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Abstract. We show that:
(1) For many regular cardinals λ (in particular, for all successors of singular strong limit cardinals,

and for all successors of singular ω-limits), for all n ∈ {2, 3, 4, . . .}: There is a linear order L

such that Ln has no (incomparability-)antichain of cardinality λ, while Ln+1 has an antichain
of cardinality λ.

(2) For any nondecreasing sequence 〈λn : n ∈ {2, 3, 4, . . .}〉 of infinite cardinals it is consistent
that there is a linear order L such that, for all n: Ln has an antichain of cardinality λn, but no
antichain of cardinality λ+

n .

Mathematics Subject Classifications (2000): Primary: 06A05; secondary: 03E04, 03E35, 06A06.
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1. Introduction

For any nontrivial linear ordering L and any natural number n > 1, the set Ln

(ordered by the ‘pointwise’ or ‘product’ order) is partial order which is not linear
any more. A natural measure for its nonlinearity is obtained by considering the pos-
sible sizes (cardinalities) of antichains in Ln (that is, sets of pairwise incomparable
elements).

Haviar and Ploščica in [2] asked: Can there be a linear ordering L and an infinite
cardinal number λ such that for some natural number n > 1, the partial order Ln

does not have antichains of size λ, while Ln+1 has such antichains?
Farley [1] has constructed, for any singular cardinal κ , a linear order L of size

κ such that L3 has an antichain of cardinality κ while L2 does not.
We will be mainly interested in this question for regular cardinals.
First we show in ZFC that there are many successor cardinals λ (including ℵω+1)

with the following property:
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214 MARTIN GOLDSTERN AND SAHARON SHELAH

For every n ≥ 2 there is a linear order J of size λ such that J n has no antichain of
size λ, while J n+1 does.

This proof is given in Section 2. It uses a basic fact from pcf theory.
In Section 3 we show that partial orders Ln can all be very different as far as

the possible sizes of antichains in these orders are concerned. More precisely, we
show that for any nondecreasing sequence of infinite cardinals 〈λn : 2 ≤ n < ω〉
there is a cardinal-preserving forcing extension of the universe in which we can
find a linear order L such that for all n ∈ {2, 3, . . .}: in Ln there are antichains of
cardinality λn, but no larger ones.

For example, it is consistent that there is a linear order L such that L2 has no
uncountable antichain, while L3 does.

Here we use forcing. The heart of this second proof is the well-known �-system
lemma.

2. A ZFC Proof

Let µ be a regular cardinal. We will write Dµ for the filter of cobounded sets, i.e.,

Dµ = {A ⊆ µ : ∃i < µ µ \ i ⊆ A}.
For any sequence 〈λi : i < µ〉 of cardinals, we write

∏
i<µ λi for the set of

all functions f with domain µ satisfying f (i) < λi for all i. The relation f ∼Dµ

g ⇔ {i < µ : f (i) = g(i)} ∈ Dµ is an equivalence relation. We call the quotient
structure

∏
i λi/Dµ (and we often do not distinguish between a function f and its

equivalence class).
∏

i λi/Dµ is partially ordered by the relation

f <Dµ
g iff {i < µ : f (i) < g(i)} ∈ Dµ.

DEFINITION 2.1. For any partial order (P,≤) and any regular cardinal λ we say
λ = tcf(P ) (“λ is the true cofinality of P ”) iff there is an increasing sequence
〈pi : i < λ〉 such that ∀p ∈ P ∃i < λ : p ≤ pi .

Remark 2.2. (1) For any partial order P there is at most one regular cardinal λ
which can be the true cofinality of P , that is: if 〈pi : i < λ〉 and 〈p′

j : j < λ′〉 are
both as above, then λ = λ′.

(2) Every linear order has a true cofinality.
(3) If P has true cofinality, then P is upward directed.
(4) There are partial orders which are upward directed but have no true cofinal-

ity, for example ω × ω1.

THEOREM 2.3. Assume that

(1) 〈λi : i < µ〉 is an increasing sequence of regular cardinals,
(2) For each j < µ, |∏i<j λi| < λj ,
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ANTICHAINS IN PRODUCTS OF LINEAR ORDERS 215

(3) λ is regular and tcf(
∏

i<µ λi

/
Dµ) = λ,

(4) n ≥ 2.

Then there is a linear order J of size λ such that

• J n+1 has an antichain of size λ,
• J n has no antichain of size λ.

To show that there are indeed many cardinals λ of the form tcf
∏

i<µ λi/Dµ as in
our theorem, we use Theorem II.1.5 from [3, p. 50]:

THEOREM 2.4. If κ is singular and cf κ = µ, then there is a strictly increas-
ing sequence 〈λi : i < µ〉 of regular cardinals such that κ = ∑

i<µ λi and
(
∏

i<µ λi,<Dµ
) has true cofinality κ+.

It is clear that in the above theorem we can replace 〈λi : i < µ〉 by any increasing
cofinal subsequence 〈λf (j) : j < µ〉.
CONCLUSION 2.5. Whenever λ = κ+, where κ is a singular strong limit cardi-
nal, or even only the following holds:

κ is singular, and ∀κ ′ < κ : (κ ′)<cf(κ) < κ,

then we can find a sequence 〈λi : i < cf(κ)〉 as in the assumption of Theorem 2.3.

For example, if λ = ℵω+1, then there is an increasing sequence 〈nk : k ∈ ω〉 of
natural numbers such that tcf(

∏
k∈ω ℵnk

/Dω) = ℵω+1. So Theorem 2.3 implies, for
any n > 1 there is a linear order J such that J n has no antichain of size ℵω+1,
whereas J n+1 has one.

Proof. Let µ = cf(κ). We can start with a sequence 〈λi : i < µ〉 such that∏
i<µ λi/Dµ has true cofinality λ = κ+. Choose f : µ → µ increasing cofinal

such that
∏

j<i λf (j) < λf (i) for all i < µ, then 〈λf (j) : j < µ〉 is as required. ✷
The proof of Theorem 2.3 will occupy the rest of this section. The assumption of
Theorem 2.3 says tcf(

∏
i<µ λi

/
Dµ) = λ, so we may fix a sequence 〈fα : α < λ〉

of functions in
∏

i<µ λi such that for all α < β < λ we have fα <Dµ
fβ .

We start by writing µ = ⋃n
�=0 A� as a disjoint union of n+1 many Dµ-positive

(i.e., unbounded) sets. For � = 0, . . . , n we define a linear order <� on λ as follows:

DEFINITION 2.6. For any two distinct functions f, g ∈ ∏
i<µ λi we define

d(f, g) = sup{i < µ : f� i = g� i} = max{i < µ : f� i = g� i}. (1)

That is: if f �= g, then d(f, g) = min{j : f (j) �= g(j)} is the first point where
f and g differ.

For α, β ∈ λ we define α <� β iff:

letting i := d(fα, fβ),

either i ∈ A� and fα(i) < fβ(i)

or i /∈ A� and fα(i) > fβ(i).

(2)

We leave it to the reader to check that <� is indeed a linear order on λ.

Sh:696



216 MARTIN GOLDSTERN AND SAHARON SHELAH

We now define J to be the ‘ordinal sum’ of all the orders <�:

DEFINITION 2.7. Let

J =
n⋃

�=0

{�} × (λ,<�)

with the ‘lexicographic’ order, i.e., (�1, α1) < (�2, α2) iff �1 < �2, or �1 = �2 and
α1 <�1 α2.

CLAIM 2.8. J n+1 has an antichain of size λ.
Proof. Let �tα = 〈(0, α), . . . , (n, α)〉 ∈ J n+1.
For any α �= β we have to check that �tα and �tβ are incomparable. Let i∗ =

d(fα, fβ), and find �∗ such that i∗ ∈ A�∗ . Wlog assume fα(i
∗) < fβ(i

∗). Then
α <�∗ β, but α >� β for all � �= �∗, i.e., (�∗, α) <J (�∗, β), but (�, α) >J (�, β)

for all � �= �∗. ✷
Finishing the proof of 2.3. It remains to show that J n does not have an antichain

of size λ. Towards a contradiction, assume that 〈�tβ : β < λ〉 is an antichain in Jm,
m ≤ n, and m as small as possible. Let �tβ = (tβ(1), . . . , tβ(m)) ∈ Jm. For k =
1, . . . , m we can find functions �k, ξk such that

∀β < λ ∀k: tβ(k) = (�k(β), ξk(β)).

Thinning out we may assume that the functions �1, . . . , �m are constant. We will
again write �1, . . . , �m for those constant values.

We may also assume that for each k the function β �→ ξk(β) is either constant
or strictly increasing. If any of the functions ξk is constant we get a contradiction
to the minimality of m, so all the ξk are strictly increasing. So we may moreover
assume that β < γ implies ξk(β) < ξk′(γ ) for all k, k′, and in particular β ≤ ξk(β)

for all β, k.
Now define g+

β , g−
β ∈ ∏

i<µ λi for every β < λ as follows:

g+
β (i) = max(fξ1(β)(i), . . . , fξn(β)(i)),

g−
β (i) = min(fξ1(β)(i), . . . , fξn(β)(i)).

(3)

CLAIM. The set

C := {i < µ : ∀β {g−
γ (i) : γ > β} is unbounded in λi} (4)

is in the filter Dµ.
Proof. Let S = µ \ C, or more explicitly:

S := {i < µ : ∃β < λ ∃s < λi {g−
γ (i) : γ > β} ⊆ s}.

We have to show that S is a bounded set.
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ANTICHAINS IN PRODUCTS OF LINEAR ORDERS 217

For each i ∈ S let βi < λ and h(i) < λi be such that {g−
γ (i) : γ > βi} ⊆ h(i).

Let β∗ = sup{βi : i ∈ S} < λ, and extend h arbitrarily to a total function on µ.
Since the sequence 〈fα : α < λ〉 is cofinal in

∏
i<µ λi/Dµ, we can find γ > β∗

such that h <Dµ
fγ .

We have γ ≤ ξk(γ ) for all k ∈ {1, . . . , m}, so the sets

Xk := {i < µ : h(i) < fξk(γ )(i)}
are all in Dµ. Now if S were positive mod Dµ (i.e., unbounded), then we could find
i∗ ∈ S ∩ X1 ∩ · · · ∩ Xm. But then i∗ ∈ X1 ∩ · · · ∩ Xm implies

h(i∗) < g−
γ (i∗),

and i∗ ∈ S implies

g−
γ (i∗) < h(i∗),

a contradiction.
This shows that C is indeed a set in the filter Dµ. ✷

We will now use the fact that m < n + 1. Let

�∗ ∈ {0, . . . , n} \ {�1, . . . , �m}.
Since A�∗ is positive mod Dµ, we can pick

i∗ ∈ A�∗ ∩ C. (5)

Using the fact that i∗ ∈ C and definition (4) we can find a sequence 〈βσ :
σ < λi∗〉 such that

∀σ < σ ′ < λi∗ : g+
βσ
(i∗) < g−

βσ ′ (i
∗), (6)

We now restrict our attention from 〈�tβ : β < λ〉 to the subsequence 〈�tβσ
: σ < λi∗〉;

we will show that this sequence cannot be an antichain. For notational simplicity
only we will assume βσ = σ for all σ < λi∗ .

Recall that �tσ = 〈(�1, ξ1(σ )), . . . , (�m, ξm(σ ))〉. For each σ < λi∗ define

�xσ := 〈fξ1(σ ) � i∗, . . . , fξn(σ ) � i∗〉 ∈
(∏

j<i∗
λj

)m

.

Since |∏j<i∗ λj | < λi∗ , there are only < λi∗ many possible values for �xσ , so we
can find σ1 < σ2 < λi∗ such that �xσ1 = �xσ2 .

Now note that by (3) and (6) we have

fξk(σ1)(i
∗) ≤ g+

σ1
(i∗) < g−

σ2
(i∗) ≤ fξk(σ2)(i

∗). (7)

Hence d(fξk(σ1), fξk(σ2)) = i∗ for k = 1, . . . , m.
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218 MARTIN GOLDSTERN AND SAHARON SHELAH

Since i∗ ∈ A�∗ we have for all k: i∗ /∈ A�k . From (1), (2), (7) we get

ξk(σ1) <�k ξk(σ2) for k = 1, . . . , m.

Hence (�k, ξk(σ1)) < (�k, ξk(σ2)) for all k, which means �tσ1 < �tσ2 . ✷
3. Consistency

THEOREM 3.1. Assume ℵ0 ≤ λ2 ≤ λ3 ≤ · · ·, where λ<κ
n = λn for all n, and

κ<κ = κ .
Then there is a forcing notion P which satisfies the κ+-cc and is κ-complete,

and a P-name I∼ of a subset of 2κ (where 2κ is endowed with the lexicographic
order, which is inherited by I∼) such that

�P ∀n > 1: I∼
n has antichains of size λn, but no larger ones.

Remark 3.2. At first reading, the reader may want to consider the special case
κ = ω , λn+2 = ℵn. Note that 2ω is order isomorphic to the Cantor set, a subset of
the real line R, so we obtain as a special case of Theorem 3.1:

Consistently, there is a set I ⊆ R such that for each n, I n+1

admits much larger antichains than I n.

NOTATION 3.3. (1) We let λ1 = 0, λω = sup{λn : n < ω}.
(2) It is understood that 2α is linearly ordered lexicographically, and (2α)m is

partially ordered by the pointwise order.
(3) For α ≤ β ≤ κ , η ∈ 2α , ν ∈ 2β , we define

η ✂ ν iff ν extends η, i.e., η ⊆ ν.

(4) For η̄ = 〈η(0), . . . , η(n − 1)〉 ∈ (2α)n, ν̄ = 〈ν(0), . . . , ν(n − 1)〉 ∈ (2β)n,
we let

η̄ ✂ ν̄ iff η(0) ✂ ν(0), . . . , η(n − 1) ✂ ν(n − 1).

(5) For η ∈ 2α , i ∈ {0, 1} we write η,i for the element ν ∈ 2α+1 satisfying
η ✂ ν, ν(α) = i.

DEFINITION 3.4. Let η̄ ∈ (2α)m, k ∈ {0, . . . , m − 1}, m ≥ 2. We define η̄,1̄,
η̄,0̄, η̄,{k �→ 1 else 0̄}, η̄,{k �→ 0 else 1̄} in (2α+1)m as follows: All four are✂-extensions of η̄, and:

– η̄,0̄(n) = η(n),0 for all n < m.
– η̄,1̄(n) = η(n),1 for all n < m.
– η̄,{k �→ 0 else 1̄}(n) = η(n),1 for all n �= k, η̄,{k �→ 0 else 1̄}(k) = η(n),0.
– η̄,{k �→ 1 else 0̄}(n) = η(n),0 for all n �= k, η̄,{k �→ 1 else 0̄}(k) = η(n),1.
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ANTICHAINS IN PRODUCTS OF LINEAR ORDERS 219

FACT 3.5. (1) If α ≤ β ≤ κ , η̄, η̄′ ∈ (2α)n are incomparable, ν̄, ν̄′ ∈ (2β)n, η̄✂ ν̄,
η̄′ ✂ ν̄′, then also ν̄ and ν̄′ are incomparable.

(2) η̄,0̄ < η̄,1̄.
(3) η̄,{k �→ 0 else 1̄}0 and η̄,{k �→ 1 else 0̄} are incomparable.

DEFINITION 3.6. We let P be the set of all “conditions”

p = (up, αp, 〈η̄p

ξ : ξ ∈ up〉)
satisfying the following requirements for all m:

– up ∈ [λω]<κ .
– αp < κ .
– For all ξ ∈ up ∩ (λm \ λm−1): η̄

p

ξ = 〈ηp

ξ (0), . . . , η
p

ξ (m − 1)〉 ∈ (2αp
)m.

– For all ξ �= ξ ′ in up ∩ (λm \ λm−1), η̄
p

ξ and η̄
p

ξ ′ are incomparable in (2αp

)m.

We define p ≤ q (“q is stronger than p”) iff

– up ⊆ uq ,
– αp ≤ αq ,
– for all ξ ∈ up, η̄p

ξ ✂ η̄
q

ξ .

FACT 3.7. (1) For all α < κ: The set {p ∈ P : αp ≥ α} is dense in P.
(2) For all ξ < λω: The set {p ∈ P : ξ ∈ up} is dense in P.

FACT AND DEFINITION 3.8. We let 〈ν̄∼ ξ : ξ < λω〉 be the “generic object”, i.e.,
a name satisfying

∀m ∈ ω ∀p ∈ P ∀ξ ∈ up ∩ (λm \ λm−1) : p �P ν̄∼ ξ ∈ (2κ )m,

∀p ∈ P ∀ξ ∈ up : p � η̄
p

ξ ✂ ν̄∼ ξ .

(This definition makes sense, by Fact 3.7.)
Clearly, � ξ, ξ ′ ∈ λm \ λm−1 ⇒ ν̄∼ ξ , ν̄∼ ξ ′ incompatible.
We let � I∼ = ⋃∞

m=2{νξ (�) : ξ ∈ λm \ λm−1, � < m}.
LEMMA 3.9. Let P, I∼ be as in 3.6 and 3.8.

Then �P I∼
m has antichains of size λm, but no larger ones.
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It is clear that P is κ-complete, and κ+-cc is proved by an argument similar to the
�-system argument below. So all the λm stay cardinals.

We can show by induction that � α(I∼
m) > λm, i.e., I∼

m has an antichain of
size λm: This is clear if λm = λm−1 (and void if m = 0); if λm > λm−1 then
〈ν̄ξ : ξ ∈ λm \ λm−1〉 will be forced to be antichain.

It remains to show that (for any m) there is no antichain of size λ+
m in I∼

m.
Fix m∗ ∈ ω, and assume wlog that λm∗+1 > λm∗ .
[Why is this no loss of generality? If λm∗ = λω, then the cardinality of I∼ is at

most λm∗ , and there is nothing to prove. If λm∗ = λm∗+1 < λω, then replace m∗ by
min{m ≥ m∗ : λm < λm+1}].

Towards a contradiction, assume that there is a condition p and a sequence of

names 〈ρ̄∼β : β < λ+
m∗〉 such that

p � 〈ρ̄∼β : β < λ+
m∗ 〉 is an antichain in I∼

m∗
.

Let ρ̄∼β = (ρ̄∼β(n) : n < m∗). For each β < λ+
m∗ and each n < m∗ we can find a

condition pβ ≥ p and

mn(β) ∈ ω, �n(β) < mn(β), ξn(β) ∈ λmn(β) \ λmn(β)−1

such that

pβ � ρβ(n) = νξn(β)(�n(β)).

We will now employ a �-system argument.
We define a family 〈ζ β : β < λ+

m∗ 〉 of functions as follows: Let iβ be the order
type of upβ , and let

uβ = upβ = {ζ β(i) : i < iβ} in increasing enumeration.

By 3.7(2) may assume ξn(β) ∈ uβ , say ξn(β) = ζ β(in(β)).

By thinning out our alleged antichain 〈ρ̄∼β : β < λ+
m∗〉 we may assume

• For some i∗ < κ , for all β: iβ = i∗.
• For some α∗ < κ , for all β: αpβ = α∗.
• For each i < i∗ there is some m〈i〉 such that for all β: ζ β(i) ∈ λm〈i〉 \ λm〈i〉−1 .
• For each i < i∗ there is some η̄〈i〉 ∈ (2α∗

)m〈i〉 such that for all β: η̄
pβ

ζβ (i)
= η̄〈i〉.

(Here we use λ<κ
m = λm.)

• The family 〈uβ : β < λ+
m∗〉 is a �-system, i.e., there is some set u∗ ∈ [λω]<κ

such that for all β �= γ : uβ ∩ uγ = u∗.
• Moreover: there is a set � ⊆ i∗ such that for all β: u∗ = {ζ β(i) : i ∈ �}. Since

ζ β is increasing, this also implies ζ β(i) = ζ γ (i) for i ∈ �.
• For each n < m∗, the functions mn, �n and in are constant. (Recall that these

functions map λ+
m∗ into ω.) We will again write mn, �n, in for these constant

values.
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Note that for i ∈ i∗ \ � all the ζ β(i) are distinct elements of λm〈i〉 , hence:

i /∈ � implies λ+
m∗ ≤ λm〈i〉, hence m〈i〉 > m∗.

Now pick k∗ ≤ m∗ such that k∗ /∈ {�n : n < m∗}. Pick any distinct β, γ < λ+
m∗ .

We will find a condition q extending pβ and pγ , such that q � ρ̄∼β ≤ ρ̄∼γ .

We define q as follows:

• uq := uβ ∪ uγ = u∗ ∪̇ {ζ β(i) : i ∈ i∗ \ �} ∪̇ {ζ γ (i) : i ∈ i∗ \ �}.
• αq = α∗ + 1.
• For ξ ∈ u∗, say ξ = ζ β(i) = ζ γ (i), recall that η̄

pβ

ξ = η̄〈i〉 = η̄
pγ

ξ . We let
η̄
q

ξ = η̄〈i〉,0̄ (see 3.3).

• For ξ = ζ β(i), i ∈ i∗ \ �, we have η̄
pβ

ξ = η̄〈i〉 ∈ (2α∗
)m〈i〉 , where m〈i〉 > m∗. So

k∗ ≤ m∗ < m〈i〉, hence η̄〈i〉,{k∗ �→ 1 else 0̄} is well-defined. We let

η̄
q

ξ = η̄〈i〉,{k∗ �→ 1 else 0̄}.
• For ξ = ζ γ (i), i ∈ i∗ \ �, we let

η̄
q

ξ = η̄〈i〉,{k∗ �→ 0 else 1̄}.
We claim that q is a condition. The only nontrivial requirement is the incom-

patibility of all η̄q

ξ : Let ξ, ξ ′ ∈ uq , ξ �= ξ ′, and assume that ξ, ξ ′ ∈ λm \ λm−1 for
some m.

If ξ, ξ ′ ∈ uβ , then the incompatibility of η̄
q

ξ and η̄
q

ξ ′ follows from the incompat-

ibility of η̄
pβ

ξ and η̄
pβ

ξ ′ . The same argument works for ξ, ξ ′ ∈ uγ .
So let ξ ∈ uβ \ u∗, ξ ′ ∈ uγ \ u∗. Say ξ = ζ β(i), ξ ′ = ζ γ (i′).
If i �= i′, then η̄〈i〉 = η̄

pβ

ζβ (i)
= η̄

pγ

ζγ (i) and η̄〈i′〉 = η̄
pγ

ζγ (i′) are incompatible (because

pγ is a condition). From η̄〈i〉 ✂ η̄
q

ξ and η̄〈i′ 〉 ✂ η̄
q

ξ ′ we conclude that also η̄
q

ξ and η̄
q

ξ ′
are incompatible.

Finally, we consider the case i = i′.
We have

η̄
q

ξ = η̄〈i〉,{k∗ �→ 0 else 1̄}, η̄
q

ξ ′ = η̄〈i〉,{k∗ �→ 1 else 0̄}

so by 3.7(3), η̄q

ξ and η̄
q

ξ ′ are incompatible.

This concludes the construction of q. We now check that q � ρ̄∼β ≤ ρ̄∼γ , i.e., q �
ρ̄∼β(n) ≤ ρ̄∼γ (n) for all n. Clearly, q � ρ̄∼β(n) = ν̄∼ ζβ (in)(�n) � η̄

q

ζβ (in)
= η〈in〉,0̄.

Here we use the fact that k∗ �= �n. Similarly, q � ρ̄∼γ (n) = ν̄∼ ζβ (in)(�n) � η〈in〉,1̄.

Hence q � ρ̄∼β ≤ ρ̄∼γ .

This concludes the proof of Theorem 3.1
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