Antichains in Products of Linear Orders

MARTIN GOLDSTERN^{1,★} and SAHARON SHELAH^{2,★★}

¹Institut für Algebra, Technische Universität Wien, Wiedner Hauptstraße 8-10/118.2,

A-1040 Vienna, Austria. e-mail: Martin.Goldstern@tuwien.ac.at

²Department of Mathematics, Hebrew University of Jerusalem, Givat Ram, 91904 Jerusalem, Israel. e-mail: shelah@math.huji.ac.il

(Received: 12 October 2000; accepted: 17 June 2002)

Abstract. We show that:

- (1) For many regular cardinals λ (in particular, for all successors of singular strong limit cardinals, and for all successors of singular ω -limits), for all $n \in \{2, 3, 4, \ldots\}$: There is a linear order L such that L^n has no (incomparability-)antichain of cardinality λ , while L^{n+1} has an antichain of cardinality λ .
- (2) For any nondecreasing sequence $\langle \lambda_n : n \in \{2, 3, 4, \ldots\} \rangle$ of infinite cardinals it is consistent that there is a linear order L such that, for all n: L^n has an antichain of cardinality λ_n , but no antichain of cardinality λ_n^+ .

Mathematics Subject Classifications (2000): Primary: 06A05; secondary: 03E04, 03E35, 06A06.

Key words: size of antichains, product of chains, pcf theory, Delta system.

1. Introduction

For any nontrivial linear ordering L and any natural number n > 1, the set L^n (ordered by the 'pointwise' or 'product' order) is partial order which is not linear any more. A natural measure for its nonlinearity is obtained by considering the possible sizes (cardinalities) of antichains in L^n (that is, sets of pairwise incomparable elements).

Haviar and Ploščica in [2] asked: Can there be a linear ordering L and an infinite cardinal number λ such that for some natural number n > 1, the partial order L^n does not have antichains of size λ , while L^{n+1} has such antichains?

Farley [1] has constructed, for any *singular* cardinal κ , a linear order L of size κ such that L^3 has an antichain of cardinality κ while L^2 does not.

We will be mainly interested in this question for regular cardinals.

First we show in ZFC that there are many successor cardinals λ (including $\aleph_{\omega+1}$) with the following property:

^{*} The first author is partially supported by the Austrian Science Foundation, FWF grant P13325-MAT

^{**} The second author is supported by the German-Israeli Foundation for Scientific Research & Development Grant No. G-294.081.06/93. Publication number 696.

Sh:696

For every $n \ge 2$ there is a linear order J of size λ such that J^n has no antichain of size λ , while J^{n+1} does.

This proof is given in Section 2. It uses a basic fact from pcf theory.

In Section 3 we show that partial orders L^n can all be very different as far as the possible sizes of antichains in these orders are concerned. More precisely, we show that for any nondecreasing sequence of infinite cardinals $\langle \lambda_n : 2 \le n < \omega \rangle$ there is a cardinal-preserving forcing extension of the universe in which we can find a linear order L such that for all $n \in \{2, 3, \ldots\}$: in L^n there are antichains of cardinality λ_n , but no larger ones.

For example, it is consistent that there is a linear order L such that L^2 has no uncountable antichain, while L^3 does.

Here we use forcing. The heart of this second proof is the well-known Δ -system lemma.

2. A ZFC Proof

Let μ be a regular cardinal. We will write D_{μ} for the filter of cobounded sets, i.e.,

$$D_{\mu} = \{ A \subseteq \mu : \exists i < \mu \ \mu \setminus i \subseteq A \}.$$

For any sequence $\langle \lambda_i : i < \mu \rangle$ of cardinals, we write $\prod_{i < \mu} \lambda_i$ for the set of all functions f with domain μ satisfying $f(i) < \lambda_i$ for all i. The relation $f \sim_{D_\mu} g \Leftrightarrow \{i < \mu : f(i) = g(i)\} \in D_\mu$ is an equivalence relation. We call the quotient structure $\prod_i \lambda_i/D_\mu$ (and we often do not distinguish between a function f and its equivalence class). $\prod_i \lambda_i/D_\mu$ is partially ordered by the relation

$$f <_{D_{\mu}} g$$
 iff $\{i < \mu : f(i) < g(i)\} \in D_{\mu}$.

DEFINITION 2.1. For any partial order (P, \leq) and any regular cardinal λ we say $\lambda = \operatorname{tcf}(P)$ (" λ is the true cofinality of P") iff there is an increasing sequence $\langle p_i : i < \lambda \rangle$ such that $\forall p \in P \exists i < \lambda : p \leq p_i$.

Remark 2.2. (1) For any partial order P there is at most one regular cardinal λ which can be the true cofinality of P, that is: if $\langle p_i : i < \lambda \rangle$ and $\langle p'_j : j < \lambda' \rangle$ are both as above, then $\lambda = \lambda'$.

- (2) Every linear order has a true cofinality.
- (3) If P has true cofinality, then P is upward directed.
- (4) There are partial orders which are upward directed but have no true cofinality, for example $\omega \times \omega_1$.

THEOREM 2.3. Assume that

- (1) $\langle \lambda_i : i < \mu \rangle$ is an increasing sequence of regular cardinals,
- (2) For each $j < \mu$, $|\prod_{i < j} \lambda_i| < \lambda_j$,

ANTICHAINS IN PRODUCTS OF LINEAR ORDERS

215

- (3) λ is regular and $tcf(\prod_{i \le \mu} \lambda_i / D_{\mu}) = \lambda$,
- (4) $n \ge 2$.

Then there is a linear order J of size λ such that

- J^{n+1} has an antichain of size λ ,
- J^n has no antichain of size λ .

To show that there are indeed many cardinals λ of the form tcf $\prod_{i<\mu} \lambda_i/D_{\mu}$ as in our theorem, we use Theorem II.1.5 from [3, p. 50]:

THEOREM 2.4. If κ is singular and cf $\kappa = \mu$, then there is a strictly increasing sequence $\langle \lambda_i : i < \mu \rangle$ of regular cardinals such that $\kappa = \sum_{i < \mu} \lambda_i$ and $(\prod_{i < \mu} \lambda_i, <_{D_{\mu}})$ has true cofinality κ^+ .

It is clear that in the above theorem we can replace $\langle \lambda_i : i < \mu \rangle$ by any increasing cofinal subsequence $\langle \lambda_{f(j)} : j < \mu \rangle$.

CONCLUSION 2.5. Whenever $\lambda = \kappa^+$, where κ is a singular strong limit cardinal, or even only the following holds:

$$\kappa$$
 is singular, and $\forall \kappa' < \kappa : (\kappa')^{< cf(\kappa)} < \kappa$,

then we can find a sequence $\langle \lambda_i : i < cf(\kappa) \rangle$ as in the assumption of Theorem 2.3.

For example, if $\lambda = \aleph_{\omega+1}$, then there is an increasing sequence $\langle n_k : k \in \omega \rangle$ of natural numbers such that $\operatorname{tcf}(\prod_{k \in \omega} \aleph_{n_k}/D_\omega) = \aleph_{\omega+1}$. So Theorem 2.3 implies, for any n > 1 there is a linear order J such that J^n has no antichain of size $\aleph_{\omega+1}$, whereas J^{n+1} has one.

Proof. Let $\mu = \operatorname{cf}(\kappa)$. We can start with a sequence $\langle \lambda_i : i < \mu \rangle$ such that $\prod_{i < \mu} \lambda_i / D_\mu$ has true cofinality $\lambda = \kappa^+$. Choose $f \colon \mu \to \mu$ increasing cofinal such that $\prod_{j < i} \lambda_{f(j)} < \lambda_{f(i)}$ for all $i < \mu$, then $\langle \lambda_{f(j)} : j < \mu \rangle$ is as required. \square

The proof of Theorem 2.3 will occupy the rest of this section. The assumption of Theorem 2.3 says $\operatorname{tcf}(\prod_{i<\mu}\lambda_i/D_\mu)=\lambda$, so we may fix a sequence $\langle f_\alpha:\alpha<\lambda\rangle$ of functions in $\prod_{i<\mu}\lambda_i$ such that for all $\alpha<\beta<\lambda$ we have $f_\alpha<_{D_\mu}f_\beta$.

We start by writing $\mu = \bigcup_{\ell=0}^n A_\ell$ as a disjoint union of n+1 many D_μ -positive (i.e., unbounded) sets. For $\ell = 0, \ldots, n$ we define a linear order $<_{\ell}$ on λ as follows:

DEFINITION 2.6. For any two distinct functions $f, g \in \prod_{i < \mu} \lambda_i$ we define

$$d(f,g) = \sup\{i < \mu : f \upharpoonright i = g \upharpoonright i\} = \max\{i < \mu : f \upharpoonright i = g \upharpoonright i\}. \tag{1}$$

That is: if $f \neq g$, then $d(f, g) = \min\{j : f(j) \neq g(j)\}$ is the first point where f and g differ.

For α , $\beta \in \lambda$ we define $\alpha <_{\ell} \beta$ iff:

letting
$$i := d(f_{\alpha}, f_{\beta}),$$

either $i \in A_{\ell}$ and $f_{\alpha}(i) < f_{\beta}(i)$
or $i \notin A_{\ell}$ and $f_{\alpha}(i) > f_{\beta}(i).$ (2)

We leave it to the reader to check that $<_{\ell}$ is indeed a linear order on λ .

Sh:696

216

We now define *J* to be the 'ordinal sum' of all the orders $<_{\ell}$:

DEFINITION 2.7. Let

$$J = \bigcup_{\ell=0}^{n} {\{\ell\} \times (\lambda, <_{\ell})}$$

with the 'lexicographic' order, i.e., $(\ell_1, \alpha_1) < (\ell_2, \alpha_2)$ iff $\ell_1 < \ell_2$, or $\ell_1 = \ell_2$ and $\alpha_1 <_{\ell_1} \alpha_2$.

CLAIM 2.8. J^{n+1} has an antichain of size λ .

Proof. Let
$$\vec{t}_{\alpha} = \langle (0, \alpha), \dots, (n, \alpha) \rangle \in J^{n+1}$$
.

For any $\alpha \neq \beta$ we have to check that \vec{t}_{α} and \vec{t}_{β} are incomparable. Let $i^* = d(f_{\alpha}, f_{\beta})$, and find ℓ^* such that $i^* \in A_{\ell^*}$. Wlog assume $f_{\alpha}(i^*) < f_{\beta}(i^*)$. Then $\alpha <_{\ell^*} \beta$, but $\alpha >_{\ell} \beta$ for all $\ell \neq \ell^*$, i.e., $(\ell^*, \alpha) <_J (\ell^*, \beta)$, but $(\ell, \alpha) >_J (\ell, \beta)$ for all $\ell \neq \ell^*$.

Finishing the proof of 2.3. It remains to show that J^n does not have an antichain of size λ . Towards a contradiction, assume that $\langle \vec{t}_{\beta} : \beta < \lambda \rangle$ is an antichain in J^m , $m \le n$, and m as small as possible. Let $\vec{t}_{\beta} = (t_{\beta}(1), \ldots, t_{\beta}(m)) \in J^m$. For $k = 1, \ldots, m$ we can find functions ℓ_k, ξ_k such that

$$\forall \beta < \lambda \ \forall k: \ t_{\beta}(k) = (\ell_k(\beta), \xi_k(\beta)).$$

Thinning out we may assume that the functions ℓ_1, \ldots, ℓ_m are constant. We will again write ℓ_1, \ldots, ℓ_m for those constant values.

We may also assume that for each k the function $\beta \mapsto \xi_k(\beta)$ is either constant or strictly increasing. If any of the functions ξ_k is constant we get a contradiction to the minimality of m, so all the ξ_k are strictly increasing. So we may moreover assume that $\beta < \gamma$ implies $\xi_k(\beta) < \xi_{k'}(\gamma)$ for all k, k', and in particular $\beta \le \xi_k(\beta)$ for all β , k.

Now define $g_{\beta}^+, g_{\beta}^- \in \prod_{i < \mu} \lambda_i$ for every $\beta < \lambda$ as follows:

$$g_{\beta}^{+}(i) = \max(f_{\xi_{1}(\beta)}(i), \dots, f_{\xi_{n}(\beta)}(i)), g_{\beta}^{-}(i) = \min(f_{\xi_{1}(\beta)}(i), \dots, f_{\xi_{n}(\beta)}(i)).$$
(3)

CLAIM. The set

$$C := \{i < \mu : \forall \beta \ \{g_{\gamma}^{-}(i) : \gamma > \beta\} \text{ is unbounded in } \lambda_i\}$$
 (4)

is in the filter D_{μ} .

Proof. Let $S = \mu \setminus C$, or more explicitly:

$$S := \{i < \mu : \exists \beta < \lambda \,\exists s < \lambda_i \, \{g_{\nu}^-(i) : \gamma > \beta\} \subseteq s\}.$$

We have to show that S is a bounded set.

For each $i \in S$ let $\beta_i < \lambda$ and $h(i) < \lambda_i$ be such that $\{g_{\nu}^-(i) : \gamma > \beta_i\} \subseteq h(i)$. Let $\beta^* = \sup\{\beta_i : i \in S\} < \lambda$, and extend h arbitrarily to a total function on μ . Since the sequence $\langle f_{\alpha} : \alpha < \lambda \rangle$ is cofinal in $\prod_{i < \mu} \lambda_i / D_{\mu}$, we can find $\gamma > \beta^*$ such that $h <_{D_{\mu}} f_{\gamma}$.

We have $\gamma \leq \xi_k(\gamma)$ for all $k \in \{1, ..., m\}$, so the sets

$$X_k := \{i < \mu : h(i) < f_{\xi_k(\gamma)}(i)\}$$

are all in D_{μ} . Now if S were positive mod D_{μ} (i.e., unbounded), then we could find $i_* \in S \cap X_1 \cap \cdots \cap X_m$. But then $i_* \in X_1 \cap \cdots \cap X_m$ implies

$$h(i_*) < g_{\nu}^-(i_*),$$

and $i_* \in S$ implies

$$g_{\nu}^{-}(i_*) < h(i_*),$$

a contradiction.

This shows that C is indeed a set in the filter D_{μ} .

We will now use the fact that m < n + 1. Let

$$\ell^* \in \{0,\ldots,n\} \setminus \{\ell_1,\ldots,\ell_m\}.$$

Since A_{ℓ^*} is positive mod D_{μ} , we can pick

$$i^* \in A_{\ell^*} \cap C. \tag{5}$$

Using the fact that $i^* \in C$ and definition (4) we can find a sequence $\langle \beta_{\sigma} :$ $\sigma < \lambda_{i^*}$ such that

$$\forall \sigma < \sigma' < \lambda_{i^*} \colon g_{\beta_{\sigma}}^+(i^*) < g_{\beta_{\sigma'}}^-(i^*), \tag{6}$$

We now restrict our attention from $\langle \vec{t}_{\beta} : \beta < \lambda \rangle$ to the subsequence $\langle \vec{t}_{\beta_{\sigma}} : \sigma < \lambda_{i^*} \rangle$; we will show that this sequence cannot be an antichain. For notational simplicity only we will assume $\beta_{\sigma} = \sigma$ for all $\sigma < \lambda_{i^*}$.

Recall that $\tilde{t}_{\sigma} = \langle (\ell_1, \xi_1(\sigma)), \dots, (\ell_m, \xi_m(\sigma)) \rangle$. For each $\sigma < \lambda_{i^*}$ define

$$\vec{x}_{\sigma} := \langle f_{\xi_1(\sigma)} \upharpoonright i^*, \dots, f_{\xi_n(\sigma)} \upharpoonright i^* \rangle \in \left(\prod_{i < i^*} \lambda_j \right)^m.$$

Since $|\prod_{i < i^*} \lambda_i| < \lambda_{i^*}$, there are only $< \lambda_{i^*}$ many possible values for \vec{x}_{σ} , so we can find $\sigma_1 < \sigma_2 < \lambda_{i^*}$ such that $\vec{x}_{\sigma_1} = \vec{x}_{\sigma_2}$.

Now note that by (3) and (6) we have

$$f_{\xi_k(\sigma_1)}(i^*) \le g_{\sigma_1}^+(i^*) < g_{\sigma_2}^-(i^*) \le f_{\xi_k(\sigma_2)}(i^*). \tag{7}$$

Hence $d(f_{\xi_k(\sigma_1)}, f_{\xi_k(\sigma_2)}) = i^*$ for k = 1, ..., m.

Sh:696

Since $i^* \in A_{\ell^*}$ we have for all $k: i^* \notin A_{\ell_k}$. From (1), (2), (7) we get

$$\xi_k(\sigma_1) <_{\ell_k} \xi_k(\sigma_2)$$
 for $k = 1, \dots, m$.

Hence
$$(\ell_k, \xi_k(\sigma_1)) < (\ell_k, \xi_k(\sigma_2))$$
 for all k , which means $\vec{t}_{\sigma_1} < \vec{t}_{\sigma_2}$.

3. Consistency

THEOREM 3.1. Assume $\aleph_0 \leq \lambda_2 \leq \lambda_3 \leq \cdots$, where $\lambda_n^{<\kappa} = \lambda_n$ for all n, and $\kappa^{<\kappa} = \kappa$.

Then there is a forcing notion \mathbb{P} which satisfies the κ^+ -cc and is κ -complete, and a \mathbb{P} -name I of a subset of 2^{κ} (where 2^{κ} is endowed with the lexicographic order, which is inherited by I) such that

 $\Vdash_{\mathbb{P}} \forall n > 1$: I^n has antichains of size λ_n , but no larger ones.

Remark 3.2. At first reading, the reader may want to consider the special case $\kappa = \omega$, $\lambda_{n+2} = \aleph_n$. Note that 2^{ω} is order isomorphic to the Cantor set, a subset of the real line \mathbb{R} , so we obtain as a special case of Theorem 3.1:

Consistently, there is a set $I \subseteq \mathbb{R}$ such that for each n, I^{n+1} admits much larger antichains than I^n .

NOTATION 3.3. (1) We let $\lambda_1 = 0$, $\lambda_{\omega} = \sup\{\lambda_n : n < \omega\}$.

- (2) It is understood that 2^{α} is linearly ordered lexicographically, and $(2^{\alpha})^m$ is partially ordered by the pointwise order.
 - (3) For $\alpha \le \beta \le \kappa$, $\eta \in 2^{\alpha}$, $\nu \in 2^{\beta}$, we define

 $\eta \leq \nu$ iff ν extends η , i.e., $\eta \subseteq \nu$.

(4) For $\bar{\eta} = \langle \eta(0), \dots, \eta(n-1) \rangle \in (2^{\alpha})^n$, $\bar{\nu} = \langle \nu(0), \dots, \nu(n-1) \rangle \in (2^{\beta})^n$, we let

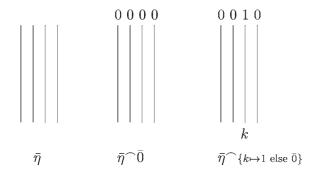
$$\bar{\eta} \leq \bar{\nu}$$
 iff $\eta(0) \leq \nu(0), \ldots, \eta(n-1) \leq \nu(n-1).$

(5) For $\eta \in 2^{\alpha}$, $i \in \{0, 1\}$ we write $\eta \hat{i}$ for the element $\nu \in 2^{\alpha+1}$ satisfying $\eta \leq \nu$, $\nu(\alpha) = i$.

DEFINITION 3.4. Let $\bar{\eta} \in (2^{\alpha})^m$, $k \in \{0, ..., m-1\}$, $m \ge 2$. We define $\bar{\eta} \cap \bar{1}$, $\bar{\eta} \cap \bar{0}$, $\bar{\eta} \cap \{k \mapsto 1 \text{ else } \bar{0}\}$, $\bar{\eta} \cap \{k \mapsto 0 \text{ else } \bar{1}\}$ in $(2^{\alpha+1})^m$ as follows: All four are \triangleleft -extensions of $\bar{\eta}$, and:

- $-\bar{\eta}^{\hat{}}0(n) = \eta(n)^{\hat{}}0$ for all n < m.
- $-\bar{\eta}^{\smallfrown}\bar{1}(n) = \eta(n)^{\smallfrown}1$ for all n < m.
- $-\bar{\eta}^{\hat{}}\{k\mapsto 0 \text{ else } \bar{1}\}(n) = \eta(n)^{\hat{}}1 \text{ for all } n\neq k, \bar{\eta}^{\hat{}}\{k\mapsto 0 \text{ else } \bar{1}\}(k) = \eta(n)^{\hat{}}0.$
- $-\bar{\eta}^{\smallfrown}\{k\mapsto 1 \text{ else } \bar{0}\}(n) = \eta(n)^{\smallfrown}0 \text{ for all } n\neq k, \bar{\eta}^{\smallfrown}\{k\mapsto 1 \text{ else } \bar{0}\}(k) = \eta(n)^{\smallfrown}1.$

ANTICHAINS IN PRODUCTS OF LINEAR ORDERS



FACT 3.5. (1) If $\alpha \leq \beta \leq \kappa$, $\bar{\eta}$, $\bar{\eta}' \in (2^{\alpha})^n$ are incomparable, $\bar{\nu}$, $\bar{\nu}' \in (2^{\beta})^n$, $\bar{\eta} \triangleleft \bar{\nu}$, $\bar{\eta}' \leq \bar{\nu}'$, then also $\bar{\nu}$ and $\bar{\nu}'$ are incomparable.

219

- (2) $\bar{\eta} \hat{0} < \bar{\eta} \bar{1}$.
- (3) $\bar{\eta}^{\frown}\{k\mapsto 0 \text{ else } \bar{1}\}0$ and $\bar{\eta}^{\frown}\{k\mapsto 1 \text{ else } \bar{0}\}$ are incomparable.

DEFINITION 3.6. We let \mathbb{P} be the set of all "conditions"

$$p = (u^p, \alpha^p, \langle \bar{\eta}^p_{\xi} : \xi \in u^p \rangle)$$

satisfying the following requirements for all m:

- $-u^p \in [\lambda_{\omega}]^{<\kappa}$.
- $-\alpha^p < \kappa$.
- For all $\xi \in u^p \cap (\lambda_m \setminus \lambda_{m-1})$: $\bar{\eta}_{\xi}^p = \langle \eta_{\xi}^p(0), \dots, \eta_{\xi}^p(m-1) \rangle \in (2^{\alpha^p})^m$. For all $\xi \neq \xi'$ in $u^p \cap (\lambda_m \setminus \lambda_{m-1})$, $\bar{\eta}_{\xi}^p$ and $\bar{\eta}_{\xi'}^p$ are incomparable in $(2^{\alpha^p})^m$.

We define $p \le q$ ("q is stronger than p") iff

- $-u^p \subseteq u^q$,
- $-\alpha^p \leq \alpha^q$,
- for all $\xi \in u^p$, $\bar{\eta}^p_{\xi} \leq \bar{\eta}^q_{\xi}$.

FACT 3.7. (1) For all $\alpha < \kappa$: The set $\{p \in \mathbb{P} : \alpha^p \ge \alpha\}$ is dense in \mathbb{P} .

(2) For all $\xi < \lambda_{\omega}$: The set $\{p \in \mathbb{P} : \xi \in u^p\}$ is dense in \mathbb{P} .

FACT AND DEFINITION 3.8. We let $\langle \bar{y}_{\xi} : \xi < \lambda_{\omega} \rangle$ be the "generic object", i.e., a name satisfying

$$\forall m \in \omega \ \forall p \in \mathbb{P} \ \forall \xi \in u^p \cap (\lambda_m \setminus \lambda_{m-1}) : p \Vdash_{\mathbb{P}} \bar{y}_{\xi} \in (2^{\kappa})^m,$$

$$\forall p \in \mathbb{P} \ \forall \xi \in u^p : p \Vdash \bar{\eta}_{\xi}^p \leq \bar{y}_{\xi}.$$

(This definition makes sense, by Fact 3.7.)

Clearly, $\Vdash \xi, \xi' \in \lambda_m \setminus \lambda_{m-1} \Rightarrow \bar{y}_{\xi}, \bar{y}_{\xi'}$ incompatible. We let $\Vdash I = \bigcup_{m=2}^{\infty} \{\nu_{\xi}(\ell) : \xi \in \lambda_m \setminus \lambda_{m-1}, \ell < m\}$.

LEMMA 3.9. Let \mathbb{P} , I be as in 3.6 and 3.8.

Then $\Vdash_{\mathbb{P}} \underline{I}^m$ has antichains of size λ_m , but no larger ones.

Sh:696

It is clear that \mathbb{P} is κ -complete, and κ^+ -cc is proved by an argument similar to the Δ -system argument below. So all the λ_m stay cardinals.

We can show by induction that $\Vdash \alpha(\underline{I}^m) > \lambda_m$, i.e., \underline{I}^m has an antichain of size λ_m : This is clear if $\lambda_m = \lambda_{m-1}$ (and void if m = 0); if $\lambda_m > \lambda_{m-1}$ then $\langle \bar{\nu}_{\xi} : \xi \in \lambda_m \setminus \lambda_{m-1} \rangle$ will be forced to be antichain.

It remains to show that (for any m) there is no antichain of size λ_m^+ in I^m .

Fix $m^* \in \omega$, and assume wlog that $\lambda_{m^*+1} > \lambda_{m^*}$.

[Why is this no loss of generality? If $\lambda_{m^*} = \lambda_{\omega}$, then the cardinality of \underline{I} is at most λ_{m^*} , and there is nothing to prove. If $\lambda_{m^*} = \lambda_{m^*+1} < \lambda_{\omega}$, then replace m^* by $\min\{m \geq m^* : \lambda_m < \lambda_{m+1}\}\}.$

Towards a contradiction, assume that there is a condition p and a sequence of names $\langle \bar{\rho}_{\beta} : \beta < \lambda_{m^*}^+ \rangle$ such that

$$p \Vdash \langle \bar{\rho}_{\beta} : \beta < \lambda_{m^*}^+ \rangle$$
 is an antichain in \underline{I}^{m^*} .

Let $\bar{\rho}_{\beta} = (\bar{\rho}_{\beta}(n) : n < m^*)$. For each $\beta < \lambda_{m^*}^+$ and each $n < m^*$ we can find a condition $p_{\beta} \geq p$ and

$$m_n(\beta) \in \omega$$
, $\ell_n(\beta) < m_n(\beta)$, $\xi_n(\beta) \in \lambda_{m_n(\beta)} \setminus \lambda_{m_n(\beta)-1}$

such that

$$p_{\beta} \Vdash \rho_{\beta}(n) = \nu_{\xi_n(\beta)}(\ell_n(\beta)).$$

We will now employ a Δ -system argument.

We define a family $\langle \zeta^{\beta} : \beta < \lambda_{m^*}^+ \rangle$ of functions as follows: Let i_{β} be the order type of $u^{p_{\beta}}$, and let

$$u^{\beta} = u^{p_{\beta}} = \{ \zeta^{\beta}(i) : i < i_{\beta} \}$$
 in increasing enumeration.

By 3.7(2) may assume $\xi_n(\beta) \in u^{\beta}$, say $\xi_n(\beta) = \zeta^{\beta}(i_n(\beta))$.

By thinning out our alleged antichain $\langle \bar{\rho}_{\beta} : \beta < \lambda_{m^*}^+ \rangle$ we may assume

- For some $i^* < \kappa$, for all β : $i_\beta = i^*$.
- For some $\alpha^* < \kappa$, for all β : $\alpha^{p_{\beta}} = \alpha^*$.
- For each $i < i^*$ there is some $m_{(i)}$ such that for all β : $\zeta^{\beta}(i) \in \lambda_{m_{(i)}} \setminus \lambda_{m_{(i)-1}}$.
- For each $i < i^*$ there is some $\bar{\eta}_{\langle i \rangle} \in (2^{\alpha^*})^{m_{\langle i \rangle}}$ such that for all β : $\bar{\eta}_{\zeta^{\beta}(i)}^{p_{\beta}} = \bar{\eta}_{\langle i \rangle}$.
- (Here we use $\lambda_m^{<\kappa} = \lambda_m$.)
 The family $\langle u^\beta : \beta < \lambda_{m^*}^+ \rangle$ is a Δ -system, i.e., there is some set $u^* \in [\lambda_\omega]^{<\kappa}$ such that for all $\beta \neq \gamma : u^\beta \cap u^\gamma = u^*$.
- Moreover: there is a set $\Delta \subseteq i^*$ such that for all β : $u^* = \{\zeta^{\beta}(i) : i \in \Delta\}$. Since ζ^{β} is increasing, this also implies $\zeta^{\beta}(i) = \zeta^{\gamma}(i)$ for $i \in \Delta$.
- For each $n < m^*$, the functions m_n , ℓ_n and i_n are constant. (Recall that these functions map $\lambda_{m^*}^+$ into ω .) We will again write m_n , ℓ_n , i_n for these constant values.

Note that for $i \in i^* \setminus \Delta$ all the $\zeta^{\beta}(i)$ are distinct elements of λ_{min} , hence:

$$i \notin \Delta \text{ implies } \lambda_{m^*}^+ \leq \lambda_{m_{\langle i \rangle}}, \text{ hence } m_{\langle i \rangle} > m^*.$$

ANTICHAINS IN PRODUCTS OF LINEAR ORDERS

Now pick $k^* \le m^*$ such that $k^* \notin \{\ell_n : n < m^*\}$. Pick any distinct $\beta, \gamma < \lambda_{m^*}^+$. We will find a condition q extending p_β and p_γ , such that $q \Vdash \bar{\varrho}_\beta \le \bar{\varrho}_\gamma$.

We define q as follows:

- $u^q := u_\beta \cup u_\gamma = u^* \dot{\cup} \{ \zeta^\beta(i) : i \in i^* \setminus \Delta \} \dot{\cup} \{ \zeta^\gamma(i) : i \in i^* \setminus \Delta \}.$
- $\bullet \ \alpha^q = \alpha^* + 1.$
- For $\xi \in u^*$, say $\xi = \zeta^{\beta}(i) = \zeta^{\gamma}(i)$, recall that $\bar{\eta}_{\xi}^{p_{\beta}} = \bar{\eta}_{\langle i \rangle} = \bar{\eta}_{\xi}^{p_{\gamma}}$. We let $\bar{\eta}_{\xi}^{q} = \bar{\eta}_{\langle i \rangle} \bar{0}$ (see 3.3).
- For $\xi = \zeta^{\beta}(i)$, $i \in i^* \setminus \Delta$, we have $\bar{\eta}_{\xi}^{p_{\beta}} = \bar{\eta}_{\langle i \rangle} \in (2^{\alpha^*})^{m_{\langle i \rangle}}$, where $m_{\langle i \rangle} > m^*$. So $k^* \leq m^* < m_{\langle i \rangle}$, hence $\bar{\eta}_{\langle i \rangle} \cap \{k^* \mapsto 1 \text{ else } \bar{0}\}$ is well-defined. We let

$$\bar{\eta}^q_{\varepsilon} = \bar{\eta}_{\langle i \rangle} {}^{\smallfrown} \{k^* \mapsto 1 \text{ else } \bar{0}\}.$$

• For $\xi = \zeta^{\gamma}(i)$, $i \in i^* \setminus \Delta$, we let

$$\bar{\eta}_{\varepsilon}^q = \bar{\eta}_{\langle i \rangle} {}^{\smallfrown} \{k^* \mapsto 0 \text{ else } \bar{1}\}.$$

We claim that q is a condition. The only nontrivial requirement is the incompatibility of all $\bar{\eta}^q_{\xi}$: Let $\xi, \xi' \in u^q$, $\xi \neq \xi'$, and assume that $\xi, \xi' \in \lambda_m \setminus \lambda_{m-1}$ for some m

If $\xi, \xi' \in u^{\beta}$, then the incompatibility of $\bar{\eta}^q_{\xi}$ and $\bar{\eta}^q_{\xi'}$ follows from the incompatibility of $\bar{\eta}^{p_{\beta}}_{\xi}$ and $\bar{\eta}^{p_{\beta}}_{\xi'}$. The same argument works for $\xi, \xi' \in u_{\gamma}$.

So let
$$\xi \in u_{\beta} \setminus u^*, \xi' \in u_{\gamma} \setminus u^*$$
. Say $\xi = \zeta^{\beta}(i), \xi' = \zeta^{\gamma}(i')$.

If $i \neq i'$, then $\bar{\eta}_{\langle i \rangle} = \bar{\eta}_{\zeta^{\beta}(i)}^{P\beta} = \bar{\eta}_{\zeta^{\gamma}(i)}^{P\gamma}$ and $\bar{\eta}_{\langle i' \rangle} = \bar{\eta}_{\zeta^{\gamma}(i')}^{P\gamma}$ are incompatible (because p_{γ} is a condition). From $\bar{\eta}_{\langle i \rangle} \leq \bar{\eta}_{\xi}^{q}$ and $\bar{\eta}_{\langle i' \rangle} \leq \bar{\eta}_{\xi'}^{q}$ we conclude that also $\bar{\eta}_{\xi}^{q}$ and $\bar{\eta}_{\xi'}^{q}$ are incompatible.

Finally, we consider the case i = i'.

We have

$$\bar{\eta}^q_{\xi} = \bar{\eta}_{\langle i \rangle} {}^{\smallfrown} \{k^* \mapsto 0 \text{ else } \bar{1}\}, \qquad \bar{\eta}^q_{\xi'} = \bar{\eta}_{\langle i \rangle} {}^{\smallfrown} \{k^* \mapsto 1 \text{ else } \bar{0}\}$$

so by 3.7(3), $\bar{\eta}^q_{\xi}$ and $\bar{\eta}^q_{\xi'}$ are incompatible.

This concludes the construction of q. We now check that $q \Vdash \bar{\varrho}_{\beta} \leq \bar{\varrho}_{\gamma}$, i.e., $q \Vdash \bar{\varrho}_{\beta}(n) \leq \bar{\varrho}_{\gamma}(n)$ for all n. Clearly, $q \Vdash \bar{\varrho}_{\beta}(n) = \bar{v}_{\zeta^{\beta}(i_n)}(\ell_n) \trianglerighteq \bar{\eta}_{\zeta^{\beta}(i_n)}^q = \eta \langle i_n \rangle ^\frown \bar{0}$. Here we use the fact that $k^* \neq \ell_n$. Similarly, $q \Vdash \bar{\varrho}_{\gamma}(n) = \bar{v}_{\zeta^{\beta}(i_n)}(\ell_n) \trianglerighteq \eta_{\langle i_n \rangle} ^\frown \bar{1}$.

Hence
$$q \Vdash \bar{\varrho}_{\beta} \leq \bar{\varrho}_{\gamma}$$
.

This concludes the proof of Theorem 3.1

Acknowledgement

We are grateful to the referee for his/her many comments, in particular for his/her suggestions to improve the style of the introduction.

References

- 1. Farley, J.: Cardinalities of infinite antichains in products of chains, *Algebra Universalis* **42** (1999), 235–238.
- 2. Ploščica, M. and Haviar, M.: On order-polynomial completeness of lattices, *Algebra Universalis* **39** (1998), 217–219.
- 3. Shelah, S.: Cardinal Arithmetic, Oxford Logic Guides 29, Oxford University Press, 1994.