes j such that j ~ i ,  
IS1~ Dc ~ Dj.  Therefore there is a terminal trace E that contains ~ [ 3 c  and 
appears an infinite number of  times in or. Since cr is generic, we conclude, 
using Lemma 18, that there is a terminal trace F that does not contain c and 
that appears an infinite number of  times in tr. Since cr is generic, the trace F 
must appear in cr an infinite number of  times followed by at least f2(c) p- 
transitions. Let j be such a point in tr, with j >~ i. At j ,  we may apply the 
induction hypothesis part (a) and see that c I~ j =  false. We conclude that 
[]c [ ~ i  false. 

b - - V c .  (a) Suppose V c E  D O . We want to show that, for almost all 
sequences r C Poo' we have c Ib = true. Since almost all sequences of  P~0 are 
generic (by Lemma 20), and O(c)-ultimately standard (by Lemma 22) it is 
enough to show that if r is generic and .Q(c)-ultimately standard, then 
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e [~ :=  true. Let m = D(e). Since .v is m-ul t imately s tandard  it has an m- 
s tandard tail. Using Lemma 8 as we did in the corresponding par t  of  Lemma 
21, we may  build a sequence v' that  is equivalent to v, generic and m- 
s tandard.  By the induction hypothesis ,  par t  (b), c ]~. = e [~/. We conclude by 
using the induction hypothesis ,  part  (a). 

Suppose now that  - , V e  C D 0. We must  find a set Q of  sequences that  
begin at g0 and do not satisfy c, such that  Q has a posit ive measure.  
Remember  that  g0 = (ko ,Do) .  We have to distinguish two cases, following 
whether k 0 is zero or positive. I f  k 0 = 0, we reason essential ly as in the 
corresponding par t  of  Lemma 21. By Lemma 6, there is a trace E such that  
D O ~- E and e ~ E. Let E '  be any trace such that  EpE' .  Lemma 2 ensures the 
existence of  such an E ' .  We  have D o =-pE', and by the definition of our 
model  p ( (0 ,  Do), (0, E ' ) ) >  0. Let us define Q as the set of  all sequences r 
such t h a t : ' v 0 = a  0, r I = ( 0 , E ' )  and the sequence r I is generic and O(c)- 
standard.  By Lemmas  20 and 22, we have f l ,  o(Q) > 0. It is left to us to show 
that no sequence of  Q satisfies e. Let r be any sequence of Q. Let r '  be the 
sequence ( 0 , E ) ,  vl, r 2 ..... It  is a generic O(c) -s tandard  sequence. By the 
induction hypothesis ,  par t  (a) we have e [~/= false. But since D o -_-- E, r = r ' .  
We conclude, by the induction hypothesis ,  part  (b), that  c ][~ = false. 

If k o > 0, we may  not  reason in the same way since the first move of  the 
sequences of  Q above may  have probabi l i ty  zero (in the case D o does not 
stand in the relat ion ~ p  to E') .  But notice that,  in this case, we know that D o 
is terminal .  By L e m m a  6, there is a t race E such that  D o - E and e ~ E. Let 

m = sg(e). By L e m m a  13, there are traces Eo, . . . ,E  m and F o ..... F m such that  

E 0 = E and F o = D o, E i =_ F i for 0 <~ i ~ m, EiPEi+ x for 0 ~< i < m and 
Fi ~PFi+ 1 for 0 ~ i < m. Not ice  that  the traces F ;  are all terminal .  Let Q be 
the set of  all sequences r such that:  r i =  ( k i , F i )  ViO ~ i ~  m and r ~ is 
generic and 0-standard.  By construct ion and Lemmas 20 and 22, the set Q 
has a posit ive measure.  It is left to us to show that  no sequence of  Q satisfies 
c. Let r be a sequence of  the set Q. Define the sequence r '  by:  r[ = r~ for 
m < i and r[ = (0, El) for 0 ~< i ~< m. By construct ion r -- r '  and therefore, by 
the induction hypothesis  part  (b) c 1~= e Ib'. But the sequence r '  is generic 
since it has a generic tail. It is also m-s tandard  since it consists of  a prefix of  
m p-transi t ions and a 0-s tandard  tail. By the induction hypothesis  part  (a) we 
conclude e 1~,'= false. Q.E.D. 

The proof  of  completeness is completed as in the previous case. 

11.9. Completeness o f  T C f  

The model  U =  (S,  u, l ,p) ,  that  does not satisfy a, is defined the following 
way:  

(1) s = 9 . .  
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(2) u = D a. 

(3) l(D)= {p[pCD}.  

(4) If  D is not terminal, then we decide that p(D, E ) ~  0 iff D =pE 
and that all transitions of  positive probability from D have equal 
probabilities. On the other hand, if D is terminal p(D, E) 4= 0 iff D ~pE and 
all transitions from D have equal probabilities. 

Notice that if D is terminal and the transition D - ~ E  has a positive 
probability, then E is terminal. 

If  DpE let us call the transition from D to E a p-transition. Let m be a 
natural number. Let ~ be a sequence of  states of  U. If  there exists an n C N 
such that: t~ n is terminal, for all i such that 0 ~< i < n + m, we have ~ip~i+ 
and for all i such that n + m ~< i, we have ai ~pcri+ 1 we shall say that cr is an 
m-standard sequence. We define ultimately m-standard sequences as above. 

We see, using Lemmas 9, 10, and 18, that the set of  m-standard sequences 
beginning at a trace s has positive weight and that the set of  ultimately m- 
standard sequences beginning at a trace s has weight 1. 

DEFINITION 19. Two sequences of  states r and r '  are said to be 
equivalent (r - r ' )  if Vi E N, r i - r[. 

DEFINITION 20. Let cr be a sequence of states of  U, ~ is said to be 
generic iff for any trace D O that appears an infinite number of  times in ~ and 
for any finite sequence of  traces Do, D1,..., D m such that DipDi+ 1 , for every 
i such that 0 ~ i < m the sequence above  appears in ~ (in this order) an 
infinite number of  times. 

The weight of  generic sequences is one, i.e., for any state s,/Ts({r [ r ~ Ps, r 
generic}) = 1. 

Our goal is to show that in U,/5,(-~a) > 0 and therefore the model U does 
not satisfy a. Our basic result concerning U is 

LEMMA 24. Let b ~ F., ~ an ~2(b)-standard generic sequence of states 
(of U) and v and v' two equivalent sequences of states, then 

(a) b l ~ : = t r u e ~ b ~ a  o, 

(b) bl~=bl~v '. 

Proof. The proof  is very similar to that of  Lemma 23, and we signal only 
the differences. 

b = Ve. (a) In the first half  of  the proof  reason as in Lemma 23. 

Suppose now that ~ V c ~  D o . We must find a set Q of  sequences that 
begin at % and do not satisfy e, such that Q has a positive measure. We 

Sh:193



REASONING WITH TIME AND CHANCE 195 

have to distinguish two cases, following whether e0 is terminal or not. If  % is 
not terminal then we use Lemma 6 to build a trace E such that ~r 0 = E and 
c ~ E. If, on the contrary,  cr 0 is terminal we use Lemma 15 to build a trace E 
such that cr 0 ~ E and e C E. Let E '  be any trace such that EpE'. Lemma 2 
ensures the existence of  such an E ' .  Notice that, by definition of  our model, 
whether a 0 is terminal or not, we have p(~r0, E ' )  > 0. Let us define Q as the 
set of  all sequences r such that: r 0 =  %,  r l = E '  and the sequence r 1 is 
generic and ,O(c)-standard. We have/~o0(Q) > 0. It is left to us to show that 
no sequence of  Q satisfies c. Let r be any sequence of  Q. Let r '  be the 
sequence E, Z-l, r 2 . . . . .  It is a generic .O(c)-standard sequence. By the 
induction hypothesis, part (a) we have c ]b '=  false. But since cr o - E ,  r-= r ' .  
We conclude, by the induction hypothesis, part (b), that c Ib = false. Q.E.D. 

We may now conclude the proof  of  completeness, as in the previous cases. 

12. ALTERNATIVE SYSTEMS FOR UNBELIEVERS 

Anybody  who does not believe that formulas that hold with probability 
one really hold should, instead of  Definition 5, us the following definition of  
satisfiability: 

DEFINITION 21. Let U be a g-model and a C F a formula. We say that U 
satisfies a and write U ~  a, iff for any r C Pu, a 1~ = true. 

The definition of  validity stays unchanged. The logical system should be 
changed in the following way. Essentially, instead of  basing our system on 
($5), we should base it on deontic ($5) (see Chellas, 1980). More 
specifically, one notices that rules (R0) - (R2)  are still sound and that, except 
(A10), (A12)- (A14) ,  all axioms are still valid. Therefore we keep rules 
(R0) - (R2)  and Axioms (A0) - (A9)  and (A11). For the other axioms, we just 
prefix them by VD. Instead of (A10) use 

(A10 ' )  VD[i~a ~ a]. 

Instead of (A12), use 

(A12 ' )  V N [ V O a ~ O V a ] .  

Instead of  (A13) and (A14), use 

(A13 ' )  VE][A13]. 

(A14 ' )  VD[A14] .  
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13. SOME THEOREMS FOR UNBELIEVERS 

We shall now list, with minimal justification, some theorems of the system 
consisting of Axioms (A0)-(A9), (A10'), (Al l ) ,  (A12') and rules 
(R0)-(R2). We omit writing the deducibility symbol. 

~Vfalse .  (T8) 

Proof. true ==> Vtrue ==> AVtrue, by (A9)  ==> ~ V A f a l s e .  But false -~ 
Afalse ==> Vfalse -+ V A  false ==> whose contrapositive is ~VAfalse -~ ~Vfalse .  

Va ~ Aa. (T9) 

The proof goes the following way: ~Vfa l sec~-W(a  A ~ a ) ¢ ~  
~(Va A V-=a) <=> ~Va  V ~ V ~ a  => Va ~ Aa. 

Va ~ VVa. (T10) 

The implication from right to left follows easily from (A.10'). The 
implication from left to right is proved as in (T2). 

V [Aa V b ] ~ Aa V Vb, (T 11) 

V[]Va ~ V[]a. (T12) 

Follows from (A10'). 
We think that the resulting systems NTCy are sound and complete for the 

stricter notion of validity of Definition 21. The proof should be very similar 
to the one presented above, the only basic difference being that the relation -= 
behaves slightly differently and that theories T that do not satisfy T - - T  
must be treated as a special case. The relation - is transitive (by (T10)) but 
not reflexive or symmetric. It, nevertheless, satisfies the property: if T - T ' ,  
then Va C T i f f  Va E T'. 

14. LINEAR TIME VERSUS BRANCHING TIME 

One may remark that our language is also suitable for interpretation in 
nonprobabilistic models. Indeed it may be interpreted on tree models similar 
to those used in branching time temporal logic, the symbol V being taken to 
mean for all paths. With this interpretation our language contains branching 
time logic as it is defined in Ben-Ari et al. (1981) and Emerson and Halpern 
(1982). If one takes the natural definition of satisfiability that says that a 
model satisfies a formula if the formula holds for all the branches that begin 
at the initial state, one immediately notices that our system TCg is sound 
also for those models. It is not complete, though. Notice, for example, that 
the formula p A V[3AOp--* Al-lp is valid for our new nonprobabilistic inter- 
pretation, but is not valid in our probabilistic interpretation. To find the 
additional axioms needed to obtain a complete axiomatization of this 
nonprobabilistic interpretation is an open problem. 
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Another  nonprobabi l i s t ic  interpretat ion of our connective V has been 
suggested by M. Magidor .  Interpret  V as: for a "co-meagre"  family of  paths,  
where the term "co-meagre"  refers to a set whose complement  is of  the first 
ca tegory in Baire 's  classif icat ion,  assuming the natural  topology  for paths in 
models  of  a rb i t ra ry  size. Perhaps surprisingly,  our system T C f  is sound and 
complete  for this interpretat ion,  showing that  arb i t rary  categorical  models  
behave exact ly  as finite probabi l i s t ic  models.  The proof  of this result is 

outside the scope of this paper.  

15. CONCLUSION AND OPEN PROBLEMS 

The main prac t ica l  conclusion of this work is that there is a large class of  
probabi l is t ic  programs for which a quali tat ive analysis  is sufficient, and that  
this analysis  may  be completed without any need to use sophist icated 
probabi l i ty  theory.  

The three systems we presented are decidable  by reduction to S o S  and the 
results of  Rabin  (1969). The reduction is s tandard and extremely inefficient 
as a pract ical  decision method and therefore we shall not describe the 
reduction in detail .  

The question of  the complexi ty  of  decision proce~tures for our systems is 
interesting and open. It follows from the results of  Sisla and Clarke  (1982) 
that  sat isf iabi l i ty  is Pspace-hard.  Our  conjecture is that  the three systems 
above are in Pspace.  

Note added in proof. S. Kraus and D. Lehmann have shown that all three systems require 
exponential time and may be decided in nondeterministic exponential time. 
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