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A COUNTABLE STRUCTURE DOES NOT HAVE A FREE
UNCOUNTABLE AUTOMORPHISM GROUP

SAHARON SHELAH

Abstract

It is proved that the automorphism group of a countable structure cannot be a free uncountable group.
The idea is that instead of proving that every countable set of equations of a certain form has a solution,
it is proved that this holds for a co-meagre family of appropriate countable sets of equations.

Can a countable structure have an automorphism group that is a free uncountable
group? This was a well-known problem in group theory, at least in England. David
Evans posed the question at the Durham meeting on model theory and groups which
Wilfrid Hodges organised in 1987, and we thank Simon Thomas for telling us about
it. Later and independently, in descriptive set theory, Becker and Kechris [1] asked
if there is an uncountable free Polish group, that is, one which is on a complete,
separable metric space, and for which the operations are continuous. Motivated by
this, Solecki [4] proved that the group of automorphisms of a countable structure
cannot be an uncountable free Abelian group. For further information, see [2] from
which, as a byproduct, we can say something on uncountable structures.

Here, we prove the following theorem.

Theorem 1. If A is a countable model, then Aut(A) cannot be a free uncountable
group.

The proof follows from the following two claims, one establishing a property of G,
and the other proving that free groups do not have it.

A proof of a similar result for general Polish groups is under preparation (see [3];
this also gives more on the Remark 5(2)).

We thank Dugald Macpherson for pointing out some inaccuracies in an earlier
version of the paper.

Notation 2.

(1) Let ω denote the set of natural numbers, and let x < ω mean ‘x is a natural
number’.

(2) Let a, b, c and d denote members of G (the group).

(3) Let d denote the ω-sequence 〈dn : n < ω〉, and similarly in other cases.

(4) Let k, `, m, n, i, j, r, s and t denote natural numbers (and so also elements
of the structure A, which, for notational simplicity, we assume is the set of natural
numbers).
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2 saharon shelah

Proposition 3. Assume that A is a countable structure with automorphism group G,
and for notational simplicity assume that its set of elements is ω (also, of course, it is
infinite; otherwise, the proposition is trivial).

We define a metric d on G by

d(f, g) = sup{2−n : f(n) 6= g(n) or f−1(n) 6= g−1(n)}.
Then the following statements hold.

(1) G is a complete, separable metric space under d, in fact, a separable topological
group.

(2) If d is an ω–sequence of members of G\{eG} converging to eG, then for some
(strictly increasing) ω-sequence j of natural numbers, the pair (d, j) satisfies the follow-
ing conditions.

(∗) For any sequence 〈wn(x1, x2, . . . , x`1,n
; y1, y2, . . . , y`2,n

) : n < ω〉 (that is, an
ω-sequence of non-degenerate group words) obeying j (see below), we can
find a sequence b from G, that is, bn ∈ G for n < ω such that

bn = wn(dn+1, dn+2, . . . , dn+`1,n
; bn+1, bn+2, . . . , bn+`2,n

) for any n.

We say that 〈wn(x1, x2, . . . , x`1,n
; y1, y2, . . . , y`2,n

) : n < ω〉 obeys j whenever:
(∗)1 if m < jn, then m+ `1,m < jn+1 and m+ `2,m < jn+1, and
(∗)2 for any n∗, m∗ < ω we can find i(0) and i(1) such that
(∗)3 m∗ < i(0), n∗ < i(0), i(0) < i(1), and wt is trivial (which means that wt = y1)

for t = ji(0), ji(0) + 1, . . . , ji(1), and f2(ji(0), n
∗, ji(0)) < i(1)− i(0), where

(∗)4 (i) the length of a word w = w(z1, . . . , zr), which in canonical form is
z
t(1)
π(1)z

t(2)
π(2) . . . z

t(s)
π(s), where t(i) ∈ Z and π is a function from {1, 2, . . . , s}

into {1, . . . , r}, is

length(w) =
∑
i=1,...,s

|t(i)|;

(ii) for s 6 i, we let

f1(i, s) =
∏

t=s,...,i−1

length(wt)

(note that this is greater than or equal to 1, as all values of wt are
non-degenerate);

(iii) for n 6 s 6 i, we let

f2(i, n, s) =
∑

r=n,...,s−1

f1(i, r + 1)× length(wr),

and f2(i, n, s) = f2(i, n, i) if n 6 i < s.

Proof.
(1) This should be clear.
(2) So we are given the sequence d. We choose the increasing sequence j of

natural numbers by letting j0 = 0, jn+1 be the first j > jn such that
(∗)5 for every ` 6 n and m < jn, we have d`(m) < j and (d`)

−1(m) < j, and
[k > j ⇒ dk(m) = m].

Note that jn+1 is well defined, as the sequence d converges to eG; so for each
m < ω and for every large enough k < ω, we have dk(m) = m.

We shall prove that j = 〈jn : n < ω〉 is as required in part (2) of the proposition.
So let a sequence

w = 〈wn(x1, x2, . . . , x`1,n
; y1, y2, . . . , y`2,n

) : n < ω〉
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of group words obeying j be given (see (∗)1, (∗)2 and (∗)3 above). Then f1(i, s) and
f2(i, n, i) are well defined.

For each k < ω, we define the sequence 〈bkn : n < ω〉 of members of G as follows.
For n > k, we let bkn be eG, and now we define bkn by downward induction on n 6 k,
letting

(∗)6 bkn = wn(dn+1, dn+2, . . . , dn+`1,n
; bkn+1, b

k
n+2, . . . , b

k
n+`2,n

).
Now we shall work on proving that

(∗)7 for each n∗, m∗ < ω, the sequence 〈bkn∗ (m∗) : k < ω〉 is eventually constant.
[Why does (∗)7 hold? By the definition of ‘w obeys j’, we can find i(0) and i(1) such
that

(∗)8 m∗ < i(0), n∗ < i(0), i(0) < i(1), and wt is trivial for t = ji(0), ji(0) +1, . . . , ji(1),
and f2(ji(0), n

∗, ji(0)) < i(1)− i(0); actually, m∗ < ji(0) suffices.]
Now let k(∗) =df ji(1)+1; we claim that

(∗)9 if k > k(∗) and s > ji(1), then bks restricted to the interval [0, ji(1)−1) is the
identity.

[Why? If s > k, this holds by the choice of the bks as the identity everywhere. Now
we prove (∗)9 by downward induction on s 6 k (but, of course, s > ji(1)). However,
by the definition of composition of permutations, it suffices to show that

(∗)9a every permutation mentioned in the word

ws(ds+1, . . . , ds+`1,s
, bks+1, . . . , b

k
s+`2,s

)

maps every m < ji(1)−1 to itself.
Let us check this criterion. The ds+` for ` = 1, . . . , `1,s satisfy this, as the indexes
(s + `) are greater than or equal to ji(1) and m < ji(1)−1; now we apply the choice
of ji(1).

The bks+1, . . . , b
k
s+`2,s

satisfy this by the induction hypothesis on s. So the demand
in (∗)9a holds, and hence we complete the downward induction on s. So (∗)9 holds.]

(∗)10 If k > k(∗) and s ∈ [ji(0), ji(1)], then bks is the identity on the interval
[0, ji(1)−1).

[Why? We prove this by downward induction; for s = ji(1) this holds by (∗)9. If it
holds for s+ 1, recall that ws is trivial; that is, ws = y1, and hence bks = bks+1, so this
follows.]

(∗)11 For every k > k(∗) we find that for every s > ji(0), the functions bks , b
k(∗)
s

agree on the interval [0, ji(1)−1), and they are both the identity on it. Also,
(bks )

−1 and (bk(∗)s )−1 agree on this interval, and both are the identity on it.
[Why? For s > ji(1), this holds by (∗)9; for s ∈ [ji(0), ji(1)), by (∗)10.]

(∗)12 For any s ∈ [n∗, ω) and m < ji(0)+f2(ji(0) ,n∗ ,s), we find that k > k(∗) (equal to
ji(1)+1) implies that

bks (m) = bk(∗)s (m) and (bks )
−1(m) = (bk(∗)s )−1(m).

If, in addition, t satisfies t 6 i(0) + f2(ji(0), n
∗, s) and m < jt, then bk(∗)s (m)

and (bk(∗)s )−1(m) are less than jt+f1(ji(0) ,s).
Before proving this, as we assume that

f2(ji(0), n
∗, s) 6 f2(ji(0), n

∗, ji(0)) < i(1)− i(0),

we note that necessarily m < ji(0)+(i(1)−i(0)−1) = ji(1)−1.
Case 1: s > ji(0).

[Why? This holds by (∗)11, because (as was noted above) m < ji(1)−1.]
We prove this by downward induction on s (for all m and k, as above).
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4 saharon shelah

Case 2: We now prove it for s < ji(0), assuming that we have it for all relevant
s′ > s (and s > n∗, of course).

Let k > k(∗), let t 6 i(0) + f2(ji(0), n
∗, s), and let m < jt. Note that

t+ f1(ji(0), s+ 1)× length(ws) 6 i(0) + f2(ji(0), n
∗, s) + f1(ji(0), s)

= i(0) + f2(ji(0), n
∗, s+ 1),

and hence for s′ = s+ 1, s+ 2, . . . , s+ `1,s, the induction hypothesis applies to every

t′ 6 t+ f1(ji(0), s+ 1)× length(ws).

(Recall that f1(ji(0), s
′) is non-increasing in s′.)

We concentrate on proving that bks (m) = bk(∗)s (m) < jt+f1(ji(0) ,s), as the proof of
(bks )

−1(m) = (bk(∗)s )−1(m) < jt+f1(ji(0) ,s) is the same. So

bks (m) = ws(ds+1, . . . , ds+`1,s
, bks+1, . . . , b

k
s+`2,s

).

Let us write this group expression as the product uks,1 . . . u
k
s,length(ws)

, where each uks,r is

one of {ds+1, . . . , ds+`1,s
, bks+1, . . . , b

k
s+`2,s
}, or is an inverse of one of them.

For r = 0, 1, . . . , length(ws), let

vks,r = uks, length(ws)+1−r . . . uks, length(ws)
,

so vks,r ∈ G is the identity permutation for r = 0, and is

ws(ds+1, . . . , ds+`1,s
, bks+1, . . . , b

k
`2,s

) = bks

for r = length(ws) and

jt+f1(ji(0) ,s+1)×length(ws) = jt+f1(ji(0) ,s)

by the definition of f1. Hence it suffices to prove the following statement.

(∗)12a if r ∈ {0, . . . , length(ws)} and m < jt, then

vks,r(m) = vk(∗)s,r (m) < jt+f1(ji(0) ,s+1)×r.

[Why does (∗)12a hold? We do it by induction on r; now for r = 0, the permutation
is the identity, and thus trivial. For r + 1, we have

vks,r+1(m) = uks, length(ws)−r(v
k
s,r(m)).

Note that if

uks, length(ws)−r ∈ {bks+1, . . . , (b
k
s+1)−1, . . .},

then uks, length(ws)−r can map any m′ < jt+f1(jn(0) ,s+1)×r only to numbers

m′′ < jt+f1(ji(0) ,s+1)×r+f1(ji(0) ,s+1)

because (∗)12 has been proved for bks′ and bk(∗)s′ when s′ > s is appropriate. Together
with the induction hypothesis, this gives the conclusion of (∗)12a if

uks, length(ws)−r ∈ {bks+1, . . . , (b
k
s+1)−1, . . .}.

Otherwise,

uks, length(ws)−r ∈ {ds+1, . . . , d
−1
s+1, . . .},

so the equality

uks, length(ws)−r(m
′) = u

k(∗)
s, length(ws)−r(m

′)
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a countable structure does not have. . . 5

is trivial. For the inequality (that this is less than jt+f1(ji(0) ,s+1)×(r+1)), just remember
the definition of ji; here, adding 1 was enough.]

So we have proved (∗)12a, and hence (∗)12. Thus, using (∗)12 for s = n∗, we have

k > k(∗)&m < ji(0) ⇒ bkn∗ (m) = b
k(∗)
n∗ (m);

in particular, this holds for m = m∗ (as m∗ < ji(0)). Hence (∗)7 holds true.

Lastly,

(∗)13 for each n∗, m∗ < ω the sequence 〈(bkn∗ )−1(m∗) : k < ω〉 is eventually
constant.

[Why? See the proof of (∗)7.]

Together, we can define for any m, n < ω the natural number b∗n(m) as the eventual
value of 〈bkn(m) : k < ω〉. So b∗n is a well-defined function from the natural numbers
to themselves (by (∗)7); in fact, it is one-to-one (as each bkn is) and is onto (by
(∗)13), so it is a permutation of A. Clearly, the sequence 〈bkn : k < ω〉 converges to
b∗n as a permutation, the metric is actually defined on the group of permutations
of the family of members of A, and G is a closed subgroup; so b∗n actually is an
automorphism of A. Similarly, the required equations

b∗n = wn(dn+1, . . . , dn+`1,n
, b∗n+1, . . . , b

∗
n+`2,n

)

hold. 2

Proposition 4. The conclusion (parts 1 and 2) of Proposition 3 fails for any un-
countable free group G.

Proof. Let Y be a free basis of G; as G is a separable metric space, there is a
sequence 〈cn : n < ω〉 of (pairwise distinct) members of Y with d(cn, cn+1) < 2−n.
Let dn = (c2n)

−1c2n+1, so 〈dn : n < ω〉 converges to eG and dn 6= eG. Assume that
j = 〈jn : n < ω〉 is as in the conclusion of Proposition 3, and we shall eventually get
a contradiction. Let H be a subgroup of G generated by some countable Z ⊆ Y ,
and including {cn : n < ω}.

Now

(∗)1 〈dn : n < ω〉 satisfies the conclusion of Proposition 3 in H as well.

[Why? We know that there is a projection from G onto H , and dn ∈ H .]

For each ν ∈ ωω, let wν = 〈wνn : n < ω〉, where

wνn = wνn(x1, y1) =

{
x1(y1)k+1, if ν(n) = 2k + 1,
(y1)k+1, if ν(n) = 2k,

so this is a sequence of words as mentioned in Proposition 3, and ν(n) = 0 implies
that wn is trivial; that is, it equals y1. Recalling that we consider ωω as a Polish
space in the standard way,

(∗)2 the set of ν ∈ ωω for which wν obeys j is co-meagre.

[Why? This is easy; for each n∗, m∗ < ω the set of ν ∈ ωω for which wν fail to satisfy
the demand for n∗ and m∗ is nowhere dense (and closed); hence the set of those
failing it is the union of countably many nowhere dense sets, and thus is meagre.]

(∗)3 For each a ∈ H , the family of ν ∈ ωω such that there is a solution b for
(d,wν) in H satisfying b0 = a is nowhere dense.
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[Why? Given a finite sequence ν of natural numbers, note that for any sequence
ρ ∈ ωω of which ν is an initial segment and solution b for (d,wρ) satisfying b0 = a,
we can show by induction on n 6 lg(ν) that bn is uniquely determined (that is,
it does not depend on ρ). We call it b[n, ν, d], and we use the fact that in a free
group, for every k > 1, any member of the group has at most one kth root. Now, if
b[lg(ν), ν, d], which is a member of G, is not eG, then for some t < ω it has no tth
root, and if we let ν1 = ν_〈2t − 2〉, we are done. If not, and if we let ν0 = ν_〈1〉,
then b[lg(ν) + 1, ν0, d] is also well defined and equal to dlg(ν); hence (by the choice of
the values of dn) it is not eG. Therefore, for some t < ω it has no tth root, and so
ν1 = ν0

_〈2t− 2〉 is as required.]
Now we can finish the proof of Proposition 4, as follows. Just by (∗)2, (∗)3 and

the Baire theorem, for some ν ∈ ωω, the sequence wν of group words obeys j, and
there is no solution for (d,wν) in H . There is hence no solution in G. 2

Proof of Theorem 1. This follows from Propositions 3 and 4. 2

Concluding remarks 5.
(1) In the proof of Proposition 4, we do not use the full strength of ‘G is free’.

For example, it is enough to assume that the following statements hold.
(a) If g ∈ G, g 6= eG, then for some t > 1, g has no tth root, and for every t > 1

it has at most one tth root (in G).
(b) If X is a countable subset of G, then there is a countable subgroup H of G

which includes X, and there is a projection from G onto H .
(c) G is uncountable.

The uncountable free Abelian groups fall under this criterion; in fact by Proposi-
tion 3, G is ‘large’ and ‘rich’.

(2) What about uncountable structures? Sometimes a parallel result holds, an
approximation to ‘if λ = iω ’, replacing ‘countable’ by ‘of cardinality less than iω ’.
More generally, we assume that

ℵ0 < λ =
∑
n<ω

λn and 2λn < 2λn+1 , for n < ω;

hence µ =df
∑

n<ω 2λn < 2λ, and we have
(∗) if A is a structure with exactly λ elements, A =

⋃
n<ω P

A
n and |PAn | < λ for

n < ω, and G is its group of automorphisms, then G cannot be a free group
of cardinality greater than µ.

The proof is similar, but now without loss of generality the set of elements of A is
λ = {α : α < λ}, and we define d by

d(f, g) = sup{2−n : there is α < λn such that
for some (f′, g′) ∈ {(f, g), (f−1, g−1), (g, f), (g−1, f−1)}
one of the following possibilities holds:
(a) for some m < ω we have f′(m) < λm 6 g′(m);
(b) f′(n) < g′(n) < λn}.

Under this metric, G is a complete metric space with density less than or equal to∑
n<ω 2λn = µ, and the conclusion of Proposition 3 holds.
(3) By [2], for κ = κ<κ > ℵ0, there is a forcing, adding such a group and not

changing the cardinalities or cofinalities. A parallel result in Zermelo–Fraenkel set
theory together with the axiom of choice (ZFC) is in preparation.
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